Gravity and domain wall problem
Rai, B.; Senjanovic, G.
1992-11-01
It is well known that the spontaneous breaking of discrete symmetries may lead to conflict with big-bang cosmology. This is due to formation of domain walls which give unacceptable contribution to the energy density of the universe. On the other hand, it is expected that gravity breaks global symmetries explicitly. In this work we propose that this could provide a natural solution to the domain-wall problem. (author). 17 refs
Matter antimatter domains: A possible solution to the CP domain wall problem in the early universe
Mohanty, A. K.; Stecker, F. W.
1984-01-01
An SU(5) grand unified theory model is used to show how the degeneracy between vacua with different spontaneously broken charge parity can be dynamically lifted by a condensate of heavy fermion pairs. This drives a phase transition to a unique vacuum state with definite charge parity. The transition eliminates the domain walls in a matter antimatter symmetric domain cosmology.
Avoiding domain wall problem in SU(N) grand unified theories
Fujimoto, Y.; Zhiyong, Z.
1982-08-01
We look for the possibility of embedding the discrete sub-group of U(1)-Pecci-Quinn symmetry into the continuous one to avoid the domain wall problem. We find, within some restricted context, among various SU(N) models only one-family SU(5) and SU(6). (author)
Geng, C.Q.; Ng, J.N.
1988-08-01
New types of invisible axion model based on the recent variant axion models are presented. They belong to the N=1 type model and hence are free of domain wall problems. The Peccei-Quinn symmetry transformations are not totally generation and flavor blind, which may help in understanding the small values of electron and u-quark and large t-quark masses. The light neutrino mass pattern in the two Higgs singlet models can have a very different hierarchy that differs from the other type invisible axion model. (Author) (25 refs.)
Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio
2012-01-01
We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of
Discrete quark-lepton symmetry need not pose a cosmological domain wall problem
Lew, H.; Volkas, R.R.
1992-01-01
Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. It is pointed out that there are a number of plausible quark-lepton symmetric models in nature which do not produce cosmologically troublesome domain walls. 30 refs
Alternative to domain wall fermions
Neuberger, H.
2002-01-01
An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions
Domain wall networks on solitons
Sutcliffe, Paul
2003-01-01
Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks
Topological domain walls in helimagnets
Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.
2018-05-01
Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.
Anisotropy of domain wall resistance
Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon
2000-10-30
The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.
Dressed Domain Walls and holography
Grisa, Luca; Pujolas, Oriol
2008-01-01
The cutoff version of the AdS/CFT correspondence states that the Randall Sundrum scenario is dual to a Conformal Field Theory (CFT) coupled to gravity in four dimensions. The gravitational field produced by relativistic Domain Walls can be exactly solved in both sides of the correspondence, and thus provides one further check of it. We show in the two sides that for the most symmetric case, the wall motion does not lead to particle production of the CFT fields. Still, there are nontrivial effects. Due to the trace anomaly, the CFT effectively renormalizes the Domain Wall tension. On the five dimensional side, the wall is a codimension 2 brane localized on the Randall-Sundrum brane, which pulls the wall in a uniform acceleration. This is perceived from the brane as a Domain Wall with a tension slightly larger than its bare value. In both cases, the deviation from General Relativity appears at nonlinear level in the source, and the leading corrections match to the numerical factors.
Domain walls at finite temperature
Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.
1983-08-01
It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt
Separated matter and antimatter domains with vanishing domain walls
Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su, E-mail: tkachev@ms2.inr.ac.ru [Physics Department and Laboratory of Cosmology and Elementary Particle Physics, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)
2015-10-01
We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.
Black holes escaping from domain walls
Flachi, Antonino; Sasaki, Misao; Pujolas, Oriol; Tanaka, Takahiro
2006-01-01
Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place
Domain wall engineering through exchange bias
Albisetti, E.; Petti, D.
2016-01-01
The control of the structure and position of magnetic domain walls is at the basis of the development of different magnetic devices and architectures. Several nanofabrication techniques have been proposed to geometrically confine and shape domain wall structures; however, a fine tuning of the position and micromagnetic configuration is hardly achieved, especially in continuous films. This work shows that, by controlling the unidirectional anisotropy of a continuous ferromagnetic film through exchange bias, domain walls whose spin arrangement is generally not favored by dipolar and exchange interactions can be created. Micromagnetic simulations reveal that the domain wall width, position and profile can be tuned by establishing an abrupt change in the direction and magnitude of the exchange bias field set in the system. - Highlights: • Micromagnetic simulations study domain walls in exchange biased thin films. • Novel domain wall configurations can be stabilized via exchange bias. • Domain walls nucleate at the boundary of regions with different exchange bias. • Domain wall width and spin profile are controlled by tuning the exchange bias.
Theory of topological edges and domain walls
Bais, F.A.; Slingerland, J.K.; Haaker, S.M.
2009-01-01
We investigate domain walls between topologically ordered phases in two spatial dimensions. We present a method which allows for the determination of the superselection sectors of excitations of such walls and which leads to a unified description of the kinematics of a wall and the two phases to
Behrisch, R.
1976-01-01
Some of the relevant elementary atomic processes which are expected to be of significance to the first wall of a fusion reactor are reviewed. Up to the present, most investigations have been performed at relatively high ion energies, typically E greater than 5 keV, and even in this range the available data are very poor. If the plasma wall interaction takes place at energies of E greater than 1 keV the impurity introduction and first wall erosion which will take place predominantly by sputtering, will be large and may severely limit the burning time of the plasma. The wall bombardment and surface erosion will presumably not decrease substantially by introducing a divertor. The erosion can only be kept low if the energy of the bombarding ions and neutrals can be kept below the threshold for sputtering of 1 to 10 eV. 93 refs
Booted domain wall and charged Kaigorodov space
Cai Ronggen
2003-01-01
The Kaigorodov space is a homogeneous Einstein space and it describes a pp-wave propagating in anti-de Sitter space. It is conjectured in the literature that M-theory or string theory on the Kaigorodov space times a compact manifold is dual to a conformal field theory in an infinitely-boosted frame with constant momentum density. In this Letter we present a charged generalization of the Kaigorodov space by boosting a non-extremal charged domain wall to the ultrarelativity limit where the boost velocity approaches the speed of light. The finite boost of the domain wall solution gives the charged generalization of the Carter-Novotny-Horsky metric. We study the thermodynamics associated with the charged Carter-Novotny-Horsky space and discuss its relation to that of the static black domain walls and its implications in the domain wall/QFT (quantum field theory) correspondence
Flavor changing strings and domain walls
Dvali, G.; Senjanovic, G.
1993-04-01
We consider the cosmological consequences of a spontaneous breaking of non-abelian discrete symmetries, which may appear as a natural remnant of a continuous symmetry, such as a family symmetry. The result may be a stable domain wall across which an electron would turn into a muon (orν e into ν μ ) or a flavor analogue of an Alice string-domain wall structure with the same property. (author). 16 refs
Structural domain walls in polar hexagonal manganites
Kumagai, Yu
2014-03-01
The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.
On thick domain walls in general relativity
Goetz, Guenter; Noetzold, Dirk
1989-01-01
Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.
Conduction at domain walls in oxide multiferroics
Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.
2009-03-01
Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.
Anomalous feedback and negative domain wall resistance
Cheng, Ran; Xiao, Di; Zhu, Jian-Gang
2016-01-01
Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)
Domain wall partition functions and KP
Foda, O; Wheeler, M; Zuparic, M
2009-01-01
We observe that the partition function of the six-vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP τ function and express it as an expectation value of charged free fermions (up to an overall normalization)
Domain walls in single-chain magnets
Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude
2017-12-01
The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.
Compactified webs and domain wall partition functions
Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)
2017-04-15
In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)
Resonant tunneling across a ferroelectric domain wall
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)
2016-05-15
We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.
Scaling properties of domain wall networks
Leite, A. M. M.; Martins, C. J. A. P.
2011-01-01
We revisit the cosmological evolution of domain wall networks, taking advantage of recent improvements in computing power. We carry out high-resolution field theory simulations in two, three and four spatial dimensions to study the effects of dimensionality and damping on the evolution of the network. Our results are consistent with the expected scale-invariant evolution of the network, which suggests that previous hints of deviations from this behavior may have been due to the limited dynamical range of those simulations. We also use the results of very large (1024 3 ) simulations in three cosmological epochs to provide a calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.5±0.2 and k w =1.1±0.3.
Hidden Supersymmetry of Domain Walls and Cosmologies
Skenderis, Kostas; Townsend, Paul K.
2006-01-01
We show that all domain-wall solutions of gravity coupled to scalar fields for which the world-volume geometry is Minkowski or anti-de Sitter admit Killing spinors, and satisfy corresponding first-order equations involving a superpotential determined by the solution. By analytic continuation, all flat or closed Friedmann-Lemaitre-Robertson-Walker cosmologies are shown to satisfy similar first-order equations arising from the existence of 'pseudo Killing' spinors
Constricted nanowire with stabilized magnetic domain wall
Sbiaa, R.; Al Bahri, M.
2016-01-01
Domain wall (DW)-based magnetic memory offers the possibility for increasing the storage capacity. However, stability of DW remains the major drawback of this scheme. In this letter, we propose a stepped nanowire for pinning DW in a desirable position. From micromagnetic simulation, the proposed design applied to in-plane magnetic anisotropy materials shows that by adjusting the nanowire step size and its width it is possible to stabilize DW for a desirable current density range. In contrast, only a movement of DW could be seen for conventional nanowire. An extension to a multi-stepped nanowire could be used for multi-bit per cell magnetic memory. - Highlights: • A stepped nanowire is proposed to pin domain wall in desired position. • The new structure can be made by a simple off set of two single nanowires. • The critical current for moving domain wall from one state to the other could be tuned by adjusting the geometry of the device. • The device could be used for multi-bit per cell memory by extending the steps in the device.
Dispersive elastic properties of Dzyaloshinskii domain walls
Pellegren, James; Lau, Derek; Sokalski, Vincent
Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.
Domain Walls and Matter-Antimatter Domains in the Early Universe
Dolgov A.D.
2017-01-01
Full Text Available We suggest a scenario of spontaneous (or dynamical C and CP violation according to which it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP violation existed only in the early universe and later it disappeared with the only trace of generated matter and antimatter domains. So this scenario does not suffer from the problem of domain walls. According to this scenario the width of the domain wall should grow exponentially to prevent annihilation at the domain boundaries. Though there is a classical result obtained by Basu and Vilenkin that the width of the wall tends to the one of the stationary solution (constant physical width. That is why we considered thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we were interested not only in stationary solutions found therein, but also investigated the general case of domain wall evolution with time. When the wall thickness parameter, δ0 , is smaller than H−1/2 where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0>H−1/2 We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0≫H−1 An explanation for the critical value δ0c=H−1/2 is also proposed.
PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures
Marrows, C. H.; Meier, G.
2012-01-01
Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other
Topological Luttinger liquids from decorated domain walls
Parker, Daniel E.; Scaffidi, Thomas; Vasseur, Romain
2018-04-01
We introduce a systematic construction of a gapless symmetry-protected topological phase in one dimension by "decorating" the domain walls of Luttinger liquids. The resulting strongly interacting phases provide a concrete example of a gapless symmetry-protected topological (gSPT) phase with robust symmetry-protected edge modes. Using boundary conformal field theory arguments, we show that while the bulks of such gSPT phases are identical to conventional Luttinger liquids, their boundary critical behavior is controlled by a different, strongly coupled renormalization group fixed point. Our results are checked against extensive density matrix renormalization group calculations.
Magnetization reversal in ferromagnetic spirals via domain wall motion
Schumm, Ryan D.; Kunz, Andrew
2016-11-01
Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.
Altering critical depinning current via domain wall pile-up in magnetic nanowires
Geng, Liwei D.; Jin, Yongmei M.
2015-01-01
An important role of domain wall pile-up in current-driven domain wall depinning in magnetic nanowires is revealed using micromagnetic simulations. It is found that the critical current for domain wall depinning can be substantially reduced and conveniently tuned by controlling domain wall number in the pile-up at pinning site, in analogy to dislocation pile-up responsible for Hall–Petch effect in mechanical strength. Domain wall pinning and depinning at an s-shape bend is considered, and the effects of curvature and current crowding in magnetic circuit on domain wall behaviors are discussed. - Highlights: • Advance fundamental knowledge of current-driven domain wall phenomena. • Provide a novel approach to drastically reduce the critical depinning current. • Solve an outstanding problem of effective control of domain wall pinning/depinning. • Report appealing new findings of magnetic domain wall pile-up mechanism. • Overcome the limitations of materials properties for domain wall-based devices
Dynamics of domain wall driven by spin-transfer torque
Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.
2011-01-01
Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.
Gravitational field of spherical domain wall in higher dimension
An exact solution of Einstein's equations is found describing the gravitational ﬁeld of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.
Domain wall motion in magnetically frustrated nanorings
Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.
2012-06-01
We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.
Second-harmonic imaging of ferroelectric domain walls
Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher; Pedersen, Kjeld
1998-01-01
configurations are presented. The SH generation enhancement is found especially pronounced for the polarization of the SH radiation being perpendicular to the domain walls. The origin and selection rules for the contrast in SH images of domain walls are discussed. The results obtained suggest that the domain...
Chiral damping of magnetic domain walls
Jué , Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2015-01-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Domain wall QCD with physical quark masses
Blum, T.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R.D.; Lehner, C.; Marinkovic, M.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; Portelli, A.; Sachrajda, C.T.; Soni, A.
2016-01-01
We present results for several light hadronic quantities ($f_\\pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit' with a number of other ensembles with heavier pion masses. We use the physical values of $m_\\pi$, $m_K$ and $m_\\Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_\\pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $\\bar {\\rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$...
Dynamics of domain wall networks with junctions
Avelino, P. P.; Oliveira, J. C. R. E.; Martins, C. J. A. P.; Menezes, J.; Menezes, R.
2008-01-01
We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.
Domain decomposition method for solving elliptic problems in unbounded domains
Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1991-01-01
Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs
Walker-type velocity oscillations of magnetic domain walls
Vella-Coleiro, G.P.
1976-01-01
We report stroboscopic observations of the radial motion of a magnetic bubble domain wall in an epitaxial LuGdAl iron garnet film. At high drive fields, initial velocities up to 9500 cm/sec were measured, and the domain wall was observed to move backwards during the field pulse, in agreement with calculations based on the Walker model
Spin motive forces due to magnetic vortices and domain walls
Lucassen, M.E.; Kruis, G.C.F.L.; Lavrijsen, R.; Swagten, H.J.M.; Koopmans, B.; Duine, R.A.
2011-01-01
We study spin motive forces, that is, spin-dependent forces and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on
Magnetic domain wall conduits for single cell applications
Donolato, Marco; Torti, A.; Kostesha, Natalie
2011-01-01
The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....
Contribution of domain wall networks to the CMB power spectrum
Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.
2015-01-01
We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined
Contribution of domain wall networks to the CMB power spectrum
Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-07-30
We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Contribution of domain wall networks to the CMB power spectrum
A. Lazanu
2015-07-01
Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.
Investigation of domain walls in GMO crystals by conoscope method
Radchenko, I.R.; Filimonova, L.A.
1993-01-01
The patterns of polarized beam interference (conoscopic patterns) enable assessment of orientation and parameters of crystal's optical indicatrix. The presented conoscopic patterns of gadolinium molybdate crystal in the vicinity to plane and wedge-live domain walls differ from conoscopic patterns of the crystals far away from these walls which allows to spear about changes occurring in the crystal in the vicinity to domain walls
Ballistic rectification of vortex domain wall chirality at nanowire corners
Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)
2015-11-30
The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.
Domain walls and fermion scattering in grand unified models
Steer, D.A.; Vachaspati, T.
2006-01-01
Motivated by grand unification, we study the properties of domain walls formed in a model with SU(5)xZ 2 symmetry which is spontaneously broken to SU(3)xSU(2)xU(1)/Z 6 , and subsequently to SU(3)xU(1)/Z 3 . Even after the first stage of symmetry breaking, the SU(3) symmetry is broken to SU(2)xU(1)/Z 2 on the domain wall. In a certain range of parameters, flux tubes carrying color- and hyper-charge live on the domain wall and appear as 'boojums' when viewed from one side of the domain wall. Magnetic monopoles are also formed in the symmetry breaking and those carrying color and hyper-charge can be repelled from the wall due to the Meissner effect, or else their magnetic flux can penetrate the domain wall in quantized units. After the second stage of symmetry breaking, fermions can transmute when they scatter with the domain wall, providing a simpler version of fermion-monopole scattering: for example, neutrinos can scatter into d-quarks, leaving behind electric charge and color which is carried by gauge field excitations living on the domain wall
Thick domain wall spacetimes with and without reflection symmetry
Melfo, Alejandra; Pantoja, Nelson; Skirzewski, Aureliano
2003-01-01
We show that different thick domain wall spacetimes, for which the scalar field configuration and the potential are the same, can be found as solutions to the coupled Einstein-scalar field equations, depending on whether or not reflection symmetry on the wall is imposed. Spacetimes with reflection symmetry may be dynamic or static, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls in D-dimensional spacetimes are given, and previous analysis on the distributional thin-wall limit of the dynamic symmetric thick walls are extended to the asymmetric case. A new family of reflection symmetric, static thick domain wall spacetimes, including previously known Bogomol'nyi-Prasad-Sommerfield walls, is presented
Dynamical evolution of domain walls in an expanding universe
Press, William H.; Ryden, Barbara S.; Spergel, David N.
1989-01-01
Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.
Domain walls in the extensions of the Standard Model
Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł
2018-05-01
Our main interest is the evolution of domain walls of the Higgs field in the early Universe. The aim of this paper is to understand how dynamics of Higgs domain walls could be influenced by yet unknown interactions from beyond the Standard Model. We assume that the Standard Model is valid up to certain, high, energy scale Λ and use the framework of the effective field theory to describe physics below that scale. Performing numerical simulations with different values of the scale Λ we are able to extend our previous analysis [1]. Our recent numerical simulations show that evolution of Higgs domain walls is rather insensitive to interactions beyond the Standard Model as long as masses of new particles are grater than 1012 GeV. For lower values of Λ the RG improved effective potential is strongly modified at field strengths crucial to the evolution of domain walls. However, we find that even for low values of Λ, Higgs domain walls decayed shortly after their formation for generic initial conditions. On the other hand, in simulations with specifically chosen initial conditions Higgs domain walls can live longer and enter the scaling regime. We also determine the energy spectrum of gravitational waves produced by decaying domain walls of the Higgs field. For generic initial field configurations the amplitude of the signal is too small to be observed in planned detectors.
Supertube domain walls and elimination of closed timelike curves in string theory
Drukker, Nadav
2004-01-01
We show that some novel physics of supertubes removes closed timelike curves from many supersymmetric spaces which naively suffer from this problem. The main claim is that supertubes naturally form domain walls, so while analytical continuation of the metric would lead to closed timelike curves, across the domain wall the metric is nondifferentiable, and the closed timelike curves are eliminated. In the examples we study, the metric inside the domain wall is always of the Goedel type, while outside the shell it looks like a localized rotating object, often a rotating black hole. Thus this mechanism prevents the appearance of closed timelike curves behind the horizons of certain rotating black holes
QCD axion dark matter from long-lived domain walls during matter domination
Harigaya, Keisuke; Kawasaki, Masahiro
2018-01-01
The domain wall problem of the Peccei–Quinn mechanism can be solved if the Peccei–Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dom...
Individual domain wall resistance in submicron ferromagnetic structures.
Danneau, R; Warin, P; Attané, J P; Petej, I; Beigné, C; Fermon, C; Klein, O; Marty, A; Ott, F; Samson, Y; Viret, M
2002-04-15
The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.
Gravitational waves from domain walls and their implications
Kazunori Nakayama
2017-07-01
Full Text Available We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5. Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2L gauge fields or the (B−L current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.
Domain Wall Formation in Ferromagnetic Layers: An Ab Initio Study
Herper, Heike C.
Domain walls are an inherent feature of ferromagnetic (FM) films consisting of layers with different magnetic orientations. Since FM films are used in electrical devices the question of the influence of domain walls on, e.g., the magnetoresistance has attracted much interest. Besides discussing the resistance contribution of domain walls, it is appropriate to study different types of domain walls and their energy of formation. The behaviour of domain walls is usually discussed within model calculations. In the present paper it is done within an ab initio Green's function technique for layered systems, i.e., the fully relativistic, spin-polarized screened Korringa-Kohn Rostoker method. Results are presented for fcc Co layers covered by two semi-infinite fcc Pt(001) bulk systems or by bulk fcc Co(001), respectively. The resistance, which is caused by the different types of domain walls is discussed within a Kubo-Greenwood approach considering Co(001)/Co24/Co(001) as an example.
Domain wall motion in ferromagnetic systems with perpendicular magnetization
Szambolics, H.; Toussaint, J.-Ch.; Marty, A.; Miron, I.M.; Buda-Prejbeanu, L.D.
2009-01-01
Although we lack clear experimental evidence, apparently out-of-plane magnetized systems are better suited for spintronic applications than the in-plane magnetized ones, mainly due to the smaller current densities required for achieving domain wall motion. [Co/Pt] multilayers belong to the first category of materials, the out-of-plane magnetization orientation arising from the strong perpendicular magnetocrystalline anisotropy. If the magnetization arranges itself out-of-plane narrow Bloch walls occur. In the present paper, both field and current-driven domain wall motion have been investigated for this system, using micromagnetic simulations. Three types of geometries have been taken into account: bulk, thin film and wire, and for all of them a full comparison is done between the effect of the applied field and injected current. The reduction of the system's dimension induces the decrease of the critical field and the critical current, but it does not influence the domain wall displacement mechanism.
Axion-dilaton domain walls and fake supergravity
Sonner, Julian; Townsend, Paul K
2007-01-01
Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases
Dynamics of cylindrical domain walls in smectic C liquid crystals
Stewart, I W; Wigham, E J
2009-01-01
An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal
Phenomenology of the domain walls in thin ferromagnetic films
Adam, G.
1978-01-01
The basic concepts and the main theoretical methods developed in the study of the domain walls in thin ferromagnetic films are given in this review. First, an insight into the origins and the classification criteria of the conceptually different wall structures is obtained by elementary considerations which are mainly based on the experimentally available data. Then, the more subtle aspect of the wall models dimensionality in soft ferromagnetic films is discussed. Finally, the various theoretical calculation methods of the wall parameters are summarized. (author)
Cosmic bubble and domain wall instabilities II: fracturing of colliding walls
Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura
2015-01-01
We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation
Cosmic bubble and domain wall instabilities II: fracturing of colliding walls
Braden, Jonathan [CITA, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Department of Physics, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Department of Physics and Astronomy, University College London,Gower Street, London, WC1E 6BT (United Kingdom); Bond, J. Richard [CITA, University of Toronto,60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura [Department of Physics and Astronomy, University of North Carolina-Chapel Hill,1 Phillips Hall, 120 E. Cameron Avenue, Chapel Hill, NC 27599-3255 (United States)
2015-08-26
We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.
Cosmic bubble and domain wall instabilities II: fracturing of colliding walls
Braden, Jonathan; Bond, J. Richard [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura, E-mail: j.braden@ucl.ac.uk, E-mail: bond@cita.utoronto.ca, E-mail: mersini@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, 1 Phillips Hall, 120 E. Cameron Avenue, Chapel Hill, NC 27599-3255 (United States)
2015-08-01
We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.
Magnetic domain-wall tilting due to domain-wall speed asymmetry
Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong
2018-04-01
Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.
Webs of domain walls in supersymmetric gauge theories
Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke
2005-01-01
Webs of domain walls are constructed as 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in d=4, N=2 supersymmetric U(N C ) gauge theories with N F hypermultiplets in the fundamental representation. Webs of walls can contain any numbers of external legs and loops like (p,q) string/5-brane webs. We find the moduli space M of a 1/4 BPS equation for wall webs to be the complex Grassmann manifold. When moduli spaces of 1/2 BPS states (parallel walls) and the vacua are removed from M, the noncompact moduli space of genuine 1/4 BPS wall webs is obtained. All the solutions are obtained explicitly and exactly in the strong gauge coupling limit. In the case of Abelian gauge theory, we work out the correspondence between configurations of wall web and the moduli space CP N F -1
Domain Wall Evolution in Phase Transforming Oxides
2015-01-14
Chemically Derived PZT Thin Films on Pt Substrates, Journal of the American Ceramic Society, (09 2014): 2973. doi: 10.1111/jace.13007 Jacob L. Jones...Mari-Ann Einarsrud, D. Johnson. Piezoelectric K0.5Na0.5NbO3 ceramics textured using needle-like K0.5Na0.5NbO3 templates, Journal of the American...Jones. Quantitative comparison between the degree of domain orientation and nonlinear properties of a PZT ceramic during electrical and mechanical
Localization of vector field on dynamical domain wall
Masafumi Higuchi
2017-03-01
Full Text Available In the previous works (arXiv:1202.5375 and arXiv:1402.1346, the dynamical domain wall, where the four dimensional FRW universe is embedded in the five dimensional space–time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099 for the U(1 gauge field. In the second formulation, we investigate the Dvali–Shifman mechanism (arXiv:hep-th/9612128, where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza–Klein modes coming from the five dimensional graviton. In the Randall–Sundrum model, the graviton was localized on the brane. We show that the (5,μ components (μ=0,1,2,3 of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from the bulk extra dimension if the domain wall universe is expanding.
Investigation of Ferroelectric Domain Walls by Raman Spectroscopy
Stone, Gregory A.
Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman
Induced motion of domain walls in multiferroics with quadratic interaction
Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)
2013-10-15
We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.
Pseudo-supersymmetry and the domain-wall/cosmology correspondence
Skenderis, Kostas; Townsend, Paul K
2007-01-01
The correspondence between domain-wall and cosmological solutions of gravity coupled to scalar fields is explained. Any domain-wall solutions that admit a Killing spinor are shown to correspond to a cosmology that admits a pseudo-Killing spinor; whereas the Killing spinor obeys a Dirac-type equation with Hermitian 'mass'-matrix, the corresponding pseudo-Killing spinor obeys a Dirac-type equation with a anti-Hermitian 'mass'-matrix. We comment on some implications of (pseudo)supersymmetry
NMR and domain wall mobility in intermetallic compounds
Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.
1991-01-01
The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)
Gapped fermionic spectrum from a domain wall in seven dimension
Mukhopadhyay, Subir; Rai, Nishal
2018-05-01
We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.
Domain wall propagation in Fe-rich amorphous microwires
Panina, L.V. [School of Comp. and Math., Univ. of Plymouth, Drake Circus, PL4 AA, Plymouth (United Kingdom); Ipatov, M.; Zhukova, V. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); Zhukov, A., E-mail: arkadi.joukov@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)
2012-05-01
The domain wall (DW) propagation in magnetically bistable Fe{sub 74}Si{sub 11}B{sub 13}C{sub 2} amorphous microwires with metallic nucleus diameters of 12-16 {mu}m has been investigated in order to explain high DW velocities observed in Sixtus-Tonks like experiments. In micrometric wires, the boundary between two head-to-head domains is very elongated. The DW mobility normal to the wall surface is reduced by the domain aspect ratio and is in the range of a few m/s/Oe in the linear regime. The experimental results in the viscous regime could be quantitatively explained in terms of the domain length and normal mobility limited by the eddy currents and spin relaxation losses.
SUSY QM from three domain walls in a scalar potential
Rodrigues, R. de Lima; Lima, A.F. de [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Centro de Tecnologia. Unidade Academica de Fisica]. E-mail: aerlima@df.ufcg.edu.br; Bezerra de Mello, E.R.; Bezerra, V.B. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Fisica]. E-mails: emello@fisica.ufpb.br; valdir@fisica.ufpb.br
2007-07-01
We investigate the linear classical stability of Bogomol'nyi-Prasad-Sommerfield (BPS) on three domain wall solutions in a system of three coupled real scalar fields, for a general positive potential with a square form. From a field theoretic superpotential evaluated on the domain states, the connection between the supersymmetric quantum mechanics involving three-component eigenfunctions and the stability equation associated with three classical configurations is elaborated. (author)
On domain wall boundary conditions for the XXZ spin Hamiltonian
Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai
In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Gravitational field of spherical domain wall in higher dimension
and examine whether bound orbits are possible or not. This study will be of relevance to the structure formation because it gives some idea about the behaviour of the particles. (created at the early universe) in the gravitational field of the domain walls. Our paper is organized as follows: The basic equations are constructed ...
Domain-wall dynamics in glass-coated magnetic microwires
Varga, R.; Zhukov, A.; Usov, N.; Blanco, J.M.; Gonzalez, J.; Zhukova, V.; Vojtanik, P.
2007-01-01
Glass-coated magnetic microwires with positive magnetostriction show peculiar domain structure that consists mostly of one large domain with magnetization-oriented axially. It was shown that small closure domains appear at the end of the microwire in order to decrease the stray fields. As a result of such domain structure, the magnetization reversal in axial direction runs through the depinning of one of such closure domains and subsequent propagation of the corresponding domain wall. Quite unusual domain-wall (DW) dynamics of the DW propagation predicted previously from the theory has been found in such amorphous microwires. In this paper, we are dealing with the DW dynamics of glass-coated microwires with small positive magnetostriction. The DW damping coming from the structural relaxation dominates at low temperatures as a result of the decrease of the mobility of the structural atomic-level defects. Negative critical propagation field points to the possible DW propagation without applied magnetic field. Probable explanation could be in terms of the effective mass of the DW
Non-volatile polarization switch of magnetic domain wall velocity
Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)
2015-12-21
Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.
Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion
Tomasello, R; Puliafito, V; Martinez, E; Manchon, A; Ricci, M; Carpentieri, M; Finocchio, G
2017-01-01
A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s −1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions. (paper)
Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion
Tomasello, R
2017-06-20
A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.
Current-induced domain wall motion in nanoscale ferromagnetic elements
Malinowski, G [Laboratoire de Physique des Solides, CNRS, Universite Paris-sud 11, 91405 Orsay Cedex (France); Boulle, O [SPINTEC, CEA/CNRS/UJF/GINP, INAC, 38054 Grenoble Cedex 9 (France); Klaeui, M, E-mail: Klaeui@uni-mainz.de [SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Laboratory of Nanomagnetism and Spin Dynamics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)
2011-09-28
We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how the two torques arising from the interaction between the spin-polarized charge carriers and the magnetization lead to complex dynamics of a spin texture such as a DW. By direct imaging we show how confined DWs in nanowires can be displaced using currents in in-plane soft-magnetic materials, and that when using short pulses, fast velocities can be attained. For high-anisotropy out-of-plane magnetized wires with narrow DWs we present approaches to deducing the torque terms and show that in these materials potentially more efficient domain wall motion could be achieved.
Primordial black hole and wormhole formation by domain walls
Deng, Heling; Garriga, Jaume; Vilenkin, Alexander, E-mail: heling.deng@tufts.edu, E-mail: garriga@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)
2017-04-01
In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ''supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.
Whyte, J. R.; McQuaid, R. G. P.; Einsle, J. F.; Gregg, J. M., E-mail: m.gregg@qub.ac.uk [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ashcroft, C. M. [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Department of Physics, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Canalias, C. [Department of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Gruverman, A. [Department of Physics and Astronomy, University of Nebraska Lincoln, Nebraska 68588–0299 (United States)
2014-08-14
Simple meso-scale capacitor structures have been made by incorporating thin (∼300 nm) single crystal lamellae of KTiOPO{sub 4} (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.
Domain wall width of lithium niobate poled during growth
Brooks, R; Hole, D E; Callejo, D; Bermudez, V; Diéguez, E
2003-01-01
Good quality crystals of periodically poled lithium niobate can be generated directly during growth. However, the temperature gradients at the zone boundaries define the width of the regions where the polarity is reversed. Hence, the region influenced the domain transition may be a significant fraction of the overall poling period for material poled during growth. Evidence for the scale of this feature is reported both by chemical etching and by the less common method of ion beam luminescence and the 'domain wall' width approximately 1 mu m for these analyses. The influence of the reversal region may differ for alternative techniques but the relevance to device design for second harmonic generation is noted.
Fermion condensation and gapped domain walls in topological orders
Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)
2017-03-31
We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.
Monopoles, vortices, domain walls and D-branes: The rules of interaction
Sakai, Norisuke; Tong, David
2005-01-01
Non-abelian gauge theories in the Higgs phase admit a startling variety of BPS solitons. These include domain walls, vortex strings, confined monopoles threaded on vortex strings, vortex strings ending on domain walls, monopoles threaded on strings ending on domain walls, and more. After presenting a self-contained review of these objects, including several new results on the dynamics of domain walls, we go on to examine the possible interactions of solitons of various types. We point out the existence of a classical binding energy when the string ends on the domain wall which can be thought of as a BPS boojum with negative mass. We present an index theorem for domain walls in non-abelian gauge theories. We also answer questions such as: Which strings can end on which walls? What happens when monopoles pass through domain walls? What happens when domain walls pass through each other? (author)
Domain wall universe in the Einstein-Born-Infeld theory
Lee, Bum-Hoon; Lee, Wonwoo; Minamitsuji, Masato
2009-01-01
In this Letter, we discuss the dynamics of a domain wall universe embedded into the charged black hole spacetime of the Einstein-Born-Infeld (EBI) theory. There are four kinds of possible spacetime structures, i.e., those with no horizon, the extremal one, those with two horizons (as the Reissner-Nordstroem black hole), and those with a single horizon (as the Schwarzshild black hole). We derive the effective cosmological equations on the wall. In contrast to the previous works, we take the contribution of the electrostatic energy on the wall into account. By examining the properties of the effective potential, we find that a bounce can always happen outside the (outer) horizon. For larger masses of the black hole, the height of the barrier between the horizon and bouncing point in the effective potential becomes smaller, leading to longer time scales of bouncing process. These results are compared with those in the previous works.
End States, Ladder Compounds, and Domain-Wall Fermions
Creutz, M.
1999-01-01
A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society
Localization of bulk form fields on dilatonic domain walls
Youm, Donam
2001-06-01
We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks. (author)
Analysis of ultra-narrow ferromagnetic domain walls
Jenkins, Catherine; Paul, David
2012-01-10
New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.
Domain wall propagation tuning in magnetic nanowires through geometric modulation
Arzuza, L.C.C., E-mail: luisarzuza179@gmail.com [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Universidad de la Costa, Departamento de Ciencias Naturales y Exactas, Calle 58 No. 55-66, Barranquilla (Colombia); López-Ruiz, R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Salazar-Aravena, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, 1000007 Arica (Chile); Knobel, M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Brazilian Nanotechnology National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), 13083-970 Campinas (SP) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)
2017-06-15
Highlights: • The modulated nanowires dynamics occurs through two reversal modes. • Modulated nanowires show a change in the χ in contrast to homogeneous ones. • The FORC method reveals a non-uniform stray field due to shape modulation. - Abstract: The magnetic behavior of nickel modulated nanowires embedded in porous alumina membranes is investigated. Their diameters exhibit a sharp transition between below (35 nm) and above (52 nm) the theoretical limit for transverse and vortex domain walls. Magnetic hysteresis loops and first-order reversal curves (FORCs) were measured on several ordered nanowire arrays with different wide-narrow segment lengths ratio and compared with those from homogenous nanowires. The experimental magnetic response evidences a rather complex susceptibility behavior for nanowires with modulated diameter. Micromagnetic simulations on isolated and first-neighbors arrays of nanowires show that the domain wall structure, which depends on the segment diameter, suffers a transformation while crossing the diameter modulation, but without any pinning. The experimental array magnetic behavior can be ascribed to a heterogeneous stray field induced by the diameter modulation, yielding a stronger interaction field at the wide extremity than at the narrow one. The results evidence the possibility to control the domain wall propagation and morphology by modulating the lateral aspect of the magnetic entity.
Segmental front line dynamics of randomly pinned ferroelastic domain walls
Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.
2018-01-01
Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].
Domain wall fermion QCD with the exact one flavor algorithm
Jung, C.; Kelly, C.; Mawhinney, R. D.; Murphy, D. J.
2018-03-01
Lattice QCD calculations including the effects of one or more nondegenerate sea quark flavors are conventionally performed using the rational hybrid Monte Carlo (RHMC) algorithm, which computes the square root of the determinant of D†D , where D is the Dirac operator. The special case of two degenerate quark flavors with the same mass is described directly by the determinant of D†D —in particular, no square root is necessary—enabling a variety of algorithmic developments, which have driven down the cost of simulating the light (up and down) quarks in the isospin-symmetric limit of equal masses. As a result, the relative cost of single quark flavors—such as the strange or charm—computed with RHMC has become more expensive. This problem is even more severe in the context of our measurements of the Δ I =1 /2 K →π π matrix elements on lattice ensembles with G -parity boundary conditions, since G -parity is associated with a doubling of the number of quark flavors described by D , and thus RHMC is needed for the isospin-symmetric light quarks as well. In this paper we report on our implementation of the exact one flavor algorithm (EOFA) introduced by the TWQCD Collaboration for simulations including single flavors of domain wall quarks. We have developed a new preconditioner for the EOFA Dirac equation, which both reduces the cost of solving the Dirac equation and allows us to reuse the bulk of our existing high-performance code. Coupling these improvements with careful tuning of our integrator, the time per accepted trajectory in the production of our 2 +1 flavor G -parity ensembles with physical pion and kaon masses has been decreased by a factor of 4.2.
Dynamics of one-dimensional domain walls interacting with disorder potential
Krusin-Elbaum, L.; Shibauchi, T.; Argyle, B.; Gignac, L.; Zabel, T.; Weller, D.
2001-01-01
Dynamics of 1D perpendicular-anisotropy domain walls in a few monolayer-thin Co films is imaged by polar Kerr microscopy. When domain walls, driven by a square-pulsed magnetic fields, travel through a random disordered potential landscape, they display Gaussian-distributed roughness characteristic of this landscape. Average velocity of the domain wall driven by a constant magnetic field strongly depends on a strain field which modifies (increases) the elastic energy of the wall and reduces the wall velocity
Magneto-optical study of domain wall dynamics and giant Barkhausen jump in magnetic microwires
Chizhik, A.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.
2012-01-01
Investigation of surface domain walls motion in Co-rich magnetic microwires has been performed in circular and axial magnetic fields. The dc axial magnetic field acceleration of the domain wall motion related to the influence of the axial field on the structure of the moving domain wall has been discovered. Pulsed axial magnetic field induced unidirectional motion of surface domain wall also has been found.
Spatial domain decomposition for neutron transport problems
Yavuz, M.; Larsen, E.W.
1989-01-01
A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)
Controlled motion of domain walls in submicron amorphous wires
Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian; Atiţoaie, Alexandru; Lupu, Nicoleta; Óvári, Tibor-Adrian, E-mail: taovari@phys-iasi.ro; Chiriac, Horia [Department of Magnetic Materials and Devices, National Institute of Research and Development for Technical Physics, Iaşi, 700050 (Romania); Allwood, Dan A. [Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)
2016-05-15
Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.
Zhmetko, D.N., E-mail: sergey.zhmetko@gmail.com [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Zhmetko, S.D. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Troschenkov, Y.N. [Institute for Magnetism, 36-b Vernadsky Boulevard, 03142 Kyiv (Ukraine); Matsura, A.V. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine)
2013-08-15
The frequency dependence of asymmetry of the domain walls velocity relative to the middle plane of amorphous ribbon is investigated. An additional pressure of the same direction acting on each domain wall caused by dependence of eddy current damping on the coordinate of the domain wall is revealed. The microscopic mechanisms of this additional pressure are considered. - Highlights: ► Additional pressure on the domain wall, caused by inhomogeneity of its damping. ► Asymmetry of the coordinate of the nucleation of domain walls and their damping. ► Connection between the components of additional pressure and its direction. ► Interaction of domain walls with the surface defects of the amorphous ribbon.
Zhmetko, D.N.; Zhmetko, S.D.; Troschenkov, Y.N.; Matsura, A.V.
2013-01-01
The frequency dependence of asymmetry of the domain walls velocity relative to the middle plane of amorphous ribbon is investigated. An additional pressure of the same direction acting on each domain wall caused by dependence of eddy current damping on the coordinate of the domain wall is revealed. The microscopic mechanisms of this additional pressure are considered. - Highlights: ► Additional pressure on the domain wall, caused by inhomogeneity of its damping. ► Asymmetry of the coordinate of the nucleation of domain walls and their damping. ► Connection between the components of additional pressure and its direction. ► Interaction of domain walls with the surface defects of the amorphous ribbon
Geometric Control Over the Motion of Magnetic Domain Walls
N.A. Sinitsyn; V.V. Dobrovitski; S. urazhdin; Avadh Saxena
2008-01-01
We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or by applying pulses of magnetic field directed transverse to the magnetic easy axis
High temperature meson propagators with domain-wall quarks
Lagae, J.-F.; Sinclair, D. K.
1999-01-01
We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N 5 . We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise
High temperature meson propagators with domain-wall quarks
Lagaee, J.-F.; Sinclair, D.K.
2000-01-01
We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N 5 . We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise
Higher dimensional curved domain walls on Kähler surfaces
Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)
2017-03-15
In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.
Experimental detection of domain wall propagation above the Walker field
Kondou, Kouta; Chiba, Daichi; Kobayashi, Kensuke; Ono, Teruo; Ohshima, Norikazu; Kasai, Shinya
2012-01-01
The domain wall (DW) velocity above the Walker field drops abruptly with increasing magnetic field, because of the so-called Walker breakdown, where the DW moves with a precessional mode. On applying the higher field, the DW velocity again starts to increase gradually. We report the DW propagation around this local minimum regime in detail, investigated through the time-resolved electrical detection technique, with a magnetic tunnel junction. Just above the Walker field, we succeeded in detecting the precessional motion of the DW in a real-time regime, while a different mode appeared around the local minimum of the DW velocity. (paper)
Higher dimensional curved domain walls on Kähler surfaces
Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.
2017-01-01
In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.
Domain walls in (Ga,Mn)As diluted magnetic semiconductor
Sugawara, A.; Kasai, H.; Tonomura, A.; Brown, P.D.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Zemen, Jan; Jungwirth, Tomáš
2008-01-01
Roč. 100, č. 4 (2008), 047202/1-047202/4 ISSN 0031-9007 R&D Projects: GA MŠk LC510; GA ČR GEFON/06/E002; GA ČR GA202/05/0575; GA ČR GA202/04/1519 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : dilute ferromagnetic semiconductor * Néel domain walls * electron holography * Landau-Lifshitz-Gilbert simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
Fluctuation and dipolar interaction effects on the pinning of domain walls
Chui, S.T.
2001-01-01
We discuss the effect of the dipolar interaction on the pinning of domain walls. Domain walls are usually pinned near the boundaries between grains. Magnetic charges accumulated at the domain wall make the wall more unstable and easier to depin. We discuss how the grain-orientation and thermal fluctuations affect these magnetic charges and hence the depinning of the domain walls. Our results are illustrated by finite temperature Monte Carlo simulation on periodic arrays of large cells separated by walls consisting of faces of pyramids
The profile of the domain walls in amorphous glass-covered microwires
Beck, F.; Rigue, J.N. [Universidade Federal de Santa Maria, Campus Cachoeira do Sul, RS (Brazil); Carara, M., E-mail: carara@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)
2017-08-01
Highlights: • Glass-covered microwires with positive magnetostriction were studied. • The single domain wall dynamics was studied under different conditions. • We have evaluated the profile and shape of the moving domain walls. • The domain wall evolves from a bell shape to a parabolic one when a current is applied. - Abstract: We have studied the domain wall dynamics in Joule-annealed amorphous glass-covered microwires with positive magnetostriction in the presence of an electric current, in order to evaluate the profile and shape of the moving domain wall. Such microwires are known to present magnetic bi-stability when axially magnetized. The single domain wall dynamics was evaluated under different conditions, under an axially applied stress and an electric current. We have observed the well known increasing of the domain wall damping with the applied stress due to the increase in the magnetoelastic anisotropy and, when the current is applied, depending on the current intensity and direction, a modification on the axial domain wall damping. When the orthogonal motion of the domain wall is considered, we have observed that the associated velocity present a smaller dependence on the applied current intensity. It was observed a modification on both the domain wall shape and length. In a general way, the domain wall evolves from a bell shape to a parabolic shape as the current intensity is increased. The results were explained in terms of the change in the magnetic energy promoted by the additional Oersted field.
Fate of ZN domain wall in hot holographic QCD
Yee, Ho-Ung
2009-01-01
We first study Z N -domain walls in a deconfined phase of Witten's D4-brane background of pure SU(N) Yang-Mills theory, motivated by a recent work in the case of N = 4 SYM. Similarly to it, we propose that for a large domain wall charge k ∼ N, it is described by k D2-branes blown up into a NS5-brane wrapping S 3 inside S 4 via Myers effect, and we calculate the tension by suitable U-duality. We find a precise Casimir scaling for the tension formula. We then study the fate of Z N -vacua in a presence of fundamental flavors in quenched approximation via gauge/gravity correspondence. In the case of D3/D7 system where one can vary the mass m q of flavors, we show that there is a phase transition at T c ∼ m q , below which the Z N -vacua survive while they are lifted above the critical temperature. We analytically calculate the energy lift of k'th vacua in the massless case, both in the D3/D7 system and in the Sakai-Sugimoto model. (author)
Localized fermions on domain walls and extended supersymmetric quantum mechanics
Oikonomou, V K
2014-01-01
We study fermionic fields localized on topologically unstable domain walls bounded by strings in a grand unified theory theoretical framework. Particularly, we found that the localized fermionic degrees of freedom, which are up and down-quarks as well as charged leptons, are connected to three independent N = 2, d = 1 supersymmetric quantum mechanics algebras. As we demonstrate, these algebras can be combined to form higher order representations of N = 2, d = 1 supersymmetry. Due to the uniform coupling of the domain wall solutions to the down-quarks and leptons, we also show that a higher order N = 2, d = 1 representation of the down-quark–lepton system is invariant under a duality transformation between the couplings. In addition, the two N = 2, d = 1 supersymmetries of the down-quark–lepton system, combine at the coupling unification scale to form an N = 4, d = 1 supersymmetry. Furthermore, we present the various extra geometric and algebraic attributes that the fermionic systems acquire, owing to the underlying N = 2, d = 1 algebras. (paper)
Rodriguez-Rodriguez, G; Perez-Junquera, A; Hierro-Rodriguez, A; Montenegro, N; Alameda, J M; Velez, M; Menendez, J L; Ravelosona, D
2010-01-01
Domain wall propagation has been studied in perpendicular anisotropy CoPt multilayers patterned by e-beam lithography into 5 μm wide wires. Positive and negative peaks appear in time resolved magnetoresistance curves, associated to the different directions of domain wall propagation along the wires. The field dependence of domain wall velocity is well described by a creep model of a 1D wall in the presence of weak disorder with critical exponent μ=1/4.
Salje, E.K.H.; Aktas, O.; Carpenter, M.A.; Laguta, Valentyn; Scott, J.F.
2013-01-01
Roč. 111, č. 24 (2013), "247603-1"-"247603-5" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : ferroelectric domains * SrTiO 3 * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.728, year: 2013
High-pressure oxygenation of thin-wall YBCO single-domain samples
Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P
2008-01-01
The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample
Far- and near-field second-harmonic imaging of ferroelectric domain walls
Bozhevolnyi, Sergey I.; Pedersen, K.; Skettrup, Torben
1998-01-01
Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....
Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
2016-08-04
High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
Chirality correlation within Dirac eigenvectors from domain wall fermions
Blum, T.; Christ, N.; Cristian, C.; Liao, X.; Liu, G.; Mawhinney, R.; Wu, L.; Zhestkov, Y.; Dawson, C.
2002-01-01
In the dilute instanton gas model of the QCD vacuum, one expects a strong spatial correlation between chirality and the maxima of the Dirac eigenvectors with small eigenvalues. Following Horvath et al. we examine this question using lattice gauge theory within the quenched approximation. We extend the work of those authors by using weaker coupling, β=6.0, larger lattices, 16 4 , and an improved fermion formulation, domain wall fermions. In contrast with this earlier work, we find a striking correlation between the magnitudes of the chirality density, |ψ † (x)γ 5 ψ(x)|, and the normal density, ψ † (x)ψ(x), for the low-lying Dirac eigenvectors
Vortices and domain walls: 'Wormholes' in unconventional superconductors
Bessarab, P F; Radievsky, A V
2010-01-01
In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.
Holographic QCD with topologically charged domain-wall/membranes
Lin Fengli; Wu Shangyu
2008-01-01
We study the thermodynamical phase structures of holographic QCD with nontrivial topologically charged domain-wall/membranes which are originally related to the multiple θ-vacua in the large N c limit. We realize the topologically charged membranes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane fluxes couple to the probe D8-D8-bar via Chern-Simon term, and act as the source for the baryonic current density of QCD. We find rich phase structures of the dual meson system by varying asymptotic separation of D8 and D8-bar. Especially, there can be a thermodynamically favored and stable phase of finite baryonic current density. This provides the supporting evidence for the discovery of the topologically charged membranes found in the lattice QCD calculations. We also find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation.
Magnetic field driven domain-wall propagation in magnetic nanowires
Wang, X.R.; Yan, P.; Lu, J.; He, C.
2009-01-01
The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.
Domain wall oscillations induced by spin torque in magnetic nanowires
Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Chantrell, R. W. [Department of Physics, University of York, York YO10 5DD (United Kingdom)
2015-02-07
Using micromagnetic simulations, the effects of the non-adiabatic spin torque (β) and the geometry of nanowires on domain wall (DW) dynamics are investigated. For the case of in-plane anisotropy nanowire, it is observed that the type of DW and its dynamics depends on its dimension. For a fixed length, the critical switching current decreases almost exponentially with the width W, while the DW speed becomes faster for larger W. For the case of perpendicular anisotropy nanowire, it was observed that DW dynamics depends strongly on β. For small values of β, oscillations of DW around the center of nanowire were revealed even after the current is switched off. In addition to nanowire geometry and intrinsic material properties, β could provide a way to control DW dynamics.
Light induced kickoff of magnetic domain walls in Ising chains
Bogani, Lapo
2012-02-01
Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. Contrary to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiation power is very low, a substantial improvement over present methods of magnetooptical switching: in our experimental demonstration we switched molecular nanowires with light, using powers thousands of times lower than in previous optical switching methods. This manipulation of stochastic dynamic processes is extremely clean, leading to fingerprint signatures and scaling laws. These observations can be used, in material science, to better study domain-wall displacements and solitons in discrete lattices. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to a myriad of fields, ranging from social evolution to neural networks and chemical reactivity. For nanoelectronics and molecular spintronics the kickoff affords external control of molecular spin-valves and a magnetic fingerprint in single molecule measurements. It can also be applied to the dynamics of mechanical switches and the related study of phasons and order-disorder transitions.
Alija, A; Sobrado, I; Rodriguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Parrondo, J M R
2010-01-01
Micromagnetic simulations have been performed in uniaxial magnetic films with 2D array of asymmetric arrow shape holes. In order to understand the asymmetric pinning potential created by the holes, different boundary geometries conditions are used on the simulations. The depinning fields for forward and backward domain wall propagation have been calculated by the analysis of the energy landscapes as a function of the domain wall position. Domain wall depinning occurs preferentially at the free ends of the domain wall at the film boundaries. We have found that the domain wall propagation is different at the top/bottom boundaries of the simulated film which can be understood in terms of the magnetostatic energy and the chirality of the domain wall.
Influence of temperature on current-induced domain wall motion and its Walker breakdown
Fan, Lvchao; Hu, Jingguo; Su, Yuanchang; Zhu, Jinrong
2016-01-01
The current-driven domain wall propagation along a thin ferromagnetic strip with thermal field is studied by means of micromagnetic simulations. The results show that the velocity of domain wall is almost independent of temperature until Walker breakdown happened. However the thermal field can suppress Walker breakdown and makes domain wall move faster. Further analysis indicates that the thermal field tends to keep the out-of-plane magnetic moment of the domain wall stay in high value, which can promote domain wall motion and suppress the Walker breakdown by breaking the period of domain wall transformation. - Highlights: • Influences of temperature on the displacement and the velocity of DW are shown. • The suppression of Walker breakdown by temperature is given. • The reason for suppressing Walker breakdown is analyzed. • The breaking transformation period of Walker breakdown by temperature is given.
Elasticity problems in domains with nonsmooth boundaries
Esparza, David
2001-01-01
In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded
Domain walls collision in Fe-rich and Co-rich glass covered microwires
Gonzalez J.
2013-01-01
Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.
The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires
Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori [Department of Physics, G.C., Shahid Beheshti University, Evin, 19838-63113, Tehran (Iran, Islamic Republic of); Phirouznia, A, E-mail: Teranchi@cc.sbu.ac.ir [Department of Physics, Azarbaijan University of Tarbiat Moallem, 53714-161 Tabriz (Iran, Islamic Republic of)
2011-04-01
The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.
The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires
Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori; Phirouznia, A
2011-01-01
The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.
Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.
Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G
2017-08-23
We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.
Magnetic field control of 90°, 180°, and 360° domain wall resistance
Majidi, Roya
2012-10-01
In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.
Transverse field-induced nucleation pad switching modes during domain wall injection
Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.
2010-03-12
We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.
Problem-Solving: Scaling the "Brick Wall"
Benson, Dave
2011-01-01
Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…
Magnetic domain wall motion in notch patterned permalloy nanowire devices
Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw
2015-11-01
We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.
Charm physics with physical light and strange quarks using domain wall fermions
Boyle, Peter A; Garron, Nicolas; Khamseh, Ava; Marinkovic, Marina; Sanfilippo, Francesco; Tsang, Justus Tobias; Boyle, Peter A.
2015-01-01
We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discretisation we will show first results for masses and matrix elements.
Current-driven vortex domain wall motion in wire-tube nanostructures
Espejo, A. P. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Vidal-Silva, N. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); López-López, J. A. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Goerlitz, D.; Nielsch, K. [Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, 9170124 Santiago (Chile)
2015-03-30
We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.
Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations
He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.
2009-03-01
BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.
Minimization of Ohmic Losses for Domain Wall Motion in a Ferromagnetic Nanowire
Tretiakov, O. A.; Liu, Y.; Abanov, Ar.
2010-11-01
We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.
Minimization of Ohmic losses for domain wall motion in ferromagnetic nanowires
Abanov, Artem; Tretiakov, Oleg; Liu, Yang
2011-03-01
We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain wall velocity we find the time-dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic. This work was supported by the NSF Grant No. 0757992 and Welch Foundation (A-1678).
Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories
Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jü rgen
2016-01-01
Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.
Zaanen, J.; Horbach, M.L.; van Saarloos, W.
1996-01-01
Evidence is accumulating that the electron liquid in the cuprate superconductors is characterized by many-hole correlations of the charged magnetic domain-wall type. Here we focus on the strong-coupling limit where all holes are bound to domain walls. We assert that at high temperatures a classical domain-wall fluid is realized and show that the dynamics of such a fluid is characterized by spatial and temporal crossover scales set by temperature itself. The fundamental parameters of this fluid are such that the domain-wall motions dominate the low-frequency spin fluctuations and we derive predictions for the behavior of the dynamical magnetic susceptibility. We argue that a crossover occurs from a high-temperature classical to a low-temperature quantum regime, in direct analogy with helium. We discuss some general characteristics of the domain-wall quantum liquid, realized at low temperatures. copyright 1996 The American Physical Society
Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories
Ivanov, Yurii P.
2016-05-03
Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.
Bernard, Denis; Le Doussal, Pierre; Middleton, A. Alan
2007-01-01
Domain walls for spin glasses are believed to be scale invariant; a stronger symmetry, conformal invariance, has the potential to hold. The statistics of zero-temperature Ising spin glass domain walls in two dimensions are used to test the hypothesis that these domain walls are described by a Schramm-Loewner evolution SLE κ . Multiple tests are consistent with SLE κ , where κ=2.32±0.08. Both conformal invariance and the domain Markov property are tested. The latter does not hold in small systems, but detailed numerical evidence suggests that it holds in the continuum limit
Reply to "Domain-growth kinetics of systems with soft walls''
Mouritsen, Ole G.; Præstgaard, Eigil
1988-01-01
On the basis of computer-simulation results for three different models with soft domain walls it is argued that the zero-temperature domain-growth kinetics falls in a separate universality class characterized by a kinetic growth exponent n≃0.25. However, for finite temperatures there is a distinct...... crossover to Lifshitz-Allen-Cahn kinetics n=0.50, thus suggesting that the soft-wall and hard-wall universality classes become identical at finite temperatures....
Magnetostatic coupling of 90 domain walls in FeNi/Cu/Co trilayers
Kurde, Julia; Miguel, Jorge; Kuch, Wolfgang [Freie Universitaet, Berlin (Germany); Bayer, Daniela; Aeschlimann, Martin [Technische Universitaet, Kaiserslautern (Germany); Sanchez-Barriga, Jaime; Kronast, Florian; Duerr, Herrmann A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany)
2011-07-01
The magnetic interlayer coupling of FeNi/Cu/Co trilayered microstructures has been studied by means of X-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at domain walls in the magnetically harder Co layer. In the magnetically softer FeNi layer non-ordinary domain walls such as 270 and 90 domain walls with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization are identified. Micromagnetic simulations reveal that in the absence of magnetocrystalline anisotropy, both types of overshooting domain walls are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the domain walls with respect to the anisotropy axis determines which of these domain walls is energetically favorable.
Domain wall kinetics of lithium niobate single crystals near the hexagonal corner
Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)
2015-03-09
A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.
Aarao, J; Bradshaw-Hajek, B H; Miklavcic, S J; Ward, D A, E-mail: Stan.Miklavcic@unisa.edu.a [School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)
2010-05-07
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a solution technique wherein we embed the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain, is then the solution of the original boundary value problem. We call this the extended-domain-eigenfunction method. To illustrate the method's strength and scope, we apply it to Laplace's equation on an annular-like domain.
Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan
2018-01-01
Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.
Nonextreme and ultraextreme domain walls and their global space-times
Cvetic, M.; Griffies, S.; Soleng, H.H.
1993-01-01
Nonextreme walls (bubbles with two insides) and ultraextreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit nontrivial causal structure analogous to certain nonextreme black holes. We focus on anti--de Sitter--Minkowski walls and comment on Minkowski-Minkowski walls with trivial extreme limit, as well as walls adjacent to de Sitter space-times with no extreme limit
Finite element analyses for Seismic Shear Wall International Standard Problem
Park, Y.; Hofmayer, C.; Chokshi, N.
1997-01-01
In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions, however, are still based on empirical design rules established over decades from accumulated laboratory test data. This paper presents an overview of the state-of-the-art on the application of nonlinear FEM analysis to reinforced concrete (RC) shear wall structures under severe earthquake loadings based on the findings obtained during the Seismic Shear Wall International Standard Problem (SSWISP) Workshop in 1996. Also, BNL's analysis results of the International Standard Problem (ISP) shear walls under monotonic static, cyclic static and dynamic loading conditions are described
Domain wall theory and exchange stiffness in Co/Pd multilayers
Kambersky, V.; Kambersky, V.; de Haan, P.; Simsova, J.; Porthun, S.; Porthun, S.; Gemperle, R.; Lodder, J.C.
1996-01-01
The stripe model of domain structure in multilayers is studied by micromagnetic simulation. The results indicate a strong reduction of the effective domain wall energy (by dipolar effects). Domain width measurements on sputtered Co/Pd multilayers are compared with the theory. The estimated exchange
Domain walls and the C P anomaly in softly broken supersymmetric QCD
Draper, Patrick
2018-04-01
In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with Nfcomputed at leading order in the soft breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an axion in this theory.
Yoshihisa eOda
2013-12-01
Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.
Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions
Nedelko, Sergei N.; Voronin, Vladimir E.
2015-01-01
The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L c of a single trap stable against gluon tachyonic modes. The size L c is related to the value of gluon condensate left angle g 2 F 2 right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)
Magnetoresistance of non-180° domain wall in the presence of electron-photon interaction
Majidi, Roya
2013-04-01
In the present paper, influence of photon on resistance of non-180° domain wall in metallic magnetic nanowires has been studied using the semiclassical approach. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type domain wall between two ferromagnetic domains with relative magnetization angle less than 180° is considered. By increasing this angle, the contribution of the domain wall in the resistivity of the nanowire becomes considerable. It is also found that the fundamental contribution of the domain wall in resistivity can be controlled by propagating photon. These results are valuable in designing spintronic devices based on magnetic nanowires.
Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films
Kim, D J; Gruverman, A; Connell, J G; Seo, S S A
2016-01-01
Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)
Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes
Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Marconi, V I; Kolton, A B; Parrondo, J M R; Anguita, J V
2009-01-01
Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 μm triangles, which is the characteristic length scale set by domain wall width.
Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes
Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.
2009-02-01
Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.
Domain-walls motion in glass-coated CoFeSiB amorphous microwires
Antonov, A.S. E-mail: as.antonov@mtu-net.ru; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M
2002-08-01
A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented.
Domain-walls motion in glass-coated CoFeSiB amorphous microwires
Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Joura, A.V.; Rakhmanov, A.L.; Yakunin, A.M.
2002-01-01
A method for observation of domain-walls motion in amorphous microwires with circular magnetic anisotropy is proposed. Using the method, the magnetization reversal of glass-coated Co-based microwires induced by current pulses of high amplitude is studied. The magnetization reversal is shown to occur due to the nucleation of the domain walls at the sample ends and their subsequent motion along the microwire. The dependencies of the domain-wall velocity on the current pulse amplitude and a longitudinal DC magnetic field are measured. A model describing main features of experimental data is presented
N=1 domain wall solutions of massive type II supergravity as generalized geometries
Louis, J.
2006-05-01
We study N=1 domain wall solutions of type IIB supergravity compactified on a Calabi-Yau manifold in the presence of RR and NS electric and magnetic fluxes. We show that the dynamics of the scalar fields along the direction transverse to the domain wall is described by gradient flow equations controlled by a superpotential W. We then provide a geometrical interpretation of the gradient flow equations in terms of the mirror symmetric compactification of type IIA. They correspond to a set of generalized Hitchin flow equations of a manifold with SU(3) x SU(3)structure which is fibered over the direction transverse to the domain wall. (Orig.)
Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires
Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.
2016-04-01
Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.
Quantum-induced interactions in the moduli space of degenerate BPS domain walls
Alonso-Izquierdo, A.; Guilarte, J. Mateos
2014-01-01
In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1+1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3+1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N=2×N=2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1+1)- or (3+1)-dimensional N-component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N=2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below
Rashba spin–orbit coupling effects on a current-induced domain wall motion
Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo
2012-01-01
A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.
Unidirectional effect in domain wall propagation observed in bistable glass-coated microwire
Onufer, J., E-mail: jozef.onufer@tuke.sk; Ziman, J., E-mail: jan.ziman@tuke.sk; Kladivová, M., E-mail: maria.kladivova@tuke.sk
2015-12-15
Systematic study of domain wall velocity versus applied magnetic field dependences in glass-coated amorphous Fe{sub 77.5}Si{sub 7.5}B{sub 15} wire was carried out, revealing the existence of a very interesting phenomenon. Domain wall mobility can be significantly different in cases when magnetization reversal caused by domain wall motion results in different orientation of magnetization. The magnitude and sign of this so-called unidirectional effect can change along the wire. There are also samples with weak unidirectional effect in which it is possible, in regions of higher values of applied magnetic field, to observe the highest wall velocities. It is very probable that damping of domain wall motion is responsible for this effect. As a hypothesis a mechanism based on eddy current damping of domain wall motion was proposed for interpretation of this effect. In the framework of this mechanism asymmetric and non-linear volt-ampere characteristics of the metal–glass interface might be responsible for the unidirectional effect. - Highlights: • Unidirectional effect in domain wall propagation was observed. • The magnitude and sign of the unidirectional effect can change along the wire. • A hypothesis for interpretation of the unidirectional effect is proposed.
Domain walls of gauged supergravity, M-branes and algebraic curves
Bakas, I.; Sfetsos, K.
1999-01-01
We provide an algebraic classification of all supersymmetric domain wall solutions of maximal gauged supergravity in four and seven dimensions, in the presence of non-trivial scalar fields in the coset SL(8,R)/SO(8) and SL(5,R)/SO(5) respectively. These solutions satisfy first-order equations, which can be obtained using the method of Bogomol'nyi. From an eleven-dimensional point of view they correspond to various continuous distributions of M2- and M5-branes. The Christoffel-Schwarz transformation and the uniformization of the associated algebraic curves are used in order to determine the Schrodinger potential for the scalar and graviton fluctuations on the corresponding backgrounds. In many cases we explicitly solve the Schrodinger problem by employing techniques of supersymmetric quantum mechanics. The analysis is parallel to the construction of domain walls of five-dimensional gauged supergravity, with scalar fields in the coset SL(6,R)/SO(6), using algebraic curves or continuous distributions of D3-brane...
Stress dependence of the domain wall potential in amorphous CoFeSiB glass-coated microwires
Varga, R.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; Zhukova, V.; Vojtanik, P.
2006-01-01
We present a method to study the domain wall potential through the thermal activation of the domain wall across the energy barrier. Two contributions to the domain wall potential in amorphous microwires are recognized: magnetoelastic and relaxation. The role of each contribution is studied by measuring the switching field distribution at different frequencies and under applied stress
Characteristics of domain wall chirality and propagation in a Y-junction nanowire
Kwak, W.-Y.; Yoon, Seungha; Kwon, J.-H. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Grünberg, P. [Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of)
2016-01-14
Chirality-dependent propagation of transverse wall along a nanowire was investigated using a Y-junction with spin-valve structure. It was found that the Y-junction can be used for convenient and effective electric detection of transverse domain wall chirality, especially in a nanowire with sub-200 nm width, where it is difficult to electrically detect chirality using conventional artificial defect, such as a notch, due to small resistance change. Domain wall propagation path in the Y-junction was found to be determined by the wall chirality, whether clockwise or counterclockwise. Using the Y-junction nanowire, characteristics of domain wall chirality that was nucleated in a nucleation pad, attached at the end of a nanowire, were studied and found to be in good agreement with the results of theoretical simulation.
Search for domain wall dark matter with atomic clocks on board global positioning system satellites.
Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei
2017-10-30
Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.
Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction
Lee, Seo-Won
2018-03-28
We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.
One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films
Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.
2018-03-01
We study existence and properties of 1D edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate 1D micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with a Dirichlet boundary condition at the edge. We also perform a numerical study of these 1D domain walls and uncover further properties of these domain wall profiles.
Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction
Lee, Seo-Won; Kim, Kyoung-Whan; Moon, Jung-Hwan; Go, Gyungchoon; Manchon, Aurelien; Lee, Hyun-Woo; Everschor-Sitte, Karin; Lee, Kyung-Jin
2018-01-01
We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.
Plane symmetric cosmological model with thick domain walls in Brans-Dicke theory of gravitation
Pawar, D.; Bayaskar, S.; Patil, V.
2009-01-01
We have investigated plane symmetric cosmological model in presence of thick domain walls in Brans-Dicke theory of gravitation, some geometrical and physical behavior of the model are discussed. (authors)
Direct observation of stochastic domain-wall depinning in magnetic nanowires
Im, Mi-Young; Bocklage, Lars; Fischer, Peter; Meier, Guido
2008-11-01
The stochastic field-driven depinning of a domain wall pinned at a notch in a magnetic nanowire is directly observed using magnetic X-ray microscopy with high lateral resolution down to 15 nm. The depinning-field distribution in Ni{sub 80}Fe{sub 20} nanowires considerably depends on the wire width and the notch depth. The difference in the multiplicity of domain-wall types generated in the vicinity of a notch is responsible for the observed dependence of the stochastic nature of the domain wall depinning field on the wire width and the notch depth. Thus the random nature of the domain wall depinning process is controllable by an appropriate design of the nanowire.
Energy flux through the horizon in the black hole-domain wall systems
Stojkovic, Dejan
2004-01-01
We study various configurations in which a domain wall (or cosmic string), described by the Nambu-Goto action, is embedded in a background space-time of a black hole in (3+1) and higher dimensional models. We calculate energy fluxes through the black hole horizon. In the simplest case, when a static domain wall enters the horizon of a static black hole perpendicularly, the energy flux is zero. In more complicated situations, where parameters which describe the domain wall surface are time and position dependent, the flux is non-vanishing is principle. These results are of importance in various conventional cosmological models which accommodate the existence of domain walls and strings and also in brane world scenarios. (author)
Current-induced domain wall motion in magnetic nanowires with spatial variation
Ieda, Jun'ichi; Sugishita, Hiroki; Maekawa, Sadamichi
2010-01-01
We model current-induced domain wall motion in magnetic nanowires with the variable width. Employing the collective coordinate method we trace the wall dynamics. The effect of the width modulation is implemented by spatial dependence of an effective magnetic field. The wall destination in the potential energy landscape due to the magnetic anisotropy and the spatial nonuniformity is obtained as a function of the current density. For a nanowire of a periodically modulated width, we identify three (pinned, nonlinear, and linear) current density regimes for current-induced wall motion. The threshold current densities depend on the pulse duration as well as the magnitude of wire modulation. In the nonlinear regime, application of ns order current pulses results in wall displacement which opposes or exceeds the prediction of the spin transfer mechanism. The finding explains stochastic nature of the domain wall displacement observed in recent experiments.
Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)
2010-11-03
Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.
Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves
Lucassen, M. E.
2012-05-01
So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).
Collision of domain walls in asymptotically anti-de Sitter spacetime
Takamizu, Yu-ichi; Maeda, Kei-ichi
2006-01-01
We study collision of two domain walls in five-dimensional asymptotically anti-de Sitter spacetime. This may provide the reheating mechanism of an ekpyrotic (or cyclic) brane universe, in which two Bogomol'nyi-Prasad-Sommerfield branes collide and evolve into a hot big bang universe. We evaluate a change of scalar field making the domain wall and can investigate the effect of a negative cosmological term in the bulk to the collision process and the evolution of our universe
Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion
Tomasello, R; Puliafito, V; Martinez, E; Manchon, Aurelien; Ricci, M; Carpentieri, M; Finocchio, G
2017-01-01
A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study
Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories
Sasai, Yuya; Sasakura, Naoki
2008-01-01
Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar φ 4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [x i ,x j ]=2iκε ijk x k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry
Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes
Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.
2018-03-01
One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely
Construction and Design Kits: Human Problem-Domain Communication
Fischer, Gerhard; Lemke, Andreas C
1987-01-01
.... To provide the user with the appropriate level of control and a better understanding, we have to replace human-computer communication with human problem-domain communication, which allows users...
Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model
Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth
2005-01-01
coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...... is depressed to zero....
Domain decomposition methods for the neutron diffusion problem
Guerin, P.; Baudron, A. M.; Lautard, J. J.
2010-01-01
The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, simplified transport (SPN) or diffusion approximations are often used. The MINOS solver developed at CEA Saclay uses a mixed dual finite element method for the resolution of these problems. and has shown his efficiency. In order to take into account the heterogeneities of the geometry, a very fine mesh is generally required, and leads to expensive calculations for industrial applications. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose here two domain decomposition methods based on the MINOS solver. The first approach is a component mode synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is an iterative method based on a non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the adjacent sub-domains estimated at the previous iteration. Numerical results on parallel computers are presented for the diffusion model on realistic 2D and 3D cores. (authors)
Non-dense domain operator matrices and Cauchy problems
Lalaoui Rhali, S.
2002-12-01
In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)
Mobility of ferroelastic domain walls in barium titanate
Hlinka, Jiří
2007-01-01
Roč. 349, - (2007), s. 49-54 ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2007
Wall thickness dependence of the scaling law for ferroic stripe domains
Catalan, G; Scott, J F; Schilling, A; Gregg, J M
2007-01-01
The periodicity of 180 0 stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients (exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals. (fast track communication)
Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles
Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.
2015-01-01
We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results
High-frequency domain wall excitations in magnetic garnet films with in-plane magnetization
Synogach, V.T.; Doetsch, H.
1996-01-01
Magnetic garnet films of compositions (YBi) 3 Fe 5 O 12 and (LuBi) 3 Fe 5 O 12 are grown by liquid-phase epitaxy on [110]- and [100]-oriented substrates of gadolinium gallium garnet, respectively. All films have in-plane magnetization. 180 degree and 90 degree domain walls in these films are studied by microwave technique. In addition to the known low-frequency mode of wall translation new multiple resonant modes of both 90 degree and 180 degree domain walls with very small linewidth (4.2 MHz) are observed at frequencies near 1 GHz. Resonances are effectively excited by an rf magnetic field which is parallel or perpendicular to the wall plane. Resonance frequencies are shown to have nonlinear dispersion dependence on the mode number: they decrease with increasing in-plane magnetic field normal to the wall plane. copyright 1996 The American Physical Society
Magnetic domain walls as reconfigurable spin-wave nano-channels
Wagner, Kai
Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.
Chiral gauge theory on AdS domain wall
Shirman, Yuri
2005-01-01
We describe a realization of chiral gauge theories based on the domaim wall fermion construction implemented on an interval in five dimensional AdS spacetime. At semi-classical level deconstructed description of the theory is given in terms of 4-dimensional Minkowski slices supporting chiral zero modes at the ends. Energy scales warp down along the fifth dimension. When the theory is augmented by 4-dimensional neutral Majorana spinors together with the Higgs mechanism at the low energy end, we can arrange for a theory where the lightest gauge boson mode as well as chiral zero mode at the high energy end are parametrically lighter than other states. Triangle anomalies and instanton effects are expected to make gauge bosons heavy if the resulting effective theory is anomalous. Due to the strong coupling effects at the quantum level, full non-perturbative calculation will be necessary to validate this construction
Ferroelastic domain walls in barium titanate - quantitative phenomenological model
Hlinka, Jiří; Márton, Pavel
2009-01-01
Roč. 101, č. 1 (2009), s. 50-62 ISSN 1058-4587 R&D Projects: GA ČR GA202/06/0411; GA ČR(CZ) GD202/05/H003; GA AV ČR 1ET300100401 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.329, year: 2009
The defects influence on domain wall propagation in bistable glass-coated microwires
Rodionova, V.; Zhukova, V.; Ilyn, M.; Ipatov, M.; Perov, N.; Zhukov, A.
2012-01-01
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe 74 B 13 Si 11 C 2 microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed. Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height
The defects influence on domain wall propagation in bistable glass-coated microwires
Rodionova, V. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Ilyn, M.; Ipatov, M. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Perov, N. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Zhukov, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao 48011 (Spain)
2012-05-01
We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe{sub 74}B{sub 13}Si{sub 11}C{sub 2} microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed. Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height.
Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T
2012-06-06
Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.
Martinez, Eduardo
2012-01-01
The domain wall dynamics along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy driven by either magnetic fields or spin-polarized currents is theoretically analyzed by means of full micromagnetic simulations and a one-dimensional model, including both surface roughness and thermal effects. At finite temperature, the results show a field dependence of the domain wall velocity in good qualitative agreement with available experimental measurements, indicating a low field, low velocity creep regime, and a high field, linear regime separated by a smeared depinning region. Similar behaviors were also observed under applied currents. In the low current creep regime the velocity-current characteristic does not depend significantly on the non-adiabaticity. At high currents, where the domain wall velocity becomes insensitive to surface pinning, the domain wall shows a precessional behavior even when the non-adiabatic parameter is equal to the Gilbert damping. These analyses confirm the relevance of both thermal fluctuations and surface roughness for the domain wall dynamics, and that complete micromagnetic modeling and one-dimensional studies taking into account these effects are required to interpret the experimental measurements in order to get a better understanding of the origin, the role and the magnitude of the non-adiabaticity. (paper)
Domain wall manipulation in magnetic nanotubes induced by electric current pulses
Otálora, J A; López-López, J A; Landeros, P; Núñez, A S
2012-01-01
We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.
Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents
Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin
2015-09-01
We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.
Youhei Yamaji
2014-05-01
Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.
Counting domain walls in N=1 super Yang-Mills theory
Ritz, Adam; Shifman, Mikhail; Vainshtein, Arkady
2002-01-01
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined via the Witten index of the induced world volume theory, which is invariant under the deformation to the Higgs phase. The world volume theory is a sigma model with a Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and Vafa in which the walls were realized as wrapped D4-branes in type IIA string theory
A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons
Alejos, Oscar [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: oscaral@ee.uva.es; Torres, Carlos [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Hernandez-Gomez, Pablo [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Lopez-Diaz, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Torres, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Martinez, Eduardo [Dpto. Ingenieria Electromecanica, Universidad de Burgos, 09001 Burgos (Spain)
2007-09-15
The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section.
A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons
Alejos, Oscar; Torres, Carlos; Hernandez-Gomez, Pablo; Lopez-Diaz, Luis; Torres, Luis; Martinez, Eduardo
2007-01-01
The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section
Zhmetko, D.N.; Zhmetko, S.D.
2009-01-01
The damping of the motion of domain walls of a sandwich domain structure by the eddy currents magnetic fields, the stray fields and the hysteresis friction fields is investigated. The blocking of the motion of domain walls by the eddy currents magnetic fields is discovered.
Influence of exchange coupling on current-driven domain wall motion in a nanowire
Komine, Takashi; Takahashi, Kota; Murakami, Hiroshi; Sugita, Ryuji
2010-01-01
In this study, the effect of exchange stiffness constant on current-driven domain wall motion in nanowires with in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) has been investigated using micromagnetic simulation. The critical current density in a nanowire with IMA decreases as the exchange stiffness constant decreases because the domain wall width at the upper edge of the nanowire narrows according to the decrease of the exchange stiffness constant. On the other hand, the critical current density in a nanowire with PMA slightly decreases contrary to that of IMA although the domain wall width reasonably decreases as the exchange stiffness constant decreases. The slight reduction rate of the critical current density is due to the increase of the effective hard-axis anisotropy of PMA nanowire.
Chiral symmetry breaking for domain wall fermions in quenched lattice QCD
Wu Lingling
2001-01-01
The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with β = 5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8 3 x 32 and 16 3 x 32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment
Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S
2012-04-13
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Domain Wall Motion in Magnetic Nanostrips under the Influence of Rashba Field
Vito Puliafito
2012-01-01
Full Text Available Spin-orbit Rashba effect applies a torque on the magnetization of a ferromagnetic nanostrip in the case of structural inversion asymmetry, also affecting the steady domain wall motion induced by a spin-polarized current. This influence is here analytically studied in the framework of the extended Landau-Lifshitz-Gilbert equation, including the Rashba effect as an additive term of the effective field. Results of previous micromagnetic simulations and experiments have shown that this field yields an increased value of the Walker breakdown current together with an enlargement of the domain wall width. In order to analytically describe these results, the standard travelling wave ansatz for the steady domain wall motion is here adopted. Results of our investigations reveal the impossibility to reproduce, at the same time, the previous features and suggest the need of a more sophisticated model whose development requires, in turn, additional information to be extracted from ad hoc micromagnetic simulations.
Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls
Mirzakhani, M.; Zarenia, M.; Peeters, F. M.
2018-05-01
Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations.
Field-driven sense elements for chirality-dependent domain wall detection and storage
Bowden, S. R. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Unguris, J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)
2013-12-14
A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.
Sánchez-Tejerina, L. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Alejos, Ó., E-mail: oscaral@ee.uva.es [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Muñoz, J.M. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)
2016-07-01
The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.
Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J.M.
2016-01-01
The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.
On the equilibrium configuration of the Kittel type domain structure with Bloch walls, l80deg
Gavrila, H.
1975-01-01
Using a phenomenologic method for appreciating different components of the free energy, the equilibrium configuration of the Kittel-type domain structure with Bloch walls is obtained. By improving the known methods, more accurate magnetostatic energy calculations are reported. In order to determine the equilibrium structure, the total free energy is minimized with respect to two system parameters: the Bloch wall width and the structure half-period. (author)
Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Leonel, S.A., E-mail: sidiney@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Coura, P.Z., E-mail: pablo@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Costa, B.V., E-mail: bvc@fisica.ufmg.br [Departamento de Física, Laboratório de Simulação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123–970 (Brazil); Vázquez, M., E-mail: mvazquez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC. 28049 Madrid (Spain)
2016-12-01
Numerical simulations have been used to investigate the polarity reversal of the transverse domain wall in rectangular magnetic nanowires and the stabilization of the domain wall position after occurring the polarity reversal. In order to control the wall position we have considered two clusters of magnetic impurities, identical and equidistant from the nanowire width axis. Traps of pinning and blocking for the transverse domain wall can be originated from magnetic impurities, consisting of a local variation of the exchange constant. Under suitable excitation amplitudes it is possible to switch the polarity of the transverse domain wall by applying a nanosecond axial magnetic field pulse in a fast and controllable way. - Highlights: • Traps for pinning and blocking transverse domain walls are proposed. • The traps consisting of localized modifications of the magnetic properties. • The wall polarity can be reversed in a fast and controllable way.
Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires
Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans
2011-09-01
Recent studies have predicted extraordinary properties for transverse domain walls in cylindrical nanowires: zero depinning current, the absence of the Walker breakdown, and applications as domain wall oscillators. In order to reliably control the domain wall motion, it is important to understand how they interact with pinning centers, which may be engineered, for example, through modulations in the nanowire geometry (such as notches or extrusions) or in the magnetic properties of the material. In this paper we study the motion and depinning of transverse domain walls through pinning centers in ferromagnetic cylindrical nanowires. We use (i) magnetic fields and (ii) spin-polarized currents to drive the domain walls along the wire. The pinning centers are modelled as a section of the nanowire which exhibits a uniaxial crystal anisotropy where the anisotropy easy axis and the wire axis enclose a variable angle θP. Using (i) magnetic fields, we find that the minimum and the maximum fields required to push the domain wall through the pinning center differ by 30%. On the contrary, using (ii) spin-polarized currents, we find variations of a factor 130 between the minimum value of the depinning current density (observed for θP=0∘, i.e., anisotropy axis pointing parallel to the wire axis) and the maximum value (for θP=90∘, i.e., anisotropy axis perpendicular to the wire axis). We study the depinning current density as a function of the height of the energy barrier of the pinning center using numerical and analytical methods. We find that for an industry standard energy barrier of 40kBT, a depinning current of about 5μA (corresponding to a current density of 6×1010A/m2 in a nanowire of 10nm diameter) is sufficient to depin the domain wall. We reveal and explain the mechanism that leads to these unusually low depinning currents. One requirement for this depinning mechanism is for the domain wall to be able to rotate around its own axis. With the right barrier design
Salkola, M.I.; Schrieffer, J.R.
1998-01-01
Nonequilibrium properties of short-coherence-length s-wave superconductors are analyzed in the presence of extrinsic and intrinsic inhomogeneities. In general, the lowest-energy configurations of quasiparticle excitations are topological textures into which quasiparticles segregate and that are described as antiphase domain walls between superconducting regions whose order parameter phases differ by π. Antiphase domain walls can be probed by various experimental techniques, for example, by optical absorption and NMR. At zero temperature, quasiparticles seldom appear as self-trapped bag states. However, for low concentrations of quasiparticles, they may be stabilized in superconductors by extrinsic defects. copyright 1998 The American Physical Society
Domain walls dynamics in the amorphous ribbon with a helical magnetic anisotropy
Zhmetko, D.N.; Savin, V.V.; Lemish, P.V.; Troschenkov, Y.N.
2006-01-01
The damping mechanism for motion of domain walls, which form the sandwich structure and move from the middle plane of the ribbon to opposite surfaces during the dynamic magnetization reversal, have been investigated. The difference between the real and ideal sandwich domain structure, the actual distribution of the anisotropy easy directions through the ribbon thickness and the M-bar s deviation from local easy directions under the action of applied magnetic field have been taken into account. It was revealed that the maximum of the total damping coefficient β tot (x) near the half-way of the domain wall run is due to the influence of the magnetic stray fields. These fields have a character of irregular oscillations and are directed approximately perpendicular to the local easy direction of the ribbon layer through which the domain wall propagates. The damping coefficient β e.c. (x) determined by eddy-currents has the maximal value close to the ribbon middle and decreases linearly to zero when the domain wall approaches the ribbon surface
Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase
Bleher, P M
2005-01-01
The six-vertex model, or the square ice model, with domain wall boundary conditions (DWBC) has been introduced and solved for finite $N$ by Korepin and Izergin. The solution is based on the Yang-Baxter equations and it represents the free energy in terms of an $N\\times N$ Hankel determinant. Paul Zinn-Justin observed that the Izergin-Korepin formula can be re-expressed in terms of the partition function of a random matrix model with a nonpolynomial interaction. We use this observation to obtain the large $N$ asymptotics of the six-vertex model with DWBC in the disordered phase. The solution is based on the Riemann-Hilbert approach and the Deift-Zhou nonlinear steepest descent method. As was noticed by Kuperberg, the problem of enumeration of alternating sign matrices (the ASM problem) is a special case of the the six-vertex model. We compare the obtained exact solution of the six-vertex model with known exact results for the 1, 2, and 3 enumerations of ASMs, and also with the exact solution on the so-called f...
Domain decomposition methods for solving an image problem
Tsui, W.K.; Tong, C.S. [Hong Kong Baptist College (Hong Kong)
1994-12-31
The domain decomposition method is a technique to break up a problem so that ensuing sub-problems can be solved on a parallel computer. In order to improve the convergence rate of the capacitance systems, pre-conditioned conjugate gradient methods are commonly used. In the last decade, most of the efficient preconditioners are based on elliptic partial differential equations which are particularly useful for solving elliptic partial differential equations. In this paper, the authors apply the so called covering preconditioner, which is based on the information of the operator under investigation. Therefore, it is good for various kinds of applications, specifically, they shall apply the preconditioned domain decomposition method for solving an image restoration problem. The image restoration problem is to extract an original image which has been degraded by a known convolution process and additive Gaussian noise.
A PARALLEL NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR STOKES PROBLEMS
Mei-qun Jiang; Pei-liang Dai
2006-01-01
A nonoverlapping domain decomposition iterative procedure is developed and analyzed for generalized Stokes problems and their finite element approximate problems in RN(N=2,3). The method is based on a mixed-type consistency condition with two parameters as a transmission condition together with a derivative-free transmission data updating technique on the artificial interfaces. The method can be applied to a general multi-subdomain decomposition and implemented on parallel machines with local simple communications naturally.
Finite element analyses for seismic shear wall international standard problem
Park, Y.J.; Hofmayer, C.H.
1998-04-01
Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation's (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs
Internal friction due to domain-wall motion in martensitically transformed A15 compounds
Snead, C.L. Jr.; Welch, D.O.
1985-01-01
A lattice instability in A15 materials in some cases leads to a cubic-to-tetragonal martensitic transformation at low temperatures. The transformed material orients in lamellae with c axes alternately aligned along the directions producing domain walls between the lamellae. An internal-friction (delta) feature below T/sub m/ is attributed to stress-induced domain-wall motion. The magnitude of the friction increases as temperature is lowered below T/sub m/ as (1-c/a) increases, and behaves as (1-c/a) 2 from T/sub m/ down to the superconducting critical temperature where the increasing tetragonality is inhibited. The effect of strain in the lattice is to decrease the domain-wall internal friction, but not affect T/sub m/. Neutron-induced disorder and the addition of some third-elements in alloying decrease both delta and T/sub m/, with some elements reducing only the former. Less than 1 at. % H is seen to completely suppress both delta and T/sub m. Martensitically transformed V 2 Zr demonstrates low-temperature internal-friction and modulus behavior consists with easy β/m wall motion relative to the easy m/m motion of the A15's. For the V 2 Zr, a peak in delta is observed, qualitatively in agreement with expected β/m wall motion
Effects of biases in domain wall network evolution. II. Quantitative analysis
Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.
2018-04-01
Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.
Bednyakov, Petr; Sluka, T.; Tagantsev, A.; Damjanovic, D.; Setter, N.
2016-01-01
Roč. 28, č. 43 (2016), s. 9498-9503 ISSN 0935-9648 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : super-bandgap illumination * charged domain walls * ferroelectric BaTiO 3 * free-carrier generation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 19.791, year: 2016
Magneto-elastic resonant phenomena at the motion of the domain wall in weak ferromagnets
Kuz'menko, A.P.; Zhukov, E.A.; Dobromyslov, M.B.; Kaminsky, A.V.
2007-01-01
Dynamics of domain walls (DWs) in transparent thin orthoferrite samples with weak ferromagnetic ordering is investigated at sub- and supersonic velocities. A resonant increase of Lamb waves and the formation of magnetoelastic solitons under resonant conditions in both an elastic and between a spin and elastic subsystems were observed
Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)
2017-01-01
Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.
Optical spin-transfer-torque-driven domain-wall motion in a ferromagnetic semiconductor
Ramsay, A.J.; Roy, P.E.; Haigh, J.A.; Otxoa, R.M.; Irvine, A.C.; Janda, T.; Campion, R. P.; Gallagher, B. L.; Wunderlich, Joerg
2015-01-01
Roč. 114, č. 6 (2015), "067202-1"-"067202-5" ISSN 0031-9007 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magnetic domain walls * magneto-optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.645, year: 2015
Crossover from quantum tunneling to classical hopping of domain walls in ferromagnets
Zhou, Bin; Liang, Jiu-Qing; Pu, Fu-Cho
2001-09-01
In the model of quantum tunneling of domain walls in ferromagnets given by Chudnovsky et al., the crossover from quantum tunneling to classical hopping is investigated. Considering the periodical boundary condition of spatial coordinate, the type of transition depends critically on the length of ferromagnet along the Y-axis.
Quark matter coupled to domain walls in Bianchi types II, VIII and IX ...
In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the ... The self-bound state appears to be at ρ ... The observations suggest that the Hubble expansion of the Universe ... Taking motivation from.
On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits
Donolato, Marco; Vavassori, Paolo; Gobbi, Marco
2010-01-01
Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...
Witten Effect and Fractional Charges on the Domain Wall and the D-Brane-Like Dot
Kanazawa, I.; Maeda, R.
2018-04-01
We have discussed the anomalous excitations such as dyons, Majorana fermions, and quark-like fermions on the domain wall in topological materials and the D-brane-like dot, and the relation to low-energy hadrons in QCD, from the viewpoint of a field-theoretical formula.
Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles
Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob
2015-01-01
We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...
Quark matter coupled to domain walls in Bianchi types II, VIII and IX ...
In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the context of general relativity are explored. To obtain deterministic solution of the Einstein's field equations, various techniques are adopted. The features of the obtained solution are discussed.
Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.
2018-06-01
We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.
Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy
Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.
2017-01-01
We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of
Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films
Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.
2013-04-01
Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.
Electrical conduction at domain walls in multiferroic BiFeO3
Seidel, Jan; Martin, Lane; He, Qing; Zhan, Qian; Chu, Ying-Hao; Rother, Axel; Hawkridge, Michael; Maksymovych, Peter; Yu, Pu; Gajek, Martin; Balke, Nina; Kalinin, Sergei; Gemming, Sybille; Wang, Feng; Catalán, Gustau; Scott, James; Spaldin, Nicola; Orenstein, Joseph; Ramesh, Ramamoorthy
2009-03-01
We report the observation of room temperature electronic conductivity at ferroelectric domain walls in BiFeO3. The origin and nature of the observed conductivity is probed using a combination of conductive atomic force microscopy, high resolution transmission electron microscopy and first-principles density functional computations. We show that a structurally driven change in both the electrostatic potential and local electronic structure (i.e., a decrease in band gap) at the domain wall leads to the observed electrical conductivity. We estimate the conductivity in the wall to be several orders of magnitude higher than for the bulk material. Additionally we demonstrate the potential for device applications of such conducting nanoscale features.
Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes
Otálora, J.A.; López-López, J.A.; Landeros, P.; Vargas, P.; Núñez, A.S.
2013-01-01
This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields
Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes
Otálora, J.A., E-mail: jorge.otalora@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); López-López, J.A.; Landeros, P.; Vargas, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); Núñez, A.S. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)
2013-09-15
This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields.
Mouritsen, Ole G.; Praestgaard, Eigil
1988-01-01
obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...
Majidi, Roya, E-mail: royamajidi@gmail.com [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran (Iran, Islamic Republic of)
2012-10-01
In the present work, we have compared the resistance of the 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Neel-type domain walls between two domains whose magnetization differs by angle of 90 Degree-Sign , 180 Degree-Sign , and 360 Degree-Sign are considered. The results indicate that the resistance of the 360 Degree-Sign DW is more considerable than that of the 90 Degree-Sign and 180 Degree-Sign DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.
Vacuum tension effects on the evolution of domain walls in the early universe
Aurilia, A.
1984-06-01
The ''vacuum pressure'' mechanism of the hadronic bag model is taken as a guide to formulate the dynamics of closed domain walls in the cosmological case. The effective action functional suggested by this analogy is a straightforward generalization of the Einstein-Maxwell action: it involves a 3-index antisymmetric potential whose coupling to matter generates two effective cosmological constants, one inside and one outside the domain wall. It is suggested that this mechanism, which is alternative to the introduction of a Higgs potential, is the source of the bubble nucleation process envisaged in the New Inflationary Cosmology. The dynamics of a spherical domain in a de Sitter phase is analyzed and is consistent with the geometrical formulation of shell dynamics proposed long ago by Israel. (author)
Stability of a pinned magnetic domain wall as a function of its internal configuration
Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M. [Institut Jean Lamour, Université de Lorraine, CNRS, BP 70239, F-54506 Vandoeuvre lès Nancy (France); Childress, J. R. [HGST San Jose Research Center, 3403 Yerba Buena Rd, San Jose, California 95135 (United States)
2015-01-14
It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.
Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.
2017-06-15
Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.
Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems
Pierre Jolivet
2014-01-01
Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.
Tunneling decay of false domain walls: The silence of the lambs
Haberichter, Mareike, E-mail: M.Haberichter@kent.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF (United Kingdom); MacKenzie, Richard, E-mail: richard.mackenzie@umontreal.ca; Ung, Yvan, E-mail: klingon-ecology@hotmail.com [Groupe de Physique des Particules, Département de Physique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Québec H3C 3J7 (Canada); Paranjape, M. B., E-mail: paranj@lps.umontreal.ca [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Groupe de Physique des Particules, Département de Physique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, Québec H3C 3J7 (Canada); St. John’s College, University of Cambridge, Cambridge CB2 1TP (United Kingdom)
2016-04-15
We study the decay of “false” domain walls, that is, metastable states of the quantum theory where the true vacuum is trapped inside the wall with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.
Field- and current-driven domain wall dynamics: An experimental picture
Beach, G.S.D.; Knutson, C.; Tsoi, M.; Erskine, J.L.
2007-01-01
Field- and current-driven domain wall velocities are measured and discussed in terms of existing spin-torque models. A reversal in the roles of adiabatic and non-adiabatic spin-torque is shown to arise in those models below and above Walker breakdown. The measured dependence of velocity on current is the same in both regimes, indicating both spin-torque components have similar magnitude. However, the models on which these conclusions are based have serious quantitative shortcomings in describing the observed field-driven wall dynamics, for which they were originally developed. Hence, the applicability of simple one-dimensional models to most experimental conditions may be limited
Tunneling decay of false domain walls: The silence of the lambs
Haberichter, Mareike; MacKenzie, Richard; Ung, Yvan; Paranjape, M. B.
2016-01-01
We study the decay of “false” domain walls, that is, metastable states of the quantum theory where the true vacuum is trapped inside the wall with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.
Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy
Rodríguez, L. A.; Magén, C.; Snoeck, E.; Gatel, C.; Serrano-Ramón, L.
2013-01-01
Direct observation of domain wall (DW) nucleation and propagation in focused electron beam induced deposited Co nanowires as a function of their dimensions was carried out by Lorentz microscopy (LTEM) upon in situ application of magnetic field. Optimal dimensions favoring the unambiguous DW nucleation/propagation required for applications were found in 500-nm-wide and 13-nm-thick Co nanowires, with a maximum nucleation field and the largest gap between nucleation and propagation fields. The internal DW structures were resolved using the transport-of-intensity equation formalism in LTEM images and showed that the optimal nanowire dimensions correspond to the crossover between the nucleation of transverse and vortex walls.
Gravitational domain walls and the dynamics of the gravitational constant G
Bunster, Claudio; Gomberoff, Andrés
2017-07-01
From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a "G -wall." The idea is implemented by introducing a gauge potential Aμ ν ρ, and its conjugate D , which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G -wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G -wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G (D ) which may be chosen so as to diminish the value of G towards the asymptote G =0 . It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G -walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G -wall may be refracted or reflected. (iii) The various forces between two particles change when a G -wall is inserted in between them. (iv) G -walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.
Perturbation on diffusion problems in domain with interfaces
Watson, F.V.
1985-01-01
A perturbative type algorithm for the solution of linear diffusion equation at two dimensions, in domain with interfaces is presented. The perturbative scheme should be assembled in the weak formulation of diffusion equation, even if the strong solution exists, and when it is taken in terms superiors to first order, it should be calculated analytically, in one of the dimensions to avoid problems of slow convergence. (M.C.K.) [pt
Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO3
Nataf, Guillaume F.; Guennou, Mael; Haussmann, Alexander; Barrett, Nick; Kreisel, Jens
2016-01-01
The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO{sub 3}
Nataf, Guillaume F. [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Guennou, Mael [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Haussmann, Alexander [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr-Str. 1, 01069, Dresden (Germany); Barrett, Nick [Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Kreisel, Jens [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Physics and Materials Science Research Unit, University of Luxembourg, 41 Rue du Brill, 4422, Belvaux (Luxembourg)
2016-03-15
The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Radchenko, I R; Filimonova, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation)
1993-06-01
The patterns of polarized beam interference (conoscopic patterns) enable assessment of orientation and parameters of crystal's optical indicatrix. The presented conoscopic patterns of gadolinium molybdate crystal in the vicinity to plane and wedge-live domain walls differ from conoscopic patterns of the crystals far away from these walls which allows to spear about changes occurring in the crystal in the vicinity to domain walls.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures
Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M
2009-01-01
We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.
Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures
Miguel, J; Kurde, J; Piantek, M; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany); Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Bayer, D; Aeschlimann, M, E-mail: jorge.miguel@fu-berlin.d [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger Strasse 46, D-67663 Kaiserslautern (Germany)
2009-12-02
We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi
2008-01-01
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
The domain walls of gauged maximal supergravities and their M-theory origin
Bergshoe, Eric; Nielsen, Mikkel; Roest, Diederik
2004-01-01
We consider gauged maximal supergravities with CSO(p,q,r) gauge groups and their relation to the branes of string and M-theory. The gauge groups are characterised by n mass parameters, where n is the transverse dimension of the brane. We give the scalar potentials and construct the corresponding domain wall solutions. In addition, we show the higher-dimensional origin of the domain walls in terms of (distributions of) branes. We put particular emphasis on the CSO(p,q,r) gauged supergravities in D = 9 and D = 8, which are related to the D7-brane and D6-brane, respectively. In these cases, twisted and group manifold reductions are shown to play a crucial role. We also discuss salient features of the corresponding brane distributions. (author)
Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2018-03-01
Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.
The corkscrew instability of a Freedericksz domain wall in a nematic liquid crystal
Munoz, A D L; Müller, M; Schoepf, W; Rehberg, I
2003-01-01
A liquid crystal with slightly positive dielectric anisotropy is investigated in the planar configuration. This system allows for competition between electroconvection and the homogeneous Freedericksz transition, leading to a rather complicated bifurcation scenario. We report measurements of a novel instability leading to the 'corkscrew' pattern. This state is closely connected to the Freedericksz state as it manifests itself as a regular modulation along a Freedericksz domain wall, although its frequency dependence indicates that electroconvection must play a crucial role. It can be understood in terms of a pitchfork bifurcation from a straight domain wall. Quantitative characterization is performed in terms of amplitude, wavelength and relaxation time. Its wavelength is of the order of the probe thickness, while its ondulation amplitude is an order of magnitude smaller. The relaxation time is comparable to the one obtained for electroconvection.
Accurate calibration of the velocity-dependent one-scale model for domain walls
Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-01-08
We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.
Accurate calibration of the velocity-dependent one-scale model for domain walls
Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.
2013-01-01
We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures.
Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe
2013-01-01
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.
Stability equation and two-component Eigenmode for domain walls in scalar potential model
Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima
2002-08-01
Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)
Integral formula for elliptic SOS models with domain walls and a reflecting end
Lamers, Jules, E-mail: j.lamers@uu.nl
2015-12-15
In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.
High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques
Gomonay, O.; Jungwirth, Tomáš; Sinova, Jairo
2016-01-01
Roč. 117, č. 1 (2016), 1-5, č. článku 017202. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spintronics * domain walls * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
Janda, Tomáš; Roy, P.E.; Otxoa, R.M.; Šobáň, Zbyněk; Ramsay, A.; Irvine, A.C.; Trojánek, F.; Surynek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, Tomáš; Wunderlich, Joerg
2017-01-01
Roč. 8, May (2017), 1-7, č. článku 15226. ISSN 2041-1723 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * domain walls Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 12.124, year: 2016
Mokrý, Pavel; Sluka, T.
2017-01-01
Roč. 110, č. 16 (2017), č. článku 162906. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : microscopic domain wall * electric fields * temperature dependence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 3.411, year: 2016 http://dx.doi.org/10.1063/1.4981874
Mohammed, Hanan; Vidal, Enrique Vilanova; Ivanov, Yurii P.; Kosel, Jü rgen
2016-01-01
Magnetotransport measurements were performed on multisegmented Co/Ni nanowires fabricated by template-assisted electrodeposition. Individual nanowires were isolated and electrodes patterned to study their magnetization reversal process. The magnetoresistance reversal curve of the multisegmented nanowire exhibits a step in the switching field. Micromagnetic simulations of the magnetization reversal process are in agreement with the experimental findings and attribute the step at the switching field to the pinning of a domain wall at the interface of the Co/Ni nanowire.
Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer nanowire
Meng, Zhaoliang; Kumar, Manoj; Qiu, Jinjun
2014-01-01
Current-induced domain wall (DW) motion is investigated in a 600nm wide nanowire using multilayer film with a structure of Ta(5nm)/Pd(5nm)/[CoFe(0.4nm)/Pd(1.2nm)]15/Ta(5nm) in terms of anomalous Hall effect measurements. It is found that motion of DWs can be driven by a current density as low as 1...
Mohammed, Hanan
2016-03-01
Magnetotransport measurements were performed on multisegmented Co/Ni nanowires fabricated by template-assisted electrodeposition. Individual nanowires were isolated and electrodes patterned to study their magnetization reversal process. The magnetoresistance reversal curve of the multisegmented nanowire exhibits a step in the switching field. Micromagnetic simulations of the magnetization reversal process are in agreement with the experimental findings and attribute the step at the switching field to the pinning of a domain wall at the interface of the Co/Ni nanowire.
The Kaon B-parameter from Two-Flavour Dynamical Domain Wall Fermions
Dawson, C.
2005-01-01
We report on the calculation of the kaon B-parameter using two dynamical flavours of domain wall fermions. Our analysis is based on three ensembles of configurations, each consisting of about 5,000 HMC trajectories, with a lattice spacing of approximately 1.7 GeV for 16 3 x32 lattices; dynamical quark masses range from approximately the strange quark mass to half of that. Both degenerate and non-degenerate quark masses are used for the kaons
The Cosmological Constant and Domain Walls in Orientifold Field Theories and N=1 Gluodynamics
Armoni, Adi
2003-01-01
We discuss domain walls and vacuum energy density (cosmological constant) in N=1 gluodynamics and in non-supersymmetric large N orientifold field theories which have been recently shown to be planar equivalent (in the boson sector) to N=1 gluodynamics. A relation between the vanishing force between two parallel walls and vanishing cosmological constant is pointed out. This relation may explain why the cosmological constant vanishes in the orientifold field theory at leading order although the hadronic spectrum of this theory does not contain fermions in the limit N-->infinity. The cancellation is among even and odd parity bosonic contributions, due to NS-NS and R-R cancellations in the annulus amplitude of the underlying string theory. We use the open-closed string channel duality to describe interaction between the domain walls which is interpreted as the exchange of composite ``dilatons'' and ``axions'' coupled to the walls. Finally, we study some planar equivalent pairs in which both theories in the parent...
Influence of Joule heating on current-induced domain wall depinning
Moretti, Simone, E-mail: simone.moretti@usal.es; Raposo, Victor; Martinez, Eduardo [University of Salamanca, Plaza de los Caidos, 37008 Salamanca (Spain)
2016-06-07
The domain wall depinning from a notch in a Permalloy nanostrip on top of a SiO{sub 2}/Si substrate is studied theoretically under application of static magnetic fields and the injection of short current pulses. The influence of Joule heating on current-induced domain wall depinning is explored self-consistently by coupling the magnetization dynamics in the ferromagnetic strip to the heat transport throughout the system. Our results indicate that Joule heating plays a remarkable role in these processes, resulting in a reduction in the critical depinning field and/or in a temporary destruction of the ferromagnetic order for typically injected current pulses. In agreement with experimental observations, similar pinning-depinning phase diagrams can be deduced for both current polarities when the Joule heating is taken into account. These observations, which are incompatible with the sole contribution of spin transfer torques, provide a deeper understanding of the physics underlying these processes and establish the real scope of the spin transfer torque. They are also relevant for technological applications based on current-induced domain-wall motion along soft strips.
Reconfigurable magnonic crystal consisting of periodically distributed domain walls in a nanostrip
Li, Zhi-xiong; Wang, Xi-guang; Wang, Dao-wei; Nie, Yao-zhuang; Tang, Wei; Guo, Guang-hua
2015-01-01
We study spin wave propagation in a new type of magnonic crystal consisting of a series of periodically distributed magnetic domain walls in a nanostrip by micromagnetic simulation. Spin wave bands and bandgaps are observed in frequency spectra and dispersion curves. Some bandgaps are caused by the Bragg reflection of the spin wave modes at the Brillouin zone boundaries, while others originate from the coupling between different incident and reflected spin wave modes. The control of the spin wave band structure by changing the magnetocrystalline anisotropy or applying an external magnetic field is studied. Increasing the magnetocrystalline anisotropy leads to an increase of the bandgaps. The external field applied perpendicular to the nanostrip gives rise to a doubling of the domain-wall magnonic crystal period. As a result, more bandgaps appear on the frequency spectra of propagating spin waves. The results presented here may find their use in the design of reconfigurable magnonic devices. - Highlights: • A reconfigurable magnonic crystal consisting of domain walls in a uniform nanostrip is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave band structures can be effectively manipulated by magnetic anisotropy or magnetic field
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
Sánchez-Tejerina, L., E-mail: luis.st@ee.uva.es [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Alejos, O. [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain)
2017-02-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall
Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.
2018-01-01
Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.
Logic and memory concepts for all-magnetic computing based on transverse domain walls
Vandermeulen, J; Van de Wiele, B; Dupré, L; Van Waeyenberge, B
2015-01-01
We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation. (paper)
Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe
Corte-León, H., E-mail: hector.corte@npl.co.uk [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Gribkov, B. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Krzysteczko, P. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Marchi, F.; Motte, J.-F. [University of Grenoble Alpes, Inst. NEEL, Grenoble F-38042 (France); CNRS, Inst. NEEL, Grenoble F-38042 (France); Schumacher, H.W. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Antonov, V. [Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Kazakova, O. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)
2016-02-15
We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 µm attached to a standard silicon tip. The MB–DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB–DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 µm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter. - Highlights: • AFM tips with a magnetic bead attached used to test interaction with domain wall. • Domain wall inside a nanostructure affect the electrical resistance. • Recording electrical resistance while scanning with modified AFM probe. • Change of resistance as a function of the position of the magnetic bead. • This allows comparing different devices in a reproducible and controllable way.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.
2017-01-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M.; Kirsten, Lars; Cimalla, Peter; Koch, Edmund
2017-01-01
We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Haussmann, Alexander; Schmidt, Sebastian; Wehmeier, Lukas; Eng, Lukas M. [Technische Universitaet Dresden, Institute of Applied Physics and Center for Advancing Electronics Dresden (cfaed), Dresden (Germany); Kirsten, Lars; Cimalla, Peter; Koch, Edmund [Technische Universitaet Dresden, Faculty of Medicine Carl Gustav Carus, Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden (Germany)
2017-08-15
We apply here spectral-domain optical coherence tomography (SD-OCT) for the precise detection and temporal tracking of ferroelectric domain walls (DWs) in magnesium-doped periodically poled lithium niobate (Mg:PPLN). We reproducibly map static DWs at an axial (depth) resolution down to ∝ 0.6 μm, being located up to 0.5 mm well inside the single crystalline Mg:PPLN sample. We show that a full 3-dimensional (3D) reconstruction of the DW geometry is possible from the collected data, when applying a special algorithm that accounts for the nonlinear optical dispersion of the material. Our OCT investigation provides valuable reference information on the DWs' polarization charge distribution, which is known to be the key to the electrical conductivity of ferroelectric DWs in such systems. Hence, we carefully analyze the SD-OCT signal dependence both when varying the direction of incident polarization, and when applying electrical fields along the polar axis. Surprisingly, the large backreflection intensities recorded under extraordinary polarization are not affected by any electrical field, at least for field strengths below the switching threshold, while no significant signals above noise floor are detected under ordinary polarization. Finally, we employed the high-speed SD-OCT setup for the real-time DW tracking upon ferroelectric domain switching under high external fields. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
An investigation of time-dependent domain wall pinning effects in Tb/Fe multilayer thin flms
Phillips, G.N.; O'grady, K.; El-Hilo, M.
2002-01-01
Reverse domain nucleation time measurements have been performed on two Tb/Fe multilayer magneto-optic films exhibiting different degrees of domain wall pinning.A linear relationship between ln (reverse domain nucleation time) and the applied field has been predicted and observed for a sample
The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite
A. Patrykiejew
2014-12-01
Full Text Available Using Monte Carlo simulation method in the canonical ensemble, we have studied the commensurate-incommensurate transition in two-dimensional finite mixed clusters of Ar and Kr adsorbed on graphite basal plane at low temperatures. It has been demonstrated that the transition occurs when the argon concentration exceeds the value needed to cover the peripheries of the cluster. The incommensurate phase exhibits a similar domain-wall structure as observed in pure krypton films at the densities exceeding the density of a perfect (√3x√3R30º commensurate phase, but the size of commensurate domains does not change much with the cluster size. When the argon concentration increases, the composition of domain walls changes while the commensurate domains are made of pure krypton. We have constructed a simple one-dimensional Frenkel-Kontorova-like model that yields the results being in a good qualitative agreement with the Monte Carlo results obtained for two-dimensional systems.
Domain walls, near-BPS bubbles, and probabilities in the landscape
Ceresole, Anna; Dall'Agata, Gianguido; Giryavets, Alexander; Kallosh, Renata; Linde, Andrei
2006-01-01
We develop a theory of static Bogomol'nyi-Prasad-Sommerfield (BPS) domain walls in stringy landscape and present a large family of BPS walls interpolating between different supersymmetric vacua. Examples include Kachru, Kallosh, Linde, Trivedi models, STU models, type IIB multiple flux vacua, and models with several Minkowski and anti-de Sitter vacua. After the uplifting, some of the vacua become de Sitter (dS), whereas some others remain anti-de Sitter. The near-BPS walls separating these vacua may be seen as bubble walls in the theory of vacuum decay. As an outcome of our investigation of the BPS walls, we found that the decay rate of dS vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the landscape. We show that it strongly affects the probability distributions in string cosmology
V. Fallahi
2012-06-01
Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.
On k-string tensions and domain walls in N=1 gluodynamics
Armoni, A.; Shifman, M.
2003-01-01
We discuss the k-dependence of the k-string tension σ k in SU(N) supersymmetric gluodynamics. As is well known, at large N the k-string consists, to leading order, of k noninteracting fundamental strings, so that σ k =kσ 1 . We argue, both from field-theory and string-theory side, that subleading corrections to this formula run in powers of 1/N 2 rather than 1/N, thus excluding the Casimir scaling. We suggest a heuristic model allowing one to relate the k-string tension in four-dimensional gluodynamics with the tension of the BPS domain walls (k-walls). In this model the domain walls are made of a net of strings connected to each other by baryon vertices. The relation emerging in this way leads to the sine formula σ k ∼Λ 2 Nsinπk/N. We discuss possible corrections to the sine law, and present arguments that they are suppressed by 1/k factors. We explain why the sine law does not hold in two dimensions. Finally, we discuss the applicability of the sine formula for non-supersymmetric orientifold field theories
Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André
2015-01-01
Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.
Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
Akosa, Collins Ashu
2015-03-12
Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.
Wyslocki, J.J.; Suski, W.; Wochowski, K.
1994-01-01
Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
Control of domain wall pinning by localised focused Ga + ion irradiation on Au capped NiFe nanowires
Burn, D. M.; Atkinson, D.
2014-01-01
Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.
Allende, S.; Retamal, J.C.; Altbir, D.; D'Albuquerque e Castro, J.
2014-01-01
The magnetoresistance associated with the presence of domain walls in metallic nanowires is investigated as a function of geometrical parameters, corresponding to the wall thickness and the nanowire width, as well as of material parameters, such as the band filling and the exchange interaction. Transport across the structure is described within Landauer formalism. Both cases of saturated and non-saturated ferromagnets are considered, and in all of them the contributions from spin-flip and non-spin-flip are separately analyzed. It has been found that for certain range of parameters deviations in the normalized magnetoresistance as high as 20% may be achieved. In addition, it has been shown that the spin-flip process is dependent on the wall thickness. - Highlights: • We identify thickness regions within which transport across the wall is dominated by either spin-flip or non-spin-flip process. • We analyze the dependence of the magnetoresistance on both the material's band filling and strength of the exchange interaction. • We identify parameter ranges within which magnetoresistance ratios as high as 20% or even more might be achieved
Allende, S.; Retamal, J.C. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); D' Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972 (Brazil)
2014-04-15
The magnetoresistance associated with the presence of domain walls in metallic nanowires is investigated as a function of geometrical parameters, corresponding to the wall thickness and the nanowire width, as well as of material parameters, such as the band filling and the exchange interaction. Transport across the structure is described within Landauer formalism. Both cases of saturated and non-saturated ferromagnets are considered, and in all of them the contributions from spin-flip and non-spin-flip are separately analyzed. It has been found that for certain range of parameters deviations in the normalized magnetoresistance as high as 20% may be achieved. In addition, it has been shown that the spin-flip process is dependent on the wall thickness. - Highlights: • We identify thickness regions within which transport across the wall is dominated by either spin-flip or non-spin-flip process. • We analyze the dependence of the magnetoresistance on both the material's band filling and strength of the exchange interaction. • We identify parameter ranges within which magnetoresistance ratios as high as 20% or even more might be achieved.
Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires
Ivanov, Yurii P.
2017-05-08
The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.
Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires
Ivanov, Yurii P.; Chuvilin, Andrey; Lopatin, Sergei; Mohammed, Hanan; Kosel, Jü rgen
2017-01-01
The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
CFD simulation of the atmospheric boundary layer: wall function problems
Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.
2007-01-01
Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness
RG domain wall for the general (su)-hat (2) coset models
Stanishkov, Marian [Institute for Nuclear Research and Nuclear Energy,Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria)
2016-08-16
We consider a RG flow in a general (su)-hat (2) coset model induced by the least relevant field. This is done using two different approaches. We first compute the mixing coefficients of certain fields in the UV and IR theories using a conformal perturbation theory. The necessary structure constants are computed. The same coefficients can be calculated using the RG domain wall construction of Gaiotto. We compute the corresponding one-point functions and show that the two approaches give the same result in the leading order.
Current-supported domain wall movement to the target spot with a magnetic field
Nam, Chunghee; Jang, Y.M.; Lee, K.S.; Lee, S.K.; Kim, T.W.; Cho, B.K.
2007-01-01
Current-driven domain wall (DW) motion in a submicron-size magnetic strip, which consists of Cu/IrMn/NiFe/Cu/NiFe/Cu pseudo-spin-valve with natural defects, was investigated by measuring the giant-magnetoresistance signal. The magnetic DW movement was induced by the injection of a high current density of 4x10 7 A/cm 2 . It was also found that a DW can be manipulated in more convenient way by the application of both current and magnetic field at the same time
Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea
R.G. Edwards; G. Fleming; Ph. Hagler; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers
2006-01-01
Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed
Correia, J R C C C; Martins, C J A P
2017-10-01
Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent advances in astrophysical observations), one requires more and more demanding simulations, and therefore more hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D simulations.
Rodriguez-Rodriguez, G; Hierro-Rodriguez, A; Perez-Junquera, A; Montenegro, N; Alameda, J M; Velez, M; Menendez, J L; Ravelosona, D
2010-01-01
The interplay between collective pinning on intrinsic structural defects and artificial pinning at a patterned hole is studied in magnetic multilayers with perpendicular anisotropy. The pinning strength of a patterned hole is measured through its efficiency to stop domain wall (DW) propagation into a consecutive unpatterned nanowire section (using antisymmetric magnetoresistance to detect the direction of DW propagation) whereas collective pinning is characterized by the field dependence of DW velocity. Close to room temperature, collective pinning becomes weaker than artificial pinning so that pinning at the hole compensates nucleation-pad geometry, blocking DW propagation across the nanowire.
Correia, J. R. C. C. C.; Martins, C. J. A. P.
2017-10-01
Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent advances in astrophysical observations), one requires more and more demanding simulations, and therefore more hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D simulations.
Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble
Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné
2018-02-01
The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.
Zahnd, G.; Pham, V.T.; Marty, A.; Jamet, M.; Beigné, C.; Notin, L.; Vergnaud, C.; Rortais, F.; Vila, L.; Attané, J.-P.
2016-01-01
We study domain wall injection in 100 nm wide NiFe nanowires, followed by domain wall propagation and pinning on 50 nm wide constrictions. The injection is performed using local and external magnetic fields. Using several nucleation pad geometries, we show that at these small dimensions the use of an external field only does not allow obtaining a reproducible injection/pinning process. However, the use of an additional local field, created by an Oersted line, allows to nucleate a reversed domain at zero external applied field. Then, an external field of 5 mT enables the domain wall to propagate far from the Oersted line, and the pinning occurs reproducibly. We also show that notwithstanding the reproducibility of the pinning process, the depinning field is found to be stochastic, following a bimodal distribution. Using micromagnetic simulation we link two different DW configurations, vortex and transverse, to the two typical depinning fields. - Highlights: • Magnetic domain wall introduction and pinning in Permalloy nanowires with 50 nm wide constrictions. • Magnetic domain nucleation at zero external applied field. • Bimodal distribution of the domain wall configuration in the constriction.
Quenched lattice QCD with domain wall fermions and the chiral limit
Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Kaehler, A.; Liao, X.; Liu, G.; Malureanu, C.; Mawhinney, R.; Siegert, G.; Sui, C.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.
2004-01-01
Quenched QCD simulations on three volumes 8 3 x, 12 3 x and 16 3 x32 and three couplings β=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (m res ) whose size decreases as the separation between the domain walls (L s ) is increased. However, at stronger couplings much larger values of L s are required to achieve a given physical value of m res . For β=6.0 and L s =16, we find m res /m s =0.033(3), while for β=5.7, and L s =48, m res /m s =0.074(5), where m s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of m π 2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in f π over our entire range, with inverse lattice spacing varying between 1 and 2 GeV
Depinning of the ferroelectric domain wall in congruent LiNbO{sub 3}
Lee, Donghwa, E-mail: donghwa96@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, Gwangju 61186 (Korea, Republic of); Gopalan, Venkatraman [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2016-08-22
The high coercive field, E{sub c}, of congruent LiNbO{sub 3} can be reduced by doping with Mg or Zn atoms, or by increasing the temperature above a threshold value. The physical origin for this reduction is not currently understood. Here, density functional theory calculations illustrate the atomic origin of the change in the switching field of the congruent LiNbO{sub 3}. They show that the high E{sub c} in the congruent LiNbO{sub 3} is a result of niobium antisite atoms on the lithium sublattice, pinning the motion of the domain walls. Thus, the healing of antisites by diffusion can significantly reduce the coercive field. In addition, this work demonstrates that the migration of these niobium antisites can be enhanced by doping or by changing the temperature. Thus, the depinning process of the congruent LiNbO{sub 3} is understood by the migration of the niobium antisite defect across the domain wall.
Domain wall oscillation in magnetic nanowire with a geometrically confined region
Sbiaa, R.; Bahri, M. Al; Piramanayagam, S. N.
2018-06-01
In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8 × 1012 A/m2 and 5.6 × 1012 A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc-current to an ac-voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.
Steady motion of skyrmions and domains walls under diffusive spin torques
Elías, Ricardo Gabriel
2017-03-09
We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).
Steady motion of skyrmions and domains walls under diffusive spin torques
Elí as, Ricardo Gabriel; Vidal-Silva, Nicolas; Manchon, Aurelien
2017-01-01
We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).
Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip
Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar
2018-04-01
Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.
Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls
Ciprian G. Gal
2006-11-01
Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.
Li, Mei; Wang, Jianbo; Lu, Jie
2017-02-01
The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.
Zhao-Qing Wang
2014-01-01
Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.
2009-03-01
The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203
Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo
2016-01-01
We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.
Bang, Do
2016-05-23
We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2012-08-01
The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.
Optimal spin current pattern for fast domain wall propagation in nanowires
Yan, Peng; Sun, Zhouzhou; Schliemann, John; Wang, Xiangrong
2011-03-01
One of the important issues in nanomagnetism is to lower the current needed for a technologically useful domain wall (DW) propagation speed. Based on the modified Landau-Lifshitz-Gilbert (LLG) equation with both Slonczewski spin-transfer torque and the field-like torque, we derive an optimal temporally and spatially varying spin current pattern for fast DW propagation along nanowires. Under such conditions, the DW velocity in biaxial wires can be enhanced as much as tens of times higher than that achieved in experiments so far. Moreover, the fast variation of spin polarization can efficiently help DW depinning. Possible experimental realizations are discussed. This work is supported by Hong Kong RGC grants (#603508, 604109, RPC10SC05 and HKU10/CRF/08-HKUST17/CRF/08), and by Deutsche Forschungsgemeinschaft via SFB 689. ZZS thanks the Alexander von Humboldt Foundation (Germany) for a grant.
Vortices and domain walls: 'Wormholes' in unconventional superconductors
Bessarab, P F [St. Petersburg State University, Universitetskaya nab. 7/9, 199164 St. Petersburg (Russian Federation); Radievsky, A V, E-mail: van_der_paul@yahoo.co.u [Immanuel Kant State University of Russia, Nevskogo str. 14, 236016 Kaliningrad (Russian Federation)
2010-01-15
In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.
Seifert, C.
2006-09-14
The gold-induced (5 x 2)-reconstruction on the Si(111) surface has been investigated in detail. Investigations with scanning tunneling microscopy, electron diffraction and simple electron diffraction simulation as combining element are presented. The defect density in the (5 x 2)-reconstructed areas has been analysed in dependency on temperature and gold density on the surface. One important result is the categorization of this reconstruction as domain-wall reconstruction like the other gold induced reconstructions on this surface in the submonolayer-coverage regime. The correlation of the adatoms on the (5 x 2)-reconstructed areas is analysed and the silicon coverage in the areas is determined from the growth dynamics of the reconstruction. Based on this, a new model, which has been developed in cooperation with Steve Erwin from the Naval Research Center, Washington, is presented. (orig.)
Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2017-12-01
The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple setup with U (1 ) or S U (N ) gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.
Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.
2018-06-01
The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.
Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs
Heintze, Eric; El Hallak, Fadi; Clauß, Conrad; Rettori, Angelo; Pini, Maria Gloria; Totti, Federico; Dressel, Martin; Bogani, Lapo
2013-03-01
Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution to neural networks and chemical reactivity.
fK /f{pi} in Full QCD with Domain Wall Valence Quarks
Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage
2007-05-01
We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.
Control of vortex state in cobalt nanorings with domain wall pinning centers
Manohar Lal
2018-05-01
Full Text Available Magnetic rings at the mesoscopic scale exhibit new spin configuration states and switching behavior, which can be controlled via geometrical structure, material composition and applied field. Vortex states in magnetic nanorings ensure flux closure, which is necessary for low stray fields in high packing density in memory devices. We performed magnetoresistance measurements on cobalt nanoring devices and show that by attaching nanowires to the ring, the vortex state can be stabilized. When a square pad is attached to the free end of the wire, the domain wall nucleation field in the nanowire is reduced. In addition, the vortex state persists over a larger range of magnetic fields, and exists at all in-plane orientations of the magnetic field. These experimental findings are well supported by our micromagnetic simulations.
Domain walls and exchange-interaction in Permalloy/Gd films
Ranchal, R; Aroca, C; Lopez, E
2008-01-01
In this work we study the exchange coupling in Permalloy (Py)/gadolinium (Gd) bilayers. The exchange-coupled Py/Gd system is very temperature dependent and moreover the magnetization process in the Py layer is mainly due to domain wall (DW) displacements which are strongly controlled by pinning effects. We propose that this pinning could be caused by magnetostatic and exchange interactions between Py DWs and the magnetostrictive Gd layer. These effects mask the antiferromagnetic coupling between layers and, depending on temperature and Py thicknesses, apparent ferromagnetic coupling occurs. The study has been performed in the 80-300 K temperature range for different Py layer thicknesses and different Py induced anisotropies
West, Adam D; Weatherill, Kevin J; Hayward, Thomas J; Fry, Paul W; Schrefl, Thomas; Gibbs, Mike R J; Adams, Charles S; Allwood, Dan A; Hughes, Ifan G
2012-08-08
Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 μK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.
2015-09-15
Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-
Zhang, Yu; Pan, Peng; Gong, Runhua; Wang, Tao; Xue, Weichen
2017-10-01
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
Badea, Robert; Berezovsky, Jesse
2016-06-01
The propagation of domain walls in a ferromagnetic film is largely determined by domain-wall pinning at defects in the material. In this article, we map the effective potential landscape for domain-wall pinning in permalloy films by raster scanning a single ferromagnetic vortex and monitoring the hysteretic vortex displacement vs applied magnetic field. The measurement is carried out using a differential magneto-optical microscopy technique which yields spatial sensitivity of approximately 10 nm. We present a simple algorithm for extracting an effective pinning potential from the measurement of vortex displacement vs applied field. The resulting maps of the pinning potential reveal distinct types of pinning sites, which we attribute to quasi-zero-, one-, and two-dimensional defects in the permalloy film.
Raut, Samarth S.; Liu, Peng; Finol, Ender A.
2015-01-01
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...
Magnetostatic coupling of 900 domain walls in Fe19Ni81/Cu/Co trilayers
Kurde, J; Miguel, J; Kuch, W; Bayer, D; Aeschlimann, M; Sanchez-Barriga, J; Kronast, F; Duerr, H A
2011-01-01
The magnetic interlayer coupling of Fe 19 Ni 81 /Cu/Co trilayered microstructures has been studied by means of x-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls (DWs) of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at DWs in the magnetically harder Co layer. In the magnetically softer FeNi layer, non-ordinary DWs, such as 270 0 and 90 0 DWs with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization, are identified. Micromagnetic simulations reveal that in the absence of magnetic anisotropy, both types of overshooting DWs are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the DWs with respect to the anisotropy axis determines which of these DWs is energetically favorable.
Hysteresis loop design by geometry of garnet film element with single domain wall
Skidanov, V A; Vetoshko, P M; Stempkovskiy, A L
2011-01-01
Numerical modeling and experimental investigation of magnetostatic stable states of two-domain structure in Bi-substituted uniaxial garnet film elements was made. Single domain walls (DW) between two opposite normally magnetized parts in isolated rectangular strip and strip-like bridge are found to exhibit different behavior. DW inside strip (bridge) suffers increasing repulsion (attraction) from nearest edge when shifted from element center. DW position center position is stable in isolated strip but bridge is magnetized spontaneously to one of two saturated states in zero external field. Isolated strip magnetization process occurs reversibly while bridge magnetization reversal occurs by coercive manner. Strip susceptibility and bridge coercive field are entirely defined by magnetostatic barrier created by element boundary stray field in case of constant DW length during magnetization reversal. Variation of strip and bridge boundary shape along DW trajectory gives the opportunity to create additional controllable potential profile due to DW surface energy modulation by DW length. Garnet elements with high Faraday rotation and low light switching field were developed for fine magnetic sensing and optical data processing applications.
Imaging and tuning polarity at SrTiO3 domain walls
Frenkel, Yiftach; Haham, Noam; Shperber, Yishai; Bell, Christopher; Xie, Yanwu; Chen, Zhuoyu; Hikita, Yasuyuki; Hwang, Harold Y.; Salje, Ekhard K. H.; Kalisky, Beena
2017-12-01
Electrostatic fields tune the ground state of interfaces between complex oxide materials. Electronic properties, such as conductivity and superconductivity, can be tuned and then used to create and control circuit elements and gate-defined devices. Here we show that naturally occurring twin boundaries, with properties that are different from their surrounding bulk, can tune the LaAlO3/SrTiO3 interface 2DEG at the nanoscale. In particular, SrTiO3 domain boundaries have the unusual distinction of remaining highly mobile down to low temperatures, and were recently suggested to be polar. Here we apply localized pressure to an individual SrTiO3 twin boundary and detect a change in LaAlO3/SrTiO3 interface current distribution. Our data directly confirm the existence of polarity at the twin boundaries, and demonstrate that they can serve as effective tunable gates. As the location of SrTiO3 domain walls can be controlled using external field stimuli, our findings suggest a novel approach to manipulate SrTiO3-based devices on the nanoscale.
Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.
2002-01-01
We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)
Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny
2017-01-01
We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matr...
Ondrejkovič, Petr; Márton, Pavel; Guennou, Mael; Setter, N.; Hlinka, Jiří
2013-01-01
Roč. 88, č. 2 (2013), "024114-1"-"024114-9" ISSN 1098-0121 Grant - others:7th Framework Programme(XE) 268058 Institutional support: RVO:68378271 Keywords : piezoelectric properties * charged domain walls * domain structure * twinned ferroelectric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.88.024114
Benchmarking LES with wall-functions and RANS for fatigue problems in thermal–hydraulics systems
Tunstall, R., E-mail: ryan.tunstall@manchester.ac.uk [School of MACE, The University of Manchester, Manchester M13 9PL (United Kingdom); Laurence, D.; Prosser, R. [School of MACE, The University of Manchester, Manchester M13 9PL (United Kingdom); Skillen, A. [Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)
2016-11-15
Highlights: • We benchmark LES with blended wall-functions and low-Re RANS for a pipe bend and T-Junction. • Blended wall-laws allow the first cell from the wall to be placed anywhere in the boundary layer. • In both cases LES predictions improve as the first cell wall spacing is reduced. • Near-wall temperature fluctuations in the T-Junction are overpredicted by wall-modelled LES. • The EBRSM outperforms other RANS models for the pipe bend. - Abstract: In assessing whether nuclear plant components such as T-Junctions are likely to suffer thermal fatigue problems in service, CFD techniques need to provide accurate predictions for wall temperature fluctuations. Though it has been established that this is within the capabilities of wall-resolved LES, its high computational cost has prevented widespread usage in industry. In the present paper the suitability of LES with blended wall-functions, that allow the first cell to be placed in any part of the boundary layer, is assessed. Numerical results for the flows through a 90° pipe bend and a T-Junction are compared against experimental data. Both test cases contain areas where equilibrium laws are violated in practice. It is shown that reducing the first cell wall spacing improves agreement with experimental data by limiting the extent from the wall in which the solution is constrained to an equilibrium law. The LES with wall-function approach consistently overpredicts the near-wall temperature fluctuations in the T-Junction, suggesting that it can be considered as a conservative approach. We also benchmark a range of low-Re RANS models. EBRSM predictions for the 90° pipe bend are in significantly better agreement with experimental data than those from the other models. There are discrepancies from all RANS models in the case of the T-Junction.
Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)
2017-03-15
This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.
Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3
Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito
2018-05-01
The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.
Damjanovic, D
1997-01-01
The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...
Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions
Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.
1997-01-01
We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society
Tomar, S.K.
2002-01-01
It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.
Influence of temperature on the critical in-plane field range for VBLs in the walls of hard domains
Nie, X.F.; Guo, G.X.; Xu, J.P.; Liu, S.P.; Wang, L.N.; Huo, S.G.
2006-01-01
The influence of temperature on the critical in-plane field range for vertical Bloch lines in the walls of three kinds of hard domains is investigated experimentally. It is found that for each kind of three hard domains, there exists a critical in-plane field range, i. e. [H ip (1) (T),H ip (2) (T)], which depends on temperatures and in which vertical Bloch lines are unstable. Here, H ip (1) (T) is the initial critical in-plane field where VBLs in the walls of three kinds of hard domains are annihilated, and H ip (2) (T) is the lowest in-plane field where VBLs in their corresponding hard domains are annihilated completely. H ip (1) (T), H ip (2) (T) and [H ip (1) (T),H ip (2) (T)], all decrease as the temperature increase. Furthermore, H ip (1) (T) and H ip (2) (T) reach zero at T 0 1 and T 0 , respectively. In addition, there exists a relationship among them, when T is unchanged, H ip (1) (T) of the three kinds of hard domains (ordinary hard bubbles (OHB), first kind of dumbbell domain (ID) and second kind of dumbbell domains (IID)) decrease successively, and theirH ip (2) (T) are the same
Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.
2018-04-01
We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.
Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.
2004-01-01
Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field
Chirality dependent pinning and depinning of magnetic vortex domain walls at nano-constrictions
Mohanan P, Vineeth; Kumar, P.S. Anil, E-mail: anil@physics.iisc.ernet.in
2017-01-15
The implementation of magnetic domain wall (DW) based memory and logic devices critically depend on the control over DW assisted magnetization reversal processes. Here we investigate the magnetization reversal by DW injection, pinning and depinning at a geometrical constriction in permalloy nanowire (NW) driven by external in-plane magnetic field, using local electrical probes. The observations of two distinct depinning field values are identified with the help of micromagnetic simulations, as being due to vortex DWs of different chiralities. Statistical analysis gave an estimate of chirality dependent pinning probability of DWs at this constriction. The stochastic nature of the DW based reversal driven by magnetic field is revealed here. The asymmetry in the depinning field of the DWs to move to either side of constriction indicates the asymmetric nature of the barrier potential seen by the DWs. The results demonstrate the difficulties in achieving deterministic switching behavior of DW assisted reversal, and provide a platform to understand the main bottlenecks in the technological implementation of DWs.
Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve
Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration
2014-03-01
In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.
Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer
Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy
2018-05-01
mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.
Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure
Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.
2016-01-01
An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036
Prediction and Experimental Evidence for Thermodynamically Stable Charged Orbital Domain Walls
Li, Qing’an; Gray, K. E.; Wilkins, S. B.; Garcia Fernandez, M.; Rosenkranz, S.; Zheng, H.; Mitchell, J. F.
2014-08-01
The quest for miniaturization is prevalent in many fields of modern science and technology. The ultimate limit for conduction would be a one-dimensional (1D) chain of atoms and, for example, carbon nanotubes are a notable approximation to this ideal. Here we present strong evidence for an unexpected phenomenon—a sliding charge-density wave along pseudo-1D, atomically homogeneous orbital domain walls (ODWs) in insulating bilayer manganite crystals. At a threshold electric field, crystals exhibit abrupt transformations to higher conductance, while x-ray diffraction confirms that these are not due to heating or melting of charge order. The conductance data resemble those of well-known pseudo-1D sliding-charge-density waves, in particular the presence of a depinning voltage. The vital link is our theoretical insight that ODWs must be partially charged due to competition between orbital-induced strain and Coulomb repulsion. The ideas found here embody a new principle for creating ultra-nano conductive paths in other materials and devices.
Spin-orbit torques for current parallel and perpendicular to a domain wall
Schulz, Tomek; Lee, Kyujoon; Karnad, Gurucharan V. [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Alejos, Oscar [Departamento de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belen, 7, E-47011 Valladolid (Spain); Martinez, Eduardo; Moretti, Simone [Departamento Fisica Aplicada, Universidad de Salamanca, Plaza de los Caidos s/n, E-38008 Salamanca (Spain); Hals, Kjetil M. D. [Niels Bohr International Academy and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Garcia, Karin; Ravelosona, Dafiné [Institut d' Electronique Fondamentale, UMR CNRS 8622, Université Paris Sud, 91405 Orsay Cedex (France); Vila, Laurent [Institut Nanosciences et Cryogénie, Université Grenoble Alpes, F-38000 Grenoble (France); Institut Nanosciences et Cryogénie, CEA, F-38000 Grenoble (France); Lo Conte, Roberto; Kläui, Mathias [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Graduate School of Excellence “Materials Science in Mainz” (MAINZ), Staudinger Weg 9, 55128 Mainz (Germany); Ocker, Berthold [Singulus Technologies AG, 63796 Kahl am Main (Germany); Brataas, Arne [Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)
2015-09-21
We report field- and current-induced domain wall (DW) depinning experiments in Ta\\Co{sub 20}Fe{sub 60}B{sub 20}\\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites.
Spin-orbit torques for current parallel and perpendicular to a domain wall
Schulz, Tomek; Lee, Kyujoon; Karnad, Gurucharan V.; Alejos, Oscar; Martinez, Eduardo; Moretti, Simone; Hals, Kjetil M. D.; Garcia, Karin; Ravelosona, Dafiné; Vila, Laurent; Lo Conte, Roberto; Kläui, Mathias; Ocker, Berthold; Brataas, Arne
2015-01-01
We report field- and current-induced domain wall (DW) depinning experiments in Ta\\Co 20 Fe 60 B 20 \\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites
An exploratory study of heavy domain wall fermions on the lattice
Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias
2016-01-01
We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.
Interlocked chiral/polar domain walls and large optical rotation in Ni3TeO6
Xueyun Wang
2015-07-01
Full Text Available Chirality, i.e., handedness, pervades much of modern science from elementary particles, DNA-based biology to molecular chemistry; however, most of the chirality-relevant materials have been based on complex molecules. Here, we report inorganic single-crystalline Ni3TeO6, forming in a corundum-related R3 structure with both chirality and polarity. These chiral Ni3TeO6 single crystals exhibit a large optical specific rotation (α—1355° dm−1 cm3 g−1. We demonstrate, for the first time, that in Ni3TeO6, chiral and polar domains form an intriguing domain pattern, resembling a radiation warning sign, which stems from interlocked chiral and polar domain walls through lowering of the wall energy.
Nagatani, Yukinori
2004-01-01
We investigate the Hawking radiation in the gauge Higgs-Yukawa theory. The ballistic model is proposed as an effective description of the system. We find that a spherical domain wall around the black hole is formed by field dynamics rather than thermal phase transition. The formation is a general property of the black hole whose Hawking temperature is equal to or greater than the energy scale of the theory. The formation of the electroweak wall and that of the GUT wall are shown. We also find a phenomenon of the spontaneous charging-up of the black hole by the wall. The Hawking radiation drives a mechanism of the charge transportation into the black hole when C- and CP-violation are assumed. The mechanism can strongly transport the hyper-charge into a black hole of the electroweak scale
Collage-type approach to inverse problems for elliptic PDEs on perforated domains
Herb E. Kunze
2015-02-01
Full Text Available We present a collage-based method for solving inverse problems for elliptic partial differential equations on a perforated domain. The main results of this paper establish a link between the solution of an inverse problem on a perforated domain and the solution of the same model on a domain with no holes. The numerical examples at the end of the paper show the goodness of this approach.
Some problems in operator theory on bounded symmetric domains
Engliš, Miroslav
2004-01-01
Roč. 81, č. 1 (2004), s. 51-71 ISSN 0167-8019. [Representations of Lie groups, harmonic analysis on homogeneous spaces and quantization. Leiden, 07.12.2002-13.12.2002] R&D Projects: GA ČR GA201/03/0041 Institutional research plan: CEZ:AV0Z1019905 Keywords : homogeneous multiplication operators * bounded symmetric domains Subject RIV: BA - General Mathematics Impact factor: 0.354, year: 2004
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang
2014-09-26
Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.
Guerin, P.
2007-12-01
The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)
A TFETI domain decomposition solver for elastoplastic problems
Čermák, M.; Kozubek, T.; Sysala, Stanislav; Valdman, J.
2014-01-01
Roč. 231, č. 1 (2014), s. 634-653 ISSN 0096-3003 Institutional support: RVO:68145535 Keywords : elastoplasticity * Total FETI domain decomposition method * Finite element method * Semismooth Newton method Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014 http://ac.els-cdn.com/S0096300314000253/1-s2.0-S0096300314000253-main.pdf?_tid=33a29cf4-996a-11e3-8c5a-00000aacb360&acdnat=1392816896_4584697dc26cf934dcf590c63f0dbab7
Mixed meson masses with domain-wall valence and staggered sea fermions
Orginos, Kostas; Walker-Loud, Andre
2008-01-01
Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.
Continuum limit of Bk from 2+1 flavor domain wall QCD
2011-01-01
We determine the neutral kaon mixing matrix element B K in the continuum limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional nonperturbative renormalization (NPR) method in which the bare matrix elements are renormalized nonperturbatively in the regularization invariant momentum scheme (RI-MOM) and are then converted into the MS - scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four nonexceptional intermediate momentum schemes that suppress infrared nonperturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of regularization invariant symmetric momentum schemes (RI-SMOM) and MS - at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence for a correspondingly more robust estimate of the systematic error. We also apply a recently proposed approach in which twisted boundary conditions are used to control the Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in the continuum limit. We control chiral extrapolation errors by considering both the next-to-leading order SU(2) chiral effective theory, and an analytic mass expansion. We obtain B K MS- (3 GeV) = 0.529(5) stat (15) χ (2) FV (11) NPR . This corresponds to B - K RGI- = 0.749(7) stat (21) χ (3) FV (15) NPR . Adding all sources of error in quadrature, we obtain B - K RGI- = 0.749(27) combined , with an overall combined error of 3.6%.
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
Huey-Wen Lin; Shigemi Ohta
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS
LIN, H.W.; OHTA, S.
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
Calabrese, Pasquale; Hagendorf, Christian; Doussal, Pierre Le
2008-01-01
We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain wall. We generalize the path integral imaginary time approach that together with boundary conformal field theory allows us to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic κ for boundary conditions corresponding to stochastic Loewner evolution. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state
Heinen, Jan; Boulle, Olivier; Rousseau, Kevin; Malinowski, Gregory; Klaeui, Mathias [Universitaet Konstanz, Fachbereich Physik, D-78457 Konstanz (Germany); Swagton, Henk J.; Koopmans, Bert [Eindhoven University of Technology, Department of Applied Physics, MB 5600 (Netherlands); Ulysse, Christian; Faini, Giancarlo [CNRS, Phynano team, Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis (France)
2010-07-01
We report on magnetotransport studies on perpendicularly magnetized nanowires with narrow domain wall (DW) structures. Using Co/Pt multilayer nanowires, we have previously shown that Joule heating is concealing most of the current induced domain wall effects, but using a constant sample temperature a large non-adiabacity factor {beta} has been deduced. Here, we carry out experiments for both applied field directions and current polarities, starting from different DW configurations within a Hall cross. We clearly show, using the different symmetries of spin torque and Oersted-field, that the much debated Oersted-field does not contribute to the DW depinning significantly. This allows us to extract the spin torque contribution and the non-adiabacity factor {beta}, which turns out to be in line with previous measurements.
Mokrý, Pavel; Sluka, T.
2016-01-01
Roč. 93, č. 6 (2016), č. článku 064114. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Nonlinear dielectric response * ferroelectric domain walls * aging process * phase field simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.064114
BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN
O.Kh. Abdullaev
2014-06-01
Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
Propagator of the lattice domain wall fermion and the staggered fermion
Furui, S.
2009-01-01
We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)
The numerical solution of boundary value problems over an infinite domain
Shepherd, M.; Skinner, R.
1976-01-01
A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail
QUALITATIVE ANALYSIS OF EXTREMAL PROBLEMS IN ARBITRARY DOMAINS
Samokhin Mikhail Vasilevich
2012-10-01
The author considers the problems concerning where B is either a unit sphere in the (D space or one of the classes , p>1. He shows the possibility of the results concerning the characteristic of extreme functions, their uniqueness, the possilble presentation of the functions from the classes and with the use of the Cauchy-Stieltjes integrals in the component of the D\\ suppµ set and the boundary behavior of an extreme function from the (D class. One should note that the given mathematical system can be implemented for making decisions in the field of construction engineering and structural analysis, it can provide research assistants and engineers with the background necessary for developing sound solutions and rational proposals.
Generalized multiscale finite element methods for problems in perforated heterogeneous domains
Chung, Eric T.
2015-06-08
Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere. © 2015 Taylor & Francis
Cosmiclike domain walls in superfluid 3He-B: Instantons and diabolical points in (k,r) space
Salomaa, M.M.; Volovik, G.E.
1988-01-01
The possible planar superfluid B-B boundaries between inequivalent B-phase vacua are considered; such B-B interfaces provide an analogy with the cosmic domain walls that are believed to have precipitated in the phase transitions of the early Universe. Several of them display nontrivial structure in (k,r) space (i.e., the union of the momentum and real spaces). Such a wall represents an instanton connecting two B-phase vacua with different k-space topology. The transition between the vacua occurs through the formation of a pointlike defect either in the (k,r) space, or in the (k,t) space. These defects are so-called diabolical points of codimension 4, at which the fermionic energy tends to zero, thus providing the fermionic zero modes. Such points are new examples (within condensed-matter physics) of the peculiar diabolical points, which are characterized by the occurrence of a contact between the different branches of the quasiparticle spectra; in the present case, the branches of particles and holes, respectively. These points are here discussed for the case of the superfluid phases of liquid 3 He in close analogy with the quantum field theory of fermions interacting with classical bosonic fields. The cosmiclike domain walls in superfluid 3 He-B are observable in principle; in particular, the motion of the superfluid A-B interface is governed at low temperatures by the periodical emission of these topological excitation planes
Karabulut, Halit; Ipci, Duygu; Cinar, Can
2016-01-01
Highlights: • A numerical method has been developed for fully developed flows with constant wall temperature. • The governing equations were transformed to boundary fitted coordinates. • The Nusselt number of parabolic duct has been investigated. • Validation of the numerical method has been made by comparing published data. - Abstract: In motor-vehicles the use of more compact radiators have several advantages such as; improving the aerodynamic form of cars, reducing the weight and volume of the cars, reducing the material consumption and environmental pollutions, and enabling faster increase of the engine coolant temperature after starting to run and thereby improving the thermal efficiency. For the design of efficient and compact radiators, the robust determination of the heat transfer coefficient becomes imperative. In this study the external heat transfer coefficient of the radiator has been investigated for hydrodynamically and thermally fully developed flows in channels with constant wall temperature. In such situation the numerical treatment of the problem results in a trivial solution. To find a non-trivial solution the problem is treated either as an eigenvalue problem or as a thermally developing flow problem. In this study a numerical solution procedure has been developed and the heat transfer coefficients of the fully developed flow in triangular and parabolic air channels were investigated. The governing equations were transformed to boundary fitted coordinates and numerically solved. The non-trivial solution was obtained by means of guessing the temperature of any grid point within the solution domain. The correction of the guessed temperature was performed via smoothing the temperature profile on a line passing through the mentioned grid point. Results were compared with literature data and found to be consistent.
Identification of effective visual problem solving strategies in a complex visual domain
Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen
2018-01-01
Students in complex visual domains must acquire visual problem solving strategies that allow them to make fast decisions and come up with good solutions to real-time problems. In this study, 31 air traffic controllers at different levels of expertise (novice, intermediate, expert) were confronted
Initial boundary value problems of nonlinear wave equations in an exterior domain
Chen Yunmei.
1987-06-01
In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs
An investigation of domains and walls in two NdFeB alloys by transmission electron microscopy
Young, S.; Chapman, J.N.
1993-01-01
Transmission Electron Microscopy (TEM) has been used to investigate the domain structure in NdFeB alloy ampersand The variation of domain period in thinned sections has been studied for two different alloys and an energy minimization model has been used to calculate the specific domain wall energy (σ) for each alloy. For the basic alloy (A) a value for σ of 20.4mJ/m 2 Was found, whilst the alloy with additions of Dy (B) had a value which was ∼10% lower. This apparently surprising result is attributed to a decrease in the RE-TM exchange energy which more than offsets the increase in anisotropy resulting from the addition of Dy. The behavior of domains as they approach a grain boundary has also been investigated. It has been observed that the relative orientation of the c-axes of two adjacent grains is extremely important in determining the behavior of the domain structure at the grain boundary
Ahmadi, B.; Chazal, H.; Waeckerle, T.; Roudet, J.
2008-01-01
Multilayer cores are suitable for integrated planar magnetic components. We proposed here to investigate the frequency behavior of multilayer nanocrystalline cores in the frame of a one-dimensional (1-D) electromagnetic propagation model. Electromagnetic wave equations are considered to explain the phenomena from the macroscopic point of view. A domain wall description is considered to take into account non-homogeneity of magnetic media. This mesoscopic model is correlated to macroscopic model through complex permeability. The scope of validity of the model is determined by means of indirect permeability measurement. Finally, the behavior of the multilayer core is predicted by using an equivalent electrical circuit and will interest component designers
Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end
Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong
2011-01-01
With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.
Cell wall domain and moisture content influence southern pine electrical conductivity
Samuel L. Zelinka; Leandro Passarini; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft
2016-01-01
Recent work has highlighted the importance of movement of chemicals and ions through the wood cell wall. This movement depends strongly on moisture content and is necessary for structural damage mechanisms such as fastener corrosion and wood decay. Here, we present the first measurements of electrical resistance of southern pine at the subcellular level as a function...
Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices
Zhou, P. X.; Dong, S.; Liu, H. M.; Ma, C. Y.; Yan, Z. B.; Zhong, C. G.; Liu, J. -M.
2015-01-01
Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures. PMID:26269322
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai
1998-01-01
This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.
The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains
Medková, Dagmar
2018-01-01
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.
Yuan, H.Y. [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China); Wang, X.R., E-mail: phxwan@ust.hk [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China)
2014-11-15
Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed. - Highlights: • The magnetostatic interaction leads to a strawberry-like domain wall. • Two types of antivortices evolutions are identified. • Antivortex generation can cause decrease of Walker breakdown field. • The phase diagrams on the field-width plane are obtained.
Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets
Jungwirth, Tomáš; MacDonald, A. H.
2001-01-01
Roč. 87, č. 21 (2001), s. 236801-1 - 216501-4 ISSN 0031-9007 R&D Projects: GA MŠk OC P5.10; GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnet * domains Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001
Peculiarities of low-frequency dielectric spectra and domain wall motion in gadolinium molybdate
Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.
1994-01-01
Low-frequency Debye dispersion of dielectric permeability in GMO with the low values of high-frequency limit ε ∞ was investigated in a wide temperature range as well as in fields of variable amplitude. The features of domain boundaries motion were studied at the partial repolarization in monopolar P-pulsed fields. The model of cooperationrelaxation motion brifing in parallel with positive to negative contribution to polarization that explained the low values of ε ∞ was suggested
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain
Wojciech Czernous
2014-01-01
Full Text Available We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain \\(\\Omega\\ with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of \\(\\partial\\Omega\\ with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on \\((0,c\\times\\Omega\\ to the initial boundary value problem, for small \\(c\\. Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations.
Engelbrecht, Jeffrey C.
2003-01-01
Delivering content to distant users located in dispersed networks, separated by firewalls and different web domains requires extensive customization and integration. This article outlines some of the problems of implementing the Sharable Content Object Reference Model (SCORM) in the Marine Corps' Distance Learning System (MarineNet) and extends…
Uniqueness in some higher order elliptic boundary value problems in n dimensional domains
C.-P. Danet
2011-07-01
Full Text Available We develop maximum principles for several P functions which are defined on solutions to equations of fourth and sixth order (including a equation which arises in plate theory and bending of cylindrical shells. As a consequence, we obtain uniqueness results for fourth and sixth order boundary value problems in arbitrary n dimensional domains.
Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations
Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura
2015-01-01
This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m eff (x,t). In situations where the walls collide multiple times, m eff oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k ⊥ whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m eff (t) case of preheating. The unstable k ⊥ modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically breaks this localized
Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing
2018-02-01
Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.
Herrera Diez, L.; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D.; Lamperti, A.; Mantovan, R.; Ocker, B.
2015-01-01
This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He + ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H −1∕4 behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H dep . In turn, H* ≈ H dep is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion
Blanco-Roldán, C., E-mail: c.blanco@cinn.es [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain); Quirós, C.; Rodriguez-Rodriguez, G.; Vélez, M.; Martín, J.I.; Alameda, J.M. [Departamento de Física, Universidad de Oviedo, Avenida Calvo Sotelo s/n, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología CINN (CSIC, Universidad de Oviedo), Avenida de la Vega 4-6, 33940 El Entrego (Spain)
2016-02-15
Three-dimensional magnetic circuits composed of Co microwires crossed by elevated Co bridges have been patterned on Si substrate by e-beam lithography and lift-off process. The lithographic procedure includes a double resist procedure that optimizes the shape of the bridge, so that 200 nm air gaps can be routinely achieved in between the wire and bridge elements. Microwire magnetization reversal processes have been analyzed by magneto-optical Kerr effect microscopy with different remanent bridge configurations. When the Co bridge is magnetized along the in-plane direction parallel to the wire axis, its stray field induces a marked pinning effect on domain wall propagation along the wire below it, even without being in contact. Changing the sign of the remanent state of the bridge, domain wall pinning can be selected to occur in either the ascending or descending branches of the wire hysteresis loop. Thus, these wire-bridge 3D circuits provide a simple system for tunable domain wall pinning controllable through the pre-recorded bridge remanent state. - Highlights: • Electron beam lithography is used to fabricate a tridimensional magnetic circuit. • Proposed circuit is made of a Co bridge overcrossing a non-contacted Co microwire. • Domain wall propagation can be controlled by previous magnetization of the system. • Domain wall pinning in the wire depends on the applied magnetic field sign.
Herrera Diez, L., E-mail: liza.herrera-diez@ief.u-psud.fr; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D. [Institut d' Electronique Fondamentale, Université Paris-Sud, UMR CNRS 8622, 91405 Orsay (France); Lamperti, A.; Mantovan, R. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate (MB) (Italy); Ocker, B. [Singulus Technology AG, Hanauer Landstrasse 103, 63796 Kahl am Main (Germany)
2015-07-20
This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He{sup +} ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H{sup −1∕4} behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H{sub dep}. In turn, H* ≈ H{sub dep} is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.
A message-passing approach to random constraint satisfaction problems with growing domains
Zhao, Chunyan; Zheng, Zhiming; Zhou, Haijun; Xu, Ke
2011-01-01
Message-passing algorithms based on belief propagation (BP) are implemented on a random constraint satisfaction problem (CSP) referred to as model RB, which is a prototype of hard random CSPs with growing domain size. In model RB, the number of candidate discrete values (the domain size) of each variable increases polynomially with the variable number N of the problem formula. Although the satisfiability threshold of model RB is exactly known, finding solutions for a single problem formula is quite challenging and attempts have been limited to cases of N ∼ 10 2 . In this paper, we propose two different kinds of message-passing algorithms guided by BP for this problem. Numerical simulations demonstrate that these algorithms allow us to find a solution for random formulas of model RB with constraint tightness slightly less than p cr , the threshold value for the satisfiability phase transition. To evaluate the performance of these algorithms, we also provide a local search algorithm (random walk) as a comparison. Besides this, the simulated time dependence of the problem size N and the entropy of the variables for growing domain size are discussed
Nikita Agarwal
2017-07-01
Full Text Available In this article, we study the approximate controllability and homegenization results of a semi-linear elliptic problem with Robin boundary condition in a periodically perforated domain. We prove the existence of minimal norm control using Lions constructive approach, which is based on Fenchel-Rockafeller duality theory, and by means of Zuazua's fixed point arguments. Then, as the homogenization parameter goes to zero, we link the limit of the optimal controls (the limit of fixed point of the controllability problems with the optimal control of the corresponding homogenized problem.
Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa
2017-08-21
Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic
Awano, Hiroyuki
2015-06-01
Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×10{sup 6} A/cm{sup 2}. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×10{sup 5} A/cm{sup 2}. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.
RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations
Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Keh-Fei; Liu, Zhaofeng; Yang, Yi-Bo; χ QCD Collaboration
2018-05-01
Renormalization constants (RCs) of overlap quark bilinear operators on 2 +1 -flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS ¯ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 4 83×96 and the inverse spacing 1 /a =1.730 (4 ) GeV .
Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui
2016-04-01
We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.
On two-point boundary correlations in the six-vertex model with domain wall boundary conditions
Colomo, F.; Pronko, A. G.
2005-05-01
The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.
von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland
2014-10-01
The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.
Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations
Braden, Jonathan [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Bond, J. Richard [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27599-3255 (United States)
2015-03-03
This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m{sub eff}(x,t). In situations where the walls collide multiple times, m{sub eff} oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k{sub ⊥} whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m{sub eff}(t) case of preheating. The unstable k{sub ⊥} modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically
Effect of manganese doping of BaSrTiO{sub 3} on diffusion and domain wall pinning
Nadaud, Kevin, E-mail: kevin.nadaud@etu.univ-nantes.fr; Borderon, Caroline, E-mail: caroline.borderon@univ-nantes.fr; Renoud, Raphaël; Gundel, Hartmut W. [IETR, UMR CNRS 6164, University of Nantes, Nantes (France)
2015-02-28
In the present paper, the influence of manganese doping on the dielectric properties of BaSrTiO{sub 3} thin films is presented. The real and imaginary parts of the material's permittivity have been measured in a large frequency range (100 Hz–1 MHz) and as a function of the electric field. The tunability and the figure of merit of the material have been obtained from the measurement of the permittivity under an applied DC bias electric field. For the undoped material, the dielectric losses become important for a large DC bias which leads to breakdown. At a suitable dopant rate, this effect disappears. In order to better understand the origin of the related phenomena, we measure the permittivity as a function of the AC excitation amplitude and we decompose the obtained permittivity with the hyperbolic law. This enables to extract the different contributions of the bulk (low frequency diffusion and high frequency lattice relaxation) and of the domain wall motions (vibration and pinning/unpinning) to the material's dielectric permittivity and to understand the effect of manganese doping on each contribution. Knowledge of the related mechanisms allows us to establish the optimum dopant rate (mainly conditioned by the lattice contribution) and to reduce the domain wall motion, which finally is beneficial for the desired properties of the ferroelectric thin film. A particular attention is paid to low frequency diffusion, an especially harmful effect when a DC biasing is mandatory (tunable electronic component in mobile telecommunication devices for example)
Liu, D. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)]. E-mail: duo.liu@mail.uh.edu; Chelf, M. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States); White, K.W. [Department of Mechanical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)
2006-10-15
The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {l_brace}110{r_brace}{sub pc}<11-bar 0>{sub pc}. The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed.
Liu, D.; Chelf, M.; White, K.W.
2006-01-01
The plastic behaviors of barium titanate (001) and (110) single crystals are studied with atomic force microscopy and piezoresponse force microscopy (PFM) following nanoindendation damage. Plastic deformation mechanisms of ferroelectric barium titanate single crystals are discussed with a focus on the interaction between PFM response and dislocation activities. Nanoindentation tests indicate that the theoretical strength is approached prior to the first pop-in event, consistent with the creation of dislocation nucleation sites required for the onset of plasticity. Surface topographic and piezoelectric analyses indicate that pile-ups around indents result from dislocation activities on the primary slip system, {110} pc pc . The more complex indentation-induced domain patterns observed on (110) barium titanate are also discussed
Yang, Sang Mo; Kim, Hun Ho; Kim, Tae Heon; Kim, Ik Joo; Yoon, Jong Gul
2012-01-01
We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr 0.4 Ti 0.6 O 3 capacitors by using modified piezoresponse force microscopy with the domain-tracing method. From time-dependent FE domain evolution images, we observed that defect-mediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.
Parkin, Stuart
2012-02-01
Racetrack Memory is a novel high-performance, non-volatile storage-class memory in which magnetic domains are used to store information in a ``magnetic racetrack'' [1]. The magnetic racetrack promises a solid state memory with storage capacities and cost rivaling that of magnetic disk drives but with much improved performance and reliability: a ``hard disk on a chip''. The magnetic racetrack is comprised of a magnetic nanowire in which a series of magnetic domain walls are shifted to and fro along the wire using nanosecond-long pulses of spin polarized current [2]. We have demonstrated the underlying physics that makes Racetrack Memory possible [3,4] and all the basic functions - creation, and manipulation of a train of domain walls and their detection. The physics underlying the current induced dynamics of domain walls will also be discussed. In particular, we show that the domain walls respond as if they have mass, leading to significant inertial driven motion of the domain walls over long times after the current pulses are switched off [3]. We also demonstrate that in perpendicularly magnetized nanowires there are two independent current driving mechanisms: one derived from bulk spin-dependent scattering that drives the domain walls in the direction of electron flow, and a second interfacial mechanism that can drive the domain walls either along or against the electron flow, depending on subtle changes in the nanowire structure. Finally, we demonstrate thermally induced spin currents are large enough that they can be used to manipulate domain walls. [4pt] [1] S.S.P. Parkin, US Patent 6,834,005 (2004); S.S.P. Parkin et al., Science 320, 190 (2008); S.S.P. Parkin, Scientific American (June 2009). [0pt] [2] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 320, 209 (2008). [0pt] [3] L. Thomas, R. Moriya, C. Rettner and S.S.P. Parkin, Science 330, 1810 (2010). [0pt] [4] X. Jiang et al. Nat. Comm. 1:25 (2010) and Nano Lett. 11, 96 (2011).
Nasseri, S. Ali, E-mail: ali.nasseri@isi.it [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Politecnico di Torino - Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Moretti, Simone; Martinez, Eduardo [University of Salamanca - Cardenal Plá y Deniel, 22, 37008 Salamanca (Spain); Serpico, Claudio [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); University of Naples Federico II - Via Claudio 21, 80125 Napoli (Italy); Durin, Gianfranco [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRIM) - Strada delle Cacce 91, 10135 Torino (Italy)
2017-03-15
Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work. - Highlights: • Moving DWs in PMA material maintain their structure under longitudinal in-plane fields. • As a result of longitudinal fields, magnetization in the domains becomes canted. • A critical longitudinal field was identified and correlated with the DMI strength. • A canted collective coordinate model was developed for DW motion under in-plane fields.
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
Nkemzi, B.
2005-10-01
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
Numerical modeling of time domain 3-D problems in accelerator physics
Harfoush, F.A.; Jurgens, T.G.
1990-06-01
Time domain analysis is relevant in particle accelerators to study the electromagnetic field interaction of a moving source particle on a lagging test particle as the particles pass an accelerating cavity or some other structure. These fields are called wake fields. The travelling beam inside a beam pipe may undergo more complicated interactions with its environment due to the presence of other irregularities like wires, thin slots, joints and other types of obstacles. Analytical solutions of such problems is impossible and one has to resort to a numerical method. In this paper we present results of our first attempt to model these problems in 3-D using our finite difference time domain (FDTD) code. 10 refs., 9 figs
Rodriguez-Rodriguez, G; Perez-Junquera, A; Velez, M; Anguita, J V; Martin, J I; Rubio, H; Alameda, J M
2007-01-01
Magnetic force microscopy (MFM) has been used to analyse the behaviour of domain walls in uniaxial amorphous Co x Si 1-x films patterned with diluted arrays of antidots by electron beam lithography. The walls are found to be pinned by the antidot array when the antidot density is high enough along the easy axis. The expansion of reversed nuclei under the influence of the tip stray field has been observed in several consecutive MFM images of the same area, showing how the competition between line tension effects and pinning by the patterned holes governs the creep motion of the 180 0 walls across the array of antidots
Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd
2016-02-01
Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.
Previti, Alberto; Furfaro, Roberto; Picca, Paolo; Ganapol, Barry D.; Mostacci, Domiziano
2011-01-01
This paper deals with finding accurate solutions for photon transport problems in highly heterogeneous media fastly, efficiently and with modest memory resources. We propose an extended version of the analytical discrete ordinates method, coupled with domain decomposition-derived algorithms and non-linear convergence acceleration techniques. Numerical performances are evaluated using a challenging case study available in the literature. A study of accuracy versus computational time and memory requirements is reported for transport calculations that are relevant for remote sensing applications.
Guerin, P
2007-12-15
The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)
An analytical solution to the heat transfer problem in thick-walled hunt flow
Bluck, Michael J; Wolfendale, Michael J
2017-01-01
Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.
Sun, H.Y.; Hu, H.N.; Nie, X.F.
2001-01-01
The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known
Improved interior wall detection using designated dictionaries in compressive urban sensing problems
Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse
2013-05-01
In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.
The nonlocal problem for a hyperbolic equation with Bessel operator in a rectangular domain
Natalya V. Zaitseva
2016-12-01
Full Text Available We consider a boundary value problem for a hyperbolic equation with Bessel differential operator in a rectangular domain with integral nonlocal boundary value condition of the first kind. The equivalence between boundary value problem with integral nonlocal condition of the first kind and a local boundary value problem with mixed boundary conditions of the first and third kinds is proved. The existence and uniqueness of solution of the equivalent problem are established by means of the spectral method. At the uniqueness proof the completeness of the eigenfunction system of the spectral problem is used . At the existence proof the assessment of coefficients of series, the asymptotic formula for Bessel function of the first kind and asymptotic formula for eigenvalues are used. Sufficient conditions on the functions defining initial data of the problem are received. The solution of the problem is obtained in explicit form. The solution is obtained in the form of the Fourier–Bessel series. Its convergence is proved in the class of regular solutions.
Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections
Musa H. Arslan
2016-01-01
Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing th...
Activity-Centered Domain Characterization for Problem-Driven Scientific Visualization.
Marai, G Elisabeta
2018-01-01
Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the abstraction stage-and its evaluation-of existing, higher-level visualization design models. In a departure from existing visualization design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data; partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model can help remove a number of pitfalls that have been identified multiple times in the visualization design literature.
Pallister-Wilkins, P.
2015-01-01
Building on a long history of spatial control through walling in the region, walls and fences have been built in the Middle East in recent years to undertake a range of practices. Gated communities, residential and security compounds, anti-migrant walls, separation barriers and counter-insurgency
Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)
1996-12-31
An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.
A balancing domain decomposition method by constraints for advection-diffusion problems
Tu, Xuemin; Li, Jing
2008-12-10
The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A pre-conditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advection-diffusion problems illustrate the fast convergence of the proposed algorithm.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes
2017-05-13
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.
Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.
2015-01-01
Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation
Zhu, Jinrong; Han, Zhaoyan; Su, Yuanchang; Hu, Jingguo
2014-01-01
The mechanism of the domain wall (DW) motions induced by spin wave in finite magnetic nanostripe is studied by micromagnetic simulations. We find that the spin-wave induced DM motions are always accompanied by an energy imbalance between two sides of the DW. The DW motion can be attributed to the expansion of the low-energy-density area and the contraction of the high-energy-density area. The energy imbalance strongly depends on whether the spin wave passes through the DW or is reflected by the DW. In the area of the spin wave propagation, the energy density increases with the time. However, in the superposition area of the incident spin wave and the reflected spin wave, the energy density decreases with the increasing of the time. It shows that this energy imbalance can be controlled by tuning the frequency of the spin wave. Finally, the effect of the damping parameter value is discussed. - Highlights: • The mechanism of the spin-wave induced DW motions is studied. • The spin-wave induced DW motions and the energy imbalance mechanism are given. • The DW motion with the same direction to that of SW is explained. • The DW motion with the opposite direction to that of SW is explained
Current-induced domain wall motion in Ni{sub 80}Fe{sub 20} nanowires with low depinning fields
Malinowski, Gregory; Loerincz, Andreas; Krzyk, Stephen; Moehrke, Philipp; Bedau, Daniel; Boulle, Olivier; Rhensius, Jan; Klaeui, Mathias [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, D-78457 (Germany); Heyderman, Laura J [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Cho, Young Jin; Seo, Sunae, E-mail: gregory.malinowski@uni-konstanz.d [Samsung Electronics, San 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do (Korea, Republic of)
2010-02-03
In this paper, we report on domain wall (DW) motion induced by current pulses at variable temperature in 900 nm wide and 25 nm thick Ni{sub 80}Fe{sub 20} wires with low pinning fields. By using Ar ion milling to pattern our wires rather than the conventional lift-off technique, a depinning field as low as {approx}2-3 Oe at room temperature is obtained. Comparison with previous results acquired on similar wires with much higher pinning shows that the critical current density scales with the depinning field, leading to a critical current density of {approx}2.5 x 10{sup 11} A m{sup -2} at 250 K. Moreover, when a current pulse with a current density larger than the critical current density is injected, the DW is not necessarily depinned but it can undergo a modification of its spin structure which hinders current-induced DW motion. Hence, reliable propagation of the DW requires an accurate adjustment of the pulsed current density.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast
Vos, Alina; Dekker, Nick; Distel, Ben; Leunissen, Jack A. M.; Hochstenbach, Frans
2007-01-01
The cell wall is important for maintenance of the structural integrity and morphology of fungal cells. Besides beta-glucan and chitin, alpha-glucan is a major polysaccharide in the cell wall of many fungi. In the fission yeast Schizosaccharomyces pombe, cell wall alpha-glucan is an essential
Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics
Weam Alharbi
2018-04-01
Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.
Chaud, X., E-mail: Xavier.chaud@grenoble.cnrs.f [CRETA, CNRS, 25, Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Noudem, J. [CRISMAT/ENSICAEN, CNRS, 6 bd Marechal Juin, 14050 Caen (France); Prikhna, T.; Savchuk, Y. [ISM, National Acad. of Sciences of Ukraine, 2 Avtozavodskaya Street, Kiev, 04074 (Ukraine); Haanappel, E. [LNCMP, UMR 5147, 143 avenue de Rangueil, 31400 Toulouse (France); Diko, P. [IEP, Slovak Acad. of Sciences, Watsonova 47, 043 53, Kosice (Slovakia); Zhang, C.P. [SMRC, NIN, 96 Weiyang Road, Xi' an 710016 (China)
2009-10-15
YBCO single-domain samples are suitable for the production of high trapped fields in the range 20-77 K using a cryocooler or liquid nitrogen. But the oxygenation process required to actually transform the single domains into superconductors induces an extensive crack network that is limiting the material performances. Thin-wall geometry has been introduced to reduce the diffusion paths and to enable a progressive oxygenation strategy. As a consequence cracks are drastically reduced. In addition the use of a high oxygen pressure (16 MPa) speeds up further the process by displacing the oxygen-temperature equilibrium towards the higher temperature of the phase diagram. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample. Remarkable results are obtained without any doping by the combination of thin walls and oxygen high pressure. While classical plain samples yield 300-400 mT, a trapped field of 840 mT has been measured at 77 K on a 16 mm diameter Y123 thin-wall single-domain sample with an annealing time as short as 3 days. Local measurements with a fixed Hall probe on top of the sample were performed at lower temperature after magnetization either in a static field or in a pulse field. The trapped field is significantly higher at lower temperature. Cryocoolers become the key to compromise between performances and cryogenic cost around 40 K.
She, Hsiao-Ching; Cheng, Meng-Tzu; Li, Ta-Wei; Wang, Chia-Yu; Chiu, Hsin-Tien; Lee, Pei-Zon; Chou, Wen-Chi; Chuang, Ming-Hua
2012-01-01
This study investigates the effect of Web-based Chemistry Problem-Solving, with the attributes of Web-searching and problem-solving scaffolds, on undergraduate students' problem-solving task performance. In addition, the nature and extent of Web-searching strategies students used and its correlation with task performance and domain knowledge also…
Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.
Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H
2013-11-01
We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.
Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.
2016-09-01
Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.
Alguero, M.; Bushby, A.J.; Reece, M.J.; Seifert, A.
2002-01-01
Lead zirconate titanate Pb(Zr,Ti)O 3 ferroelectric thin films show significant anelastic deformation when indented with spherical tipped indenters. Experiments on films with different Zr/Ti ratio and a mixed , preferred crystallographic orientation have shown that there is a good agreement between the anelastic deformation and the maximum strain achievable by non-180 deg. domain wall movement. An expected increase of the indentation stiffness of the films also accompanies the anelastic deformation because of the single crystal elastic anisotropy. All these observations seem to indicate that non-180 deg. ferroelectric domain wall movements occur under indentation stresses and cause anelasticity. Stresses for maximum anelastic deformation are compared with those for recently reported stress-induced depolarization
Gazzola, Filippo; Sweers, Guido
2010-01-01
This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ﬁrst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...
Domain walls of BaTiO.sub.3./sub. and PbTiO.sub.3./sub. within Ginzburg-Landau-Devonshire model
Hlinka, Jiří
2008-01-01
Roč. 375, č. 1 (2008), 132-137 ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : domain walls * Landau- Ginsburg theory * ferroelectricity * BaTiO 3 * PbTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008
Ruzanna Kh. Makaova
2017-12-01
Full Text Available In this paper we study the boundary value problem for a degenerating third order equation of hyperbolic type in a mixed domain. The equation under consideration in the positive part of the domain coincides with the Hallaire equation, which is a pseudoparabolic type equation. Moreover, in the negative part of the domain it coincides with a degenerating hyperbolic equation of the first kind, the particular case of the Bitsadze–Lykov equation. The existence and uniqueness theorem for the solution is proved. The uniqueness of the solution to the problem is proved with the Tricomi method. Using the functional relationships of the positive and negative parts of the domain on the degeneration line, we arrive at the convolution type Volterra integral equation of the 2nd kind with respect to the desired solution by a derivative trace. With the Laplace transform method, we obtain the solution of the integral equation in its explicit form. At last, the solution to the problem under study is written out explicitly as the solution of the second boundary-value problem in the positive part of the domain for the Hallaire equation and as the solution to the Cauchy problem in the negative part of the domain for a degenerate hyperbolic equation of the first kind.
Yuzhou Wu
2018-03-01
Full Text Available Transfer cells (TCs play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in
Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li
2018-04-01
Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.
Atkins, Lou; Francis, Jill; Islam, Rafat; O'Connor, Denise; Patey, Andrea; Ivers, Noah; Foy, Robbie; Duncan, Eilidh M; Colquhoun, Heather; Grimshaw, Jeremy M; Lawton, Rebecca; Michie, Susan
2017-06-21
Implementing new practices requires changes in the behaviour of relevant actors, and this is facilitated by understanding of the determinants of current and desired behaviours. The Theoretical Domains Framework (TDF) was developed by a collaboration of behavioural scientists and implementation researchers who identified theories relevant to implementation and grouped constructs from these theories into domains. The collaboration aimed to provide a comprehensive, theory-informed approach to identify determinants of behaviour. The first version was published in 2005, and a subsequent version following a validation exercise was published in 2012. This guide offers practical guidance for those who wish to apply the TDF to assess implementation problems and support intervention design. It presents a brief rationale for using a theoretical approach to investigate and address implementation problems, summarises the TDF and its development, and describes how to apply the TDF to achieve implementation objectives. Examples from the implementation research literature are presented to illustrate relevant methods and practical considerations. Researchers from Canada, the UK and Australia attended a 3-day meeting in December 2012 to build an international collaboration among researchers and decision-makers interested in the advancing use of the TDF. The participants were experienced in using the TDF to assess implementation problems, design interventions, and/or understand change processes. This guide is an output of the meeting and also draws on the authors' collective experience. Examples from the implementation research literature judged by authors to be representative of specific applications of the TDF are included in this guide. We explain and illustrate methods, with a focus on qualitative approaches, for selecting and specifying target behaviours key to implementation, selecting the study design, deciding the sampling strategy, developing study materials, collecting and
Li, A.; Alexandru, A.; Lee, F. X.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Gong, M.; Horvath, I.; Liu, K. F.; Hasenfratz, A.; Mathur, N.; Streuer, T.; Zhang, J. B.
2010-01-01
The overlap fermion propagator is calculated on 2+1 flavor domain-wall fermion gauge configurations on 16 3 x32, 24 3 x64 and 32 3 x64 lattices. With hyper-cubic (HYP) smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator can be expedited by ∼20 times for the 16 3 x32 lattice and ∼80 times for the 32 3 x64 lattice. The overhead cost for calculating eigenmodes ranges from 4.5 to 7.9 propagators for the above lattices. Through the study of hyperfine splitting, we found that the O(m 2 a 2 ) error is small and these dynamical fermion lattices can adequately accommodate quark mass up to the charm quark. A preliminary calculation of the low-energy constant Δ mix which characterizes the discretization error of the pion made up of a pair of sea and valence quarks in this mixed-action approach is carried out via the scalar correlator with periodic and antiperiodic boundary conditions. It is found to be small which shifts a 300 MeV pion mass by ∼10 to 19 MeV on these sets of lattices. We have studied the signal-to-noise issue of the noise source for the meson and baryon. We introduce a new algorithm with Z 3 grid source and low eigenmode substitution to study the many-to-all meson and baryon correlators. It is found to be efficient in reducing errors for the correlators of both mesons and baryons. With 64-point Z 3 grid source and low-mode substitution, it can reduce the statistical errors of the light quark (m π ∼200-300 MeV) meson and nucleon correlators by a factor of ∼3-4 as compared to the point source. The Z 3 grid source itself can reduce the errors of the charmonium correlators by a factor of ∼3.
Chechkin, Gregory A.; Chechkina, Tatiana P.
2017-10-01
In this paper, we consider a spectral problem with singular perturbation of density located near the boundary of the domain, depending on a small parameter. We prove the compactness theorem and study the behavior of eigenelements to the given problem, as the small parameter tends to zero. xml:lang="fr"
Tadić, Bosiljka
2018-03-01
We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other
Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Manfredda, M; Kiskinova, M; Zabel, H; Kläui, M; Lüning, J; Pietsch, U; Gutt, C
2017-11-08
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
Biage, M.
1983-04-01
A heat transfer problem in parallel plates with infinite with has been solved, with axial heat conduction in the fluid and in the wall, considering steady-state laminar flow for a Newtonian fluid and a fully developed velocity profile. The duct consists of an infinite inicial part, insulated on both plates, an intermediale part of finite length, with a prescribed heat flux in the upper plate and insulated on the botton plate, and by another infinite part also insulated on both plates. The problem has been solved by a numerical combination of the integral equation method and the variational method. Both, the performance of the numerical technique employed and results obtained are analyzed in this work. It is demostrated that the heat conduction in the wall significantly modifies the heat transfer parameters. (Author) [pt
Kołakowski Zbigniew
2016-06-01
Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.
Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.
2017-08-01
We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.
Xu, J.P.; Liu, S.P.; Guo, G.X.; Zhen, C.M.; Tang, G.D.; Sun, H.Y.; Nie, X.F.
2004-01-01
The stability of vertical Bloch lines (VBLs) in the second kind of dumbbell domain (IIDs) walls in liquid phase epitaxy garnet bubble films subjected to an in-plane field at various temperatures is studied experimentally. It is found that there exists a critical in-plane field range depending on temperature, in which vertical Bloch lines (VBLs) in the second kind of IIDs walls are unstable, i.e., [Hip(1)(T),Hip(2)(T)]. Here, Hip(1)(T) is the initial critical in-plane field at which VBLs in the walls of IIDs annihilate; while Hip(2)(T) is the lowest in-plane field at which all VBLs in the walls of IIDs have annihilated completely. Also, the critical in-plane field range [Hip(1)(T),Hip(2)(T)],Hip(1)(T) and Hip(2)(T) all decrease with the temperature increasing. Hip(1)(T) and Hip(2)(T) reach zero at T0' and T0, respectively
Pamuda Pudjisuryadi
2008-01-01
Full Text Available A meshless local Petrov-Galerkin (MLPG method that employs polygonal sub-domains constructed from several triangular patches rather than the typically used circular sub-domains is presented. Moving least-squares approximation is used to construct the trial displacements and linear, Lagrange interpolation functions are used to construct the test functions. An adaptive technique to improve the accuracy of approximate solutions is developed to minimize the computational cost. Variable domain of influence (VDOI and effective stress gradient indicator (EK for local error assessment are the focus of this study. Several numerical examples are presented to verify the efficiency and accuracy of the proposed adaptive MLPG method. The results show that the proposed adaptive technique performs as expected that is refining the problem domain in area with high stress concentration in which higher accuracy is commonly required.
Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios
2009-01-01
This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…
Analysis of the Diffuse Domain Method for Second Order Elliptic Boundary Value Problems
Burger, Martin; Elvetun, Ole; Schlottbom, Matthias
2017-01-01
The diffuse domain method for partial differential equations on complicated geometries recently received strong attention in particular from practitioners, but many fundamental issues in the analysis are still widely open. In this paper, we study the diffuse domain method for approximating second
Vasily A. Belyaev
2017-01-01
Full Text Available The new versions of the collocations and least residuals (CLR method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for PDE in the convex quadrangular domains. Their implementation and numerical experiments are performed by the examples of solving the biharmonic and Poisson equations. The solution of the biharmonic equation is used for simulation of the stress-strain state of an isotropic plate under the action of the transverse load. Differential problems are projected into the space of fourth-degree polynomials by the CLR method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLR method are implemented on the grids, which are constructed by two different ways. In the first version, a “quasiregular” grid is constructed in the domain, the extreme lines of this grid coincide with the boundaries of the domain. In the second version, the domain is initially covered by a regular grid with rectangular cells. Herewith, the collocation and matching points that are situated outside the domain are used for approximation of the differential equations in the boundary cells that had been crossed by the boundary. In addition the “small” irregular triangular cells that had been cut off by the domain boundary from rectangular cells of the initial regular grid are joined to adjacent quadrangular cells. This technique allowed to essentially reduce the conditionality of the system of linear algebraic equations of the approximate problem in comparison with the case when small irregular cells together with other cells were used as independent ones for constructing an approximate solution of the problem. It is shown that the approximate solution of problems converges with high order and matches with high accuracy with the analytical solution of the test problems in the case of the known solution in
Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.
2008-01-01
In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study
Brajer, Isabelle Eve; Thillemann, Lise
2002-01-01
according to the whim of the restorer. The most recent re-restoration of the paintings took place in 1999 and 2000. After completing the technical treatments, the conservators faced difficult decisions about the aesthetic presentation. The case study presented here describes the historical background......Throughout the 20th century, numerous interventions were carried out on the wall paintings in Tirsted Church, including four complete re-restorations and many local attempts to preserve deteriorated scenes. During several of these re-restorations the pictorial content was repeatedly altered...
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda
2017-01-01
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced
Márton, Pavel; Hlinka, Jiří
2008-01-01
Roč. 373, č. 1 (2008), s. 139-144 ISSN 0015-0193 R&D Projects: GA ČR GA202/06/0411 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric and ferroelastic domains * BaTiO 3 * Ginzburg-Landau theory * mobility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008
The non- -existent wall? The problem of describing Muranów
Beata Przymuszała
2015-12-01
Full Text Available The article presents the problem of recovering the memory of the Warsaw district of Muranów, the site of the WW2 ghetto in recent literature. Referring to one of the first works devoted to this subject (Jarosław Marek Rymkiewicz’s Umschlagplatz, the author reveals subsequent changes in the treatment Jacek Leociak, Beata Chomątowska and Elżbieta Janicka’s of the issue in their books. Indicating the oscillation between remembrance and forgetting about the ghetto, the authors adopt different perspectives to touch upon the ambiguous presence of the area's former inhabitants in the consciousness of today’s Varsovians. Their ways of focusing attention on this question may be termed a commemorative perspective, focused on the psychology of space and critical discourse. Though signaling the problem differently, the authors are united in emphasising the problems related to the Polish memory of the Warsaw ghetto.
Pamella de Brito Ximenes
2015-02-01
Full Text Available Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated for 2 days at 30 °C with shaking. Cells were obtained by centrifugation, washed in phosphate-buffered saline, and a suspension of 107 cells/mL was obtained. To determine the binding profile of lectins, concanavalin A (Con A, wheat germ agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, and peanut agglutinin (PNA conjugated to fluorescein were used. All the tested clinical isolates of Cryptococcus neoformans var. grubii were intensely stained by WGA, moderately stained by Con A, and weakly stained by PNA and UEA-I. Thus, Cryptococcus can be detected in clinical specimens such as blood and cerebrospinal fluid using the fluorescent lectin WGA, which may be considered as an option for detection in cases of suspected cryptococcosis with low laboratory sensitivity. Future applications may be developed using this basic tool.
Jang, Hae-Won; Ih, Jeong-Guon
2012-04-01
The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.
Grid dependency of wall heat transfer for simulation of natural convection flow problems
Loomans, M.G.L.C.; Seppänen, O.; Säteri, J.
2007-01-01
In the indoor environment natural convection is a well known air flow phenomenon. In numerical simulations applying the CFD technique it is also known as a flow problem that is difficult to solve. Alternatives are available to overcome the limitations of the default approach (standard k-e model with
Andranik Tsakanian
2012-05-01
Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.
[Addiction problems behind prison walls--view of the prison administration].
Preusker, H
2000-04-01
As Head of the Prison Administration of Saxony, the author describes the difficulties and problems that exist in the care and treatment of prisoners who are addicted to drugs or alcohol. Up to now, these problems have been dealt with in a manner that was too much concentrated on ideas and aspects of security by using systems of control and restrictions. Social contacts inside and outside of the prison and a sense of freedom are, however, the requirements of the legal concept of resettling prisoners. There is a great need for more counselling and therapy. It should also be attempted to improve the conditions for the individual prisoners, e.g. by setting up drug-free units and, thus, provide a environment to the addicts that enables them to live their lives without the daily struggle for drugs and alcohol.
Olivieri, E.; Scoppola, E.
1996-01-01
In this paper we consider aperiodic ergodic Markov chains with transition probabilities exponentially small in a large parameter β. We extend to the general, not necessarily reversible case the analysis, started in part I of this work, of the first exit problem from a general domain Q containing many stable equilibria (attracting equilibrium points for the β = ∞ dynamics). In particular we describe the tube of typical trajectories during the first excursion outside Q
Erol, Cengiz; Koplay, Mustafa; Olcay, Ayhan; Kivrak, Ali Sami; Ozbek, Seda; Seker, Mehmet; Paksoy, Yahya
2012-01-01
Objectives: Our aim was to evaluate congenital left ventricular wall abnormalities (clefts, aneurysms and diverticula), describe and illustrate imaging features, discuss terminology problems and determine their prevalence detected by cardiac CT in a single center. Materials and methods: Coronary CT angiography images of 2093 adult patients were evaluated retrospectively in order to determine congenital left ventricular wall abnormalities. Results: The incidence of left ventricular clefts (LVC) was 6.7% (141 patients) and statistically significant difference was not detected between the sexes regarding LVC (P = 0.5). LVCs were single in 65.2% and multiple in 34.8% of patients. They were located at the basal to mid inferoseptal segment of the left ventricle in 55.4%, the basal to mid anteroseptal segment in 24.1%, basal to mid inferior segment in 17% and septal–apical septal segment in 3.5% of cases. The cleft length ranged from 5 to 22 mm (mean 10.5 mm) and they had a narrow connection with the left ventricle (mean 2.5 mm). They were contractile with the left ventricle and obliterated during systole. Congenital left ventricular septal aneurysm that was located just under the aortic valve was detected in two patients (0.1%). No case of congenital left ventricular diverticulum was detected. Conclusion: Cardiac CT allows us to recognize congenital left ventricular wall abnormalities which have been previously overlooked in adults. LVC is a congenital structural variant of the myocardium, is seen more frequently than previously reported and should be differentiated from aneurysm and diverticulum for possible catastrophic complications of the latter two.
Mukminov, F Kh; Bikkulov, I M
2004-01-01
The behaviour as t→∞ of the solution of a mixed problem for parabolic equations in an unbounded domain with two exits to infinity is studied. A certain class of domains is distinguished, in which an estimate characterizing the stabilization of solutions and determined by the geometry of the domain is established. This estimate is proved to be sharp in a certain sense for a broad class of domains with two exits to infinity.
Magnetostatic coupling of 90{sup 0} domain walls in Fe{sub 19}Ni{sub 81}/Cu/Co trilayers
Kurde, J; Miguel, J; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin-Dahlem (Germany); Bayer, D; Aeschlimann, M [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Sanchez-Barriga, J; Kronast, F; Duerr, H A, E-mail: julia.kurde@fu-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)
2011-03-15
The magnetic interlayer coupling of Fe{sub 19}Ni{sub 81}/Cu/Co trilayered microstructures has been studied by means of x-ray magnetic circular dichroism in combination with photoelectron emission microscopy (XMCD-PEEM). We find that a parallel coupling between magnetic domains coexists with a non-parallel coupling between magnetic domain walls (DWs) of each ferromagnetic layer. We attribute the non-parallel coupling of the two magnetic layers to local magnetic stray fields arising at DWs in the magnetically harder Co layer. In the magnetically softer FeNi layer, non-ordinary DWs, such as 270{sup 0} and 90{sup 0} DWs with overshoot of the magnetization either inwards or outwards relative to the turning direction of the Co magnetization, are identified. Micromagnetic simulations reveal that in the absence of magnetic anisotropy, both types of overshooting DWs are energetically equivalent. However, if a uniaxial in-plane anisotropy is present, the relative orientation of the DWs with respect to the anisotropy axis determines which of these DWs is energetically favorable.
Steven M. Swift
2015-06-01
Full Text Available Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Many enzymes are added to animal feed during production and are subjected to high-heat stress during feed processing. To produce a thermostabile endolysin for treating poultry, an E. coli codon-optimized gene was synthesized that fused the N-acetylmuramoyl-L-alanine amidase domain from the endolysin of the thermophilic bacteriophage ɸGVE2 to the cell-wall binding domain (CWB from the endolysin of the C. perfringens-specific bacteriophage ɸCP26F. The resulting protein, PlyGVE2CpCWB, lysed C. perfringens in liquid and solid cultures. PlyGVE2CpCWB was most active at pH 8, had peak activity at 10 mM NaCl, 40% activity at 150 mM NaCl and was still 16% active at 600 mM NaCl. The protein was able to withstand temperatures up to 50° C and still lyse C. perfringens. Herein, we report the construction and characterization of a thermostable chimeric endolysin that could potentially be utilized as a feed additive to control the bacterium during poultry production.
A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems
Le Louër, Frédérique
2015-01-01
The present work is concerned with the shape reconstruction problem of isotropic elastic inclusions from far-field data obtained by the scattering of a finite number of time-harmonic incident plane waves. This paper aims at completing the theoretical framework which is necessary for the application of geometric optimization tools to the inverse transmission problem in elastodynamics. The forward problem is reduced to systems of boundary integral equations following the direct and indirect methods initially developed for solving acoustic transmission problems. We establish the Fréchet differentiability of the boundary to far-field operator and give a characterization of the first Fréchet derivative and its adjoint operator. Using these results we propose an inverse scattering algorithm based on the iteratively regularized Gauß–Newton method and show numerical experiments in the special case of star-shaped obstacles. (paper)
Exterior domain problems and decomposition of tensor fields in weighted Sobolev spaces
Schwarz, Günter
1996-01-01
The Hodge decompOsition is a useful tool for tensor analysis on compact manifolds with boundary. This paper aims at generalising the decomposition to exterior domains G ⊂ IR n. Let L 2a Ω k(G) be the space weighted square integrable differential forms with weight function (1 + |χ|²)a, let d a be the weighted perturbation of the exterior derivative and δ a its adjoint. Then L 2a Ω k(G) splits into the orthogonal sum of the subspaces of the d a-exact forms with vanishi...
A. P. Karpenko
2015-01-01
Full Text Available We consider the relatively new and rapidly developing class of methods to solve a problem of multi-objective optimization, based on the preliminary built finite-dimensional approximation of the set, and thereby, the Pareto front of this problem as well. The work investigates the efficiency of several modifications of the method of adaptive weighted sum (AWS. This method proposed in the paper of Ryu and Kim Van (JH. Ryu, S. Kim, H. Wan is intended to build Pareto approximation of the multi-objective optimization problem.The AWS method uses quadratic approximation of the objective functions in the current sub-domain of the search space (the area of trust based on the gradient and Hessian matrix of the objective functions. To build the (quadratic meta objective functions this work uses methods of the experimental design theory, which involves calculating the values of these functions in the grid nodes covering the area of trust (a sensing method of the search domain. There are two groups of the sensing methods under consideration: hypercube- and hyper-sphere-based methods. For each of these groups, a number of test multi-objective optimization tasks has been used to study the efficiency of the following grids: "Latin Hypercube"; grid, which is uniformly random for each measurement; grid, based on the LP sequences.
Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems
Vicente García-Díaz
2015-12-01
Full Text Available Machine learning is one of the most important subfields of computer science and can be used to solve a variety of interesting artificial intelligence problems. There are different languages, framework and tools to define the data needed to solve machine learning-based problems. However, there is a great number of very diverse alternatives which makes it difficult the intercommunication, portability and re-usability of the definitions, designs or algorithms that any developer may create. In this paper, we take the first step towards a language and a development environment independent of the underlying technologies, allowing developers to design solutions to solve machine learning-based problems in a simple and fast way, automatically generating code for other technologies. That can be considered a transparent bridge among current technologies. We rely on Model-Driven Engineering approach, focusing on the creation of models to abstract the definition of artifacts from the underlying technologies.
Stathopoulos, A.; Fischer, C.F. [Vanderbilt Univ., Nashville, TN (United States); Saad, Y.
1994-12-31
The solution of the large, sparse, symmetric eigenvalue problem, Ax = {lambda}x, is central to many scientific applications. Among many iterative methods that attempt to solve this problem, the Lanczos and the Generalized Davidson (GD) are the most widely used methods. The Lanczos method builds an orthogonal basis for the Krylov subspace, from which the required eigenvectors are approximated through a Rayleigh-Ritz procedure. Each Lanczos iteration is economical to compute but the number of iterations may grow significantly for difficult problems. The GD method can be considered a preconditioned version of Lanczos. In each step the Rayleigh-Ritz procedure is solved and explicit orthogonalization of the preconditioned residual ((M {minus} {lambda}I){sup {minus}1}(A {minus} {lambda}I)x) is performed. Therefore, the GD method attempts to improve convergence and robustness at the expense of a more complicated step.
E. V. Maslennikov
2016-01-01
Full Text Available In article the approach to the decision of a problem of conceptual integration of sociology as the set of theoretical knowledge belonging to type - conceptually difficult - the big theories. Development of theoretical sociology with use of forms of the mathematical theory is considered as a private problem in relation to more general problem of development of theoretical knowledge with use of forms of the mathematical theory. Development the theoretical sociology is offered to carry out with use of forms of the mathematical theory on the basis of properties structural mathematical constructs and with application the mathematical methods developed in a scientific direction “The Conceptual analysis and designing”[40] . In the given direction it is used not only a paradigm of structuralism, but also a principle of an ascention from abstract to concrete in the knowledge, realized in procedure of synthesis of formal theories with use of the device of structural mathematics. The system analysis, the theory of systems and the theory of structures of N. Burbaki concerns to sources of occurrence of a method of the conceptual analysis. The method is intended for the analysis of subject domains of a high level of complexity, realization of conceptual modeling of objects from these subject domains and reception of new knowledge about essence of subject domains and their relations. Conceptual complexity of phenomena is understood as complexity of the structures expressing the relations and interrelations between concepts, describing interesting area from the point of view of solved tasks. For a subject domain conceptual complexity is potentially established by quantity of basic sets on which scales of sets and the steps belonging to them representing definitions of developed theory of a subject domain are constructed. In article is exposed to the analysis role structural mathematical constructs device in expansion integrating tool conceptualization
The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains
Medková, Dagmar
2009-01-01
Roč. 63, č. 21 (2009), s. 227-247 ISSN 0378-620X Institutional research plan: CEZ:AV0Z10190503 Keywords : Poisson equation * Neumann problem * integral equation method Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2009
One problem of the Navier type for the Stokes system in planar domains
Medková, Dagmar
2016-01-01
Roč. 261, č. 10 (2016), s. 5670-5689 ISSN 0022-0396 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : Stokes system * Navier type problem * regularity of a solution Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022039616302121
The Cross-Contextual Transfer of Problem Solving Strategies from Logo to Non-Computer Domains.
Swan, Karen; Black, John B.
This report investigated the relationship between learning to program LOGO and the development of problem solving skills. Subjects were 133 students in grades 4-8 who had at least 30 hours of experience with both graphics and lists programming in Logo. Students were randomly assigned to one of three contextual groupings, which received graphics,…
Bond, J. Richard; Braden, Jonathan [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura, E-mail: bond@cita.utoronto.ca, E-mail: j.braden@ucl.ac.uk, E-mail: mersini@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27599-3255 (United States)
2015-09-01
We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strong nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Lubuma, M.S.
1991-05-01
The applicability of the Neumann indirect method of potentials to the Dirichlet and Neumann problems for the two-dimensional Stokes operator on a non smooth boundary Γ is subject to two kinds of sufficient and/or necessary conditions on Γ. The first one, occurring in electrostatic, is equivalent to the boundedness on C(Γ) of the velocity double layer potential W as well as to the existence of jump relations of potentials. The second condition, which forces Γ to be a simple rectifiable curve and which, compared to the Laplacian, is a stronger restriction on the corners of Γ, states that the Fredholm radius of W is greater than 2. Under these conditions, the Radon boundary integral equations defined by the above mentioned jump relations are solvable by the Fredholm theory; the double (for Dirichlet) and the single (for Neumann) layer potentials corresponding to their solutions are classical solutions of the Stokes problems. (author). 48 refs
Solving Problems in Various Domains by Hybrid Models of High Performance Computations
Yurii Rogozhin
2014-03-01
Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.
Problems With Deployment of Multi-Domained, Multi-Homed Mobile Networks
Ivancic, William D.
2008-01-01
This document describes numerous problems associated with deployment of multi-homed mobile platforms consisting of multiple networks and traversing large geographical areas. The purpose of this document is to provide insight to real-world deployment issues and provide information to groups that are addressing many issues related to multi-homing, policy-base routing, route optimization and mobile security - particularly those groups within the Internet Engineering Task Force.
Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)
2015-03-10
We calculate the B-meson decay constants f_{B}, f_{B}s, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M_{π} ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α_{s}a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_{B0} = 196.2(15.7) MeV, f_{B+} = 195.4(15.8) MeV, f_{Bs} = 235.4(12.2) MeV, f_{Bs}/f_{B0} = 1.193(59), and f_{Bs}/f_{B+} = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Chen, Jun; Fan, Longlong [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Fancher, Chris M.; Zhao, Jianwei [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Forrester, Jennifer S.; Jones, Jacob L., E-mail: JacobJones@ncsu.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2016-07-28
Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.
Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)
2015-04-01
This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.
Lubuma, M.S.
1991-05-01
The non uniquely solvable Radon boundary integral equation for the two-dimensional Stokes-Dirichlet problem on a non smooth domain is transformed into a well posed one by a suitable compact perturbation of the velocity double layer potential operator. The solution to the modified equation is decomposed into a regular part and a finite linear combination of intrinsic singular functions whose coefficients are computed from explicit formulae. Using these formulae, the classical collocation method, defined by continuous piecewise linear vector-valued basis functions, which converges slowly because of the lack of regularity of the solution, is improved into a collocation dual singular function method with optimal rates of convergence for the solution and for the coefficients of singularities. (author). 34 refs
Bazalii, B V; Degtyarev, S P [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-07-31
An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hölder spaces. Bibliography: 18 titles.