WorldWideScience

Sample records for domain nucleation rates

  1. Stochastic analysis of nucleation rates

    Science.gov (United States)

    Johansson, Jonas

    2016-02-01

    We show that approximating the Becker-Döring equations with a Langevin equation results in multiplicative noise, which in turn leads to a family of possible Fokker-Planck equations according to the Ito-Stratonovich dilemma. Using a simple and general model for the attachment and detachment rates, we find that the Ito choice approximates the nucleation rate best and also coincides with the Fokker-Planck equation resulting from the common way to Taylor expand the original set of rate equations.

  2. The formin DAD domain plays dual roles in autoinhibition and actin nucleation.

    Science.gov (United States)

    Gould, Christopher J; Maiti, Sankar; Michelot, Alphée; Graziano, Brian R; Blanchoin, Laurent; Goode, Bruce L

    2011-03-08

    Formins are a large family of actin assembly-promoting proteins with many important biological roles. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin. Here, we found that yeast and mammalian formins bind actin monomers but that this activity requires their C-terminal DAD domains. Furthermore, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Furthermore, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation. Together, our data show that (1) the DAD has dual functions in autoinhibition and nucleation; (2) the FH1, FH2, and DAD form a tripartite nucleation machine; and (3) formins nucleate by recruiting actin monomers and therefore are more similar to other nucleators than previously thought.

  3. Effect of Air Injection on Nucleation Rates

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Kiil, Søren; Dam-Johansen, Kim

    2017-01-01

    to study the effects on formation of the first crystal and subsequent turbidity buildup. To account for the typically large sample-to-sample variation, nucleation rates were evaluated for a large number of replicates using probability distributions of induction times. The slope and the intercept...... was reduced from 69 to 13 min, and the mean induction time decreased from 128 to 36 min. The effect on aqueous solutions of l-arginine was less apparent, with a detection delay reduction from 15 to 3 min, and no significant changes on the rate of primary nucleation. These results demonstrate the potential...

  4. Efficient and controlled domain wall nucleation for magnetic shift registers.

    Science.gov (United States)

    Alejos, Oscar; Raposo, Víctor; Sanchez-Tejerina, Luis; Martinez, Eduardo

    2017-09-19

    Ultrathin ferromagnetic strips with high perpendicular anisotropy have been proposed for the development of memory devices where the information is coded in tiny domains separated by domain walls. The design of practical devices requires creating, manipulating and detecting domain walls in ferromagnetic strips. Recent observations have shown highly efficient current-driven domain wall dynamics in multilayers lacking structural symmetry, where the walls adopt a chiral structure and can be driven at high velocities. However, putting such a device into practice requires the continuous and synchronous injection of domain walls as the first step. Here, we propose and demonstrate an efficient and simple scheme for nucleating domain walls using the symmetry of the spin orbit torques. Trains of short sub-nanosecond current pulses are injected in a double bit line to generate a localized longitudinal Oersted field in the ferromagnetic strip. Simultaneously, other current pulses are injected through the heavy metal under the ferromagnetic strip. Notably, the Slonczewski-like spin orbit torque assisted by the Oersted field allows the controlled injection of a series of domain walls, giving rise to a controlled manner for writing binary information and, consequently, to the design of a simple and efficient domain wall shift register.

  5. The dependence of homogeneous nucleation rate on supersaturation.

    Science.gov (United States)

    Girshick, Steven L

    2014-07-14

    The claim that classical nucleation theory (CNT) correctly predicts the dependence on supersaturation of the steady-state rate of homogeneous nucleation is reexamined in light of recent experimental studies of nucleation of a range of substances, including water, argon, nitrogen, and several 1-alcohols. Based on these studies (which include, for water, a compilation of nine different studies), it is concluded that the dependence of nucleation rate on supersaturation is not correctly predicted by CNT. It is shown that CNT's incorrect prediction of the supersaturation dependence of nucleation rate is due to its incorrect prediction of the Gibbs free energy change associated with formation of small clusters from the monomer vapor, evaluated at the substance's equilibrium vapor pressure, even though that free energy change is itself a function only of temperature.

  6. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    Science.gov (United States)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  7. Estimation of the nucleation rate by differential scanning calorimetry

    Science.gov (United States)

    Kelton, Kenneth F.

    1992-01-01

    A realistic computer model is presented for calculating the time-dependent volume fraction transformed during the devitrification of glasses, assuming the classical theory of nucleation and continuous growth. Time- and cluster-dependent nucleation rates are calculated by modeling directly the evolving cluster distribution. Statistical overlap in the volume fraction transformed is taken into account using the standard Johnson-Mehl-Avrami formalism. Devitrification behavior under isothermal and nonisothermal conditions is described. The model is used to demonstrate that the recent suggestion by Ray and Day (1990) that nonisothermal DSC studies can be used to determine the temperature for the peak nucleation rate, is qualitatively correct for lithium disilicate, the glass investigated.

  8. Estimation of the nucleation rate by differential scanning calorimetry

    Science.gov (United States)

    Kelton, Kenneth F.

    1992-01-01

    A realistic computer model is presented for calculating the time-dependent volume fraction transformed during the devitrification of glasses, assuming the classical theory of nucleation and continuous growth. Time- and cluster-dependent nucleation rates are calculated by modeling directly the evolving cluster distribution. Statistical overlap in the volume fraction transformed is taken into account using the standard Johnson-Mehl-Avrami formalism. Devitrification behavior under isothermal and nonisothermal conditions is described. The model is used to demonstrate that the recent suggestion by Ray and Day (1990) that nonisothermal DSC studies can be used to determine the temperature for the peak nucleation rate, is qualitatively correct for lithium disilicate, the glass investigated.

  9. Mechanisms and rates of nucleation of amyloid fibrils

    Science.gov (United States)

    Lee, Cheng-Tai; Terentjev, Eugene M.

    2017-09-01

    The classical nucleation theory finds the rate of nucleation proportional to the monomer concentration raised to the power, which is the "critical nucleus size," nc. The implicit assumption, that amyloids nucleate in the same way, has been recently challenged by an alternative two-step mechanism, when the soluble monomers first form a metastable aggregate (micelle) and then undergo conversion into the conformation rich in β -strands that are able to form a stable growing nucleus for the protofilament. Here we put together the elements of extensive knowledge about aggregation and nucleation kinetics, using a specific case of Aβ1-42 amyloidogenic peptide for illustration, to find theoretical expressions for the effective rate of amyloid nucleation. We find that at low monomer concentrations in solution and also at low interaction energy between two peptide conformations in the micelle, the nucleation occurs via the classical route. At higher monomer concentrations, and a range of other interaction parameters between peptides, the two-step "aggregation-conversion" mechanism of nucleation takes over. In this regime, the effective rate of the process can be interpreted as a power of monomer concentration in a certain range of parameters; however, the exponent is determined by a complicated interplay of interaction parameters and is not related to the minimum size of the growing nucleus (which we find to be ˜7-8 for Aβ1 -42).

  10. Rate of Homogeneous Crystal Nucleation in molten NaCl

    CERN Document Server

    Valeriani, C; Frenkel, D; 10.1063/1.1896348

    2009-01-01

    We report a numerical simulation of the rate of crystal nucleation of sodium chloride from its melt at moderate supercooling. In this regime nucleation is too slow to be studied with "brute-force" Molecular Dynamics simulations. The melting temperature of ("Tosi-Fumi") NaCl is $\\sim 1060$K. We studied crystal nucleation at $T$=800K and 825K. We observe that the critical nucleus formed during the nucleation process has the crystal structure of bulk NaCl. Interestingly, the critical nucleus is clearly faceted: the nuclei have a cubical shape. We have computed the crystal-nucleation rate using two completely different approaches, one based on an estimate of the rate of diffusive crossing of the nucleation barrier, the other based on the Forward Flux Sampling and Transition Interface Sampling (FFS-TIS) methods. We find that the two methods yield the same result to within an order of magnitude. However, when we compare the extrapolated simulation data with the only available experimental results for NaCl nucleatio...

  11. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  12. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    Science.gov (United States)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  13. Time-dependent domain wall nucleation probability in field-coupled nanomagnets with perpendicular anisotropy

    Science.gov (United States)

    Breitkreutz, Stephan; Fischer, Andreas; Kaffah, Silmi; Weigl, Stephanie; Eichwald, Irina; Ziemys, Grazvydas; Schmitt-Landsiedel, Doris; Becherer, Markus

    2015-05-01

    In this paper, the domain wall (DW) nucleation time and the DW nucleation probability of field-coupled magnets with perpendicular magnetic anisotropy are measured by experiment. A well-established Arrhenius model based on thermally activated magnetization reversal is applied to describe the time-dependent DW nucleation probability. Magneto-optical microscopy(MOKE) is used in the experiments to determine the DW nucleation time and the DW nucleation probability in a pNML inverter structure. The DW propagation speed is measured in order to calculate the required DW propagation time for entire magnetization reversal of pNML logic gates. Experimental results are compared to the derived model. Our results show that the interaction in pNML logic gates plays a significant role for the time-dependent DW nucleation probability and therefore for the reliability of field-coupled circuits.

  14. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  15. On the nucleation of hadronic domains in the quark-hadron transition

    CERN Document Server

    Mintz, B W; Fraga, E S

    2008-01-01

    We present numerical results on bubble profiles, nucleation rates and time evolution for a weakly first-order quark-hadron phase transition in different expansion scenarios. We confirm the standard picture of a cosmological first-order phase transition, in which the phase transition is entirely dominated by nucleation. We also show that, even for expansion rates much lower than those expected in heavy-ion collisions nucleation is very unlikely, indicating that the main phase conversion mechanism is spinodal decomposition.

  16. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    Science.gov (United States)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  17. On the derivation of particle nucleation rates from experimental formation rates

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2014-10-01

    Full Text Available Atmospheric particle formation rates are usually measured at sizes larger than the critical size where nucleation occurs. Due to loss of particles during their growth to the detection threshold, the measured formation rate is often substantially smaller than the nucleation rate. For this reason a correction needs to be applied in order to determine the nucleation rate from the measured formation rate. An analytical formula for the correction factor is provided by Kerminen and Kulmala (2002. Their method was derived for atmospheric nucleation measurements and we show here that it has limited applicability to chamber nucleation studies. The reason for this limitation is that the particle loss rate generally has a different dependency on particle size in other environments. Here we propose an alternative, numerical method that allows precise nucleation rates to be determined in arbitrary experimental environments. The method requires knowledge of the particle size distribution above detection threshold, the particle growth rate, and the particle loss rates as a function of particle size.

  18. Dynamic Phase-Mapping of Domain Nucleation in MgO:LiNbO3 Crystal by Digital Holographic Interferometry

    Institute of Scientific and Technical Information of China (English)

    QU Wei-Juan; LIU De-An; ZHI Ya-Nan; LUAN Zhu; LIU Li-Ren

    2007-01-01

    The quantitative phase-mapping of the domain nucleation in MgO:LiNbO3 crystals is presented by using the digital holographic interferometry. An unexpected peak phase at the beginning of the domain nucleation is observed and it is lowered as the spreading of the domain nucleus. The existence of the nucleus changes the moving speed of the domain wall by pinning it for 3 s. Such in-situ quantitative analysis of the domain nucleation process is a key to optimizing domain structure fabrication.

  19. Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films

    Science.gov (United States)

    Ivry, Yachin; Scott, James F.; Salje, Ekhard K. H.; Durkan, Colm

    2012-11-01

    The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model.

  20. Nonperturbative computation of the bubble nucleation rate in the cubic anisotropy model

    NARCIS (Netherlands)

    Moore, G.D.; Rummakinen, K.; Tranberg, A.

    2001-01-01

    At first order phase transitions the transition proceeds through droplet nucleation and growth. We discuss a lattice method for calculating the droplet nucleation rate, including the complete dynamical factors. The method is especially suitable for very strongly suppressed droplet nucleation, which

  1. Nucleation and evaporation of domains due to electric field at room temperature in BaTiO3 single crystals

    Indian Academy of Sciences (India)

    C M Dudhe; P R Arjunwadkar

    2015-09-01

    A study of nucleation and evaporation of 90° and 180° domains by external direct current (dc) electric field at room temperature in barium titanate single crystals has been carried out using reflecting microscope. It was observed that both the 90° and 180° domains were nucleated at some sites, while evaporated at some other sites of the crystal surface. The 90° domain follows the mechanism of micro-domain wall nucleation as well as the evaporation based on impurity dipoles, like reported for KNbO3. The mechanism of the 180° domain nucleation is not established yet. However, in both cases, nucleation and evaporation are operative simultaneously by the same electric field, which seems to be quite interesting and which can be attributed to the different critical lengths of the domains.

  2. The nucleation rate surfaces design over diagram of phase equilibria and their applications for computational chemistry

    Science.gov (United States)

    Anisimov, M. P.

    2016-12-01

    One can find in scientific literature a pretty fresh idea of the nucleation rate surfaces design over the diagrams of phase equilibria. That idea looks like profitable for the nucleation theory development and for various practical applications where predictions of theory have no high enough accuracy for today. The common thermodynamics has no real ability to predict parameters of the first order phase transition. Nucleation experiment can be provided in very local nucleation conditions even the nucleation takes place from the critical line (in two-component case) down to the absolute zero temperature limit and from zero nucleation rates at phase equilibria up to the spinodal conditions. Theory predictions have low reliability as a rule. The computational chemistry has chance to make solution of that problem easier when a set of the used axiomatic statements will adapt enough progressive assumptions [1]. Semiempirical design of the nucleation rate surfaces over diagrams of phase equilibria have a potential ability to provide a reasonable quality information on nucleation rate for each channel of nucleation. Consideration and using of the nucleation rate surface topologies to optimize synthesis of a given phase of the target material can be available when data base on nucleation rates over diagrams of phase equilibria will be created.

  3. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions

    Science.gov (United States)

    Merikanto, J.; Napari, I.; VehkamäKi, H.; Anttila, T.; Kulmala, M.

    2007-08-01

    Recently, the classical theory of sulfuric acid-ammonia-water (H2SO4-NH3-H2O) nucleation was reinvestigated by including the effect of stable ammonium bisulfate formation into calculations. The predicted nucleation rates lowered by many orders of magnitude, bringing them close to agreement with the available experiments on H2SO4-NH3-H2O nucleation. However, because of complex thermodynamics involved, the theoretical calculations of nucleation rates are computationally demanding, and sometimes the theory breaks down at specific concentrations and temperatures. Here we present parameterized equations of ternary H2SO4-NH3-H2O nucleation rates, critical cluster sizes, and critical cluster compositions. Our parameterizations reduce the computing time of these values by a factor of 105 compared with the calculations with the full thermodynamic model. Also, our parameterizations provide reliable estimates for ternary nucleation rates in cases when the full theory fails in isolated points of the parameter space. The parameterized nucleation rates are accurate to one order of magnitude in nucleation rate. Because of their computational efficiency, our parameterizations are particularly suitable for large-scale models of atmosphere. They are valid for temperatures above 235 K, sulfuric acid concentrations 5 · 104-109 cm-3, ammonia mixing ratios 0.1-1000 ppt, relative humidities 5%-95%, and nucleation rates over 10-5 cm-3 s-1. At these conditions, no significant nucleation occurs above 295 K.

  4. Relative Role of Gas Generation and Displacement Rates in Cavity Nucleation and Growth

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J E.

    1984-01-01

    Problems of helium diffusion and clustering during irradiation are analysed. Using the “homogeneous” nucleation theory , the effect of damage rate on cavity density is calculated for different gas generation to damage rate ratios. The influence of gas mobility on cavity nucleation has been evalua...

  5. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  6. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2009-10-01

    Full Text Available We investigated the relative roles of volume and surface nucleation in the freezing of water droplets. Nucleation experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled liquid water aerosols with radii between about 1 and 3 μ m. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rate between 234.8 and 236.2 K are derived with help of a microphysical model from aerosol compositions and size distributions based on infrared extinction measurements in the aerosol flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process and has implications for the parameterization of homogeneous ice nucleation in numerical models.

  7. Nucleation process on the 180^o domain wall of PbTiO3 by the external electric field

    Science.gov (United States)

    Shin, Young-Han; Grinberg, Ilya; Chen, I.-Wei; Rappe, Andrew

    2006-03-01

    Ferroelectric oxides are extremely useful as nonvolatile memory storage materials, and the speed at which polar domains can be reversed is a critical characteristic for future development of these materials. However, the size of the critical nucleus during the polarization reversal is still unknown experimentally. If we assume that the magnitudes of local polarizations are the same and their directions are along the external field, it will be triangular and the height of the nucleus along the external field should be much larger than its width following the Miller and Weinreich's study in 1960s. We made an atomic potential for perovskite ferroelectrics based on the first-principles calculation, and performed molecular-dynamics simulations to understand the nucleation and growth process of ferroelectric domains. We find that its shape is close to a square not a triangle and its size much smaller than Miller and Weinreich's. It stems from the small polarizations and the voltex-like flow around the nucleus. To increase the system size we used the stochastic study using the nucleation and growth rates which were obtained from the molecular dynamics simulations. The overall speed of the domain wall motion can be estimated from this stochastic calculation.

  8. Controlling domain wall nucleation and injection through focussed ion beam irradiation in perpendicularly magnetized nanowires

    Science.gov (United States)

    Beguivin, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P.

    2017-01-01

    Using Ga+ focussed ion beam irradiation of Ta/Pt/CoFeB/Pt perpendicularly magnetized nanowires, the nucleation and injection fields of domain walls into the nanowires is controlled. The nucleation and injection fields can be varied as a function of dose, however, the range of injection fields is found to be limited by the creation of a step in anisotropy between the irradiated and unirradiated regions. This can be altered by defocussing the beam, which allows the injection fields to be further reduced. The ability to define an arbitrary dose profile allows domain walls to be injected at different fields either side of an asymmetrically irradiated area, which could form the initial stage of a logic device. The effect of the thickness of the magnetic layer and the thickness of a Ta underlayer on the dose required to remove the perpendicular anisotropy is also studied and is seen that for similar Ta underlayers the dose is determined by the thickness of the magnetic layer rather than its anisotropy. This finding is supported by some transport of ions in matter simulations.

  9. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    Science.gov (United States)

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  10. Analysis of experimental data for the nucleation rate of water droplets

    Science.gov (United States)

    Kashchiev, Dimo

    2006-07-01

    A formula for the stationary nucleation rate J is proposed and used for analysis of experimental data for the dependence of J on the supersaturation ratio S in isothermal homogeneous nucleation of water droplets in vapors. It is found that the experimental data are described quite successfully by the proposed formula which is based on (i) the Gibbs presentation of the nucleation work in terms of overpressure, (ii) the Girshick-Chiu [J. Chem. Phys. 93, 1273 (1990); 94, 826 (1991)] self-consistency correction to the equilibrium cluster size distribution, and (iii) the Reguera-Rubi [J. Chem. Phys. 115, 7100 (2001)] kinetic accounting of the nucleus translational-rotational motion. The formula, like that of Wölk and Strey [J. Phys. Chem. B 105, 11683 (2001)], could be used as a semiempirical relation describing the J(S ) dependence for nucleation in vapors of single-component droplets or crystals of substances with insufficiently well known equations of state.

  11. Pseudo-steady rates of crystal nucleation in suspensions of charged colloidal particles

    CERN Document Server

    Dixit, N M

    2003-01-01

    We develop an analytical model to describe crystal nucleation in suspensions of charged colloidal particles. The particles are assumed to interact with a repulsive hard-core Yukawa potential. The thermodynamic properties of the suspensions are determined by mapping onto an effective hard-sphere system using perturbation theory. Hydrodynamic effects are calculated by approximating particle interactions with the excluded shell potential. The rates of particle aggregation and dissociation from cluster surfaces in supersaturated suspensions are determined by solving the diffusion and Smoluchowski equations, respectively, which allow the calculation of pseudo-steady rates of crystal nucleation. By decoupling thermodynamic and hydrodynamic effects, we find intriguing non-monotonic dependencies of the nucleation rate on the strength and the range of particle repulsions. In particular, we find that the rate at any effective hard-sphere volume fraction can be lower than that of the hard-sphere system at that volume fr...

  12. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  13. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  14. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter [Univ. of Minnesota, Minneapolis, MN (United States); Smuth, James [University Corporation for Atmospheric Research, Irvine, CA (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  15. Direct Calculation of Ice Homogeneous Nucleation Rate for a Molecular Model of Water

    CERN Document Server

    Haji-Akbari, Amir

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of systems and environments, including biological cells [1], soil [2], aircraft [3], transportation infrastructure [4] and atmospheric clouds [5,6]. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water [7-9]. For the more realistic molecular models, only indirect estimates have been obtained, e.g.~by assuming the validity of classical nucleation theory [10]. Here, we use a path sampling approach to perform the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice [11], the most accurate among the existing molecular models for studying ice polymorphs. By using a novel topological order parameter for distinguishing different polymorphs, we are able to identify a freezing me...

  16. Mechanisms and rate of dislocation nucleation in aluminum-copper alloys near Guinier-Preston zones

    Science.gov (United States)

    Bryukhanov, I. A.; Larin, A. V.

    2016-12-01

    This article is devoted to a molecular dynamics simulation study of partial dislocation loop nucleation with respect to its mechanism and rate, and its propagation process under high shear stress in aluminum-copper alloys. The mechanisms of dislocation nucleation near Guinier-Preston (GP) zones of various diameters and concentrations have been analyzed. Dislocation nucleation rates near plain GP Cu-zones with diameters of 3.5, 7.5, and 13.5 nm and at various concentrations have been calculated using the mean lifetime method with temperatures in range of 100 and 700 K. It has been found that depending on the temperature and applied stress, the dislocation can nucleate either from the edge, or from the plain area of a GP zone. The dislocation nucleation is preceded by a generation of defect clusters that are formed due to local opposite atomic shifts in two adjacent (111) planes by the half-length of a Burgers vector of a partial dislocation. The expansion of a partial dislocation loop can be accompanied by the formation of twins via a shift of the atoms in the internal region of the loop. The twin velocity along the direction of the partial dislocation Burgers vector inside the loop can achieve longitudinal sound speed. The speeds of the edge and screw segments of a partial dislocation loop as a function of a shear stress component along the Burgers vector have been estimated. The latter seems to be limited by the shear sound speed.

  17. A new method to measure homogeneous nucleation rates in shock tubes

    Science.gov (United States)

    Peters, F.

    1983-01-01

    The centered expansion wave of a shock tube is utilized to expand and supersaturate a condensable vapor in small concentration in an inert carrier gas. The supersaturated state, located at the rear of the expansion wave, is preserved for a controlled period and then terminated by a recompressing shock wave. During the period of supersaturation, condensation nuclei are formed homogeneously. The nucleation rate is measured as a function of supersaturation by a Mie-light scattering technique. The method is tested using water and the results are compared with classical nucleation theory.

  18. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    Science.gov (United States)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  19. Effect of damage rate on the kinetics of void nucleation and growth by phase field modeling for materials under irradiations

    Science.gov (United States)

    Ding, Xuejian; Zhao, Jiejiang; Huang, Hao; Ding, Shurong; Huo, Yongzhong

    2016-11-01

    The void formation and growth in materials under irradiations is studied by a modified Cahn-Hilliard equation coupled with the explicit nucleation algorithm. Through the numerical simulations, the stages of incubation, nucleation, growth and coalescence of the irradiation induced voids are clearly observed with a faster kinetics for stronger damage rate. There seems to exist a critical damage rate g˙vc at which the kinetics speeds up significantly. For smaller damage rates, very few voids can be nucleated. But the nucleated voids can grow rather large with its average radius growing as Rv ∝t1/d. For stronger irradiations, much more voids could be nucleated, but they cannot grow very large before coarsening. The growth follows a much faster kinetics as Rv ∝t2/d. The critical damage rate g˙vc should be determined by the competition of the rate of diffusion and the rate of vacancy production due to irradiations.

  20. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    Science.gov (United States)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-11-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.

  1. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2015-11-09

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.

  2. CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components' mole fraction in critical cluster

    Science.gov (United States)

    Hong, Ban Zhen; Keong, Lau Kok; Shariff, Azmi Mohd

    2016-05-01

    The employment of different mathematical models to address specifically for the bubble nucleation rates of water vapour and dissolved air molecules is essential as the physics for them to form bubble nuclei is different. The available methods to calculate bubble nucleation rate in binary mixture such as density functional theory are complicated to be coupled along with computational fluid dynamics (CFD) approach. In addition, effect of dissolved gas concentration was neglected in most study for the prediction of bubble nucleation rates. The most probable bubble nucleation rate for the water vapour and dissolved air mixture in a 2D quasi-stable flow across a cavitating nozzle in current work was estimated via the statistical mean of all possible bubble nucleation rates of the mixture (different mole fractions of water vapour and dissolved air) and the corresponding number of molecules in critical cluster. Theoretically, the bubble nucleation rate is greatly dependent on components' mole fraction in a critical cluster. Hence, the dissolved gas concentration effect was included in current work. Besides, the possible bubble nucleation rates were predicted based on the calculated number of molecules required to form a critical cluster. The estimation of components' mole fraction in critical cluster for water vapour and dissolved air mixture was obtained by coupling the enhanced classical nucleation theory and CFD approach. In addition, the distribution of bubble nuclei of water vapour and dissolved air mixture could be predicted via the utilisation of population balance model.

  3. Self-Similar Earthquake Nucleation on Rate-and-State Faults

    Science.gov (United States)

    Rubin, A. M.; Ampuero, J.

    2004-12-01

    We obtain self-similar solutions (two-dimensional and quasi-static) for the acceleration to instability of a fixed-length patch on a fault obeying rate-and-state friction. The solution is applicable in the limit Vθ /Dc≫1, so that the evolution of the state variable is well-approximated by ˙ {θ }=Vθ /Dc. For simulations on an infinite fault with a/brate but time-varying peak and residual stresses. The nucleation length in these cases (defined as the minimum of the time-dependent size of the nucleation zone) generally increases with a/b but is very sensitive to the boundary and initial conditions. For sufficiently large values of Vθ /Dc upon localization, the nucleation zone can undergo velocity increases of many orders of magnitude before the self-similar solution becomes inapplicable; this is why this solution dominates the simulations of Dieterich [1992] even for a/b\\sim0.9. For a/b$0, so they could be applicable to faults shorter than Lν . The smallest viable nucleation zone Lmin increases in size with increasing a/b and equals Lν at a/b=0.3781. For a=0, which in the limit Vθ /Dc\\gg1 corresponds to slip-weakening behavior, L_{min} equals the universal nucleation length of 0.579G^*D_c/b\\sigma found for slip-weakening behavior by Uenishi and Rice [2003] (the slip-weakening rate is b\\sigma/D_c). The family of self-similar solutions can thus be viewed as linking the observation of Dieterich [1992] that L_\

  4. The influence of flow rate on inter-nucleation site heat transport

    Directory of Open Access Journals (Sweden)

    Baltis Coen

    2014-01-01

    Full Text Available The main topic of this paper is the influence of vertically aligned nucleation sites on each other in upward flow boiling. A setup was constructed to facilitate vertical up-flow of deminiralized water under saturation conditions. The main test section is a glass channel with a set of vertically aligned bubble generators. Each bubble generator is operated independently, where power and wall temperature are registered and the vapour bubbles are visualized by a high-speed camera. During the experiments, the downstream bubble generator (BG1 power is kept constant, while the power fed to the upstream bubble generator (BG2 is incrementally increased. Two main trends have been identified. The first trend is dominated by added convection from one site to the other. Both bubble frequency and detachment diameter on BG1 increase with increased power fed to upstream BG2. This effect decreases with increasing inter-site distance and becomes more significant with increasing liquid flow rate. When vapor bubbles start nucleating from BG2, these vapor bubbles inhibit bubble nucleation BG1 and can even lead to deactivation of this nucleation site. This second trend is only weakly dependent on inter-site distance, since the inhibition originates from bubbles flowing past BG1 in close proximity.

  5. Final Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth Rates of Freshly Nucleated Particles"

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James N. [NCAR, Boulder, CO (United States); McMurry, Peter H. [NCAR, Boulder, CO (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate. Our measurements include a self-organized, DOE-ARM funded project at the Southern Great Plains site, the New Particle Formation Study (NPFS), which took place during spring 2013. NPFS data are available to the research community on the ARM data archive, providing a unique suite observations of trace gas and aerosols that are associated with the formation and growth of atmospheric aerosol particles.

  6. Surface Display of Domain Ⅲ of Japanese Encephalitis Virus E Protein on Salmonella Typhimurium by Using an Ice Nucleation Protein

    Institute of Scientific and Technical Information of China (English)

    Jian-lin Dou; Tao Jing; Jing-jing Fan; Zhi-ming Yuan

    2011-01-01

    A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection.Due to its ubiquitous ability to invade host cells,Salmonella typhimurium might be a good candidate for displaying viral antigens.We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S.typhimurium BRD509 using the ice nucleation protein.The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated.The results showed that display motifs in the protein can target integral foreign protein on the surface of S.typhimurium BRD509.Moreover,recombinant strains with surface displayed viral proteins retained their invasiveness,suggesting that the recombinant S.typhimurium can be used as live vaccine vector for eliciting complete immunogenicity.The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.

  7. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s-1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decreas...

  8. Toward a molecular theory of homogeneous bubble nucleation: II. Calculation of the number density of critical nuclei and the rate of nucleation.

    Science.gov (United States)

    Torabi, Korosh; Corti, David S

    2013-10-17

    In the present paper, we develop a method to calculate the rate of homogeneous bubble nucleation within a superheated L-J liquid based on the (n,v) equilibrium embryo free energy surface introduced in the first paper (DOI: 10.1021/jp404149n). We express the nucleation rate as the product of the concentration of critical nuclei within the metastable liquid phase and the relevant forward rate coefficient. We calculate the forward rate coefficient of the critical nuclei from their average lifetime as determined from MD simulations of a large number of embryo trajectories initiated from the transitional region of the metastable liquid configuration space. Therefore, the proposed rate coefficient does not rely on any predefined reaction coordinate. In our model, the critical nuclei belong to the region of the configuration space where the committor probability is about one-half, guaranteeing the dynamical relevance of the proposed embryos. One novel characteristic of our approach is that we define a limit for the configuration space of the equilibrium metastable phase and do not include the configurations that have zero committor probability in the nucleation free energy surface. Furthermore, in order to take into account the transitional degrees of freedom of the critical nuclei, we develop a simulation-based approach for rigorously mapping the free energy of the (n,v) equilibrium embryos to the concentration of the critical nuclei within the bulk metastable liquid phase.

  9. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching.

    Science.gov (United States)

    Nguyen, Andrew H; Molinero, Valeria

    2014-02-28

    Cross-nucleation is a phenomenon where a new crystal nucleates and grows upon the surface of a different polymorph. Previous studies indicate that faster growth rate of the new crystal is a necessary but not sufficient condition for cross-nucleation. The thermodynamic stability of the different polymorphs can also affect cross-nucleation by modulating the rates of crystal growth. The interplay between thermodynamic stability of the polymorphs involved, the growth rate of the crystals, and the need for creation of an interfacial transition layer that seamlessly connects the two structures has not yet been fully elucidated. Predicting cross-nucleation is particularly challenging for clathrate hydrates, for which there are sometimes several polymorphs with similar stability and for which growth rates are not known. In this work, we use molecular dynamics simulations to investigate which factor (stability, growth rate, or formation of interfacial transition layer) controls cross-nucleation between the four known Frank-Kasper clathrate hydrate polymorphs: sI, sII, TS, and HS-I. We investigate the growth and cross-nucleation of these four hydrates filled with a set of guest molecules that produce different order of stabilities for the four crystal structures. We determine that the growth rate of sII clathrate is the fastest, followed by TS, HS-I, and sI. We find that cross-nucleation into or from sII clathrates is preceded by the formation of an interfacial transition layer at the seed crystal/liquid interface because sII does not share a crystal plane with sI, HS-I, or TS. Cross-nucleation between the latter three can occur seamlessly and is determined only by their growth rates. Our results indicate that nucleation of an interfacial transition layer between non-matching polymorphs can control cross-nucleation or lack thereof under conditions of small driving force. Under conditions of sufficient supercooling clathrate hydrate polymorphs cross-nucleate into the fastest

  10. How "Hot Precursors" Modify Island Nucleation: A Rate-Equation Model

    Science.gov (United States)

    Morales-Cifuentes, Josue R.; Einstein, T. L.; Pimpinelli, A.

    2014-12-01

    We propose a novel island nucleation and growth model explicitly including transient (ballistic) mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before thermalizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization, the island density N obeys scaling N ∝Fα . In between is found a rich, complex behavior, with various distinctive scaling regimes, characterized by effective exponents αeff and activation energies that we compute exactly. Application to N (F ,T ) of recent organic-molecule deposition experiments yields an excellent fit.

  11. Parameterization of ion-induced nucleation rates based on ambient observations

    Directory of Open Access Journals (Sweden)

    T. Nieminen

    2011-04-01

    Full Text Available Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions.

  12. Transverse field-induced nucleation pad switching modes during domain wall injection

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-03-12

    We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.

  13. Vapor diffusion, nucleation rates and the reservoir to crystallization volume ratio.

    Science.gov (United States)

    Forsythe, Elizabeth L; Maxwell, Daniel L; Pusey, Marc

    2002-10-01

    In a classical vapor diffusion crystallization, the protein solution is mixed in a 1:1 ratio with the reservoir solution, containing one or more precipitant species, after which the two are placed in an enclosed chamber. As the vapor pressure is lower for the reservoir solution, due to its higher solute concentration, there is a net transfer of water through the vapor phase from the protein droplet to the reservoir. In theory, the initial conditions in the droplet are such that the protein is in either a metastable or undersaturated state with respect to crystal nucleation. The loss of water serves to both concentrate the protein and the precipitant concentrations within the drop, bringing the protein past the metastable point to nucleation. The equilibration rate is a function of the precipitant(s) used, their concentration, the temperature, the distance between the two surfaces, and the droplet to reservoir volume ratio. For a given reservoir volume smaller droplets equilibrate faster, the rate being inversely linear with the droplet volume. In attempts to maximize the number of crystallization trials, and as crystals in the 100 - 200 micro m size range are sufficient, it has currently become standard practice to use starting droplet volumes of 2 - 4 micro l, with reservoir volumes typically in the 200 to 500 micro l range. The equilibration rates are maximized, and for most common salt concentrations and higher concentrations of polyethylene glycol (PEG) and 2-methyl-2,4-pentanediol (MPD) one can reasonably estimate that equilibration has occurred within 3 to 6 days at room temperature. Crystals appearing after this time are essentially grown under batch conditions. We experimentally find that altering the reservoir to droplet volume ratio, by changing the reservoir volume, from 50:1 (high ratio) to 5:1 (low ratio), on average increases the equilibration time by approximately 50 % when tested with solutions of 50% MPD, 1.5 M NaCl, or 30 % PEG 400. However

  14. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Science.gov (United States)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  15. Galactosylceramide Domain Microstructure: Impact of Cholesterol and Nucleation/Growth Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Lin, W; Ratto, T V; Longo, M L

    2006-03-03

    Galactosylceramide (GalCer), a glycosphingolipid, is believed to exist in the extracellular leaflet of cell membranes in nanometer sized domains or rafts. The local clustering of GalCer within rafts is thought to facilitate the initial adhesion of certain viruses, including HIV-1 and bacteria to cells through multivalent interactions between receptor proteins (gp120 for HIV-1) and GalCer. Here we use atomic force microscopy (AFM) to study the effects of cholesterol on solid-phase GalCer domain microstructure and miscibility with a fluid lipid 1,2-Dilauroyl-sn-Glycero-3-Phosphocholine (DLPC), in supported lipid bilayers. Using ''slow cooled vesicle fusion'' to prepare the supported lipid bilayers, we were able to overcome the nonequilibrium effects of the substrate (verified by comparison to results for giant unilamellar vesicles, GUVs) and accurately quantify the dramatic effect of cholesterol on the GalCer domain surface area to perimeter ratio (AD/P) and DLPC-GalCer miscibility. We compare these results to a supported lipid bilayer system in which the bilayer is rapidly cooled (nonequilibrium conditions), ''quenched vesicle fusion'' and find that the microstructures are remarkably similar above a cholesterol mole fraction of approximately 0.06. We determined that GalCer domains were contained in one leaflet distal to the mica substrate through qualitative binding experiments with Trichosanthes kirilowii agglutinin (TKA), a galactose specific lectin, and AFM of Langmuir-Blodgett deposited GalCer/DLPC supported lipid bilayers. In addition, GalCer domains in bilayers containing cholesterol rearranged upon tip-sample contact. Our results further serve to clarify why discrepancies exist between different model membrane systems and between model membranes and cell membranes. In addition, these results offer new insight into the effect of cholesterol and surrounding lipid on domain microstructure and behavior. Finally, our

  16. Rating knowledge sharing in cross-domain collaborative filtering.

    Science.gov (United States)

    Li, Bin; Zhu, Xingquan; Li, Ruijiang; Zhang, Chengqi

    2015-05-01

    Cross-domain collaborative filtering (CF) aims to share common rating knowledge across multiple related CF domains to boost the CF performance. In this paper, we view CF domains as a 2-D site-time coordinate system, on which multiple related domains, such as similar recommender sites or successive time-slices, can share group-level rating patterns. We propose a unified framework for cross-domain CF over the site-time coordinate system by sharing group-level rating patterns and imposing user/item dependence across domains. A generative model, say ratings over site-time (ROST), which can generate and predict ratings for multiple related CF domains, is developed as the basic model for the framework. We further introduce cross-domain user/item dependence into ROST and extend it to two real-world cross-domain CF scenarios: 1) ROST (sites) for alleviating rating sparsity in the target domain, where multiple similar sites are viewed as related CF domains and some items in the target domain depend on their correspondences in the related ones; and 2) ROST (time) for modeling user-interest drift over time, where a series of time-slices are viewed as related CF domains and a user at current time-slice depends on herself in the previous time-slice. All these ROST models are instances of the proposed unified framework. The experimental results show that ROST (sites) can effectively alleviate the sparsity problem to improve rating prediction performance and ROST (time) can clearly track and visualize user-interest drift over time.

  17. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.

    Science.gov (United States)

    Buevich, Alexei V; Silva, Teresita; Brodsky, Barbara; Baum, Jean

    2004-11-05

    Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.

  18. Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures

    Science.gov (United States)

    Görke, Hanna; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Lihavainen, Heikki; Wölk, Judith; Strey, Reinhard; Brus, David

    2014-05-01

    Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 100 and 106 cm-3 s-1 were achieved. Since earlier measurements of n-butanol and n-pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Ždímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory.

  19. Experimental determination of the nucleation rates of undercooled micron-sized liquid droplets based on fast chip calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian, E-mail: ch.simon@uni-muenster.de; Peterlechner, Martin; Wilde, Gerhard

    2015-03-10

    Highlights: • Fast scanning calorimeter calibration with position dependence. • Calibration of fast scanning calorimeter during cooling. • Quantitative determination of nucleation rates by treating the undercooling as stochastic parameter - Abstract: Accurate thermal analyzes and calorimetry measurements depend on careful calibration measurements. For conventional differential scanning calorimeters (DSC) the calibration procedure is well known. The melting point of different pure metals is measured and compared with literature data to adjust the temperature reading of the calorimeter. Likewise, the measured melting enthalpies of standard reference substances serve for enthalpy calibration. Yet for fast chip calorimetry, new procedures need to be established. For the medium-area and large-area calorimeter chips, this procedure needs to be modified, because the calibration behavior depends on the position of the sample on the measurement area. Additionally, a way to calibrate the calorimeter for measurements performed during cooling will also be shown. For this second aspect, the athermal and diffusionless martensitic phase transformation of Ni{sub 49.9}–Ti{sub 50.1} at% was used. The well-calibrated sensor chips are ideally suited to perform nucleation rate density analyzes based on a statistical approach. Here, the nucleation rate densities of micron-sized pure Sn droplets that had been coated with a non-catalytic coating have been determined by experimental analysis of the statistical variance of the undercooling response.

  20. Predicting domains and rates of change in borderline personality disorder.

    Science.gov (United States)

    Lenzenweger, Mark F; Clarkin, John F; Levy, Kenneth N; Yeomans, Frank E; Kernberg, Otto F

    2012-04-01

    What changes and how quickly these changes occur as a result of therapy in borderline personality disorder (BPD) is an important ongoing question. The features of BPD patients that are most predictive of rates of change in such patients remain largely unknown. Using the Cornell Personality Disorders Institute (CPDI) randomized controlled trial data, we sought to determine (a) the number and nature of broad domains underlying a large number of rate of change (slope) measures across many psychological, psychiatric, and psychosocial indexes, and (b) which baseline individual difference psychological features of the BPD patients correlated with these rate of change domains. We examined the latent structure of slope (rate of change) measures gleaned from individual growth curves for each subject, studied in multiwave perspective, on separate measures of anger, aggression, impulsivity, depression, global functioning, and social adjustment. Three broad domains of change rate could be discerned. These domains were reflected in factors that are described as (a) anger/aggression change ("aggressive dyscontrol"), (b) global functioning/social adjustment change ("social adjustment/self-acceptance"), and (c) anxiety/depression/impulsivity change ("conflict tolerance/behavioral control"). Factor scores were computed for each change domain and baseline measures of personality and psychodynamic features, selected a priori, were correlated with these factor scores. Multiple regression analyses revealed (a) baseline negative affectivity and aggression predicted the aggressive dyscontrol change domain, (b) baseline identity diffusion predicted the social adjustment/self-acceptance change domain, and (c) baseline social potency predicted the conflict tolerance/behavioral control change domain. These baseline predictors suggest potential research foci for understanding those aspects of BPD that change at comparable rates over time.

  1. Raman Spectra and Nucleation Rates of Sulfuric Acid and Ammonium Sulfate Aerosols Supercooled with Respect to Ice

    Science.gov (United States)

    Knopf, D. A.; Koop, T.; Weers, U. G.; Krieger, U. K.; Peter, T.

    2001-12-01

    Sulfuric acid and ammonium sulfate aerosol particles can serve as ice condensation nuclei for the formation of upper tropospheric cirrus clouds. These clouds influence the global radiation budget by scattering of short wavelength (solar) radiation as well as by absorbing long wavelength (terrestrial) radiation. Knowledge of the thermodynamics and the nucleation rates of aerosols is fundamental for the understanding of formation processes of cirrus clouds. Here, we present a new investigation tool to observe phase transitions of aerosols supercooled with respect to ice. Confocal Raman microscopy is used to determine the phase changes and the morphology of the particles. Raman spectroscopy is employed to distinguish and to characterize the different phases inside the frozen particles. Single droplets with a diameter of typically 20-120 μ m are deposited on a hydrophobically coated Herasil-plate that is covered by a spacer and another plate. Since the gas phase volume of the cell is small compared to the liquid droplet volume the composition of the droplets remains fixed during temperature changes. The temperature of the droplets can be varied between 150-350~K. We present the first Raman spectra of aqueous H2SO4/H2O and (NH4)2SO4/H2O droplets for several concentrations and temperatures to the homogeneous ice nucleation limits. The analysis of the speciation of the components inside the droplets (e.g. sulfate vs. bisulfate ions) is compared to results from thermodynamic models. Evaluation of the freezing data gives upper limits for ice nucleation rates of droplets as a function of sulfuric acid or ammonium sulfate concentration.

  2. An AFM Study of the Effects of Silanization Temperature, Hydration, and Annealing on the Nucleation and Aggregation of Condensed OTS Domains on Mica.

    Science.gov (United States)

    Britt, David W; Hlady, Vladimir

    1996-03-25

    Partial monolayers of octadecyltrichlorosilane (OTS) were formed on mica under different reaction conditions in which the silanization temperature, time, and amount of water adsorbed on the mica substrates were varied. OTS surface coverage increased with silanization time for all samples; however, the amount and distribution of adsorbed OTS varied greatly under these different reaction conditions. AFM analysis showed that OTS formed two phases on mica silanized at 25°C: condensed "island-like" domains and expanded "liquid-like" domains. Partially dehydrated mica silanized at 9°C, however, displayed only condensed domains which were of smaller size compared to those on the 25°C samples. The lateral diffusion and aggregation of small condensed OTS domains to form larger aggregates was evident on all surfaces except the 25°C partially dehydrated mica. A uniform distribution of many small condensed domains surrounded by expanded OTS phases was seen instead. Extended annealing resulted in surface diffusion and aggregation of these domains and nucleation of new condensed domains from the surrounding expanded OTS phases. These observations are consistent with a deposition, diffusion, and aggregation model (DDA) which allows for activated diffusion; however, rigorous modeling is not presented here.

  3. Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data

    Science.gov (United States)

    Kaneko, Yoshihiro; Carpenter, Brett M.; Nielsen, Stefan B.

    2017-01-01

    Recent laboratory shear-slip experiments conducted on a nominally flat frictional interface reported the intriguing details of a two-phase nucleation of stick-slip motion that precedes the dynamic rupture propagation. This behavior was subsequently reproduced by a physics-based model incorporating laboratory-derived rate-and-state friction laws. However, applying the laboratory and theoretical results to the nucleation of crustal earthquakes remains challenging due to poorly constrained physical and friction properties of fault zone rocks at seismogenic depths. Here we apply the same physics-based model to simulate the nucleation process of crustal earthquakes using unique data acquired during the San Andreas Fault Observatory at Depth (SAFOD) experiment and new and existing measurements of friction properties of SAFOD drill core samples. Using this well-constrained model, we predict what the nucleation phase will look like for magnitude ˜2 repeating earthquakes on segments of the San Andreas Fault at a 2.8 km depth. We find that despite up to 3 orders of magnitude difference in the physical and friction parameters and stress conditions, the behavior of the modeled nucleation is qualitatively similar to that of laboratory earthquakes, with the nucleation consisting of two distinct phases. Our results further suggest that precursory slow slip associated with the earthquake nucleation phase may be observable in the hours before the occurrence of the magnitude ˜2 earthquakes by strain measurements close (a few hundred meters) to the hypocenter, in a position reached by the existing borehole.

  4. Effect of Colloidal Interactions on the Rate of Interdroplet Heterogeneous Nucleation in Oil-in-Water Emulsions

    Science.gov (United States)

    McClements; Dungan

    1997-02-01

    Pulsed nuclear magnetic resonance was used to monitor the crystallization of supercooled liquid droplets in 30 wt% n-hexadecane oil-in-water emulsions at 6°C. Crystallization was induced in the liquid droplets when solid droplets of the same material were present. The rate of induced crystallization increased as the concentration of free non-ionic surfactant (polyoxyethylene sorbitan monolaurate) in the aqueous phase increased from 0 to 14 wt%. Differential scanning calorimetry measurements indicated that free surfactant had no effect on crystal nucleation of individual droplets. These results indicate that the surfactant enhances induced crystallization by altering colloidal interactions between droplets. Creaming measurements showed that flocculation was enhanced in emulsions when the free surfactant concentration was increased. We propose that the presence of free surfactant micelles increases the attraction between droplets because of an osmotic effect, and this attraction facilitates the ability of solid crystals from one droplet to induce crystallization in an adjacent liquid droplet.

  5. Nucleation behavior of melted Bi films at cooling rates from 10{sup 1} to 10{sup 4} K/s studied by combining scanning AC and DC nano-calorimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Kechao; Vlassak, Joost J., E-mail: vlassak@esag.harvard.edu

    2015-03-10

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10{sup 1} to 10{sup 4} K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials.

  6. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, Christoph; Androsch, R; Schmelzer, Juern W P

    2017-07-14

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation. © 2017 IOP Publishing Ltd.

  7. How Hot Precursor Modify Island Nucleation: A Rate-Equation Model

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, T. L.; Pimpinelli, Alberto

    2015-03-01

    We describe the analysis, based on rate equations, of the hot precursor model mentioned in the previous talk. Two key parameters are the competing times of ballistic monomers decaying into thermalized monomers vs. being captured by an island, which naturally define a ``thermalization'' scale for the system. We interpret the energies and dimmensionless parameters used in the model, and provide both an implicit analytic solution and a convenient asymptotic approximation. Further analysis reveals novel scaling regimes and nonmonotonic crossovers between them. To test our model, we applied it to experiments on parahexaphenyl (6P) on sputtered mica. With the resulting parameters, the curves derived from our analytic treatment account very well for the data at the 4 different temperatures. The fit shows that the high-flux regime corresponds not to ALA (attachment-limited aggregation) or HMA (hot monomer aggregation) but rather to an intermediate scaling regime related to DLA (diffusion-limited aggregation). We hope this work stimulates further experimental investigations. Work at UMD supported by NSF CHE 13-05892.

  8. The investigation of nucleation rate and Johnson–Mehl–Avrami model of Pt–Pd alloy using molecular dynamics simulation during heat treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr

    2015-05-25

    Highlights: • The Avrami exponent increases with increasing annealing temperature. • Recrystallization occurrence is most likely at low temperatures. • Heat of fusion and critical nucleus radius are evaluated from the MD calculations. - Abstract: In this work, molecular dynamics simulation is carried out to investigate the crystallization kinetics at low cooling rate during solidification and at different annealing temperature from amorphous phase during annealing of Pt–Pd (Pt{sub 50}–Pd{sub 50}) model alloy system. The interfacial free energies, critical nucleus radius, total free energy from high temperatures to low temperatures during solidification of alloy system are also determined by molecular dynamics. At the same time, in order to define the nucleation rate, it is suggested a model based on nucleation theory. The local atomic bonded pairs and short range order properties in the model alloy have been analyzed using Honeycutt–Andersen (HA) method. The kinetic of the crystallization is described by Johnson, Mehl and Avrami (JMA) model, which has been analyzed with MD method by using the crystalline-type bonded pairs during annealing process. The results demonstrated that the crystal kinetics is very important to understand the process of homogenous nucleation formation and also, the results are consistent with the classical nucleation theory.

  9. Nonequilibrium thermodynamics of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M., E-mail: marco.schweizer@math.ethz.ch [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: leonard.sagis@wur.nl [ETH Zurich, Department of Materials, Polymer Physics, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden, 6708 WG Wageningen (Netherlands)

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  10. Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation

    Science.gov (United States)

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2006-01-01

    New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.

  11. Deviatoric constitutive model: domain of strain rate validity

    Energy Technology Data Exchange (ETDEWEB)

    Zocher, Marvin A [Los Alamos National Laboratory

    2009-01-01

    A case is made for using an enhanced methodology in determining the parameters that appear in a deviatoric constitutive model. Predictability rests on our ability to solve a properly posed initial boundary value problem (IBVP), which incorporates an accurate reflection of material constitutive behavior. That reflection is provided through the constitutive model. Moreover, the constitutive model is required for mathematical closure of the IBVP. Common practice in the shock physics community is to divide the Cauchy tensor into spherical and deviatoric parts, and to develop separate models for spherical and deviatoric constitutive response. Our focus shall be on the Cauchy deviator and deviatoric constitutive behavior. Discussions related to the spherical part of the Cauchy tensor are reserved for another time. A number of deviatoric constitutive models have been developed for utilization in the solution of IBVPs that are of interest to those working in the field of shock physics, e.g. All of these models are phenomenological and contain a number of parameters that must be determined in light of experimental data. The methodology employed in determining these parameters dictates the loading regime over which the model can be expected to be accurate. The focus of this paper is the methodology employed in determining model parameters and the consequences of that methodology as it relates to the domain of strain rate validity. We shall begin by describing the methodology that is typically employed. We shall discuss limitations imposed upon predictive capability by the typically employed methodology. We shall propose a modification to the typically employed methodology that significantly extends the domain of strain rate validity.

  12. Earthquake sequence simulation of a multi-scale asperity model following rate and state friction - occurrence of large earthquakes by cascade up vs. own nucleation

    Science.gov (United States)

    Noda, H.; Nakatani, M.; Hori, T.

    2012-12-01

    Seismological observations [e.g., Abercrombie and Rice, 2005] suggest that a larger earthquake has larger fracture energy Gc. One way to realize such scaling is to assume a hierarchical patchy distribution of Gc on a fault; there are patches of different sizes with different Gc so that a larger patch has larger Gc. Ide and Aochi [2005] conducted dynamic rupture simulations with such a distribution of weakening distance Dc in a linear slip-weakening law, initiating ruptures on the smallest patch which sometimes grow up by cascading into a larger scale. They suggested that the initial phase of a large earthquake is indistinguishable from that of a small earthquake. In the present study we simulate a similar multi-scale asperity model but following rate and state friction (RSF), where stress and strength distribution resulting from the history of coseismic and aseismic slip influences the way of rupture initiation, growth, and arrest of a forthcoming earthquake. Multi-scale asperities were represented by a distribution of the state evolution distance dc in the aging version of RSF evolution law. Numerical scheme adopted [Noda and Lapsuta, 2010] is fully dynamic and 3D. We have modeled a circular rate-weakening patch, Patch L (radius R), which has a smaller patch, Patch S (radius r), in it by the rim. The ratio of the radii α = R/r is the amount of the gap between two scales. Patch L and Patch S respectively have nucleation sizes Rc and rc. The same brittleness β = R/Rc = r/rc is assumed for simplicity. We shall call an earthquake which ruptures only Patch S as an S-event, and one which ruptures Patch L, an L-event. We have conducted a series of simulations with α from 2 to 5 while keeping β = 3 until the end of the 20th L-event. If the patch S was relatively large (α = 2 and 2.5), only L-events occurred and they always dynamically cascaded up from a patch S rupture following small quasi-static nucleation there. If the patch S was small enough (α = 5), in

  13. Nucleation and Crystallization in nucleated Polymers

    Science.gov (United States)

    Schick, Christoph; Zhuravlev, Evgeny; Wurm, Andreas

    2012-02-01

    Crystallization is commonly considered as nucleation followed by a growth process. Here we apply the recently developed technique, differential fast scanning calorimetry (DFSC), for a unique, new look at the crystal growth of poly(epsilon-caprolactone) (PCL) and PCL carbon nanotube composites from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity during temperature treatments by employing cooling and heating rates from 50 to 50,000 K/s. First, the crystal nucleation and overall crystallization half times were determined simultaneously in the range of temperatures where crystallization of PCL occurs. After attempting to analyze the experiments with the classical nucleation and growth model a new methodology is described, which addresses the specific problems of crystallization of flexible linear macromolecules. The structures seem to range from having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms at temperatures from the glass transition to equilibrium melting (increasingly perfect and larger crystals). The mechanisms and kinetics of growth (if any) involve a detailed understanding of the interaction with the surrounding rigid amorphous fraction (RAF) in dependence of crystal size and perfection. E. Zhuravlev, J.W.P. Schmelzer, B. Wunderlich and C. Schick, Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL), Polymer 52 (2011) 1983-1997.

  14. Colloids and Nucleation

    Science.gov (United States)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  15. A note on the nucleation with multiple steps: parallel and series nucleation.

    Science.gov (United States)

    Iwamatsu, Masao

    2012-01-28

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  16. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field.

    Science.gov (United States)

    Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J

    2011-07-05

    The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society

  17. Communication: Kinetics of scavenging of small, nucleating clusters: First nucleation theorem and sum rules

    Science.gov (United States)

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; Lehtinen, Kari E. J.

    2015-01-01

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of sub-critical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here, we extend the kinetic derivation of the first nucleation theorem to give a general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.

  18. Preferential Nucleation during Polymorphic Transformations

    Science.gov (United States)

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  19. Nucleation of Crystals in Solution

    Science.gov (United States)

    Vekilov, Peter G.

    2010-07-01

    Solution crystallization is an essential part of processes in the chemical and pharmaceutical industries and a major step in physiological and pathological phenomena. Crystallization starts with nucleation and control of nucleation is crucial for the control of the number, size, perfection, polymorphism and other characteristics of the crystalline materials. Recently, there have been significant advances in the understanding of the mechanism of nucleation of crystals in solution. The most significant of these is the two-step mechanism of nucleation, according to which the crystalline nucleus appears inside pre-existing metastable clusters of size several hundred nanometers, which consist of dense liquid and are suspended in the solution. While initially proposed for protein crystals, the applicability of this mechanism has been demonstrated for small molecule organic materials, colloids, and biominerals. This mechanism helps to explain several long-standing puzzles of crystal nucleation in solution: nucleation rates which are many orders of magnitude lower than theoretical predictions, nucleation kinetic dependencies with steady or receding parts at increasing supersaturation, the role of heterogeneous substrates for polymorph selection, the significance of the dense protein liquid, and others. More importantly, this mechanism provides powerful tools for control of the nucleation process by varying the solution thermodynamic parameters so that the volume occupied by the dense liquid shrinks or expands.

  20. Nucleation of Ice

    Science.gov (United States)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  1. Manual Choice Reaction Times in the Rate-Domain

    Directory of Open Access Journals (Sweden)

    Chris eHarris

    2014-06-01

    Full Text Available Over the last 150 years, human manual reaction times (RTs have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modelled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process. However, latency distribution of saccades are very close to the reciprocal Normal, suggesting that ‘rate’ (reciprocal RT may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination and two instruction sets (urgent vs. accurate. We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks subjects they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be

  2. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K.; Mitra, S.K.; Pruppacher, H.R. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  3. Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation

    CERN Document Server

    Cabriolu, Raffaela

    2015-01-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...

  4. Sigmoid kinetics of protein crystal nucleation

    Science.gov (United States)

    Nanev, Christo N.; Tonchev, Vesselin D.

    2015-10-01

    A non-linear differential equation expressing the new phase nucleation rate in the different steps of the process (non-stationary and stationary nucleation and in the plateau region) is derived from basic principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function describes both nucleation scenarios: the one according to the classical theory, and the other according to the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation kinetics law.

  5. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  6. Simple improvements to classical bubble nucleation models

    CERN Document Server

    Tanaka, Kyoko K; Angélil, Raymond; Diemand, Jürg

    2015-01-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a new prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by T...

  7. Systematic coarse-graining in nucleation theory

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2015-01-01

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys

  8. The working domain in reactive extrusion .2. The effect of the polymerization rate

    NARCIS (Netherlands)

    der Goot, A.J.van; Klaassens, S.A.; Janssen, L.P.B.M.

    1997-01-01

    This article describes the influence of the polymerization rate on the working domain of a counter-rotating twin-screw extruder used as a polymerization reactor. The rate of polymerization was varied by changing the maleic anhydride (Mah) content in the feed, which consisted of styrene, n-butylmetha

  9. The Working Domain in Reactive Extrusion. Part II : The Effect of the Polymerization Rate

    NARCIS (Netherlands)

    Goot, A.J. van der; Klaassens, S.A.; Janssen, L.P.B.M.

    1997-01-01

    This article describes the influence of the polymerization rate on the working domain of a counter-rotating twin-screw extruder used as a polymerization reactor. The rate of polymerization was varied by changing the maleic anhydride (Mah) content in the feed, which consisted of styrene, n-butylmetha

  10. The role of formin tails in actin nucleation, processive elongation, and filament bundling.

    Science.gov (United States)

    Vizcarra, Christina L; Bor, Batbileg; Quinlan, Margot E

    2014-10-31

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.

  11. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed. PMID:28054600

  12. Stochastic kinetics reveal imperative role of anisotropic interfacial tension to determine morphology and evolution of nucleated droplets in nematogenic films

    Science.gov (United States)

    Bhattacharjee, Amit Kumar

    2017-01-01

    For isotropic fluids, classical nucleation theory predicts the nucleation rate, barrier height and critical droplet size by ac- counting for the competition between bulk energy and interfacial tension. The nucleation process in liquid crystals is less understood. We numerically investigate nucleation in monolayered nematogenic films using a mesoscopic framework, in par- ticular, we study the morphology and kinetic pathway in spontaneous formation and growth of droplets of the stable phase in the metastable background. The parameter κ that quantifies the anisotropic elastic energy plays a central role in determining the geometric structure of the droplets. Noncircular nematic droplets with homogeneous director orientation are nucleated in a background of supercooled isotropic phase for small κ. For large κ, noncircular droplets with integer topological charge, accompanied by a biaxial ring at the outer surface, are nucleated. The isotropic droplet shape in a superheated nematic background is found to depend on κ in a similar way. Identical growth laws are found in the two cases, although an unusual two-stage mechanism is observed in the nucleation of isotropic droplets. Temporal distributions of successive events indi- cate the relevance of long-ranged elasticity-mediated interactions within the isotropic domains. Implications for a theoretical description of nucleation in anisotropic fluids are discussed.

  13. Classical nucleation theory from a dynamical approach to nucleation

    CERN Document Server

    Lutsko, James F

    2013-01-01

    It is shown that diffusion-limited classical nucleation theory (CNT) can be recovered as a simple limit of the recently proposed dynamical theory of nucleation based on fluctuating hydrodynamics (Lutsko, JCP 136, 034509 (2012)). The same framework is also used to construct a more realistic theory in which clusters have finite interfacial width. When applied to the dilute solution/dense solution transition in globular proteins, it is found that the extension gives corrections to the the nucleation rate even for the case of small supersaturations due to changes in the monomer distribution function and to the excess free energy. It is also found that the monomer attachement/detachment picture breaks down at high supersaturations corresponding to clusters smaller than about 100 molecules. The results also confirm the usual assumption that most important corrections to CNT can be acheived by means of improved estimates of the free energy barrier. The theory also illustrates two topics that have received considerab...

  14. Simple improvements to classical bubble nucleation models

    Science.gov (United States)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  15. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.

    Science.gov (United States)

    Mannakee, Brian K; Gutenkunst, Ryan N

    2016-07-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

  16. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.

    Directory of Open Access Journals (Sweden)

    Brian K Mannakee

    2016-07-01

    Full Text Available The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

  17. ESTIMATION OF ATTRACTION DOMAIN AND EXPONENTIAL CONVERGENCE RATE OF CONTINUOUS FEEDBACK ASSOCIATIVE MEMORY

    Institute of Scientific and Technical Information of China (English)

    周冬明; 曹进德; 李继彬

    2001-01-01

    The attraction domain of memory patterns and exponential convergence rate of the network trajectories to memory patterns for continuous feedback associative memory are estimated again by using of some analysis techniques and Liapunov method, some new re sults are obtained, that can be used for evaluation of fault-tolerance capability and the syn thesis procedures for continuous feedback associative memory neural networks.

  18. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.

    Science.gov (United States)

    Diemand, Jürg; Angélil, Raymond; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-11-01

    We present results from direct, large-scale molecular dynamics simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones atoms and cover up to 56 million time steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions; only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucleation simulations. The critical bubbles sizes derived with the nucleation theorem agree well with the CNT predictions at all temperatures. Local hot spots reported in the literature are not seen: Regions where a bubble nucleation event will occur are not above the average temperature, and no correlation of temperature fluctuations with subsequent bubble formation is seen.

  19. Ligand association rates to the inner-variable-domain of a dual-variable-domain immunoglobulin are significantly impacted by linker design.

    Science.gov (United States)

    Digiammarino, Enrico L; Harlan, John E; Walter, Karl A; Ladror, Uri S; Edalji, Rohinton P; Hutchins, Charles W; Lake, Marc R; Greischar, Amy J; Liu, Junjian; Ghayur, Tariq; Jakob, Clarissa G

    2011-01-01

    The DVD-Ig (TM) protein is a dual-specific immunoglobulin. Each of the two arms of the molecule contains two variable domains, an inner variable domain and an outer variable domain linked in tandem, each with binding specificity for different targets or epitopes. One area of on-going research involves determining how the proximity of the outer variable domain affects the binding of ligands to the inner variable domain. To explore this area, we prepared a series of DVD-Ig proteins with binding specificities toward TNFα and an alternate therapeutic target. Kinetic measurements of TNFα binding to this series of DVD-Ig proteins were used to probe the effects of variable domain position and linker design on ligand on- and off-rates. We found that affinities for TNFα are generally lower when binding to the inner domain than to the outer domain and that this loss of affinity is primarily due to reduced association rate. This effect could be mitigated, to some degree, by linker design. We show several linker sequences that mitigate inner domain affinity losses in this series of DVD-Ig proteins. Moreover, we show that single chain proteolytic cleavage between the inner and outer domains, or complete outer domain removal, can largely restore inner domain TNFα affinity to that approaching the reference antibody. Taken together, these results suggest that a loss of affinity for inner variable domains in this set of DVD-Ig proteins may be largely driven by simple steric hindrance effects and can be reduced by careful linker design.

  20. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism

    Science.gov (United States)

    Lupi, Laura; Peters, Baron; Molinero, Valeria

    2016-12-01

    According to Classical Nucleation Theory (CNT), the transition from liquid to crystal occurs in a single activated step with a transition state controlled by the size of the crystal embryo. This picture has been challenged in the last two decades by several reports of two-step crystallization processes in which the liquid first produces pre-ordered or dense domains, within which the crystal nucleates in a second step. Pre-ordering preceding crystal nucleation has been recently reported in simulations of ice crystallization, raising the question of whether the mechanism of ice nucleation involves two steps. In this paper, we investigate the heterogeneous nucleation of ice on carbon surfaces. We use molecular simulations with efficient coarse-grained models combined with rare event sampling methods and free energy calculations to elucidate the role of pre-ordering of liquid water at the carbon surface in the reaction coordinate for heterogeneous nucleation. We find that ice nucleation proceeds through a classical mechanism, with a single barrier between liquid and crystal. The reaction coordinate that determines the crossing of the nucleation barrier is the size of the crystal nucleus, as predicted by CNT. Wetting of the critical ice nuclei within pre-ordered domains decreases the nucleation barrier, increasing the nucleation rates. The preferential pathway for crystallization involves the early creation of pre-ordered domains that are the birthplace of the ice crystallites but do not represent a minimum in the free energy pathway from liquid to ice. We conclude that a preferential pathway through an intermediate-order precursor does not necessarily result in a two-step mechanism.

  1. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... clusters fluctuates, but the mean temperature remains below the temperature in the supersaturated gas until they reach the critical nucleation size. The critical nuclei have, however, a temperature equal to the supersaturated gas. The kinetics of homogeneous nucleation is not only caused by a grow...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  2. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain

    Directory of Open Access Journals (Sweden)

    She Xiao-qiang

    2014-08-01

    Full Text Available In image processing of high-resolution sliding spotlight SAR, it is important to know the Doppler rate with accuracy; however, traditional Doppler rate estimation algorithms are not very helpful because of the azimuth spectrum folding phenomenon. In this study, an algorithm that works on the transposition domain is proposed to solve this problem. Furthermore, the algorithm is also helpful in obtaining excellent focused images by embedding it in the two-step technique. Finally, the proposed algorithm is verified using computer simulations.

  3. Association between Frequency Domain Heart Rate Variability and Unplanned Readmission to Hospital in Geriatric Patients

    Directory of Open Access Journals (Sweden)

    Fu Chin-Hua

    2011-02-01

    Full Text Available Abstract Background An accurate prediction of unplanned readmission (UR after discharge from hospital can facilitate physician's decision making processes for providing better quality of care in geriatric patients. The objective of this study was to explore the association of cardiac autonomic functions as measured by frequency domain heart rate variability (HRV and 14-day UR in geriatric patients. Methods Patients admitted to the geriatric ward of a regional hospital in Chiayi county in Taiwan were followed prospectively from July 2006 to June 2007. Those with invasive tubes and those who were heavy smokers, heavy alcohol drinkers, on medications that might influence HRV, or previously admitted to the hospital within 30 days were excluded. Cardiac autonomic functions were evaluated by frequency domain indices of HRV. Multiple logistic regression was used to assess the association between UR and HRV indices adjusted for age and length of hospitalization. Results A total of 78 patients met the inclusion criteria and 15 of them were readmitted within 14 days after discharge. The risk of UR was significantly higher in patients with lower levels of total power (OR = 1.39; 95% CI = 1.04-2.00, low frequency power (LF (OR = 1.22; 95% CI = 1.03-1.49, high frequency power (HF (OR = 1.27; 95% CI = 1.02-1.64, and lower ratios of low frequency power to high frequency power (LF/HF ratio (OR = 1.96; 95% CI = 1.07-3.84. Conclusion This is the first study to evaluate the association between frequency domain heart rate variability and the risk of UR in geriatric patients. Frequency domain heart rate variability indices measured on admission were significantly associated with increased risk of UR in geriatric patients. Additional studies are required to confirm the value and feasibility of using HRV indices on admission as a non-invasive tool to assist the prediction of UR in geriatric patients.

  4. On the convergence rate of a parallel nonoverlapping domain decomposition method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In recent years,a nonoverlapping domain decomposition iterative procedure,which is based on using Robin-type boundary conditions as information transmission conditions on the subdomain interfaces,has been developed and analyzed.It is known that the convergence rate of this method is 1-O(h),where h is mesh size.In this paper,the convergence rate is improved to be 1-O(h1/2 H-1/2)sometime by choosing suitable parameter,where H is the subdomain size.Counter examples are constructed to show that our convergence estimates are sharp,which means that the convergence rate cannot be better than 1-O(h1/2H-1/2)in a certain case no matter how parameter is chosen.

  5. On the convergence rate of a parallel nonoverlapping domain decomposition method

    Institute of Scientific and Technical Information of China (English)

    QIN LiZhen; SHI ZhongCi; XU XueJun

    2008-01-01

    In recent years, a nonoverlapping domain decomposition iterative procedure, which is based on using Robin-type boundary conditions as information transmission conditions on the subdomain interfaces, has been developed and analyzed. It is known that the convergence rate of this method is 1 - O(h), where h is mesh size. In this paper, the convergence rate is improved to be 1 - O(h1/2H-1/2) sometime by choosing suitable parameter, where H is the subdomain size. Counter examples are constructed to show that our convergence estimates are sharp, which means that the convergence rate cannot be better than 1 - O(h1/2H-1/2) in a certain case no matter how parameter is chosen.

  6. Effects of shear flow on phase nucleation and crystallization

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  7. Frequency and Time Domain Analysis of Foetal Heart Rate Variability with Traditional Indexes: A Critical Survey

    Directory of Open Access Journals (Sweden)

    Maria Romano

    2016-01-01

    Full Text Available Monitoring of foetal heart rate and its variability (FHRV covers an important role in assessing health of foetus. Many analysis methods have been used to get quantitative measures of FHRV. FHRV has been studied in time and in frequency domain and interesting clinical results have been obtained. Nevertheless, a standardized definition of FHRV and a precise methodology to be used for its evaluation are lacking. We carried out a literature overview about both frequency domain analysis (FDA and time domain analysis (TDA. Then, by using simulated FHR signals, we defined the methodology for FDA. Further, employing more than 400 real FHR signals, we analysed some of the most common indexes, Short Term Variability for TDA and power content of the spectrum bands and sympathovagal balance for FDA, and evaluated their ranges of values, which in many cases are a novelty. Finally, we verified the relationship between these indexes and two important parameters: week of gestation, indicator of foetal growth, and foetal state, classified as active or at rest. Our results indicate that, according to literature, it is necessary to standardize the procedure for FHRV evaluation and to consider week of gestation and foetal state before FHR analysis.

  8. The Popeye domain containing genes: essential elements in heart rate control.

    Science.gov (United States)

    Schindler, Roland F; Poon, Kar Lai; Simrick, Subreena; Brand, Thomas

    2012-12-01

    The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.

  9. Frequency Domain Analysis for Assessing Fluid Responsiveness by Using Instantaneous Pulse Rate Variability

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lin

    2016-02-01

    Full Text Available In the ICU, fluid therapy is conventional strategy for the patient in shock. However, only half of ICU patients have well-responses to fluid therapy, and fluid loading in non-responsive patient delays definitive therapy. Prediction of fluid responsiveness (FR has become intense topic in clinic. Most of conventional FR prediction method based on time domain analysis, and it is limited ability to indicate FR. This study proposed a method which predicts FR based on frequency domain analysis, named instantaneous pulse rate variability (iPRV. iPRV provides a new indication in very high frequency (VHF range (0.4-0.8Hz of spectrum for peripheral responses. Twenty six healthy subjects participated this study and photoplethysmography signal was recorded in supine baseline, during head-up tilt (HUT, and passive leg raising (PLR, which induces variation of venous return and helps for quantitative assessment of FR individually. The result showed the spectral power of VHF decreased during HUT (573.96±756.36 ms2 in baseline; 348.00±434.92 ms2 in HUT and increased during PLR (573.96±756.36 ms2 in baseline; 718.92±973.70 ms2 in PLR, which present the compensated regulation of venous return and FR. This study provides an effective indicator for assessing FR in frequency domain and has potential to be a reliable system in ICU.

  10. Final Report on investigations of the influence of helium concentration and implantation rate on cavity nucleation and growth during neutron irradiation of Fe and EUROFER 97

    Energy Technology Data Exchange (ETDEWEB)

    Eldrup, M.; Singh, B.N. (Risoe DTU, Materials Research Div., Roskilde (Denmark)); Golubov, S. (Materials Science and Technology Div., Oak Ridge National Lab., Oak Ridge (United States))

    2010-09-15

    framework of the Production Bias Model have been carried out for neutron irradiation with and without prior He implantation and for different implantation rates for comparison with the experimental results. Further, the purpose was to evaluate the role of helium in cavity nucleation and growth during 14 MeV neutron irradiation in a fusion reactor. Calculations were carried out for the experimental temperatures of 323 K and 623 K, i.e. below and above the recovery stage V. In general, the calculations agree qualitatively with the experimental observations and in some cases quantitatively. In this way the calculations give an experimentally supported detailed insight into the evolution of the cavity microstructure under different conditions. (author)

  11. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  12. Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem

    Directory of Open Access Journals (Sweden)

    S. Ehrhart

    2013-04-01

    Full Text Available The SAWNUC microphysical aerosol nucleation model is used to study the effect of reactor walls on the interpretation of nucleation experiments with respect to nucleation theory. This work shows that loss processes, such as wall losses, influence the interpretation of nucleation experiments, especially at low growth rates and short lifetime of freshly nucleated particles. In these cases the power dependency of the formation rates, determined at a certain particle size, with respect to H2SO4 does not correspond to the approximate number of H2SO4 molecules in the critical cluster as expected by the first nucleation theorem. Observed ∂log(J/∂log([H2SO4] therefore can vary widely for identical nucleation conditions but different sink terms.

  13. Surface effects in nucleation

    CERN Document Server

    Alekseechkin, Nikolay V

    2016-01-01

    The classical nucleation theory (CNT) concept of a nucleus as a fragment of the bulk new phase fails for nanosized nuclei. An extension of CNT taking into account the properties of the transition region between coexisting bulk phases is proposed. For this purpose, the finite-thickness layer method which is an alternative to the Gibbs one is used; the transition region is considered as a separate (surface) phase. An equation for the nucleation work is derived which is basic for the multivariable theory of nucleation.

  14. Ice nucleation terminology

    Directory of Open Access Journals (Sweden)

    G. Vali

    2014-08-01

    Full Text Available Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  15. Nucleation Kinetics of Cis-Entacapone

    OpenAIRE

    Škalec Šamec, D.; Meštrović, E.; Sander, A.

    2012-01-01

    The solubility curve and the metastable zone width for the system cis-entacapone –2-propanol have been determined in defined process conditions. These results along with values of induction period for the constant feed concentration at different levels of supersaturation were used for evaluating interfacial energy according to the classical nucleation theory. The results obtained were used for calculation of the critical nucleus size, nucleation rate, and prediction of crystal growth mecha...

  16. Surface Bubble Nucleation Stability

    NARCIS (Netherlands)

    Seddon, James Richard Thorley; Kooij, Ernst S.; Poelsema, Bene; Zandvliet, Henricus J.W.; Lohse, Detlef

    2011-01-01

    Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate

  17. Comment on evidence for surface-initiated homogenous nucleation

    Directory of Open Access Journals (Sweden)

    J. E. Kay

    2003-01-01

    Full Text Available We investigate theoretical, laboratory, and atmospheric evidence for a recently proposed hypothesis: homogenous ice nucleation occurs at the surface, not in the volume, of supercooled water drops. Using existing thermodynamic arguments, laboratory experiments, and atmospheric data, we conclude that ice embryo formation at the surface cannot be confirmed or disregarded. Ice nucleation rates measured as a function of drop size in an air ambient could help distinguish between volume and surface nucleation rates.

  18. Parameterization of homogeneous ice nucleation for cloud and climate models based on classical nucleation theory

    Directory of Open Access Journals (Sweden)

    V. I. Khvorostyanov

    2012-03-01

    Full Text Available A new analytical parameterization of homogeneous ice nucleation is developed based on extended classical nucleation theory including new equations for the critical radii of the ice germs, free energies and nucleation rates as the functions of the temperature and water saturation ratio simultaneously. By representing these quantities as separable products of the analytical functions of the temperature and supersaturation, analytical solutions are found for the integral-differential supersaturation equation and concentration of nucleated crystals. Parcel model simulations are used to illustrate the general behavior of various nucleation properties under various conditions, for justifications of the further key analytical simplifications, and for verification of the resulting parameterization.

    The final parameterization is based upon the values of the supersaturation that determines the current or maximum concentrations of the nucleated ice crystals. The crystal concentration is analytically expressed as a function of time and can be used for parameterization of homogeneous ice nucleation both in the models with small time steps and for substep parameterization in the models with large time steps. The crystal concentration is expressed analytically via the error functions or elementary functions and depends only on the fundamental atmospheric parameters and parameters of classical nucleation theory. The diffusion and kinetic limits of the new parameterization agree with previous semi-empirical parameterizations.

  19. Unraveling the "pressure effect" in nucleation.

    Science.gov (United States)

    Wedekind, Jan; Hyvärinen, Antti-Pekka; Brus, David; Reguera, David

    2008-09-19

    The influence of the pressure of a chemically inert carrier gas on the nucleation rate is one of the biggest puzzles in the research of gas-liquid nucleation. Experiments can show a positive effect, a negative effect, or no effect at all. The same experiment may show both trends for the same substance depending on temperature, or for different substances at the same temperature. We show how this ambiguous effect naturally arises from the competition of two contributions: nonisothermal effects and pressure-volume work. Our model clarifies seemingly contradictory experimental results and quantifies the variation of the nucleation ability of a substance in the presence of an ambient gas. Our findings are corroborated by molecular dynamics simulations and might have important implications since nucleation in experiments, technical applications, and nature practically always occurs in the presence of an ambient gas.

  20. Systematic improvement of classical nucleation theory.

    Science.gov (United States)

    Prestipino, Santi; Laio, Alessandro; Tosatti, Erio

    2012-06-01

    We reconsider the applicability of classical nucleation theory (CNT) to the calculation of the free energy of solid cluster formation in a liquid and its use to the evaluation of interface free energies from nucleation barriers. Using two different freezing transitions (hard spheres and NaCl) as test cases, we first observe that the interface-free-energy estimates based on CNT are generally in error. As successive refinements of nucleation-barrier theory, we consider corrections due to a nonsharp solid-liquid interface and to a nonspherical cluster shape. Extensive calculations for the Ising model show that corrections due to a nonsharp and thermally fluctuating interface account for the barrier shape with excellent accuracy. The experimental solid nucleation rates that are measured in colloids are better accounted for by these non-CNT terms, whose effect appears to be crucial in the interpretation of data and in the extraction of the interface tension from them.

  1. Applicability of the Fokker-Planck equation to the description of diffusion effects on nucleation

    Science.gov (United States)

    Sorokin, M. V.; Dubinko, V. I.; Borodin, V. A.

    2017-01-01

    The nucleation of islands in a supersaturated solution of surface adatoms is considered taking into account the possibility of diffusion profile formation in the island vicinity. It is shown that the treatment of diffusion-controlled cluster growth in terms of the Fokker-Planck equation is justified only provided certain restrictions are satisfied. First of all, the standard requirement that diffusion profiles of adatoms quickly adjust themselves to the actual island sizes (adiabatic principle) can be realized only for sufficiently high island concentration. The adiabatic principle is essential for the probabilities of adatom attachment to and detachment from island edges to be independent of the adatom diffusion profile establishment kinetics, justifying the island nucleation treatment as the Markovian stochastic process. Second, it is shown that the commonly used definition of the "diffusion" coefficient in the Fokker-Planck equation in terms of adatom attachment and detachment rates is justified only provided the attachment and detachment are statistically independent, which is generally not the case for the diffusion-limited growth of islands. We suggest a particular way to define the attachment and detachment rates that allows us to satisfy this requirement as well. When applied to the problem of surface island nucleation, our treatment predicts the steady-state nucleation barrier, which coincides with the conventional thermodynamic expression, even though no thermodynamic equilibrium is assumed and the adatom diffusion is treated explicitly. The effect of adatom diffusional profiles on the nucleation rate preexponential factor is also discussed. Monte Carlo simulation is employed to analyze the applicability domain of the Fokker-Planck equation and the diffusion effect beyond it. It is demonstrated that a diffusional cloud is slowing down the nucleation process for a given monomer interaction with the nucleus edge.

  2. Homogeneous crystal nucleation in Ni droplets

    Science.gov (United States)

    Kožíšek, Zdeněk; Demo, Pavel

    2017-10-01

    Crystal nucleation kinetics is often represented by induction times or metastable zone widths (Kulkarni et al., 2013; Bokeloh et al., 2011). Repeating measurements of supercooling or time delay, at which phase transition is detected, are statistically processed to determine the so-called survivorship function, from which nucleation rate is computed. The size distribution of nuclei is difficult to measure near the critical size directly, and it is not clear which amount of nuclei is formed at the moment when the phase transition is detected. In the present paper, kinetic nucleation equations are solved for the crystal nucleation in Ni liquid droplet to determine the number of nuclei formed within a considered system. Analysis of supercooling experimental data, based on the classical nucleation theory CNT), computes appropriate values of the nucleation rate. However, CNT underestimates the number of nuclei F (F ≪ 1 for supercritical sizes). Taking into account the dependence of the surface energy on nucleus size to data analysis overcomes this discrepancy and leads to reasonable values of the size distribution of nuclei.

  3. Frequency domain analysis of heart rate variability in horses at rest and during exercise.

    Science.gov (United States)

    Physick-Sheard, P W; Marlin, D J; Thornhill, R; Schroter, R C

    2000-05-01

    The pattern of variation in heart rate on a beat-to-beat basis contains information concerning sympathetic (SNS) and parasympathetic (PNS) contributions to autonomic nervous system (ANS) modulation of heart rate (HR). In the present study, heart period (RR interval) time series data were collected at rest and during 3 different treadmill exercise protocols from 6 Thoroughbred horses. Frequency and spectral power were determined in 3 frequency bands: very low (VLF) 0-0.01-0.07-< or = 0.5 cycles/beat. Indicators of sympathetic (SNSI = LO/HI) and parasympathetic (PNSI = HI/TOTAL) activity were calculated. Power in all bands fell progressively with increasing exercise intensity from rest to trot. At the gallop VLF and LO power continued to fall but HI power rose. SNSI rose from rest to walk, then fell with increasing effort and was lowest at the gallop. PNSI fell from rest to walk, then rose and was highest at the gallop. Normalised HI power exceeded combined VLF and LO power at all gaits, with the ratio HI to LO power being lowest at the walk and highest at the gallop. ANS indicators showed considerable inter-horse variation, and varied less consistently than raw power with increasing physical effort. In the horses studied, the relationship between power and HR changed at exercise intensities associated with heart rates above approximately 120-130 beats/min. At this level, humoral and other non-neural mechanisms may become more important than autonomic modulation in influencing heart rate and heart rate variability (HRV). HRV at intense effort may be influenced by respiratory-gait entrainment, energetics of locomotion and work of breathing. HRV analysis in the frequency domain would appear to be of potential value as a noninvasive means of assessing autonomic modulation of heart rate at low exercise intensities, only. The technique may be a sensitive method for assessing exercise response to experimental manipulations and disease states.

  4. Atmospheric nucleation: highlights of the EUCAARI project and future directions

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2010-11-01

    Full Text Available Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions, atmospheric nucleation was studied by (i developing and testing new air ion and cluster spectrometers, (ii conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii investigating atmospheric nucleation mechanism under field conditions, and (iv applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s. This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete

  5. A nanoscale temperature-dependent heterogeneous nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. Y. [Nanosurface Science and Engineering Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060 Guangdong (China); Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, 510275 Guangdong (China)

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  6. The Role of Formin Tails in Actin Nucleation, Processive Elongation, and Filament Bundling*

    Science.gov (United States)

    Vizcarra, Christina L.; Bor, Batbileg; Quinlan, Margot E.

    2014-01-01

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements. PMID:25246531

  7. Overnight heart rate variability in patients with obstructive sleep apnoea: a time and frequency domain study.

    Science.gov (United States)

    Zhu, Kaixian; Chemla, Denis; Roisman, Gabriel; Mao, Wenyuan; Bazizi, Samir; Lefevre, Amaury; Escourrou, Pierre

    2012-11-01

    Heightened sympathetic activity plays a role in the cardiovascular sequelae of obstructive sleep apnoea (OSA). Cardiac autonomic function may be assessed non-invasively by studying heart rate variability (HRV). The aim of the present study was to compare overnight HRV between a control group and a group of subjects with severe OSA. The potential confounding effects of age, sex, baseline autonomic status and sleep stage distribution were taken into account. Our prospective Holter study compared overnight (0030-0530 hours) HRV in 23 controls (apnoea hypopnoea index (AHI) = 5 ± 3 /h) and 23 subjects with severe OSA (AHI = 65 ± 23 /h), matched for age and sex and with a similar percentage of rapid eye movement sleep. The mean normal-to-normal RR interval (NN) was shorter in the OSA compared with control group (903 vs 1039 ms, respectively), whereas the other time-domain indices of HRV, as well as the classic frequency-domain indices, were similar. Essentially similar results were obtained hourly and when only subjects with high mean values of the standard deviation of all NN (≥ 90 ms) were evaluated. In the 0.01-0.06 Hz range corresponding to the typical OSA pattern of bradycardia-tachycardia termed cyclic variation of heart rate (CVHR), higher power was documented hourly in OSA, with a significant correlation between overnight power and both AHI and mean oxyhaemoglobin saturation. The percentage of NN > x ms different from the previous one (pNNx family) had no diagnostic value. The results of the present study suggest that NN may be the best index to quantify the overnight sympathovagal balance in OSA and that a spectral band overlapping the apnoea-related pattern of CVHR slightly improved the characterization of the apnoea-related HRV patterns.

  8. A unified kinetic approach to binary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Physics, Rutgers University, 136 Frelinghuysen Road]|[E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854-8019 (United States); Lazaridis, M. [Norwegian Institute for Air Research (NILU), Instittutvein 18, P. O. Box 100, N-2007 Kjeller (Norway); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy); Georgopoulos, P.G. [E.O.H.S.I., Rutgers University]|[UMDNJ, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)

    1999-11-01

    Two different methods to calculate the steady-state nucleation rate in heteromolecular systems proposed by Stauffer (1976) and Langer (1969) are analyzed. Their mathematical equivalence is explicitly demonstrated, thereby obtaining a generic expression for the rate of binary nucleation. Its numerical evaluation does not entail rotation of the coordinate system at the saddle point, but it only requires data in the natural coordinate system of number fluctuations, namely molecular impingement rates, the droplet free energy and its second order derivatives at the saddle point, and the total density of condensible vapors. {copyright} {ital 1999 American Institute of Physics.}

  9. Local structure of liquid carbon controls diamond nucleation

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Valeriani, C.; Meijer, E.J.; Frenkel, D.

    2009-01-01

    Diamonds melt at temperatures above 4000 K. There are no measurements of the steady-state rate of the reverse process: diamond nucleation from the melt, because experiments are difficult at these extreme temperatures and pressures. Using numerical simulations, we estimate the diamond nucleation rate

  10. Aerosol nucleation in an ultra-low ion density environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean M.

    2012-01-01

    sulfuric acid–water clusters over a range of sulfuric acid concentrations although neutral nucleation mechanisms remain evident at low ionization levels. The effect of ions is found both to enhance the nucleation rate of stable clusters and the initial growth rate. The effects of possible contaminations...

  11. Revision of the classical nucleation theory for supersaturated solutions

    CERN Document Server

    Borisenko, Alexander

    2015-01-01

    During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface and, therefore, alters the entire nucleation kinetics. Unless quite obvious, this effect has been ignored in the classical nucleation theory. To illustrate the results of this new approach, for the case of homogeneous nucleation, we calculate the total solubility (including the contribution from heterophase fluctuations) and the nucleation rate as functions of two parameters of the model and compare these results to the classical ones. One can conclude that discrepancies with the classical nucleation theory are great in the diffusion-limited regime, when the bulk diffusion mobility of solute atoms is small compared to the interfacial one, while in the opposite inter...

  12. Comment on "Simple improvements to classical bubble nucleation models".

    Science.gov (United States)

    Schmelzer, Jürn W P; Baidakov, Vladimir G

    2016-08-01

    A critical analysis of several statements concerning experimental studies, molecular dynamics simulations, and the theoretical interpretation of bubble nucleation processes is performed. In particular, it is shown that the Tolman equation does not supply us, in general, with a satisfactory theoretically founded description of the curvature dependence of the surface tension and the dependence of the steady-state nucleation rate of bubbles and droplets on supersaturation in the framework of classical nucleation theory.

  13. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2008-10-01

    Full Text Available Binary heterogeneous nucleation of water-succinic/glutaric/malonic/adipic acid on nanometer-sized particles is investigated within the frame of classical heterogeneous nucleation theory. Homogeneous nucleation is also included for comparison. It is found that the nucleation probabilities depend on the contact angle and on the size of the seed particles. New thermodynamical properties, such as saturation vapor pressure, density and surface tension for all the dicarboxylic acid aqueous solutions are included in the calculations. While the new surface tension and density formulations do not bring any significant difference in the computed nucleation rate for homogeneous nucleation for succinic and glutaric acids, the use of the newly derived equations for the vapor pressure decrease the acid concentrations in gas phase with 3 orders of magnitude. According to our calculations, the binary heterogeneous nucleation of succinic acid-water and glutaric acid-water – although it requires a 3–4 orders of magnitude lower vapor concentrations than the homogeneous nucleation – cannot take place in atmospheric conditions. On the other hand binary homogeneous nucleation of adipic acid-water systems might be possible in conditions occuring in upper boundary layer. However, a more detailed characterization of the interaction between the surface and the molecules of the nucleating vapor should be considered in the future.

  14. Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

    Science.gov (United States)

    Dou, Shidan; Suo, Yanyan; Liang, Chengbo; Wang, Yi; Zhao, Yuqian; Liu, Jian; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    It is important to measure embryonic heart myocardial wall strain and strain rate for understanding the mechanisms of embryonic heart development. Optical coherence tomography (OCT) can provide depth resolved images with high spatial and temporal resolution, which makes it have the potential to reveal the complex myocardial activity in the early stage embryonic heart. We develop a novel method to measure strain in embryonic chick heart based on spectral domain OCT images and subsequent image processing. We perform 4D(x,y,z,t) scanning on the outflow tract (OFT) of chick embryonic hearts in HH18 stage (~3 days of incubation). Only one image sequence acquired at the special position is selected based on the Doppler blood flow information where the probe beam penetrates through the OFT perpendicularly. For each image of the selected sequence, the cross-section of the myocardial wall can be approximated as an annulus. The OFT is segmented with a semi-automatic boundary detection algorithm, thus the area and mean circumference of the annular myocardial wall can be achieved. The myocardial wall thickness was calculated using the area divided by the mean circumference, and then the strain was obtained. The results demonstrate that OCT can be a useful tool to describe the biomechanical characteristics of the embryonic heart.

  15. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Takehiro Tachizaki

    2013-03-01

    Full Text Available We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  16. A real-time terahertz time-domain polarization analyzer with 80-MHz repetition-rate femtosecond laser pulses.

    Science.gov (United States)

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-03-11

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  17. Analysis of heart rate variability in pre-eclamptic pregnancy: a study employing frequency domain analysis

    Directory of Open Access Journals (Sweden)

    Gul Ar Navi Khan

    2014-08-01

    Full Text Available Background: Preeclampsia is a disorder characterized by development of hypertension to the extent of 140/90 mmHg or more with proteinuria after 20th weeks of pregnancy in a previously normotensive and non proteinuric woman. Physiologically blood pressure is controlled by Autonomic Nervous System (ANS so study of ANS during pregnancy plays a significant role to extract some vital information which may be helpful to deal with Pregnancy Induced Hypertension (PIH or preeclampsia. The autonomic nervous system and changes in ANS during different pathophysiological conditions could be evaluated with heart rate variability analysis test. The modification in the autonomic control occurs during pregnancy and its evaluation through Heart Rate Variability (HRV analysis is very informative technique now a day but studied little thus the main objective of our project is to compare the maternal HRV changes between normal pregnancy and pre-eclamptic pregnancy. Methods: 48 subjects (33 of normotensive pregnant women i.e., control group and 15 pre-eclamptic pregnant women i.e, study group of more than 20 weeks pregnancy were recruited from the outpatients, antenatal unit and wards of obstetrics and gynaecology department of JNMC, AMU, Aligarh. Physical examination was done and anthropometric measurement like height and weight were taken. BMI was calculated as per Quetlet's index. Urine test was conducted to every pregnant woman for urine albumin and we designated the pregnant women as pre-eclamptic women on the basis of definition. The subject was advised to take complete bed rest in supine position for 15 minutes in a cool and calm environment. The recording of short term HRV was done according to recommendation of the task force on HRV. The data was transferred from Medicaid machine to window based computer with HRV analysis software. Frequency domain analysis of HRV was taken for further statistical analysis. Results: There was no significant difference of

  18. Differential Item Functioning of the Psychological Domain of the Menopause Rating Scale

    Science.gov (United States)

    Portela-Buelvas, Katherin; Oviedo, Heidi C.; Herazo, Edwin; Campo-Arias, Adalberto

    2016-01-01

    Introduction. Quality of life could be quantified with the Menopause Rating Scale (MRS), which evaluates the severity of somatic, psychological, and urogenital symptoms in menopause. However, differential item functioning (DIF) analysis has not been applied previously. Objective. To establish the DIF of the psychological domain of the MRS in Colombian women. Methods. 4,009 women aged between 40 and 59 years, who participated in the CAVIMEC (Calidad de Vida en la Menopausia y Etnias Colombianas) project, were included. Average age was 49.0 ± 5.9 years. Women were classified in mestizo, Afro-Colombian, and indigenous. The results were presented as averages and standard deviation (X ± SD). A p value <0.001 was considered statistically significant. Results. In mestizo women, the highest X ± SD were obtained in physical and mental exhaustion (PME) (0.86 ± 0.93) and the lowest ones in anxiety (0.44 ± 0.79). In Afro-Colombian women, an average score of 0.99 ± 1.07 for PME and 0.63 ± 0.88 for anxiety was gotten. Indigenous women obtained an increased average score for PME (1.33 ± 0.93). The lowest score was evidenced in depressive mood (0.50 ± 0.81), which is different from other Colombian women (p < 0.001). Conclusions. The psychological items of the MRS show differential functioning according to the ethnic group, which may induce systematic error in the measurement of the construct. PMID:27847825

  19. Differential Item Functioning of the Psychological Domain of the Menopause Rating Scale.

    Science.gov (United States)

    Monterrosa-Castro, Alvaro; Portela-Buelvas, Katherin; Oviedo, Heidi C; Herazo, Edwin; Campo-Arias, Adalberto

    2016-01-01

    Introduction. Quality of life could be quantified with the Menopause Rating Scale (MRS), which evaluates the severity of somatic, psychological, and urogenital symptoms in menopause. However, differential item functioning (DIF) analysis has not been applied previously. Objective. To establish the DIF of the psychological domain of the MRS in Colombian women. Methods. 4,009 women aged between 40 and 59 years, who participated in the CAVIMEC (Calidad de Vida en la Menopausia y Etnias Colombianas) project, were included. Average age was 49.0 ± 5.9 years. Women were classified in mestizo, Afro-Colombian, and indigenous. The results were presented as averages and standard deviation (X ± SD). A p value <0.001 was considered statistically significant. Results. In mestizo women, the highest X ± SD were obtained in physical and mental exhaustion (PME) (0.86 ± 0.93) and the lowest ones in anxiety (0.44 ± 0.79). In Afro-Colombian women, an average score of 0.99 ± 1.07 for PME and 0.63 ± 0.88 for anxiety was gotten. Indigenous women obtained an increased average score for PME (1.33 ± 0.93). The lowest score was evidenced in depressive mood (0.50 ± 0.81), which is different from other Colombian women (p < 0.001). Conclusions. The psychological items of the MRS show differential functioning according to the ethnic group, which may induce systematic error in the measurement of the construct.

  20. Atmospheric Ion-induced Aerosol Nucleation

    Science.gov (United States)

    Curtius, J.; Lovejoy, E. R.; Froyd, K. D.

    2006-08-01

    Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.

  1. Martensitic nucleation mechanism

    Institute of Scientific and Technical Information of China (English)

    陈奇志; 桑灿; 吴杏芳; 柯俊

    1997-01-01

    A sort of special dislocation configuration was deformation-induced in an Fe-Ni-V-C alloy by in-situ elongation tests of TEM. The cooling in-situ observations, as well as the SADPs from the region of the special dislocation configurations, proved that they are martensitic nuclei. In martensitic transformation, a nucleus changed into a small martensitic sub-plate, and a group of parallel sub-plates that formed from a group of parallel nuclei made up a big martensitic plate Martensitic transformation involved opposite shear between adjacent martensitic nuclei. By using the reduced-cell method, the crystallographic structure of observed martensitic nuclei was indexed as a face-centered orthogonal (FCO) lattice, which was explained by the nucleation mechanism proposed by the present authors. The crystallographic analysis confirmed that the defect faulting involved in martensitic nucleation took place among three close pakked planes, instead of between two adjacent planes as an ordinary stacking fault.

  2. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  3. Bleb Nucleation through Membrane Peeling

    CERN Document Server

    Alert, Ricard

    2016-01-01

    We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.

  4. Translational invariance in nucleation theories: Theoretical formulation

    Energy Technology Data Exchange (ETDEWEB)

    Drossinos, Y.; Kevrekidis, P. G.; Georgopoulos, P. G.

    2001-03-01

    The consequences of spontaneously broken translational invariance on the nucleation-rate statistical prefactor in theories of first-order phase transitions are analyzed. A hybrid, semiphenomenological approach based on field-theoretic analyses of condensation and modern density-functional theories of nucleation is adopted to provide a unified prescription for the incorporation of translational-invariance corrections to nucleation-rate predictions. A connection between these theories is obtained starting from a quantum-mechanical Hamiltonian and using methods developed in the context of studies on Bose-Einstein condensation. An extremum principle is used to derive an integro-differential equation for the spatially nonuniform mean-field order-parameter profile; the appropriate order parameter becomes the square root of the fluid density. The importance of the attractive intermolecular potential is emphasized, whereas the repulsive two-body potential is approximated by considering hard-sphere collisions. The functional form of the degenerate translational eigenmodes in three dimensions is related to the mean-field order parameter, and their contribution to the nucleation-rate prefactor is evaluated. The solution of the Euler-Lagrange variational equation is discussed in terms of either a proposed variational trial function or the complete numerical solution of the associated boundary-value integro-differential problem. Alternatively, if the attractive potential is not explicitly known, an approach that allows its formal determination from its moments is presented.

  5. Spectral and Time-Domain Analyses of Heart-Rate Variability in Children with Severe Upper Airway Obstruction

    Directory of Open Access Journals (Sweden)

    Berna Şaylan

    2011-06-01

    Full Text Available Objective: Heart rate variability (HRV is a noninvasive index of neural activity of the heart. This study assessed the heart-rate variability response in children with severe upper airway obstruction. Material and Methods: A prospective trial was carried out in 15 children with severe adenoid and/or tonsil hypertrophy, compared to 15 age matched healthy children in order to attempt to relate such changes. Frequency domain measurements of the high and low frequency bands and the ratio low frequency/high frequency were derived from Holter electrocardiography recordings and computed by Fast Fourier analysis for five minute intervals. Time domain measurements were derived from 24 hour Holter recordings.Results: All spectral analysis of heart rate variability was altered in both preoperative and postoperative (three months after the operation recordings compared to the control group. In both groups, time domain indices were significantly lower compared to the control group. Mean R-R values were significantly reduced in pre and postoperative groups compared with control group, with the night time mean R-R values being significantly lower (p<0.05. These results indicate the increased frequency domain parameters in two groups. Conclusion: In this study, patients demonstrated altered volume loads and autonomic response. Further studies are needed to assess when such cardiac findings normalize upon relief of the upper airway obstruction.

  6. Two-Dimensional Nucleation of Ice from Supercooled Water

    Science.gov (United States)

    Seeley, L. H.; Seidler, G. T.

    2001-03-01

    Heterogeneous nucleation is the initial formation of a stable phase from a metastable phase in the presence of a catalyzing surface. This ubiquitous process has consequences ranging from metallurgy to the formation of kidney stones. Heterogeneous nucleation of ice plays a central role in cloud formation, suggesting one possible connection between anthropogenic pollutants and global climate. A key topic in the theory of nucleation is the geometry of the critical nucleus. Standard nucleation theories generally predict a compact critical nucleus with a surface of roughly constant curvature. We report measurements of the temperature dependent nucleation rate of ice from water samples supporting aliphatic alcohol Langmuir films. We use classical nucleation theory to extract thermodynamic parameters from the measured nucleation rates. From these parameters we conclude that both the effective free energy barrier and the molecular kinetics of nucleation are dominated by the physics at the interface. Our results give self-consistent evidence that the geometry of the critical nucleus in this system is essentially two-dimensional.

  7. Primary nucleation of lithium carbonate

    Institute of Scientific and Technical Information of China (English)

    Yuzhu SUN; Xingfu SONG; Jin WANG; Yan LUO; Jianguo YU

    2009-01-01

    A set of laser apparatus was used to explore the induction period and the primary nucleation of lithium carbonate. Results show that the induction period increases with the decrease of supersaturation, temperature and stirring speed. Through the classical theory of primary nucleation, many important properties involved in primary nucleation under different conditions were obtained quantitatively, including the interfacial tension between solid and liquid, contact angle, critical nucleus size, critical nuleation free energy etc.

  8. Effect of deformation in controlled rolling on ferrite nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Khlestov, V.M. [Priazovsky State Technical Univ., Mariupol (Ukraine); Konopleva, E.V.; McQueen, H.J. [Concordia Univ., Mechanical Engineering Dept., Montreal, Quebec (Canada)

    2001-04-01

    Nucleation of ferrite either at austenite grain boundaries or within them on deformation defects has been examined experimentally and analyzed on the basis of the theory of heterogeneous nucleation. Low-carbon low-alloy steels were deformed by controlled rolling schedules to a total reduction of 50 or 68% in finish rolling at 730-800 {sup o}C. Deformation accelerates the kinetics of the {gamma}-{alpha} transformation and strongly activates ferrite nucleation at grain boundaries. Both experimental and theoretical estimations showed that the rate of intragranular nucleation is much less compared to nucleation at grain boundaries. Intragranular nuclei develop notably only in the final stages of transformation in deformed austenite and affect the formation of structure only in the small separated areas. (author)

  9. Nucleation of protein crystals in a wide continuous supersaturation gradient.

    Science.gov (United States)

    Penkova, A; Chayen, N; Saridakis, E; Nanev, Chr N

    2002-10-01

    By using a supersaturation gradient along a protein solution contained in a glass capillary tube, we modified the classical double pulse technique, thus substantially accelerating the procedure of measurement of nucleation parameters. Data for the number of crystal nuclei, n vs nucleation time, t, were obtained for hen-egg-white lysozyme, chosen as a model because of the availability of reliable solubility data in the literature. The stationary nucleation rate and the nucleation time lag have been measured. Quantitative data for the work required for nucleus formation (A(k) = 4.3 x 10 (-1)3 erg) and the size of the critical cluster (three molecules) were also obtained. Besides, it was observed that Ostwald ripening seems to play an important role for nucleation times longer than 150 min. Using the same technique, semi-quantitative investigations were performed with porcine pancreatic trypsin.

  10. Nucleation Mechanism for Bainite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the experimental results that solute-depleted zone was observed in Cu-28Zn-4Al (mass fraction) at 523 K,△G is calculated as a positive according to the thermodynamic criteria for the spinodal decomposition of a ternarysystems. So, the solute-depleted zone cannot be formed by spinodal decomposition. Dislocation density requiredby the formation of solute-depleted zone is estimated greater than 7.89×109 cm-2 according to the segregationof solute atoms around dislocations, which is not consistent with the practical situation for the alloy at 523 K.Associated with the internal friction experimental fact that internal friction peaks appear within the incubation forbainitic transformation in Cu-Zn-Al alloy, the equilibrium temperature, T0, is evaluated as 433 K for solute-depletedCu-25Zn-3.4Al, which is lower than the experimental temperature 523 K. Thus, nucleation by shear mechanism isimpossible in this circumstance. Therefore, it is concluded that , like bainite in steels and Ag-Cd, bainite in Cu-Zn-Alalloys nucleates by diffusional mechanism, just implied by the experimental existence of solute-depleted zone.

  11. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  12. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Science.gov (United States)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  13. Time- and frequency-domain parameters of heart rate variability and sympathetic skin response in Parkinson's disease.

    Science.gov (United States)

    Maetzler, Walter; Karam, Marie; Berger, Monika Fruhmann; Heger, Tanja; Maetzler, Corina; Ruediger, Heinz; Bronzova, Juliana; Lobo, Patricia Pita; Ferreira, Joaquim J; Ziemssen, Tjalf; Berg, Daniela

    2015-03-01

    The autonomic nervous system (ANS) is regularly affected in Parkinson's disease (PD). Information on autonomic dysfunction can be derived from e.g. altered heart rate variability (HRV) and sympathetic skin response (SSR). Such parameters can be quantified easily and measured repeatedly which might be helpful for evaluating disease progression and therapeutic outcome. In this 2-center study, HRV and SSR of 45 PD patients and 26 controls were recorded. HRV was measured during supine metronomic breathing and analyzed in time- and frequency-domains. SSR was evoked by repetitive auditory stimulation. Various ANS parameters were compared (1) between patients and healthy controls, (2) to clinical scales (Unified Parkinson's disease rating scale, Mini-Mental State Examination, Becks Depression Inventory), and (3) to disease duration. Root mean square of successive differences (RMSSD) and low frequency/high frequency (LF/HF) ratio differed significantly between PD and controls. Both, HRV and SSR parameters showed low or no association with clinical scores. Time-domain parameters tended to be affected already at early PD stages but did not consistently change with longer disease duration. In contrast, frequency-domain parameters were not altered in early PD phases but tended to be lower (LF, LF/HF ratio), respectively higher (HF) with increasing disease duration. This report confirms previous results of altered ANS parameters in PD. In addition, it suggests that (1) these ANS parameters are not relevantly associated with motor, behavioral, and cognitive changes in PD, (2) time-domain parameters are useful for the assessment of early PD, and (3) frequency-domain parameters are more closely associated with disease duration.

  14. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  15. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X.L.; Xing, H.; Chen, C.L., E-mail: chenchl@nwpu.edu.cn; Wang, J.Y.; Jin, K.X.

    2015-10-16

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models. - Highlights: • The phase-field simulations are systematically compared with the classical nucleation rate theory. • The modulations of nucleation regime by the different kinetic coefficients have been studied. • Appropriate kinetic coefficients contribute to the agreed nucleation regime with the scaling law.

  16. Repeatability and randomness in heterogeneous freezing nucleation

    Directory of Open Access Journals (Sweden)

    G. Vali

    2008-08-01

    Full Text Available This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from −6°C to −24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  17. Repeatability and randomness in heterogeneous freezing nucleation

    Directory of Open Access Journals (Sweden)

    G. Vali

    2008-02-01

    Full Text Available This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from −6°C to −24°C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1°C for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5°C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

  18. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody.

    Science.gov (United States)

    Awotwe-Otoo, David; Agarabi, Cyrus; Read, Erik K; Lute, Scott; Brorson, Kurt A; Khan, Mansoor A; Shah, Rakhi B

    2013-06-25

    An efficient and potentially scalable technology was evaluated to control the ice nucleation step of the freezing process for a model monoclonal antibody formulation and the effect on process performance and quality attributes of the final lyophilized product was compared with the conventional shelf ramping method of freezing. Controlled ice nucleation resulted in uniform nucleation at temperatures between -2.3 and -3.2 °C while uncontrolled nucleation resulted in random nucleation at temperatures between -10 and -16.4 °C. The sublimation rate (dm/dt) during primary drying was higher in the controlled nucleation cycle (0.13 g/h/vial) than in the uncontrolled nucleation cycle (0.11 g/h/vial). This was due to the formation of larger ice crystals, leading to lower product resistance (Rp) and 19% reduction in the primary drying for the controlled nucleation cycle. Controlled ice nucleation resulted in lyophilized cakes with more acceptable appearance, no visible collapse or shrinkage and decreased reconstitution times compared with uncontrolled nucleation. There were no observed differences in the particle size, concentration (A280 nm) and presence of aggregates (A410 nm) between the two nucleation cycles when the lyophilized cakes were reconstituted. These were confirmed by SEC and protein A-HPLC analyses which showed similar peak shapes and retention times between the two cycles. However, uncontrolled nucleation resulted in cakes with larger specific surface area (0.90 m(2)/g) than controlled nucleation (0.46 m(2)/g). SEM images of the lyophilized cakes from uncontrolled nucleation revealed a sponge-like morphology with smaller pores while cakes from controlled nucleation cycle revealed plate-like structures with more open and larger pores. While controlled nucleation resulted in a final product with a higher residual moisture content (2.1±0.08%) than uncontrolled nucleation (1.62±0.11%), this was resolved by increasing the secondary drying temperature.

  19. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  20. Grand canonical steady-state simulation of nucleation

    CERN Document Server

    Horsch, Martin

    2009-01-01

    Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31: 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary timespan and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct non-equilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by t...

  1. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride

    Science.gov (United States)

    Du, Guangchao; Sun, Zhaohui; Xian, Yong; Jing, Han; Chen, Haijun; Yin, Danfeng

    2016-05-01

    The nucleation kinetics of ammonium metavanadate (NH4VO3) was investigated under conditions of the simulated process for precipitation of NH4VO3 from the vanadium-containing solution. Induction periods for the nucleation of NH4VO3 were experimentally determined as a function of supersaturation at temperatures from 30 to 45 °C. Using the classical nucleation theory, the interfacial tension between NH4VO3 and supersaturated solution, the nucleation rate and critical radius of nucleus for the homogeneous nucleation of NH4VO3 were estimated. With temperature increasing, the calculated interfacial tension gradually decreased from 29.78 mJ/m2 at 30 °C to 23.66 mJ/m2 at 45 °C. The nucleation rate was found to proportionally increase but the critical radius of nucleus exponentially decreased, with increase in supersaturation ratio at a constant temperature. The activation energy for NH4VO3 nucleation was obtained from the relationship between temperature and induction period, ranging from 79.17 kJ/mol at S=25 to 115.50 kJ/mol at S=15. FT-IR and Raman spectrum indicated that the crystals obtained in the precipitation process were NH4VO3.

  2. Temperature dependence of heterogeneous nucleation: Extension of the Fletcher model

    Science.gov (United States)

    McGraw, Robert; Winkler, Paul; Wagner, Paul

    2015-04-01

    Recently there have been several cases reported where the critical saturation ratio for onset of heterogeneous nucleation increases with nucleation temperature (positive slope dependence). This behavior contrasts with the behavior observed in homogeneous nucleation, where a decreasing critical saturation ratio with increasing nucleation temperature (negative slope dependence) seems universal. For this reason the positive slope dependence is referred to as anomalous. Negative slope dependence is found in heterogeneous nucleation as well, but because so few temperature-dependent measurements have been reported, it is not presently clear which slope condition (positive or negative) will become more frequent. Especially interesting is the case of water vapor condensation on silver nanoparticles [Kupc et al., AS&T 47: i-iv, 2013] where the critical saturation ratio for heterogeneous nucleation onset passes through a maximum, at about 278K, with higher (lower) temperatures showing the usual (anomalous) temperature dependence. In the present study we develop an extension of Fletcher's classical, capillarity-based, model of heterogeneous nucleation that explicitly resolves the roles of surface energy and surface entropy in determining temperature dependence. Application of the second nucleation theorem, which relates temperature dependence of nucleation rate to cluster energy, yields both necessary and sufficient conditions for anomalous temperature behavior in the extended Fletcher model. In particular it is found that an increasing contact angle with temperature is a necessary, but not sufficient, condition for anomalous temperature dependence to occur. Methods for inferring microscopic contact angle and its temperature dependence from heterogeneous nucleation probability measurements are discussed in light of the new theory.

  3. Volume versus surface nucleation in freezing aerosols

    Science.gov (United States)

    Sigurbjörnsson, Ómar F.; Signorell, Ruth

    2008-05-01

    The present study puts an end to the ongoing controversy regarding volume versus surface nucleation in freezing aerosols: Our study on nanosized aerosol particles demonstrates that current state of the art measurements of droplet ensembles cannot distinguish between the two mechanisms. The reasons are inherent experimental uncertainties as well as approximations used to analyze the kinetics. The combination of both can lead to uncertainties in the rate constants of two orders of magnitude, with important consequences for the modeling of atmospheric processes.

  4. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    Science.gov (United States)

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-01-28

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment.

  5. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  6. Growth rate and existence of solutions to Dirichlet problems for prescribed mean curvature equations on unbounded domains

    Directory of Open Access Journals (Sweden)

    Zhiren Jin

    2008-02-01

    Full Text Available We prove growth rate estimates and existence of solutions to Dirichlet problems for prescribed mean curvature equation on unbounded domains inside the complement of a cone or a parabola like region in $mathbb{R}^n$ ($ngeq 2$. The existence results are proved using a modified Perron's method by which a subsolution is a solution to the minimal surface equation, while the role played by a supersolution is replaced by estimates on the uniform $C^{0}$ bounds on the liftings of subfunctions on compact sets.

  7. Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways

    Science.gov (United States)

    Galkin, Oleg; Vekilov, Peter G.

    2001-11-01

    We have studied the nucleation of crystals of the model protein lysozyme using a novel technique that allows direct determinations of homogeneous nucleation rates. At constant temperature of 12.6°C we varied the thermodynamic supersaturation by changing the concentrations of protein and precipitant. We found a broken dependence of the homogeneous nucleation rate on supersaturation that is beyond the predictions of the classical nucleation theory. The nucleation theorem allows us to relate this to discrete changes of the size of the crystal nuclei with increasing supersaturation as (10 or 11)→(4 or 5)→(1 or 2). Furthermore, we observe that the existence of a second liquid phase at high protein concentrations strongly affects crystal nucleation kinetics. We show that the rate of homogeneous nucleation of lysozyme crystals passes through a maximum in the vicinity of the liquid-liquid phase boundary hidden below the liquidus (solubility) line in the phase diagram of the protein solution. We found that glycerol and polyethylene glycol (PEG), which do not specifically bind to proteins, shift this phase boundary and significantly suppress or enhance the crystal nucleation rates, although no simple correlation exists between the action of PEG on the phase diagram and the nucleation kinetics. This provides for a control mechanism which does not require changes in the protein concentration, or the acidity and ionicity of the solution. The effects of the two additives on the phase diagram strongly depend on their concentration and this provides opportunities for further tuning of nucleation rates.

  8. Kinetic theory of diffusion-limited nucleation

    Science.gov (United States)

    Philippe, T.; Bonvalet, M.; Blavette, D.

    2016-05-01

    We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions.

  9. Systematic coarse-graining in nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, M., E-mail: marco.schweizer@math.ethz.ch [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Sagis, L. M. C., E-mail: leonard.sagis@wur.nl [Department of Materials, Polymer Physics, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Food Physics Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen (Netherlands)

    2015-08-21

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 − 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  10. Direct Simulations of Homogeneous Bubble Nucleation: Agreement with CNT and no Local Hot Spots

    CERN Document Server

    Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We present results from direct, large-scale molecular dynamics (MD) simulations of homogeneous bubble (liquid-to-vapor) nucleation. The simulations contain half a billion Lennard-Jones (LJ) atoms and cover up to 56 million time-steps. The unprecedented size of the simulated volumes allows us to resolve the nucleation and growth of many bubbles per run in simple direct micro-canonical (NVE) simulations while the ambient pressure and temperature remain almost perfectly constant. We find bubble nucleation rates which are lower than in most of the previous, smaller simulations. It is widely believed that classical nucleation theory (CNT) generally underestimates bubble nucleation rates by very large factors. However, our measured rates are within two orders of magnitude of CNT predictions - only at very low temperatures does CNT underestimate the nucleation rate significantly. Introducing a small, positive Tolman length leads to very good agreement at all temperatures, as found in our recent vapor-to-liquid nucle...

  11. Binary nucleation beyond capillarity approximation

    NARCIS (Netherlands)

    Kalikmanov, V.I.

    2010-01-01

    Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption

  12. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability

    Science.gov (United States)

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment.

  13. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability.

    Science.gov (United States)

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment. © 2012 American Institute of Physics

  14. Time and frequency domain analysis of heart rate variability in cattle affected by bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Konold Timm

    2011-07-01

    Full Text Available Abstract Background Heart rate variability (HRV analysis is a method to assess the function of the autonomic nervous system. Brainstem nuclei that influence HRV are affected by vacuolar changes and accumulation of disease-associated prion protein (PrPd in bovine spongiform encephalopathy (BSE resulting in clinical signs suggestive of an increased parasympathetic tone. It was hypothesised that BSE in cattle causes changes in the autonomic nervous system; this was tested by comparing HRV indices derived from 1048 electrocardiograms, which were recorded from 51 naturally or experimentally infected cattle with BSE confirmed by postmortem tests, 321 clinical suspect cases or cattle inoculated with potentially infectious tissue without disease confirmation and 78 BSE-free control cattle. Findings Statistically significant differences were found for low or high frequency power, their normalised values and ratio when the last recording prior to cull or repeated recordings were compared but only between male and female cattle of the three groups and not between groups of the same gender, even though BSE cases of each gender appeared to be more nervous during the recording. The same findings were made for heart rate, deviation from the mean RR interval and vasovagal tonus index when repeated recordings were compared. BSE cases with severe vacuolar changes in the parasympathetic nucleus of the vagus nerve had a significantly lower low:high frequency power ratio but not a lower heart rate than BSE cases with mild vacuolation, whereas severity of vacuolar changes in the solitary tract nucleus or intensity of PrPd accumulation in both nuclei did not appear to have any affect on either index. Abnormalities in the electrocardiogram were detected in 3% of the recordings irrespective of the BSE status; sinus arrhythmia was present in 93% of the remaining recordings. Conclusions HRV analysis was not useful to distinguish BSE-positive from BSE-negative cattle

  15. Short review on Controlled Nucleation

    Directory of Open Access Journals (Sweden)

    Gupta Anuj

    2012-09-01

    Full Text Available Freeze-drying (also known as lyophilization or cryodesiccation is a dehydration process mainly used to preserve for perishable material and this method make the material more convenient for transport. Freezedrying works by freezing the material and then reducing the surrounding pressure and giving sufficient heat to allow the frozen water into the material to sublime directly from the solid phase to gas phase. Sublimation is the transition of a substance from the solid to the vapor state, without first passing through an intermediate liquid phase. A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog, vial treatment, ultrasound, additives and electro freezing technique was demonstrated in an earlier report. And by the potential of a high electric field was utilized to induce ice nucleus formation in aqueous solutions. Using this technique it was possible to reduce the primary drying time during lyophilization. [1] Many technical issues surrounding the freeze-drying process have been addressed over the past several decades. Better understanding of critical formulation characteristics and cycle conditions. There are two types of technique for nucleation 1 Uncontrolled Nucleation, 2 Controlled Nucleation. The objectives of the present study simply introduce controlled Nucleation is the rapid ice nucleation in freeze drying technique. [2

  16. An Adaptive Learning Rate for RBFNN Using Time-Domain Feedback Analysis

    Directory of Open Access Journals (Sweden)

    Syed Saad Azhar Ali

    2014-01-01

    Full Text Available Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development.

  17. Kinetic Monte Carlo simulation of the classical nucleation process

    Science.gov (United States)

    Filipponi, A.; Giammatteo, P.

    2016-12-01

    We implemented a kinetic Monte Carlo computer simulation of the nucleation process in the framework of the coarse grained scenario of the Classical Nucleation Theory (CNT). The computational approach is efficient for a wide range of temperatures and sample sizes and provides a reliable simulation of the stochastic process. The results for the nucleation rate are in agreement with the CNT predictions based on the stationary solution of the set of differential equations for the continuous variables representing the average population distribution of nuclei size. Time dependent nucleation behavior can also be simulated with results in agreement with previous approaches. The method, here established for the case in which the excess free-energy of a crystalline nucleus is a smooth-function of the size, can be particularly useful when more complex descriptions are required.

  18. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    Full Text Available Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS, the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between −5 °C to −38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about −6 °C to about −10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice

  19. Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid

    Science.gov (United States)

    Lundrigan, Sarah E. M.; Saika-Voivod, Ivan

    2009-09-01

    We perform molecular dynamics (MD) and Monte Carlo computer simulations to test the ability of the recently developed formalism of mean first-passage time (MFPT) [J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103 (2007); J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060 (2008)] to characterize crystal nucleation in the Lennard-Jones liquid. We find that the nucleation rate, critical embryo size, Zeldovich factor, attachment rate, and the nucleation barrier profile obtained from MFPT all compare very well to the same quantities calculated using other methods. Furthermore, we find that the nucleation rate obtained directly through MD closely matches the prediction of classical nucleation theory.

  20. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    Science.gov (United States)

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H2 or CH4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H2/CH4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  1. Kinetics of hole nucleation in biomembrane rupture

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Evan [Biomedical Engineering, Boston University, Boston, MA 02215 (United States); Smith, Benjamin A, E-mail: evanse@bu.edu [Departments of Physics and Pathology, University of British Columbia, Vancouver, BC, V6T 2A6 (Canada)

    2011-09-15

    The core component of a biological membrane is a fluid-lipid bilayer held together by interfacial-hydrophobic and van der Waals interactions, which are balanced for the most part by acyl chain entropy confinement. If biomembranes are subjected to persistent tensions, an unstable (nanoscale) hole will emerge at some time to cause rupture. Because of the large energy required to create a hole, thermal activation appears to be requisite for initiating a hole and the activation energy is expected to depend significantly on mechanical tension. Although models exist for the kinetic process of hole nucleation in tense membranes, studies of membrane survival have failed to cover the ranges of tension and lifetime needed to critically examine nucleation theory. Hence, rupturing giant ({approx}20 {mu}m) membrane vesicles ultra-slowly to ultra-quickly with slow to fast ramps of tension, we demonstrate a method to directly quantify kinetic rates at which unstable holes form in fluid membranes, at the same time providing a range of kinetic rates from <0.01 to >100 s{sup -1}. Measuring lifetimes of many hundreds of vesicles, each tensed by precision control of micropipette suction, we have determined the rates of failure for vesicles made from several synthetic phospholipids plus 1:1 mixtures of phospho- and sphingo-lipids with cholesterol, all of which represent prominent constituents of eukaryotic cell membranes. Plotted on a logarithmic scale, the failure rates for vesicles are found to rise dramatically with an increase in tension. Converting the experimental profiles of kinetic rates into changes of activation energy versus tension, we show that the results closely match expressions for thermal activation derived from a combination of meso-scale theory and molecular-scale simulations of hole formation. Moreover, we demonstrate a generic approach to transform analytical fits of activation energies obtained from rupture experiments into energy landscapes characterizing the

  2. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime

    Science.gov (United States)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea

    2017-04-01

    Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil

  3. TIME AND FREQUENCY DOMAIN ANALYSIS OF HEART RATE VARIABILITY SIGNAL IN PROGNOSIS OF TYPE 2 DIABETIC AUTONOMIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    SARIKA TALE,

    2011-04-01

    Full Text Available Heart disease occurs eventually in majority of patients with diabetes mellitus and to be the outstanding factor in over all diabetes morbidity and mortality rates. Thus the timely detection of diabetic autonomic neuropathy and the use of effective means to improve autonomic nervous system function become of almost significance. In this work Electrocardiogram (ECG data of 20 Diabetes Mellitus (DM and 20 normal control volunteers were recorded and autonomic nervous system activities are quantified by means of frequency and time domainanalysis. Time domain measure ,Standard deviation of successive NN intervals (SDNN,NN intervals differing more than 50 msec.( NN50 count,Percentage value of NN50 count( pNN50 count, HRV triangular index, show a lower variation in the DM patient group compared to normal subjects and p value <0.01. The frequency domain measures indicate significant differences in very low frequency (VLF, low frequency (LF power and high frequency (HF power. Value generated from the ratio of low frequency to high frequency, (LF/HF ispretty high, with not much significance between both groups.

  4. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    Science.gov (United States)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  5. Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    Science.gov (United States)

    Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.

    2016-03-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.

  6. Femtosecond THz time domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    CERN Document Server

    Urbanek, B; Eisele, M; Baierl, S; Kaplan, D; Lange, C; Huber, R

    2016-01-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4 ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of $1.7 \\times 10^5/\\sqrt{\\rm Hz}$. Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of $10\\,\\rm nm/\\sqrt{\\rm Hz}$. The compact, all-optical design ensures alignment-free operation even in harsh environments.

  7. Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis.

    Science.gov (United States)

    Centeno, Anthony; Xie, Fang; Alford, Neil

    2013-06-01

    Metal-induced fluorescence enhancement (MIFE) is a promising strategy for increasing the sensitivity of fluorophores used in biological sensors. This study uses the finite-difference time-domain technique to predict the fluorescent enhancement rate of a fluorophore molecule in close proximity to a gold or silver spherical nanoparticle. By considering commercially available fluorescent dyes the computed results are compared with the published experimental data. The results show that MIFE is a complex coupling process between the fluorophore molecule and the metal nanoparticle. Nevertheless using computational electromagnetic techniques to perform calculations it is possible to calculate, with reasonable accuracy, the fluorescent enhancement. Using this methodology it will be possible to consider different shaped metal nanoparticles and any supporting substrate material in the future, an important step in building reliable biosensors capable of detecting low levels of proteins tagged with fluorescence molecules.

  8. Effect of Na Environment on growth rate of grain and nucleation of precipitate in F/M steel cladding under Sodium and Ar-gas environment at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yong; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Sang Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    During the design life time (30 to 60 years), the cladding and structural materials are exposed to liquid sodium and aged at the designed operation temperature. When cladding and structural materials exposed to high temperature liquid sodium, the constituents of the components dissolve and exist as various compounds. This can accelerate the dissolution of components into coolant or disrupt flow of coolant with cumulated obstacle in loop. This change can cause a degradation of mechanical strength of structure material and thermal efficiency of UCFR. Therefore, the thermochemical reaction research, on effects of liquid sodium on ferrite/martensite steel for a long time, should additionally be performed. The goal of this study is to investigate growth and nucleation of precipitates of ferrite/martensite steels in liquid sodium and its effect on grain growth. There are many changes such as Cr depletion, decarburization, segregation, precipitate and oxidation, affecting into microstructural evolution of the steels. In a specific procedure, the micro-structure and the surface phenomenon of ferrite/martensite steels that are exposed in liquid sodium at high temperature by using scanning electron microscope (SEM) and transmission electron microscope (TEM) have been investigated. After investigating precipitates formed at surface on liquid sodium and Ar-gas environments, the precipitates' Gibbs free energy is calculated with enthalpy and entropy included in the precipitates. Finally, the calculated values with diffusivity of components will become reason why the phases have different tendency on the growth rate of precipitates. As analyzing the chemical composition by TEM images, the correlation is investigated with supplementary materials. When Gr.92 is exposed to sodium containing oxygen, oxide is formed and there are depletion of Cr and presumably decarburization into sodium. So, the amount of M{sub 23}C{sub 6} is decreased. At Ar-gas environment, there is no

  9. Does hybridization increase evolutionary rate? Data from the 28S-rDNA D8 domain in echinoderms.

    Science.gov (United States)

    Chenuil, Anne; Egea, Emilie; Rocher, Caroline; Touzet, Hélène; Féral, Jean-Pierre

    2008-11-01

    The divergent domain D8 of the large ribosomal RNA is very variable and extended in vertebrates compared to other eukaryotes. We provide data from 31 species of echinoderms and present the first comparative analysis of the D8 in nonvertebrate deuterostomes. In addition, we obtained 16S mitochondrial DNA sequences for the sea urchin taxa and analyzed single-strand conformation polymorphism (SSCP) of D8 in several populations within the species complex Echinocardium cordatum. A common secondary structure supported by compensatory substitutions and indels is inferred for echinoderms. Variation mostly arises at the tip of the longest stem (D8a), and the most variable taxa also display the longest and most stable D8. The most stable variants are the only ones displaying bulges in the terminal part of the stem, suggesting that selection, rather than maximizing stability of the D8 secondary structure, maintains it in a given range. Striking variation in D8 evolutionary rates was evidenced among sea urchins, by comparison with both 16S mitochondrial DNA and paleontological data. In Echinocardium cordatum and Strongylocentrotus pallidus and S. droebachiensis, belonging to very distant genera, the increase in D8 evolutionary rate is extreme. Their highly stable D8 secondary structures rule out the possibility of pseudogenes. These taxa are the only ones in which interspecific hybridization was reported. We discuss how evolutionary rates may be affected in nuclear relative to mitochondrial genes after hybridization, by selective or mutational processes such as gene silencing and concerted evolution.

  10. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  11. Molecular Dynamics Simulations of the Nucleation of Water: Determining the Sticking Probability and Formation Energy of a Cluster

    CERN Document Server

    Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-01-01

    We performed molecular dynamics (MD) simulations of the nucleation of water vapor in order to test nucleation theories. Simulations were performed for a wide range of supersaturation ratios (S = 3-25) and water temperatures (Tw=300-390K). We obtained the nucleation rates and the formation free energies of a subcritical cluster from the cluster size distribution. The classical nucleation theory (CNT) and the modified classical nucleation theory (MCNT) overestimate the nucleation rates in all cases. The semi-phenomenological (SP) model, which corrects the MCNT prediction using the second virial coefficient of a vapor, reproduces the formation free energy of a cluster with the size < 20 to within 10 % and the nucleation rate and cluster size distributions to within one order of magnitude. The sticking probability of the vapor molecules to the clusters was also determined from the growth rates of the clusters. The sticking probability rapidly increases with the supersaturation ratio S, which is similar to the ...

  12. Toward a quantitative model of metamorphic nucleation and growth

    Science.gov (United States)

    Gaidies, F.; Pattison, D. R. M.; de Capitani, C.

    2011-11-01

    The formation of metamorphic garnet during isobaric heating is simulated on the basis of the classical nucleation and reaction rate theories and Gibbs free energy dissipation in a multi-component model system. The relative influences are studied of interfacial energy, chemical mobility at the surface of garnet clusters, heating rate and pressure on interface-controlled garnet nucleation and growth kinetics. It is found that the interfacial energy controls the departure from equilibrium required to nucleate garnet if attachment and detachment processes at the surface of garnet limit the overall crystallization rate. The interfacial energy for nucleation of garnet in a metapelite of the aureole of the Nelson Batholith, BC, is estimated to range between 0.03 and 0.3 J/m2 at a pressure of ca. 3,500 bar. This corresponds to a thermal overstep of the garnet-forming reaction of ca. 30°C. The influence of the heating rate on thermal overstepping is negligible. A significant feedback is predicted between chemical fractionation associated with garnet formation and the kinetics of nucleation and crystal growth of garnet giving rise to its lognormal—shaped crystal size distribution.

  13. Effect of nucleating agents on crystallization kinetics of PET

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Effects of three nucleating agents concluding talc, sodium benzoate (SB and an ionomer (Ion., Na+ on crystallization of poly(ethylene terephthalate (PET were studied by differential scanning calorimetry (DSC and polarized optical microscope (POM, the parameters of crystallization kinetics were obtained through Avrami and Ozawa equations. The fold surface free energy σe of pure PET and PET/nucleating agent blends were calculated by Hoffman-Lauritzen theory. The results indicate that the three kinds of nucleating agents increase the crystallization rate constant through promoting their nucleating effect for PET crystallization, among which SB is the best one with the same content. The crystallization mode of PET might shift from three-dimensional growth to two-dimensional growth by the addition of the nucleating agents. The values of σe of PET/nucleating agent blends are much less than that of pure PET, and PET/SB (99:1 blend has the least value of σe (18.2 mJ/m2. The conclusion based on Hoffman theory is similar to the analysis by Avrami and Ozawa equations.

  14. Nucleation and growth during recrystallization

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2005-09-01

    Full Text Available The evolution in the understanding of the recrystallization phenomena is summarized in this paper. Initially the main developments concerning recrystallization are presented from a historical perspective. Definitions and concepts involving recrystallization are presented regarding it as a solid-state reaction that occurs by nucleation and growth. The recrystallization nucleation mechanisms are subsequently discussed. Finally, the growth step is highlighted, emphasizing boundary and sub-boundary mobilities and the forces acting on the high angle grain boundaries that sweep the microstructure during recrystallization.

  15. Enhancement and suppression of protein crystal nucleation due to electrically driven convection

    Science.gov (United States)

    Penkova, Anita; Gliko, Olga; Dimitrov, Ivaylo L.; Hodjaoglu, Feyzim V.; Nanev, Christo; Vekilov, Peter G.

    2005-02-01

    We investigated the effects of the constant electric fields from 2.0 to 6.0 kV cm -1 on the nucleation of ferritin, apoferritin and lysozyme crystals. For this, supersaturated solutions of the three proteins were held between electrodes separated by 1.0 cm in batch and sitting drop geometries without contact between electrodes and solutions. The nucleation rate was characterized by the number of crystals appearing after a certain time (1-3 days). We show that in sitting drop arrangements, weak electric fields (<4 kV cm -1) either suppress or have no effect on the nucleation rate of ferritin and apoferritin, while electric fields of 5 or 6 kV cm -1 reproducibly enhance crystal nucleation of both proteins. Electric fields of all tested strengths consistently enhance lysozyme crystal nucleation. All batch experiments showed no effect of the electric field on the nucleation rates. Since the solutions contain high electrolyte concentrations and are conductive, the electric field strengths within them are negligible. We show that the electric field causes solution stirring with rates of up to 100 μm s -1, depending of the field strength. Thus, our observations indicate that at slow solution flow rates, the rates of nucleation of ferritin and apoferritin crystal are suppressed, while faster stirring enhances crystal nucleation of these proteins. All solution flow rates enhance lysozyme crystal nucleation. Our results suggest that solution convection may strongly affect nucleation, and that for some systems, an optimal convection velocity, leading to fastest nucleation, exists.

  16. Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kimling, Judith; Gerhardt, Theo; Kobs, Andre; Vogel, Andreas; Peter Oepen, Hans; Merkt, Ulrich; Meier, Guido [Institut fuer Angewandte Physik und Zentrum fuer Mikrostrukturforschung Hamburg, Universitaet Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany); Wintz, Sebastian [Institut fuer Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Im, Mi-Young; Fischer, Peter [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-04-28

    We report on domain nucleation in nanowires consisting of Co/Pt multilayers with perpendicular magnetic anisotropy that are patterned by electron-beam lithography, sputter deposition, and lift-off processing. It is found that the nucleation field can be tuned by changing the geometry of the wire ends. A reduction of the nucleation field by up to 60% is achieved when the wire ends are designed as tips. This contrasts with the behavior of wires with in-plane anisotropy where the nucleation field increases when triangular-pointed ends are used. In order to clarify the origin of the reduction of the nucleation field, micromagnetic simulations are employed. The effect cannot be explained by the lateral geometrical variation but is attributable to a local reduction of the perpendicular anisotropy caused by shadowing effects due to the resist mask during sputter deposition of the multilayer.

  17. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.

    Science.gov (United States)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2015-08-14

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ∼ 4 ⋅ 10(6) molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ∼ 10(19) cm(-3) s(-1), helping close the gap between experimentally measured rates ∼ 10(17) cm(-3) s(-1). We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ∼ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  18. Nucleation pathway in coherent precipitation

    Science.gov (United States)

    Philippe, T.; Blavette, D.

    2011-12-01

    The non-classical nucleation pathway of coherent precipitates has been computed through minimisation of the nucleation barrier in the composition (c)-size (R) space to predict the evolution of nucleus composition. The generalized Gibbs model, developed by Schmelzer et al. [J. Chem. Phys. 112 (2000) p.3820; J. Colloid Interface Sci. 272 (2004) p.109], has been extended to include misfit elastic energy. The composition of critical embryos c* was found to be independent of the interfacial constant. The composition of critical nuclei (c*) decreased with supersaturation. The elastic energy increased both c* and the nucleation barrier, as well as R*. The evolution of nucleus composition (c) as a function of size (R) along the minimum energy pathway was computed. Nucleation only starts when a size threshold is exceeded. Then, rapid enrichment to the expected composition (c β) precedes a constant composition regime. However, for small supersaturations, the change in cluster composition can occur sharply for a very small radius and then the composition slowly increased with a significant change in size. Coherency misfit energy was found to slow down the evolution of nuclei composition with R. The model was compared to experimental results.

  19. Ice Nucleation in Deep Convection

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  20. Mutagenesis in the switch IV of the helical domain of the human Gsalpha reduces its GDP/GTP exchange rate.

    Science.gov (United States)

    Echeverría, V; Hinrichs, M V; Torrejón, M; Ropero, S; Martinez, J; Toro, M J; Olate, J

    2000-01-01

    The Galpha subunits of heterotrimeric G proteins are constituted by a conserved GTPase "Ras-like" domain (RasD) and by a unique alpha-helical domain (HD). Upon GTP binding, four regions, called switch I, II, III, and IV, have been identified as undergoing structural changes. Switch I, II, and III are located in RasD and switch IV in HD. All Galpha known functions, such as GTPase activity and receptor, effector, and Gbetagamma interaction sites have been found to be localized in RasD, but little is known about the role of HD and its switch IV region. Through the construction of chimeras between human and Xenopus Gsalpha we have previously identified a HD region, encompassing helices alphaA, alphaB, and alphaC, that was responsible for the observed functional differences in their capacity to activate adenylyl cyclase (Antonelli et al. [1994]: FEBS Lett 340:249-254). Since switch IV is located within this region and contains most of the nonconservative amino acid differences between both Gsalpha proteins, in the present work we constructed two human Gsalpha mutant proteins in which we have changed four and five switch IV residues for the ones present in the Xenopus protein. Mutants M15 (hGsalphaalphaS133N, M135P, P138K, P143S) and M17 (hGsalphaalphaS133N, M135P, V137Y, P138K, P143S) were expressed in Escherichia coli, purified, and characterized by their ability to bind GTPgammaS, dissociate GDP, hydrolyze GTP, and activate adenylyl cyclase. A decreased rate of GDP release, GTPgammaS binding, and GTP hydrolysis was observed for both mutants, M17 having considerably slower kinetics than M15 for all functions tested. Reconstituted adenylyl cyclase activity with both mutants showed normal activation in the presence of AlF(4)(-), but a decreased activation with GTPgammaS, which is consistent with the lower GDP dissociating rate they displayed. These data provide new evidence on the role that HD is playing in modulating the GDP/GTP exchange of the Gsalpha subunit.

  1. Quantum Nucleation of Antiferromagnetic Bubbles with Tetragonal and Hexagonal Symmetries

    Institute of Scientific and Technical Information of China (English)

    PAN Hui; ZHU Jia-Lin; L(U) Rong

    2004-01-01

    We study the quantum nucleation in a nanometer-scale antiferromagnet placed in a magnetic field at an arbitrary angle. We consider the magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal symmetry, respectively. Different structures of the tunneling barriers can be generated by the magnitude and the orientation of the magnetic field. We use the instanton method in the spin-coherent-state path-integral representation to calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for bulk solids and two-dimensional films of antiferromagnets, respectively. We find that the rate of quantum nucleation and the crossover temperature from thermal-to-quantum transitions depend on the orientation and strength of the external magnetic field distinctly, which can be tested by use of existing experimental techniques.

  2. To the theory of homogeneous nucleation: Cluster energy

    Science.gov (United States)

    Al'Tman, I. S.; Agranovskii, I. E.; Choi, M.; Zagainov, V. A.

    2008-12-01

    An attempt is made to critically analyze the modern state of the theory of homogeneous nucleation as concerns its ability to describe experiments with high accuracy. An analysis of the experimental data led us to conclude that the dependence of the nucleation rate on supersaturation and temperature T was not described by the theory, which underestimates the critical cluster size compared with the Gibbs-Thomson equation. The possibility of applying density functional theory (one of the latest achievements in the theory of homogeneous nucleation) was questioned. Within this theory, the Gibbs-Thomson equation remains valid even outside the classic capillary approximation. It is suggested that, to bring theory in consistency with experiment, certain fundamental propositions of the theory of nucleation should be revised. The inclusion of an additional contribution to the Gibbs energy of a cluster caused by the size dependence of the specific heat capacity of the cluster decreases the critical cluster size compared with the value calculated by the Gibbs-Thomson equation. The calculated dependence of nucleation rate on supersaturation was in agreement with the experimental results.

  3. Large Scale Molecular Dynamics Simulations of Homogeneous Nucleation

    CERN Document Server

    Tanaka, Kyoko K

    2013-01-01

    We present results from large-scale molecular dynamics (MD) simulations of homogeneous vapor-to-liquid nucleation. The simulations contain between one and eight billion Lennard-Jones (LJ) atoms, covering up to 1.2 {\\mu}s (56 million time-steps). They cover a wide range of supersaturation ratios, S=1.55 to 10^4, and temperatures from kT = 0.3 to 1.0 {\\epsilon} (where {\\epsilon} is the depth of the LJ potential, and k the Boltzmann constant). We have resolved nucleation rates as low as 10^{17} cm^{-3} s^{-1} (in the argon system), and critical cluster sizes as large as 100 atoms. Recent argon nucleation experiments probe nucleation rates in an overlapping range, making the first direct comparison between laboratory experiments and molecular dynamics simulations possible: We find very good agreement within the uncertainties, which are mainly due to the extrapolations of argon and LJ saturation curves to very low temperatures. The self-consistent, modified classical nucleation model of Girshick and Chiu [J. Chem....

  4. Nucleation near the eutectic point in a Potts-lattice gas model.

    Science.gov (United States)

    Agarwal, Vishal; Peters, Baron

    2014-02-28

    We use the Potts-lattice gas model to study nucleation at and near the eutectic composition. We use rare-event methods to compute the free energy landscape for the competing nucleation products, and short trajectories at the barrier top to obtain prefactors. We introduce a procedure to tune the frequency of semigrand Monte Carlo moves so that the dynamics of a small closed system roughly resemble those of an infinite system. The non-dimensionalized nucleation rates follow trends as predicted by the classical nucleation theory. Finally, we develop corrections that convert free energy surfaces from closed (canonical) simulations into free energy surfaces from open (semigrand) simulations. The new corrections extend earlier corrections to now address situations like nucleation at the eutectic point where two products nucleate competitively.

  5. Nucleation processes of nanobubbles at a solid/water interface

    Science.gov (United States)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  6. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    In this work the nucleation kinetics of propane gas hydrate has been investigated experimentally using a stirred batch reactor. The experiments have been performed isothermally recording the pressure as a function of time. Experiments were conducted at different stirring rates, but in the same......) to the aqueous phase was found to reduce the gas dissolution rate slightly. However the induction times were prolonged quite substantially upon addition of PVP.The induction time data were correlated using a newly developed induction time model based on crystallization theory also capable of taking into account...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  7. Nonradiative Electron--Hole Recombination Rate Is Greatly Reduced by Defects in Monolayer Black Phosphorus: Ab Initio Time Domain Study.

    Science.gov (United States)

    Long, Run; Fang, Weihai; Akimov, Alexey V

    2016-02-18

    We report ab initio time-domain simulations of nonradiative electron-hole recombination and electronic dephasing in ideal and defect-containing monolayer black phosphorus (MBP). Our calculations predict that the presence of phosphorus divacancy in MBP (MBP-DV) substantially reduces the nonradiative recombination rate, with time scales on the order of 1.57 ns. The luminescence line width in ideal MBP of 150 meV is 2.5 times larger than MBP-DV at room temperature, and is in excellent agreement with experiment. We find that the electron-hole recombination in ideal MBP is driven by the 450 cm(-1) vibrational mode, whereas the recombination in the MBP-DV system is driven by a broad range of vibrational modes. The reduced electron-phonon coupling and increased bandgap in MBP-DV rationalize slower recombination in this material, suggesting that electron-phonon energy losses in MBP can be minimized by creating suitable defects in semiconductor device material.

  8. Thermostability analysis of line-tension-associated nucleation at a gas-liquid interface

    Science.gov (United States)

    Singha, Sanat Kumar; Das, Prasanta Kumar; Maiti, Biswajit

    2017-01-01

    The influence of line tension on the thermostability of a droplet nucleated from an oversaturated vapor at the interface of the vapor and another immiscible liquid is investigated. Along with the condition of mechanical equilibrium, the notion of extremization of the reversible work of formation is considered to obtain the critical parameters related to heterogeneous nucleation. From the energetic formulation, the critical reversible work of formation is found to be greater than that of homogeneous nucleation for high value of the positive line tension. On the other hand, for high value of the negative line tension, the critical reversible work of formation becomes negative. Therefore, these thermodynamic instabilities under certain substrate wettability situations necessitate a free-energetics-based stability of the nucleated droplet, because the system energy is not minimized under these conditions. This thermostability is analogous to the transition-based stability proposed by Widom [B. Widom, J. Phys. Chem. 99, 2803 (1995)], 10.1021/j100009a041 in the case of partial wetting phenomena along with the positive line tension. The thermostability analysis limits the domain of the solution space of the present critical-value problem as the thermodynamic transformation in connection with homogeneous and workless nucleation is considered. Within the stability range of the geometry-based wetting parameters, three limiting modes of nucleation, i.e., total-dewetting-related homogeneous nucleation, and total-wetting-associated and total-submergence-associated workless nucleation scenarios, are identified. Either of the two related limiting wetting scenarios of workless nucleation, namely, total wetting and total submergence, is found to be favorable depending on the geometry-based wetting conditions. The line-tension-associated nucleation on a liquid surface can be differentiated from that on a rigid substrate, as in the former, the stability based on mechanical

  9. Comparable rate of EGFR kinase domain mutation in lung adenocarcinomas from Chinese male and female never-smokers

    Institute of Scientific and Technical Information of China (English)

    Yi-hua SUN; Rong FANG; Bin GAO; Xiang-kun HAN; Jun-hua ZHANG; William PAO; Hai-quan CHEN; Hong-bin JI

    2010-01-01

    @@ Lung cancer patients with the epidermal growth factor receptor (EGFR) kinase domain mutations frequently show good responses to small molecule tyrosine kinase inhibitors, including Iressa and Tarceva, in clinical studies[1-3]. Previous studies have demonstrated that EGFR kinase domain mutations are commonly observed in lung adenocarcinomas, never-smokers,East Asian, and females[4-8].

  10. Interfacial Free Energy as the Key to the Pressure-Induced Deceleration of Ice Nucleation

    Science.gov (United States)

    Espinosa, Jorge R.; Zaragoza, Alberto; Rosales-Pelaez, Pablo; Navarro, Caridad; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2016-09-01

    The avoidance of water freezing is the holy grail in the cryopreservation of biological samples, food, and organs. Fast cooling rates are used to beat ice nucleation and avoid cell damage. This strategy can be enhanced by applying high pressures to decrease the nucleation rate, but the physics behind this procedure has not been fully understood yet. We perform computer experiments to investigate ice nucleation at high pressures consisting in embedding ice seeds in supercooled water. We find that the slowing down of the nucleation rate is mainly due to an increase of the ice I -water interfacial free energy with pressure. Our work also clarifies the molecular mechanism of ice nucleation for a wide pressure range. This study is not only relevant to cryopreservation, but also to water amorphization and climate change modeling.

  11. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Directory of Open Access Journals (Sweden)

    A. R. Moukahel

    2012-10-01

    Full Text Available In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA of the aerially disseminated spores (urediospores of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores, but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological

  12. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  13. Nucleation at surfaces: the importance of interfacial energy.

    Science.gov (United States)

    Wu, W; Gerard, D E; Nancollas, G H

    1999-11-01

    The nucleation and growth of stone-forming minerals on the surfaces of other crystalline phases, cellular material, and immobilized macromolecules must be important in the formation of stones in the urinary tract. The nucleation and growth of calcium oxalate monohydrate (COM) crystals were studied using the constant composition kinetics technique, in solution supersaturated with respect to COM (sigmaCOM = 1.44). The solid phases during the reaction were examined by x-ray diffraction, scanning electron microscopy, and diffuse reflectance Fourier transform infrared spectroscopy. Human serum albumin was found to nucleate COM crystals when immobilized on hydroxyapatite (HAP) surfaces. The induction period for nucleation of COM on HAP surfaces preadsorbed with albumin significantly decreased to about 65 min from about 230 min for pure HAP particles. The initial growth rate of COM on pure HAP particles, Rm approximately/= 0.56 X 10(-7) mol/min per m2, was slower than that for HAP surfaces preadsorbed with albumin, 2.14 x 10(-7) mol/min per m2. The surface properties were characterized using contact angle measurements by sessile drop and thin layer wicking. The thermodynamic results suggested that surfaces with high Lewis base parameter values (gamma-) and low interfacial tension with water (gammaSL) are more effective in the nucleation and growth of crystal phases.

  14. Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles

    Science.gov (United States)

    Smorodin, Vladimir Y.; Hopke, Philip K.

    2006-12-01

    Heterogeneous nucleation and condensation of dibutylphthalate, octadecane, octadecanol, and octadecanoic acid vapors at various pressures on insoluble AgCl and Ag nanoparticles in a turbulent mixing condensation nuclei counter (TMCNC) have been studied theoretically. A method to interpret the particle size distributions measured with a DMA and estimate the parameters for nucleation on single particles is proposed. Based on this semi-empirical method, the Gibbs free energy is calculated and a rate of heterogeneous nucleation on single particles is estimated directly from the experimental "condensation spectra" of inactive and active CN using the DMA data. In some cases, the dependence of the Gibbs nucleation energy on the vapor supersaturation had two maximums and one minimum, instead of one maximum as described by Gibbs' classical thermodynamics of phase transitions. This phenomenon, called "double barrier nucleation" (DBN) is caused by the surface heterogeneity of nano-CN; this is first experimental verification of DBN that had been previously predicted theoretically. Two types of heterogeneity may be present: topographic or energetic. Focusing on energetic heterogeneity, a theoretical model of DBN for spherical geometry is developed. The surface heterogeneity for insoluble nano-sized CN is shown to be critical to explaining the unusual transformation of a monomodal size distribution of inactive CN into a bimodal distribution of activated CN when coagulation is excluded. Future studies will be directed toward more data for further refining the theory and developing a model that simultaneously accounts for both types of surface heterogeneity of nano-CN.

  15. Quasiparticle model for deconfined matter and the nucleation of hadrons

    CERN Document Server

    Bessa, A

    2006-01-01

    Assuming a first-order chiral transition scenario, we study the process of phase conversion driven by homogeneous nucleation. We adopt a quasiparticle model whose parameters are fit to lattice QCD data to describe the pressure at high temperature in the deconfined sector, and a bag model equation of state for pions in the low-temperature sector. We compute the critical radius and nucleation rate in the thin-wall approximation, and compare the results to the ones obtained using the bag model and the linear $\\sigma$ model.

  16. Nucleation and Growth of Atomizing Droplets during Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the behaviors of nucleation and growth of atomizing droplets were investigated by means of microstructure observation and theoretical analysis. The results showed that, there is a unique heterogeneous nucleation mechanism for atomizing process that pre-solid smaller particles colliding with and embedding in liquid-state larger ones act as heterogeneous nuclei. In addition, the reasons of presenting the dendritic growth was analyzed based on the nonequilibrium solute distribution theory, and the relationship between the microstructural refinement and the cooling rate of the material was given.

  17. Local Structure of Liquid Carbon Controls Diamond Nucleation

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Valeriani, C.; Meijer, E.J.; Frenkel, D.

    2007-01-01

    Diamonds melt at temperatures above 4000 K. There are no measurements of the steady-state rate of the reverse process, i.e., diamond nucleation from the melt, because experiments are difficult at these extreme temperatures and pressures. Using numerical simulations, we estimate the diamond nucleatio

  18. The role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Enghoff, Martin B.; Pedersen, J. O. P.; Bondo, T.

    2008-01-01

    Aerosol nucleation has been studied experimentally in purified, atmospheric air, containing trace amounts of water vapor, ozone, and sulfur dioxide. The results are compared with model calculations. It is found that an increase in ionization by a factor of 10 increases the production rate of stable...

  19. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...

  20. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made of the ...

  1. Simulation of homogeneous crystal nucleation close to coexistence

    NARCIS (Netherlands)

    Wolde, P.R. ten; Ruiz-Montero, M.J.; Frenkel, D.

    1997-01-01

    We discuss a numerical scheme to study homogeneous crystal nucleation. Using this approach, it is possible to compute the height of the free energy barrier that separates the solid from the liquid phase and the rate at which this barrier is crossed. We point out that there is a fundamental differenc

  2. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  3. Pathways to self-organization: crystallization via nucleation and growth

    CERN Document Server

    Jungblut, Swetlana

    2016-01-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In these lecture notes, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mech...

  4. Ion-induced nucleation of pure biogenic particles

    CERN Document Server

    Kirkby, Jasper; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-01-01

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of $\\alpha$-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported...

  5. Crossover from nucleation to spinodal decomposition in a condensing vapor.

    Science.gov (United States)

    Wedekind, Jan; Chkonia, Guram; Wölk, Judith; Strey, Reinhard; Reguera, David

    2009-09-21

    The mechanism controlling the initial step of a phase transition has a tremendous influence on the emerging phase. We study the crossover from a purely nucleation-controlled transition toward spinodal decomposition in a condensing Lennard-Jones vapor using molecular dynamics simulations. We analyze both the kinetics and at the same time the thermodynamics by directly reconstructing the free energy of cluster formation. We estimate the location of the spinodal, which lies at much deeper supersaturations than expected. Moreover, the nucleation barriers we find differ only by a constant from the classical nucleation theory predictions and are in very good agreement with semiempirical scaling relations. In the regime from very small barriers to the spinodal, growth controls the rate of the transition but not its nature because the activation barrier has not yet vanished. Finally, we discuss in detail the influence of the chosen reaction coordinate on the interpretation of such simulation results.

  6. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications.

  7. Ice nucleation properties of agricultural soil dusts

    Science.gov (United States)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  8. First nucleation theorem with cluster losses: sum rules and applications to new particle formation

    Science.gov (United States)

    McGraw, R. L.; Malila, J.; Laaksonen, A. J.; Lehtinen, K. E.

    2013-12-01

    Derivations of the first nucleation theorem for homogeneous nucleation invoke certain idealized conditions that would appear to render questionable any application the theorem to more complex systems such as atmospheric new particle formation (NPF). These include absence of cluster loss due to coagulation with background aerosol (or vessel walls in a laboratory experiment) and competing channels to NPF such as the potential conversion, hence loss, of pre-critical clusters by heterogeneous nucleation. To overcome these restrictions, we extend the kinetic derivation of the first nucleation theorem to include such cluster loss processes and discuss the implications of our findings for atmospheric NPF. The analysis yields a remarkable pair of sum rules that connect the formation and loss rates as a function of cluster size to the corresponding homogeneous nucleation rate. A third, equally remarkable, sum rule connects the observed, apparent critical size that results from naïve application of the first nucleation theorem without correcting for loss to the true critical cluster size from homogeneous nucleation theory, d*. We show that for clusters of true size d>d* (drate. Collectively, these sum rules provide new insights into application of the first nucleation theorem to 'real world' situations wherein clusters losses can be significant and multiple competing routes to stable NPF may be present at the same time.

  9. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  10. Cumulative distribution functions associated with bubble-nucleation processes in cavitation

    KAUST Repository

    Watanabe, Hiroshi

    2010-11-15

    Bubble-nucleation processes of a Lennard-Jones liquid are studied by molecular dynamics simulations. Waiting time, which is the lifetime of a superheated liquid, is determined for several system sizes, and the apparent finite-size effect of the nucleation rate is observed. From the cumulative distribution function of the nucleation events, the bubble-nucleation process is found to be not a simple Poisson process but a Poisson process with an additional relaxation time. The parameters of the exponential distribution associated with the process are determined by taking the relaxation time into account, and the apparent finite-size effect is removed. These results imply that the use of the arithmetic mean of the waiting time until a bubble grows to the critical size leads to an incorrect estimation of the nucleation rate. © 2010 The American Physical Society.

  11. The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation

    CERN Document Server

    Horsch, Martin; Windmann, Thorsten; Hasse, Hans; Vrabec, Jadran

    2010-01-01

    Vapour-liquid equilibria (VLE) and the influence of an inert carrier gas on homogeneous vapour to liquid nucleation are investigated by molecular simulation for quaternary mixtures of carbon dioxide, nitrogen, oxygen, and argon. Canonical ensemble molecular dynamics simulation using the Yasuoka-Matsumoto method is applied to nucleation in supersaturated vapours that contain more carbon dioxide than in the saturated state at the dew line. Established molecular models are employed that are known to accurately reproduce the VLE of the pure fluids as well as their binary and ternary mixtures. On the basis of these models, also the quaternary VLE properties of the bulk fluid are determined with the Grand Equilibrium method. Simulation results for the carrier gas influence on the nucleation rate are compared with the classical nucleation theory (CNT) considering the "pressure effect" [Phys. Rev. Lett. 101: 125703 (2008)]. It is found that the presence of air as a carrier gas decreases the nucleation rate only sligh...

  12. Simulation studies of nucleation of ferroelectric polarization reversal.

    Energy Technology Data Exchange (ETDEWEB)

    Brennecka, Geoffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winchester, Benjamin Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

  13. Visualizing domain wall and reverse domain superconductivity.

    Science.gov (United States)

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  14. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead-lithium with the Self-consistent nucleation theory and surface tension corrections

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFoam(r) CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a cr...

  15. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    Science.gov (United States)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self

  16. Homogeneous SPC/E water nucleation in large molecular dynamics simulations

    CERN Document Server

    Angelil, R; Tanaka, K; Tanaka, H

    2015-01-01

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to $\\sim 4\\cdot 10^6$ molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to $\\sim 10^{19}\\,\\textrm{cm}^{-3}\\textrm{s}^{-1}$, helping close the gap between experimentally measured rates $\\sim 10^{17}\\,\\textrm{cm}^{-3}\\textrm{s}^{-1}$. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst, a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run avera...

  17. Formation and growth of nucleated particles: observational constraints on cloud condensation nuclei budgets

    Directory of Open Access Journals (Sweden)

    D. M. Westervelt

    2012-05-01

    Full Text Available Aerosol nucleation occurs frequently in the atmosphere and is an important source of particle number. Observations suggest that nucleated particles are capable of growing to sufficiently large sizes that they act as cloud condensation nuclei (CCN, but some global models have reported that CCN concentrations are only modestly sensitive to large changes in nucleation rates. Here we present a novel approach for using long-term size distribution observations to evaluate the contribution of nucleation and growth to the tropospheric CCN budget. We derive from observations at five locations nucleation-relevant metrics such as nucleation rate of particles at diameter of 3 nm (J3, diameter growth rate (GR, particle survival probability (SP, condensation and coagulation sinks, and CCN formation rate. These quantities are also derived for a global microphysical model and compared to the observations on a daily basis to evaluate the model's CCN budget. Using the GEOS-Chem-TOMAS global aerosol model we simulate nucleation events predicted by ternary (with a 10−5 tuning factor or activation nucleation over one year and find that the model does not understate the contribution of boundary layer nucleation to CCN concentrations. Model-predicted annual-average formation rates of 50 nm and 100 nm particles due to nucleation are always within 50% and show a slight tendency to over-estimate the observations. Because it is rare for observations to track the growth of a nucleation mode across several days, it is difficult to assess CCN formation when growth requires multiple days. To address multi-day growth, we present three cases of survival of particles beyond one day: single-day growth, partial multi-day survival, and total multi-day survival. For the single-day growth case, only particles that reach a CCN size (50 or 100 nm on the same day are counted as contributing to the CCN budget, which represents a low estimate of CCN

  18. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Abascal, José L. F.; Valeriani, Chantal [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Bresme, Fernando [Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Department of Chemistry, Norwegian University of Science and Technology, Trondheim (Norway)

    2015-04-21

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain the free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.

  19. Ferroelectric domain dynamics under an external field

    Science.gov (United States)

    Rappe, Andrew; Shin, Young-Han; Grinberg, Ilya; Chen, I.-Wei

    2007-03-01

    Ferroelectric oxides with the perovskite structure are promising materials for nonvolatile random access computer memories. PbZr1-xTixO3 is currently used for this purpose. In these materials, storage of a bit involves the reorientation of polarization, or the movement of a ferroelectric domain wall. However, the intrinsic properties of the polarization reversal process of ferroelectrics at the microscopic level still have not been revealed, either by experiments or computations. In this talk, I will show how this problem can be studied with a multi-scale approach. First, an interatomic potential is parameterized to first-principles calculations, and molecular dynamics (MD) simulations are performed. Second, stochastic Monte Carlo simulations are conducted, with nucleation and growth rates extracted from the MD simulations. For PbTiO3, we find that while the overall domain-wall speed from our calculation is in good agreement with the recent experiments, the size of the critical nucleus is much smaller than predicted from the Miller-Weinreich model. We think that this discrepancy can be explained by a diffuse-boundary model and by the fact that the overall wall motion is controlled by both the nucleation and growth processes.

  20. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  1. Dislocation nucleation in heteroepitaxial semiconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Pichaud, B.; Burle, N.; Texier, M.; Alfonso, C.; Gailhanou, M.; Thibault-Penisson, J. [IM2NP UMR6242 CNRS, Aix-Marseille University, Marseille (France); Fontaine, C. [LAAS CNRS, Toulouse (France); Vdovin, V.I. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation)

    2009-08-15

    The nucleation of dislocation in semiconductors is still a matter of debate and especially in heteroepitaxial films. To understand this nucleation process the classical models of dislocation nucleation are presented and criticized. Two main points are then developed: emission of dislocations from surface steps and the role of point defects agglomeration on dislocation nucleation. Recent atomic simulation of half loops emission from surface steps and experimental evidences of anisotropic relaxation of GaInAs films deposited on vicinal (111)GaAs substrates strongly support surface steps as preferential sites for nucleation. In low temperature buffer layer structures (SiGe/Si) an original dislocation structure is observed which corresponds to the dislocation emission in different glide systems by a unique nucleation centre. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Variables Influencing the Ratings of Importance and Use of Quality of Life Domains and Indicators by Polish Professionals

    Science.gov (United States)

    Otrbski, W.

    2005-01-01

    Background: Interest in the concept of quality of life (QOL) as a category guiding the development and provision of services for individuals with intellectual disabilities (ID) in Poland is increasingly being observed. Its presence in rehabilitation and care is strongly associated with the assessment of importance and use of QOL domains and…

  3. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  4. Nucleation and growth of new particles in Po Valley, Italy

    Directory of Open Access Journals (Sweden)

    A. Hamed

    2007-01-01

    Full Text Available Aerosol number distribution measurements are reported at San Pietro Capofiume (SPC station (44°39' N, 11°37' E for the time period 2002–2005. The station is located in Po Valley, the largest industrial, trading and agricultural area in Italy with a high population density. New particle formation was studied based on observations of the particle size distribution, meteorological and gas phase parameters. The nucleation events were classified according to the event clarity based on the particle number concentrations, and the particle formation and growth rates. Out of a total of 769 operational days from 2002 to 2005 clear events were detected on 36% of the days whilst 33% are clearly non-event days. The event frequency was high during spring and summer months with maximum values in May and July, whereas lower frequency was observed in winter and autumn months. The average particle formation and growth rates were estimated as ~6 cm−3 s−1 and ~7 nm h−1, respectively. Such high growth and formation rates are typical for polluted areas. Temperature, wind speed, solar radiation, SO2 and O3 concentrations were on average higher on nucleation days than on non-event days, whereas relative and absolute humidity and NO2 concentration were lower; however, seasonal differences were observed. Backtrajectory analysis suggests that during majority of nucleation event days, the air masses originate from northern to eastern directions. We also study previously developed nucleation event correlations with environmental variables and show that they predict Po Valley nucleation events with variable success.

  5. Molecular Simulations of Heterogeneous Ice Nucleation. II. Peeling back the Layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.

  6. Effect of temperature on the nucleation kinetics of α L-glutamic acid

    Science.gov (United States)

    Lindenberg, Christian; Mazzotti, Marco

    2009-02-01

    In this work, the nucleation kinetics of α L-glutamic acid is determined on the basis of induction time measurements. L-Glutamic acid is precipitated by pH-shift in a stirred batch reactor. The induction times are measured at different supersaturations using ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM), and applying a previously developed method [J. Schöll, L. Vicum, M. Müller, M. Mazzotti, Precipitation of L-glutamic acid: Determination of nucleation kinetics. Chemical Engineering & Technology 29(2) (2006) 257-264]. Moreover, the effect of temperature on the induction time is studied. Together with independently measured growth kinetics, the nucleation rates are determined. Finally, the nucleation kinetics is used to calculate the interfacial energies. The analysis of the estimated kinetics parameters and of the calculated interfacial energies indicates a heterogeneous nucleation mechanism.

  7. Ice nucleation from aqueous NaCl droplets with and without marine diatoms

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2011-06-01

    Full Text Available Ice formation in the atmosphere by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atmospheric IN by experimentally observing homogeneous ice nucleation from aqueous NaCl droplets and comparing against heterogeneous ice nucleation from aqueous NaCl droplets containing intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temperature and water activity, aw. Additional analyses are presented on the dependence of diatom surface area and aqueous volume on heterogeneous freezing temperatures, ice nucleation rates, ωhet, ice nucleation rate coefficients, Jhet, and differential and cumulative ice nuclei spectra, k(T and K(T, respectively. Homogeneous freezing temperatures and corresponding nucleation rate coefficients are in agreement with the water activity based homogeneous ice nucleation theory within experimental and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, Δaw, het = 0.2303, of the ice melting curve can describe median heterogeneous freezing temperatures. Individual freezing temperatures showed no dependence on available diatom surface area and aqueous volume. Determined at median diatom freezing temperatures for aw from 0.8 to 0.99, ωhet~0.11+0.06−0.05 s−1, Jhet~1.0+1.16−0.61×104 cm−2

  8. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Directory of Open Access Journals (Sweden)

    C. Budke

    2015-02-01

    Full Text Available A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 °C (233 K and at cooling rates between 0.1 and 10 K min−1. The droplets are separated from each other in individual compartments, thus preventing a Wegener–Bergeron–Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL−1 to 1 mg mL−1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  9. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Science.gov (United States)

    Budke, C.; Koop, T.

    2015-02-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs) contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  10. The effects of mineral dust particles, aerosol regeneration and ice nucleation parameterizations on clouds and precipitation

    Directory of Open Access Journals (Sweden)

    A. Teller

    2012-03-01

    Full Text Available This study focuses on the effects of aerosol particles on the formation of convective clouds and precipitation in the Eastern Mediterranean sea with a special emphasis on the role of mineral dust particles in these processes. We used a new detailed numerical cloud microphysics scheme that has been implemented in the Weather Research and Forecast (WRF model in order to study aerosol-cloud interaction in 3-D configuration based on realistic meteorological data. Using a number of case studies we tested the contribution of mineral dust particles and different ice nucleation parameterizations to precipitation development. In this study we also investigated the importance of recycled (regenerated aerosols that had been released to the atmosphere following the evaporation of cloud droplets.

    The results showed that increased aerosol concentration due to the presence of mineral dust enhanced the formation of ice crystals. The dynamic evolution of the cloud system sets the time periods and regions in which heavy or light precipitation occurred in the domain. The precipitation rate, the time and duration of precipitation were affected by the aerosol properties only at small area scales (with areas of about 20 km2. Changes of the ice nucleation scheme from ice supersaturation dependent parameterization to a recent approach of aerosol concentration and temperature dependent parameterization modified the ice crystals concentrations but did not affect the total precipitation in the domain. Aerosol regeneration modified the concentration of cloud droplets at cloud base by dynamic recirculation of the aerosols but also had only a minor effect on precipitation.

    The major conclusion from this study is that the effect of mineral dust particles on clouds and total precipitation is limited by the properties of the atmospheric dynamics and the only effect of aerosol on precipitation may come from significant increase in the concentration

  11. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei.

    Science.gov (United States)

    Vassella, E; Krämer, R; Turner, C M; Wankell, M; Modes, C; van den Bogaard, M; Boshart, M

    2001-07-01

    Growth control of African trypanosomes in the mammalian host is coupled to differentiation of a non-dividing life cycle stage, the stumpy bloodstream form. We show that a protein kinase with novel domain architecture is important for growth regulation. Zinc finger kinase (ZFK) has a kinase domain related to RAC and S6 kinases flanked by a FYVE-related zinc finger and a phox (PX) homology domain. To investigate the function of the kinase during cyclical development, a stable transformation procedure for bloodstream forms of differentiation-competent (pleomorphic) Trypanosoma brucei strains was established. Deletion of both allelic copies of ZFK by homologous recombination resulted in reduced growth of bloodstream-form parasites in culture, which was correlated with an increased rate of differentiation to the non-dividing stumpy form. Growth and differentiation rates were returned to wild-type level by ectopic ZFK expression. The phenotype is stage-specific, as growth of procyclic (insect form) trypanosomes was unaffected, and Deltazfk/Deltazfk clones were able to undergo full cyclical development in the tsetse fly vector. Deletion of ZFK in a differentiation-defective (monomorphic) strain of T. brucei did not change its growth rate in the bloodstream stage. This suggests a function of ZFK associated with the trypanosomes' decision between either cell cycle progression, as slender bloodstream form, or differentiation to the non-dividing stumpy form.

  12. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C M; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the S

  13. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

    CERN Document Server

    Kirkby, Jasper; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M; Carslaw, Kenneth S; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku

    2011-01-01

    Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that n...

  14. Effects of clustered nucleation on recrystallization

    DEFF Research Database (Denmark)

    Storm, Søren; Juul Jensen, Dorte

    2009-01-01

    Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although the experimen......Computer simulations are used to study effects of an experimentally determined 3D distribution of nucleation sites on the recrystallization kinetics and on the evolution of the recrystallized microstructure as compared to simulations with random nucleation. It is found that although...... the experimentally observed clustering is not very strong, it changes the kinetics and the recrystallized microstructural morphology plus leads to a recrystallized grain size distribution, which is significantly broadened compared to that of random nucleation simulations. (C) 2009 Published by Elsevier Ltd...

  15. A Brownian Model for Crystal Nucleation

    CERN Document Server

    Durán-Olivencia, Miguel A

    2013-01-01

    In this work a phenomenological Stochastic Differential Equation (SDE) is proposed for modelling the time-evolution of the radius of a pre-critical molecular cluster during nucleation (the classical order parameter). Such a SDE constitutes the basis for the calculation of the (nucleation) induction time under the Kramers' theory of thermally activated escape processes. Considering the nucleation stage as a Poisson's rare-event, analytical expressions for the induction time statistics are deduced for both steady and unsteady conditions, the latter assuming the semiadiabatic limit. These expressions can be used to identify the underlying mechanism of molecular cluster formation (distinguishing between homogeneous or heterogeneous nucleation from the nucleation statistics is possible) as well as to predict induction times and induction time distributions. The predictions of this model are in good agreement with experimentally measured induction times at constant temperature but agreement is not so good for induc...

  16. Nucleation in an Ultra Low Ionization Environment

    Science.gov (United States)

    Pedersen, J. O.; Enghoff, M. B.; Paling, S.; Svensmark, H.

    2010-12-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapor, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulfuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing radiation we then gauge the relative importance of ion

  17. Bubble nucleation and growth in very strong cosmological phase transitions

    CERN Document Server

    Megevand, Ariel

    2016-01-01

    Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational ...

  18. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    stages of particle coagulation and condensation have been performed and compared with the experimental results. The simulations indicate that a stable distribution of sub 3nm particles exists that cannot be detected using standard techniques for measuring atmospheric aerosol, and that the nucleation rate......Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...... particles with the potential to influence the transparency of Earth's atmosphere. This is consistent with a number of recent studies indicating that variations in the density of cosmic rays arriving at Earth have affected climate over a wide range of time scales....

  19. Homogenous nucleation of sulfuric acid and water at atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Petäjä, T.; Vanhanen, J.; Hyvärinen, A.-P.; Sipilä, M.; Paasonen, P.; Lihavainen, H.; Kulmala, M.

    2010-11-01

    In this study the homogeneous nucleation rates of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3×109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln[H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data.

  20. An investigation of time-dependent domain wall pinning effects in Tb/Fe multilayer thin flms

    NARCIS (Netherlands)

    Phillips, G.N.; O'Grady, K.; El-Hilo, M.

    2002-01-01

    Reverse domain nucleation time measurements have been performed on two Tb/Fe multilayer magneto-optic films exhibiting different degrees of domain wall pinning.A linear relationship between ln (reverse domain nucleation time) and the applied field has been predicted and observed for a sample exhibit

  1. Measurement of the nucleation and propagation field in a single Co/Pt multilayer dot by anomalous Hall effect.

    NARCIS (Netherlands)

    Vries, de J.; Delalande, M.Y.; Abelmann, L.; Lodder, J.C.

    2011-01-01

    It has been suggested that the reversal mechanism in highly exchange coupled systems, like Co/Pt multilayers, takes place by nucleation of a reversed domain, followed by domain wall movement. Based on magnetic force microscopy (MFM) and anomalous Hall effect (AHE) measurements, we show that this mod

  2. Droplet Nucleation: Physically-Based Parameterizations and Comparative Evaluation

    Directory of Open Access Journals (Sweden)

    Steve Ghan

    2011-10-01

    Full Text Available One of the greatest sources of uncertainty in simulations of climate and climate change is the influence of aerosols on the optical properties of clouds. The root of this influence is the droplet nucleation process, which involves the spontaneous growth of aerosol into cloud droplets at cloud edges, during the early stages of cloud formation, and in some cases within the interior of mature clouds. Numerical models of droplet nucleation represent much of the complexity of the process, but at a computational cost that limits their application to simulations of hours or days. Physically-based parameterizations of droplet nucleation are designed to quickly estimate the number nucleated as a function of the primary controlling parameters: the aerosol number size distribution, hygroscopicity and cooling rate. Here we compare and contrast the key assumptions used in developing each of the most popular parameterizations and compare their performances under a variety of conditions. We find that the more complex parameterizations perform well under a wider variety of nucleation conditions, but all parameterizations perform well under the most common conditions. We then discuss the various applications of the parameterizations to cloud-resolving, regional and global models to study aerosol effects on clouds at a wide range of spatial and temporal scales. We compare estimates of anthropogenic aerosol indirect effects using two different parameterizations applied to the same global climate model, and find that the estimates of indirect effects differ by only 10%. We conclude with a summary of the outstanding challenges remaining for further development and application.

  3. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.

    Science.gov (United States)

    Ickes, Luisa; Welti, André; Hoose, Corinna; Lohmann, Ulrike

    2015-02-28

    The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter - the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist

  4. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields...... nucleation rates of the order of 0.1 1 cm(-3) s(-1). This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation....

  5. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    OpenAIRE

    Budke, C.; T. Koop

    2015-01-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 °C (233 K) and at cooling rates between 0.1 and 10 K min−1. The droplets are separated from each other in i...

  6. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    OpenAIRE

    Budke, C.; T. Koop

    2014-01-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 °C (233 K) and at cooling rates between 0.1 K min−1 and 10 K min−1. The droplets are separated from e...

  7. Flow Field Effects on Nucleation in a Reacting Mixture Layer.

    Science.gov (United States)

    1984-11-01

    chemically reacting flows has been analysed by Fendell (1965) who considered the effect of the straining motion in a stagnation point flow on ignition...stagnation point diffusion flame ( Fendell , 1965, Linan, 1974). In the present study the effect of the strain rate or velocity gradient on nucleation kinetics...Symposium (International) on Corn- bustion, 799-810, Academic Press. Fendell , F. E. (1965). Ignition and extinction in combustion of initially unmixed

  8. Predictive modeling of nanoscale domain morphology in solution-processed organic thin films

    Science.gov (United States)

    Schaaf, Cyrus; Jenkins, Michael; Morehouse, Robell; Stanfield, Dane; McDowall, Stephen; Johnson, Brad L.; Patrick, David L.

    2017-09-01

    The electronic and optoelectronic properties of molecular semiconductor thin films are directly linked to their extrinsic nanoscale structural characteristics such as domain size and spatial distributions. In films prepared by common solution-phase deposition techniques such as spin casting and solvent-based printing, morphology is governed by a complex interrelated set of thermodynamic and kinetic factors that classical models fail to adequately capture, leaving them unable to provide much insight, let alone predictive design guidance for tailoring films with specific nanostructural characteristics. Here we introduce a comprehensive treatment of solution-based film formation enabling quantitative prediction of domain formation rates, coverage, and spacing statistics based on a small number of experimentally measureable parameters. The model combines a mean-field rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-dependent critical nucleus size to solve for the quasi-two-dimensional temporally and spatially varying monomer concentration, nucleation rate, and other properties. Excellent agreement is observed with measured nucleation densities and interdomain radial distribution functions in polycrystalline tetracene films. Numerical solutions lead to a set of general design rules enabling predictive morphological control in solution-processed molecular crystalline films.

  9. The Influence of Social Capital Domains on Self-Rated Health Among Serbian High-School Students? A School-Based Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Dario Novak

    2016-09-01

    Full Text Available Social capital has been shown as a positive asset for improving overall health in children and youth. Thus, the purpose of the present study was to determine the associations between family, neighborhood and school social capital with self-rated health among Serbian high-school students. This cross-sectional study on 1220 high-school students (539 males and 681 females was carried out in the school year 2015/2016. Main outcome was defined as self-rated health, measured by one question: "How would you rate your health?" with five possible answers: (1 very poor; (2 poor, (3 fair, (4 good and (5 excellent. We binarised the outcome, where answers "very poor", "poor" and "fair" represented "poor health" and "good" and "excellent" "good health". Multiple logistic regression was used to determine the associations between social capital domains and self-rated health. Adjusted by gender, body-mass index, self-perceived socioeconomic status, psychological distress and physical activity, good self-rated health was positively associated only with high family social capital (OR 2.29; 95% CI 1.62 to 3.24. When all the social capital variables were entered simultaneously, self-rated health remained associated with family social capital (OR 2.28; 95% CI 1.61 to 3.24. Family social capital was the only domain strongly associated with self-rated health. Since neighborhood and school social capital represent key support and empathy for children and youth, neighborhood and school-based strategies and policies should be implemented within the system to increase overall physical and mental health.

  10. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    Science.gov (United States)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  11. Classical nucleation theory for solute precipitation amended with diffusion and reaction processes near the interface.

    Science.gov (United States)

    Borisenko, Alexander

    2016-05-01

    During the processes of nucleation and growth of a precipitate cluster from a supersaturated solution, the diffusion flux between the cluster and the solution changes the solute concentration near the cluster-solution interface from its average bulk value. This feature affects the rates of attachment and detachment of solute atoms at the interface, and, therefore, the entire nucleation-growth kinetics is altered. Unless quite obvious, this effect has been ignored in classical nucleation theory. To illustrate the results of this approach, for the case of homogeneous nucleation, we calculate the total solubility and the nucleation rate as functions of two parameters of the model (the reduced interface energy and the inverse second Damköhler number), and we compare these results to the classical ones. One can conclude that discrepancies with classical nucleation theory are great in the diffusion-limited regime, when the rate of bulk diffusion is small compared to the rate of interface reactions, while in the opposite interface-limited case they vanish.

  12. Competitive heterogeneous nucleation onto a microscopic impurity in a Potts model

    Science.gov (United States)

    Asuquo, Cletus C.; McArthur, Danielle; Bowles, Richard K.

    2016-08-01

    Many metastable systems can nucleate to multiple competing stable or intermediate metastable states. In this work, a Potts model, subject to external fields, is used to study the competitive nucleation of two phases attempting to grow on a microscopic impurity. Monte Carlo simulations are used to calculate the free energy surfaces for the system under different conditions, where the relative stability of the phases is adjusted by changing the interaction parameters, and the nucleation rates obtained using multicomponent transition state theory (TST) are compared with the rates measured using the survival probability method. We find that the two methods predict similar nucleation rates when the free energy barrier used in the transition state theory is defined as the work required to form a critical embryo from the metastable phase. An analysis of the free energy surfaces also reveals that the competition between the nucleating phases leads to an effective drying of the impurity which slows down the nucleation rate compared to the single phase case.

  13. Urediospores of rust fungi are ice nucleation active at > −10 °C and harbor ice nucleation active bacteria

    Directory of Open Access Journals (Sweden)

    C. E. Morris

    2013-04-01

    Full Text Available Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA of the aerially disseminated spores (urediospores of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores, but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at

  14. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  15. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

    CERN Document Server

    Almeida, João; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Vehkamaki, Hanna; Kirkby, Jasper

    2013-01-01

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates ...

  16. Nucleation and undercooling of metal melt

    Institute of Scientific and Technical Information of China (English)

    坚增运; 常芳娥; 马卫红; 严文; 杨根仓; 周尧和

    2000-01-01

    The effects of thermodynamic and dynamic factors on nucleation process have been integrated in a theoretical formula representing the dependence of undercooling on parameters concerned. Moreover, a method to determine the kind and amount of the most effective catalyst in an undercooled melt has been acquired. The results show that the undercooling increases with the decreasing surface area of the most effective catalyst and the increasing cooling rate as the kind of the most effective catalyst is constant. It increases to a maximum value when the ratio of the surface area of catalyst ( Sv V) to the cooling rate of melt ( Rc) decreases to a critical value. The maximum undecooling not only depends on the ratio of non-dimensional factor of activation energy for an atom to diffuse (φ) to non-dimensional factor of driving force for nucleus to form (ψ), but also depends on the contact angle of the most effective catalyst; the smaller the ratio of φ to ψ, the higher the maximum undercooling, but it does not

  17. Nucleation and undercooling of metal melt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of thermodynamic and dynamic factors on nucleation process have been integrated in a theoretical formula representing the dependence of undercooling on parameters concerned. Moreover, a method to determine the kind and amount of the most effective catalyst in an undercooled melt has been acquired. The results show that the undercooling increases with the decreasing surface area of the most effective catalyst and the increasing cooling rate as the kind of the most effective catalyst is constant. It increases to a maximum value when the ratio of the surface area of catalyst (SvV) to the cooling rate of melt (Rc) decreases to a critical value. The maximum undecooling not only depends on the ratio of non-dimensional factor of activation energy for an atom to diffuse (φ) to non-dimensional factor of driving force for nucleus to form (ψ), but also depends on the contact angle of the most effective catalyst; the smaller the ratio of φ to ψ, the higher the maximum undercooling, but it does not exceed the value of 2/3 melting point; the smaller the contact angle of the most effective catalyst, the lower the maximum undercooling, and the smaller the requisite value of SvV/Rc for the maximum undercooling also.

  18. Heterogeneous nucleation in solutions: generalized Gibbs' approach.

    Science.gov (United States)

    Abyzov, Alexander S; Schmelzer, Jürn W P

    2014-06-28

    Heterogeneous nucleation in solutions on planar solid surfaces is modeled taking into account changes of the state parameters of the critical clusters in dependence on supersaturation. The account of the variation of the state parameters of the cluster phase on nucleation is performed in the framework of the generalized Gibbs' approach. A regular solution is chosen as a model for the analysis of the basic qualitative characteristics of the process. It is shown that, employing the generalized Gibbs approach, contact angle and catalytic activity factor for heterogeneous nucleation become dependent on the degree of metastability (supersaturation) of the solution. For the case of formation of a cluster in supersaturated solutions on a surface of low wettability (the macroscopic equilibrium contact angles being larger than 90°), the solid surface has only a minor influence on nucleation. In the alternative case of high wettability (for macroscopic equilibrium contact angles being less than 90°), nucleation is significantly enhanced by the solid surface. Effectively, the existence of the solid surface results in a significant shift of the spinodal to lower supersaturations as compared with homogeneous nucleation. Qualitatively, the same behavior is observed now near the new (solid surface induced) limits of instability of the solution as compared with the behavior near to the spinodal curve in the case of homogeneous nucleation.

  19. Generalized Gibbs' approach in heterogeneous nucleation.

    Science.gov (United States)

    Abyzov, Alexander S; Schmelzer, Jürn W P

    2013-04-28

    Heterogeneous nucleation (condensation and boiling) on planar solid surfaces is described taking into account changes of the state parameters of the critical clusters in dependence on supersaturation. The account of the variation of the state parameters of the cluster phase on nucleation is performed in the framework of the generalized Gibbs' approach. One-component van der Waals fluids are chosen as a model for the analysis of the basic qualitative characteristics of the process. The analysis is performed for both hydrophobic and hydrophilic surfaces and similarities and differences between condensation and boiling processes are discussed for the two different cases. It is shown that, in the generalized Gibbs' approach, contact angle and catalytic factor for heterogeneous nucleation become dependent on the degree of metastability (undercooling or superheating) of the fluid. For the case of formation of a droplet in supersaturated vapor on a hydrophobic surface and bubble formation in a liquid on a hydrophilic surface the solid surface has only a minor influence on nucleation. In the alternative cases of condensation of a droplet on a hydrophilic surface and of bubble formation in a liquid on a hydrophobic surface, nucleation is significantly enhanced by the solid. Effectively, the existence of the solid surface results in a significant shift of the spinodal to lower supersaturations as compared with homogeneous nucleation. Qualitatively the same behavior is observed now near the new (solid surface induced) limits of instability of the fluid as compared with the behavior near to the spinodal curve in the case of homogeneous nucleation.

  20. Effect of nucleation layer morphology on crystal quality, surface morphology and electrical properties of AlGaN/GaN heterostructures

    Institute of Scientific and Technical Information of China (English)

    Duan Huantao; Hao Yue; Zhang Jincheng

    2009-01-01

    Nucleation layer formation is a key factor for high quality gallium nitride (GaN) growth on a sapphire substrate. We found that the growth rate substantially affected the nucleation layer morphology, thereby having a great impact on the crystal quality, surface morphology and electrical properties of AIGaN/GaN heterostructures on sapphire substrates. A nucleation layer with a low growth rate of 2.5 nm/min is larger and has better coalescence than one grown at a high growth rate of 5 nm/min. AIGaN/GaN heterostructures on a nucleation layer with low growth rate have better crystal quality, surface morphology and electrical properties.

  1. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms

    Directory of Open Access Journals (Sweden)

    F. Yu

    2008-10-01

    Full Text Available Aerosol nucleation events observed worldwide may have significant climatic and health implications. However, the specific nucleation mechanisms remain ambiguous. Here, we report case studies of eight nucleation events observed during an intensive field campaign at a boreal forest site (Hyytiälä, Finland in spring 2005. The present analysis is based on comprehensive kinetic simulations using an ion-mediated nucleation (IMN model in which the key physical and chemical parameters are constrained by a variety of recent measurements. Out of the 22 days of the campaign on which nucleation events were observed, eight major events were selected for detailed analysis on the basis of indications that the observed air masses were relatively homogeneous. In most of these cases, reasonable agreement is found between IMN predictions and field data for a range of variables, including critical nucleation sizes, size-dependent overcharging ratios, and the concentrations of 1.8–3 nm stable clusters and 3–6 nm particles, and their diurnal variations. The possible reasons leading to substantial differences between observation and theory in some cases are also explored. Statistically, roughly 80% of the nucleation events recorded during the Hyytiälä campaign exhibited mean size-dependent particle overcharging ratios within the range of, or exceeding, those predicted by the IMN model, suggesting that ion nucleation processes were significant during these events. The nucleation rates calculated using the IMN modeling approach are contrasted with those predicted by other theories/models, and key differences between the results are discussed. In particular, it is concluded that the ion nucleation model originally developed by Lovejoy et al. (2004 significantly under-predicts ion nucleation rates, and cannot explain the new observations from Hyytiälä regarding the electrical properties of nanoparticles. We also show that, for the well documented conditions of

  2. Dynamic density functional theory for nucleation: Non-classical predictions of mesoscopic nucleation theory

    Science.gov (United States)

    Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) for fluids and its dynamic extension (DDFT) provide an appealing mean-field framework for describing equilibrium and dynamics of complex soft matter systems. For a long time, homogeneous nucleation was considered to be outside the limits of applicability of DDFT. However, our recently developed mesoscopic nucleation theory (MeNT) based on fluctuating hydrodynamics, reconciles the inherent randomness of the nucleation process with the deterministic nature of DDFT. It turns out that in the weak-noise limit, the most likely path (MLP) for nucleation to occur is determined by the DDFT equations. We present computations of MLPs for homogeneous and heterogeneous nucleation in colloidal suspensions. For homogeneous nucleation, the MLP obtained is in excellent agreement with the reduced order-parameter description of MeNT, which predicts a multistage nucleation pathway. For heterogeneous nucleation, the presence of impurities in the fluid affects the MLP, but remarkably, the overall qualitative picture of homogeneous nucleation persists. Finally, we highlight the use of DDFT as a simulation tool, which is especially appealing as there are no known applications of MeNT to heterogeneous nucleation. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from EPSRC via Grants No. EP/L020564 and EP/L025159.

  3. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: a comparison of simulation techniques

    NARCIS (Netherlands)

    Filion, L.C.; Hermes, M; Ni, R.; Dijkstra, M.

    2010-01-01

    Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett–Chandlertype the

  4. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  5. Monte Carlo Tests of Nucleation Concepts in the Lattice Gas Model

    OpenAIRE

    Schmitz, Fabian; Virnau, Peter; Binder, Kurt

    2013-01-01

    The conventional theory of homogeneous and heterogeneous nucleation in a supersaturated vapor is tested by Monte Carlo simulations of the lattice gas (Ising) model with nearest-neighbor attractive interactions on the simple cubic lattice. The theory considers the nucleation process as a slow (quasi-static) cluster (droplet) growth over a free energy barrier $\\Delta F^*$, constructed in terms of a balance of surface and bulk term of a "critical droplet" of radius $R^*$, implying that the rates...

  6. Influence of Isovalent Impurity Ge on Nucleation and Morphology of Supersaturated Oxygen Precipitate in CZSi

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Ge in CZSi on the density and the rate of nucleation of supersaturated oxygen precipitation at lower annealing temperatures were examined.It is discovered that rod-like precipitation was suppressed when annealing at 700℃,but Ge has no effect on the morphology and the growth of oxygen precipitation at annealing temperatures more than 900℃.The results indicated that Ge neither acted as center of nucleation nor was involved in oxygen precipitation and its defect.

  7. An improved model of homogeneous nucleation for high supersaturation conditions: aluminum vapor.

    Science.gov (United States)

    Savel'ev, A M; Starik, A M

    2016-12-21

    A novel model of stationary nucleation, treating the thermodynamic functions of small clusters, has been built. The model is validated against the experimental data on the nucleation rate of water vapor obtained in a broad range of supersaturation values (S = 10-120), and, at high supersaturation values, it reproduces the experimental data much better than the traditional classical nucleation model. A comprehensive analysis of the nucleation of aluminum vapor with the usage of developed stationary and non-stationary nucleation models has been performed. It has been shown that, at some value of supersaturation, there exists a double potential nucleation barrier. It has been revealed that the existence of this barrier notably delayed the establishment of a stationary distribution of subcritical clusters. It has also been demonstrated that the non-stationary model of the present work and the model of liquid-droplet approximation predict different values of nucleation delay time, τs. In doing so, the liquid-droplet model can underestimate notably (by more than an order of magnitude) the value of τs.

  8. Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation

    Science.gov (United States)

    Kelton, K. F.; Falster, R.; Gambaro, D.; Olmo, M.; Cornara, M.; Wei, P. F.

    1999-06-01

    Quantitative measurements of the oxygen precipitate rate as a function of annealing were made in Czochralski-grown silicon wafers that contained different initial concentrations of oxygen. All wafers were annealed at 1000 °C for 15 min to ensure that the initial cluster-size distributions were identical in all samples of the same composition prior to the multi-step annealing treatments used for the precipitation studies. The experimental data are compared with numerical predictions for time-dependent nucleation within the classical theory of nucleation. Quantitative agreement is obtained between the measured and calculated densities of oxygen precipitates for nucleation temperatures greater than 600 °C, but only over a narrow range of oxygen composition. Below 600 °C, the measured density for all samples is orders of magnitude larger than is predicted from the model. Further, the measured data show an anomalously small temperature dependence for the induction time for nucleation that does not scale with the diffusion coefficient, as expected from the classical theory of nucleation. Fundamentally, the classical theory of nucleation cannot explain the time-dependent nucleation of oxygen precipitates for temperatures below 650 °C. A possible reason is given.

  9. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation

    CERN Document Server

    Ehrhart, Sebastian; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208–292 K, sulphuric acid concentrations from 1·106 to 1·109 cm−3, and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphu...

  10. A physically constrained classical description of the homogeneous nucleation of ice in water

    Science.gov (United States)

    Koop, Thomas; Murray, Benjamin J.

    2016-12-01

    Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales

  11. Nucleation of protein crystals under the influence of solution shear flow.

    Science.gov (United States)

    Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G

    2006-09-01

    Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid

  12. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    The domain concept, originally suggested by Schmidt-Rohr in the 1930’s (as credited in Fishman’s writings in the 1970s), was an attempt to sort out different areas of language use in multilingual societies, which are relevant for language choice. In Fishman’s version, domains were considered...... not described in terms of domains, and recent research e.g. about the multilingual communities in the Danish-German border area seems to confirm this....

  13. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Chin Francois

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  14. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Madhukumar A. S.

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  15. The Sensitivity of Heavy Precipitation to Horizontal Resolution, Domain Size, and Rain Rate Assimilation: Case Studies with a Convection-Permitting Model

    Directory of Open Access Journals (Sweden)

    Xingbao Wang

    2016-01-01

    Full Text Available The Australian Community Climate and Earth-System Simulator (ACCESS is used to test the sensitivity of heavy precipitation to various model configurations: horizontal resolution, domain size, rain rate assimilation, perturbed physics, and initial condition uncertainties, through a series of convection-permitting simulations of three heavy precipitation (greater than 200 mm day−1 cases in different synoptic backgrounds. The larger disparity of intensity histograms and rainfall fluctuation caused by different model configurations from their mean and/or control run indicates that heavier precipitation forecasts have larger uncertainty. A cross-verification exercise is used to quantify the impacts of different model parameters on heavy precipitation. The dispersion of skill scores with control run used as “truth” shows that the impacts of the model resolution and domain size on the quantitative precipitation forecast are not less than those of perturbed physics and initial field uncertainties in these not intentionally selected heavy precipitation cases. The result indicates that model resolution and domain size should be considered as part of probabilistic precipitation forecasts and ensemble prediction system design besides the model initial field uncertainty.

  16. Nucleation of quark matter in protoneutron star matter

    CERN Document Server

    Mintz, B W; Pagliara, G; Schaffner-Bielich, J

    2009-01-01

    The phase transition from hadronic matter to quark matter might take place already during the early post-bounce stage of core collapse supernovae when matter is hot and lepton rich. If the phase transition is of first order, the formation of the new phase occurs via drops nucleation. Here we investigate the thermal nucleation of the quark phase in supernova matter and we calculate its rate for a wide range of the model parameters. We show that the formation of the first drop of the quark phase might be very fast and therefore the phase transition to quark matter could have an important role for the mechanism and the evolution of supernova explosions.

  17. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  18. Nucleation of lysozyme crystals under external electric and ultrasonic fields

    Science.gov (United States)

    Nanev, Christo N.; Penkova, Anita

    2001-11-01

    Preferred orientation along c-axis of hen-egg-white lysozyme (HEWL) crystals has been observed in an external electric field. Besides, the HEWL crystals grew predominantly on the cathode side of the glass cell. These facts were explained on the basis of a concept for specific spatial distribution of the positive electric charges on the individual HEWL molecules, and thus attributed to the (preferred) orientation of individual HEWL molecules in the solution, under these conditions. Ultrasonic field redoubles the nucleation rate of HEWL crystals, but does not change the number of building units in the critical nucleus. Taking into account the intermolecular binding energy, we conclude that ultrasonic field accelerates nucleation due to breaking of the protein crystals.

  19. Quantum Nucleation of Phase Slips in 1-d Superfluids

    Science.gov (United States)

    Arovas, Daniel

    1998-03-01

    The rate for quantum nucleation of phase slips past an impurity in a one-dimensional superfluid is computed. Real time evolution of the nonlinear Schrödinger equation shows that there is a critical velocity vc below which solutions are time-independent [1,2]; this is the regime of quantum phase slip nucleation. We start with the Gross-Pitaevskii model in the presence of an impurity potential, and derive the Euclidean action for a space-time vortex-antivortex pair, which describes a phase slip event. The action is computed as a function of the superfluid velocity v and the impurity potential width and depth.l [1] V. Hakim, Phys. Rev. E 55, 2835 (1997).l [1] J. A. Freire, D. P. Arovas, and H. Levine, Phys. Rev. Lett (in press, 1997).l

  20. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  1. Bypass transition and spot nucleation in boundary layers

    Science.gov (United States)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  2. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  3. Nucleation and superstabilization in small systems

    Science.gov (United States)

    Philippe, T.

    2017-09-01

    Phase transitions are known to present peculiarities in small systems that are related to depletion effects of the ambient phase. Mass conservation affects the conditions of thermodynamic equilibrium between a nucleus of the new phase and the matrix as compared with nucleation in infinite systems. This finite-size effect is known to delay the phase transition but can also impede nucleation in very small systems as it stabilizes the initial state, originally metastable in infinite systems. In this work, we investigate this superstabilization effect in the context of classical nucleation theory in multicomponent solutions and we derive an analytical expression for the system size below which nucleation becomes thermodynamically impossible. Comparing with the exact solution, our simple result is shown to accurately predict the superstabilization effect, and can therefore be used, for instance, as a guideline for the design of novel nanomaterials.

  4. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate

    Science.gov (United States)

    Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.

    2016-08-01

    Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.

  5. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  6. Foreshocks during the nucleation of stick-slip instability

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-06-01

    report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ -6.5 to -5.0) can occur in this slowly slipping zone 5-50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  7. Cardiac autonomic function in patients with myasthenia gravis: analysis of the heart-rate variability in the time-domain

    Directory of Open Access Journals (Sweden)

    Sherifa Ahmed Hamed

    2015-03-01

    Full Text Available Aim: Myasthenia gravis (MG is a neuromuscular transmission disorder caused by acetylcholine receptor autoantibodies. Cardiac autonomic dysfunctions were rarely reported in patients with MG. Functional cardiac abnormalities were variable and reported in patients at severe stages of the disease and with thymoma. We investigated cardiac functions in patients with MG using Ambulatory 24-h electrocardiographic Holter-Monitoring. Methods: This study included 20 patients with MG with a mean age of 28.45 ± 8.89 years and duration of illness of 3.52 ± 1.15 years. The standard Holter reports include data for heart-rate, ventricular ectopies (VEs, supraventricular ectopies (SVEs, heart-rate variability (HRV, ST, QT, atrial fibrillation and T-wave alternans. Results: VEs, SVEs and ST-T changes were reported in 55%, 40% and 20% of patients respectively. Compared with healthy subjects (n = 20, HRV components including SDNN, SDANN, SDNN Index, RMS-SD and pNN50 (P = 0.001 for all were reduced in patients indicating sympathetic and parasympathetic autonomic dysfunctions. HRV abnormalities were reported in 30-60% of patients. No significant correlations were identified between SDNN, RMS-SD, pNN50, and duration of illness. Conclusion: Depressed HRV may be an early manifestation of autonomic neuropathy in patients with MG even in milder stages of the disease. This information is useful in rating disease progression and the efficacy of therapeutic interventions.

  8. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Directory of Open Access Journals (Sweden)

    D. Brus

    2011-06-01

    Full Text Available In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS, commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm−3. The nucleation rates obtained in this study cover about three orders of magnitude from 10−1 to 102 cm−3 s−1 for commercial ultrafine condensation particle counter (UCPC TSI model 3025A and from 101 to 104 cm−3 s−1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4] show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  9. Effects of temperature and pressure on the nucleation and growth of silver clusters from supersaturated vapor: A molecular dynamics analysis

    Science.gov (United States)

    Wang, Qin; Xie, Hui; Chen, Yongshi; Liu, Chao

    2017-04-01

    The nucleation and growth of silver nanoparticles in the supersaturated system are investigated by molecular dynamics simulation at different temperatures and pressures. The variety of the atoms in the biggest cluster and the size of average clusters in the system versus the time are estimated to reveal the relationship between the nucleation as well as cluster growth. The nucleation rates in different situations are calculated with the threshold method. The effect of temperature and pressure on the nucleation rate is identified as obeying a linear function. Finally, the development of basal elements, such as monomers, dimers and trimmers, is revealed how the temperature and pressure affect the nucleation and growth of the silver cluster.

  10. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Shi, Liang; Rugonyi, Sandra; Wang, Ruikang K.

    2012-09-01

    During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.

  11. Containerless Liquid to Solid Nucleation Pathways in Two Representative Grades of Commercially Available Zirconium

    Science.gov (United States)

    Rulison, A. J.; Rhim, W.-K.; Bayuzick, R.; Hofmeister, W.; Morton, C.

    1997-01-01

    Experimental measurements were conducted to determine the solid metal nucleation pathways of radiatively cooling, molten zirconium spheres of two different commercially available purity grades in a high-vacuum, high-temperature electrostatic levitator. The ensemble distribution of maximum undercooling temperatures was interpreted using Poisson statistics to determine the temperature dependence of the solid metal nucleation rate. For a sample of nominally 99.95% pure zirconium, the results are consistent with heterogeneous solid metal nucleation either on static catalyst particles at least approx. 30 nm diameter or on a surface coating. For a sample of nominally 99% pure zirconium, however, it appears that heterogeneous solid metal nucleation occurred either on a polydispersion of approx. 10 nm (mean diameter) static catalyst particles or on dynamic catalyst particles that precipitated from a solution that became supersaturated as the melt cooled.

  12. Effect of entropy on the nucleation of cavitation bubbles in water under tension

    CERN Document Server

    Menzl, Georg

    2016-01-01

    Water can exist in a metastable liquid state under tension for long times before the system relaxes into the vapor via cavitation, i.e., bubble nucleation. Microscopic information on the cavitation process can be extracted from experimental data by use of the nucleation theorem, which relates measured cavitation rates to the size of the critical bubble. To apply the nucleation theorem to experiments performed along an isochoric path, for instance, in cavitation experiments in mineral inclusions, knowledge of the bubble entropy is required. Using computer simulations, we compute the entropy of bubbles in water as a function of their volume over a wide range of tensions from free energy calculations. We find that the bubble entropy is an important contribution to the free energy which significantly lowers the barrier to bubble nucleation, thereby facilitating cavitation. Furthermore, the bubble entropy per surface area depends on the curvature of the liquid--vapor interface, decreasing approximately linearly wi...

  13. Physical and Chemical Aspects of the Nucleation of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Pavel Demo

    2012-01-01

    Full Text Available A theoretical model of the nucleation of portlandite is proposed, and the critical size of a portlandite cluster and the energy barrier of nucleation are determined. The steady state nucleation rate and the time lag of the nucleation of portlandite are estimated for a pure solution of Ca(OH2 in water. Possible connections with the corresponding properties for cement paste are discussed. A new method is developed for experimentally determining the concentration of Ca2+ ions during the initial stage of hydration of a cement paste. The time dependence of Ca2+ ions is measured for various water-to-cement ratio values. The results are discussed from the point of view of existing models of the induction period.

  14. Effect of oxygen on the bias-enhanced nucleation of diamond on silicon

    DEFF Research Database (Denmark)

    Schreck, M.; Christensen, Carsten; Stritzker, B.

    1999-01-01

    The influence of traces of oxygen in the process gas on the bias-enhanced nucleation (BEN) of diamond on silicon has been studied in the present work. CO2 in concentrations ranging from 0 to 3000 ppm was added during the nucleation procedure at U-bias = -200 V in microwave plasma chemical vapour......-covered substrate surface area with increasing CO2 concentration. At 3000 ppm, the nucleation was completely suppressed. An etching of diamond nuclei by the oxygen could be excluded from in-situ growth rate measurements under bias. Instead, optical emission spectra of the IIB Balmer line indicated a decrease...... in electrical field strength in the plasma above the substrate. For all gas compositions allowing diamond nucleation, epitaxially aligned films could be obtained, provided that the duration of the biasing step was chosen appropriately. Thus, traces of oxygen do not completely suppress epitaxy. However, the in...

  15. Nucleation kinetics, growth and studies of β-alanine single crystals

    Science.gov (United States)

    Shanthi, D.; Selvarajan, P.; HemaDurga, K. K.; Lincy Mary Ponmani, S.

    2013-06-01

    Solubility and metastable zone width for the re-crystallized salt of β-alanine was determined. Induction period measurement for the selected supersaturation ratios at room temperature (31 °C) was carried out for supersaturated aqueous solutions of β-alanine and it is noticed that induction period decreases with increase of supersaturation ratio. The nucleation parameters such as Gibbs free energy change, radius and number of molecules of the critical nucleus, interfacial tension and the nucleation rate have been evaluated by classical nucleation theory. Single crystals of β-alanine were grown using the optimized nucleation parameters by solution method and grown crystals have been subjected to various studies like XRD studies, FTIR, optical, thermal and SHG studies.

  16. Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L. A. [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347 F-31055, Toulouse Cedex (France); Magen, C. [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); Fundacion ARAID, 50004 Zaragoza (Spain); Snoeck, E.; Gatel, C. [Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347 F-31055, Toulouse Cedex (France); Serrano-Ramon, L. [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragon (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain); and others

    2013-01-14

    Direct observation of domain wall (DW) nucleation and propagation in focused electron beam induced deposited Co nanowires as a function of their dimensions was carried out by Lorentz microscopy (LTEM) upon in situ application of magnetic field. Optimal dimensions favoring the unambiguous DW nucleation/propagation required for applications were found in 500-nm-wide and 13-nm-thick Co nanowires, with a maximum nucleation field and the largest gap between nucleation and propagation fields. The internal DW structures were resolved using the transport-of-intensity equation formalism in LTEM images and showed that the optimal nanowire dimensions correspond to the crossover between the nucleation of transverse and vortex walls.

  17. The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity

    CERN Document Server

    Fitzner, Martin; Cox, Stephen J; Michaelides, Angelos

    2016-01-01

    What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate...

  18. THE VARIABLE ROLE OF CLAY ON THE CRYSTALLIZATION BEHAVIOR OF DMDBS-NUCLEATED POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    Juan-juan Su; Guang-hui Yang; Cheng-zhen Geng; Hua Deng; Ke Wang; Qiang Fu

    2011-01-01

    The effect of clay on the nucleating behavior of 1,3∶2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) in cryatallization of isotactic polypropylene (iPP) was investigated by means of differential scanning calorimetry (DSC),dynamic rheology and polarized light microscopy (PLM).It is interesting to note that the incorporation of layered clay nanoparticles into DMDBS-nucleated iPP may induce a synergetic nucleation effect while the DMDBS content is below 0.1 wt%,otherwise it restricts the crystallization rate prominently as the DMDBS content increases up to 0.3 wt%,which has exceeded the content threshold to yield a nucleating agent (NA) network.As shown by dynamic rheological investigations,the clay nanoparticles demonstrate an obstructive effect of disturbing the consistency of DMDBS fibrils network.Moreover,to further demonstrate the importance of NA network formation in the crystallization of iPP,we used another NA named HPN-20e,which can not form network structure at all over the concentration studied,for comparison.In this case,the nucleated-crystallization rate is independent on the addition of clay nanoparticles,as the nucleating mechanism is an individual nuclei manner without NA network forming.

  19. The effect of trimethylamine on atmospheric nucleation involving H2SO4

    Directory of Open Access Journals (Sweden)

    S.-H. Lee

    2010-11-01

    Full Text Available Field observations and quantum chemical calculations have shown that organic amine compounds may be important in new particle formation processes involving H2SO4. Here, we report laboratory observations that investigate the effect of trimethylamine (TMA on H2SO4-H2O nucleation made under aerosol precursor concentrations typically found in the lower troposphere ([H2SO4] of 106–107 cm−3; [TMA] of 180–1350 pptv. These results show that the threshold [H2SO4] needed to produce the unity nucleation rate ([H2SO4] of 106–107 cm−3 and the number of precursor molecules in the critical cluster (nH2SO4 = 4–6; nTMA = 1 are surprisingly similar to those found in the ammonia (NH3 ternary nucleation study (Benson et al., 2010a. At lower RH, however, enhancement in nucleation rates due to TMA was up to an order of magnitude greater than that due to NH3. These findings imply that both amines and NH3 are important nucleation species, but under dry atmospheric conditions, amines may have stronger effects on H2SO4 nucleation than NH3. Aerosol models should therefore take into account inorganic and organic bases together to fully understand the widespread new particle formation events in the lower troposphere.

  20. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation

    Science.gov (United States)

    Römer, F.; Kraska, T.

    2007-12-01

    Homogeneous nucleation and growth of zinc from supersaturated vapor are investigated by nonequilibrium molecular dynamics simulations in the temperature range from 400to800K and for a supersaturation ranging from logS =2 to 11. Argon is added to the vapor phase as carrier gas to remove the latent heat from the forming zinc clusters. A new parametrization of the embedded atom method for zinc is employed for the interaction potential model. The simulation data are analyzed with respect to the nucleation rates and the critical cluster sizes by two different methods, namely, the threshold method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)] and the mean first passage time method for nucleation by Wedekind et al. [J. Chem. Phys. 126, 134103 (2007)]. The nucleation rates obtained by these methods differ approximately by one order of magnitude. Classical nucleation theory fails to describe the simulation data as well as the experimental data. The size of the critical cluster obtained by the mean first passage time method is significantly larger than that obtained from the nucleation theorem.

  1. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz.

    Science.gov (United States)

    Li, Qingyun; Fernandez-Martinez, Alejandro; Lee, Byeongdu; Waychunas, Glenn A; Jun, Young-Shin

    2014-05-20

    Interfacial free energies often control heterogeneous nucleation of calcium carbonate (CaCO3) on mineral surfaces. Here we report an in situ experimental study of CaCO3 nucleation on mica (muscovite) and quartz, which allows us to obtain the interfacial energies governing heterogeneous nucleation. In situ grazing incidence small-angle X-ray scattering (GISAXS) was used to measure nucleation rates at different supersaturations. The rates were incorporated into classical nucleation theory to calculate the effective interfacial energies (α'). Ex situ Raman spectroscopy identified both calcite and vaterite as CaCO3 polymorphs; however, vaterite is the most probable heterogeneous nuclei mineral phase. The α' was 24 mJ/m(2) for the vaterite-mica system and 32 mJ/m(2) for the vaterite-quartz system. The smaller α' of the CaCO3-mica system led to smaller particles and often higher particle densities on mica. A contributing factor affecting α' in our system was the smaller structural mismatch between CaCO3 and mica compared to that between CaCO3 and quartz. The extent of hydrophilicity and the surface charge could not explain the observed CaCO3 nucleation trend on mica and quartz. The findings of this study provide new thermodynamic parameters for subsurface reactive transport modeling and contribute to our understanding of mechanisms where CaCO3 formation on surfaces is of concern.

  2. Analysis of nucleation using mean first-passage time data from molecular dynamics simulation

    Science.gov (United States)

    Nicholson, David A.; Rutledge, Gregory C.

    2016-04-01

    We introduce a method for the analysis of nucleation using mean first-passage time (MFPT) statistics obtained by molecular dynamics simulation. The method is based on the Becker-Döring model for the dynamics of a nucleation-mediated phase change and rigorously accounts for the system size dependence of first-passage statistics. It is thus suitable for the analysis of systems in which the separation between time scales for nucleation and growth is small, due to either a small free energy barrier or a large system size. The method is made computationally practical by an approximation of the first-passage time distribution based on its cumulant expansion. Using this approximation, the MFPT of the model can be fit to data from molecular dynamics simulation in order to estimate valuable kinetic parameters, including the free energy barrier, critical nucleus size, and monomer attachment pre-factor, as well as the steady-state rates of nucleation and growth. The method is demonstrated using a case study on nucleation of n-eicosane crystals from the melt. For this system, we found that the observed distribution of first-passage times do not follow an exponential distribution at short times, rendering it incompatible with the assumptions made by some other methods. Using our method, the observed distribution of first-passage times was accurately described, and reasonable estimates for the kinetic parameters and steady-state rates of nucleation and growth were obtained.

  3. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    Science.gov (United States)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  4. Epitaxial nucleation of CVD bilayer graphene on copper.

    Science.gov (United States)

    Song, Yenan; Zhuang, Jianing; Song, Meng; Yin, Shaoqian; Cheng, Yu; Zhang, Xuewei; Wang, Miao; Xiang, Rong; Xia, Yang; Maruyama, Shigeo; Zhao, Pei; Ding, Feng; Wang, Hongtao

    2016-12-08

    Bilayer graphene (BLG) has emerged as a promising candidate for next-generation electronic applications, especially when it exists in the Bernal-stacked form, but its large-scale production remains a challenge. Here we present an experimental and first-principles calculation study of the epitaxial chemical vapor deposition (CVD) nucleation process for Bernal-stacked BLG growth on Cu using ethanol as a precursor. Results show that a carefully adjusted flow rate of ethanol can yield a uniform BLG film with a surface coverage of nearly 90% and a Bernal-stacking ratio of nearly 100% on ordinary flat Cu substrates, and its epitaxial nucleation of the second layer is mainly due to the active CH3 radicals with the presence of a monolayer-graphene-covered Cu surface. We believe that this nucleation mechanism will help clarify the formation of BLG by the epitaxial CVD process, and lead to many new strategies for scalable synthesis of graphene with more controllable structures and numbers of layers.

  5. Quark matter nucleation in neutron stars and astrophysical implications

    CERN Document Server

    Bombaci, Ignazio; Vidana, Isaac; Providencia, Constanca

    2016-01-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot beta-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10^{53}~erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the Q...

  6. Homogeneous nucleation in liquid nitrogen at negative pressures

    Energy Technology Data Exchange (ETDEWEB)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A. [Russian Academy of Sciences, Institute of Thermal Physics, Ural Branch (Russian Federation)

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9 MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.

  7. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit

    Science.gov (United States)

    Dehairs, M.; Bosmans, H.; Desmet, W.; Marshall, N. W.

    2017-08-01

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s-1 and at a spatial frequency of 1.4 mm-1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  8. On the theoretical description of nucleation in confined space

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2011-12-01

    Full Text Available In a recent paper, Kozisek et al. [J. Chem. Phys. 134, 094508 (2011] have demonstrated for four different cases of phase formation that the work of formation of critical clusters required to form in the system in some given time a first experimentally measurable cluster of the new phase depends in a logarithmic way on the volume of the system. This result was obtained based on the numerical solution of the kinetic equations describing nucleation and growth processes and the obtained in this way steady-state cluster size distributions. Here a straightforward alternative analytical interpretation of this result is proposed by computing directly the mean expectation times of formation of supercritical clusters. It is proven strictly that this result is generally independent of the kind of nucleation (homogeneous or heterogeneous or specific realization (condensation, cavitation, crystallization, segregation, etc. considered. It is shown that such behavior is simply a consequence of the linear dependence of the steady-state nucleation rate on the volume of the system, neither time-lag or primary depletion (due to the establishment of steady-state cluster size distributions for subcritical clusters or secondary depletion (caused by the change of the state of the ambient phase due to the formation and growth of supercritical clusters and connected with finite size effects are required for the interpretation of such result. In a second step, this analytical result is extended accounting for the growth of the supercritical cluster to directly measurable sizes. Finally, an analytical foundation of the method of determination of the critical supersaturation as employed by Kozisek et al. is developed and the results obtained via the computation and analysis of steady-state cluster size distributions and calculation of mean expectation times for formation of the first supercritical clusters are compared. Some further general problems of nucleation and

  9. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  10. Refreeze experiments with water droplets containing different types of ice nuclei interpreted by classical nucleation theory

    Science.gov (United States)

    Kaufmann, Lukas; Marcolli, Claudia; Luo, Beiping; Peter, Thomas

    2017-03-01

    Homogeneous nucleation of ice in supercooled water droplets is a stochastic process. In its classical description, the growth of the ice phase requires the emergence of a critical embryo from random fluctuations of water molecules between the water bulk and ice-like clusters, which is associated with overcoming an energy barrier. For heterogeneous ice nucleation on ice-nucleating surfaces both stochastic and deterministic descriptions are in use. Deterministic (singular) descriptions are often favored because the temperature dependence of ice nucleation on a substrate usually dominates the stochastic time dependence, and the ease of representation facilitates the incorporation in climate models. Conversely, classical nucleation theory (CNT) describes heterogeneous ice nucleation as a stochastic process with a reduced energy barrier for the formation of a critical embryo in the presence of an ice-nucleating surface. The energy reduction is conveniently parameterized in terms of a contact angle α between the ice phase immersed in liquid water and the heterogeneous surface. This study investigates various ice-nucleating agents in immersion mode by subjecting them to repeated freezing cycles to elucidate and discriminate the time and temperature dependences of heterogeneous ice nucleation. Freezing rates determined from such refreeze experiments are presented for Hoggar Mountain dust, birch pollen washing water, Arizona test dust (ATD), and also nonadecanol coatings. For the analysis of the experimental data with CNT, we assumed the same active site to be always responsible for freezing. Three different CNT-based parameterizations were used to describe rate coefficients for heterogeneous ice nucleation as a function of temperature, all leading to very similar results: for Hoggar Mountain dust, ATD, and larger nonadecanol-coated water droplets, the experimentally determined increase in freezing rate with decreasing temperature is too shallow to be described properly by

  11. Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust

    Directory of Open Access Journals (Sweden)

    S. L. Broadley

    2011-08-01

    Full Text Available Atmospheric dust rich in illite is transported globally from arid regions and may impact cloud properties through the nucleation of ice. We present measurements of ice nucleation in water droplets containing known quantities of an illite rich powder under atmospherically relevant conditions. The illite rich powder used here, NX illite, has a similar mineralogical composition to atmospheric mineral dust sampled in remote locations, i.e. dust which has been subject to long range transport, cloud processing and sedimentation. Arizona Test Dust has a significantly different mineralogical composition and we suggest that NX illite is a better surrogate of natural atmospheric dust. Heterogeneous nucleation by NX illite was observed, using optical microscopy, to occur dominantly between 246 K and the homogeneous freezing limit and higher freezing temperatures were observed with larger surface areas of NX illite present within the droplets. It is shown that there is strong particle to particle variability in terms of ice nucleating ability with a few particles dominating ice nucleation at high surface areas. In fact, this work suggests that the bulk of atmospheric mineral dust particles are less efficient at nucleating ice than assumed in parameterisation currently used in models. For droplets containing ≤2 × 10−6 cm2 of NX illite, freezing temperatures did not noticeably change when the cooling rate was varied by an order of magnitude. The data obtained during cooling experiments (with surface areas ≤2 × 10−6 cm2 is shown to be inconsistent with the single component stochastic model, but is well described by the singular model (ns(236.2 K ≤ T ≤ 247.5 K = exp(6.53043 × 104 − 8.2153088 × 102 T + 3.446885376 T 2 − 4.822268 × 10−3 T3. However, droplets continued to freeze when the temperature

  12. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  13. Validity of commonly used formula of nucleation work for bubble nucleation

    Science.gov (United States)

    Mori, Atsushi

    2013-08-01

    Nishioka and Kusaka [Journal of Chemical Physics 96 (1992) 5370] showed that the commonly used formula, W=n(μα-μβ)+γA, for work of formation of critical nucleus is derived by integrating the isothermal Gibbs-Duhem relation for the incompressible nucleating phase, such as an incompressible liquid phase nucleation in a vapor phase. In their paper as well as in a subsequent paper [Li, Nishioka, Holcomb, Journal of Crystal Growth 171 (1997) 259] it was stated that the commonly used formula was valid for an incompressible nucleating phase and no longer held for such as a bubble nucleation. In this paper, we will amend this statement; that is, the commonly used formula is shown to hold for incompressible parent phase, such as a bubble nucleation in an incompressible parent phase.

  14. Molecular Ice Nucleation Activity of Birch Pollen

    Science.gov (United States)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  15. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  16. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    Science.gov (United States)

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  17. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  18. Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation

    Science.gov (United States)

    Ehrhart, Sebastian; Ickes, Luisa; Almeida, Joao; Amorim, Antonio; Barmet, Peter; Bianchi, Federico; Dommen, Josef; Dunne, Eimear M.; Duplissy, Jonathan; Franchin, Alessandro; Kangasluoma, Juha; Kirkby, Jasper; Kürten, Andreas; Kupc, Agnieszka; Lehtipalo, Katrianne; Nieminen, Tuomo; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Steiner, Gerhard; Tomé, António; Wimmer, Daniela; Baltensperger, Urs; Wagner, Paul E.; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulphuric acid-water particles is expected to be an important process in the free troposphere at low temperatures. SAWNUC (Sulphuric Acid Water Nucleation) is a model of binary nucleation that is based on laboratory measurements of the binding energies of sulphuric acid and water in charged and neutral clusters. Predictions of SAWNUC are compared for the first time comprehensively with experimental binary nucleation data from the CLOUD chamber at European Organization for Nuclear Research. The experimental measurements span a temperature range of 208-292 K, sulphuric acid concentrations from 1·106 to 1·109 cm-3, and distinguish between ion-induced and neutral nucleation. Good agreement, within a factor of 5, is found between the experimental and modeled formation rates for ion-induced nucleation at 278 K and below and for neutral nucleation at 208 and 223 K. Differences at warm temperatures are attributed to ammonia contamination which was indicated by the presence of ammonia-sulphuric acid clusters, detected by an Atmospheric Pressure Interface Time of Flight (APi-TOF) mass spectrometer. APi-TOF measurements of the sulphuric acid ion cluster distributions ((H2SO4)i·HSO4- with i = 0, 1, ..., 10) show qualitative agreement with the SAWNUC ion cluster distributions. Remaining differences between the measured and modeled distributions are most likely due to fragmentation in the APi-TOF. The CLOUD results are in good agreement with previously measured cluster binding energies and show the SAWNUC model to be a good representation of ion-induced and neutral binary nucleation of sulphuric acid-water clusters in the middle and upper troposphere.

  19. Heart Rate and Systolic Blood Pressure Variability in the Time Domain in Patients with Recent and Long-Standing Diabetes Mellitus.

    Directory of Open Access Journals (Sweden)

    Ana Leonor Rivera

    Full Text Available Diabetes Mellitus (DM affects the cardiovascular response of patients. To study this effect, interbeat intervals (IBI and beat-to-beat systolic blood pressure (SBP variability of patients during supine, standing and controlled breathing tests were analyzed in the time domain. Simultaneous noninvasive measurements of IBI and SBP for 30 recently diagnosed and 15 long-standing DM patients were compared with the results for 30 rigorously screened healthy subjects (control. A statistically significant distinction between control and diabetic subjects was provided by the standard deviation and the higher moments of the distributions (skewness, and kurtosis with respect to the median. To compare IBI and SBP for different populations, we define a parameter, α, that combines the variability of the heart rate and the blood pressure, as the ratio of the radius of the moments for IBI and the same radius for SBP. As diabetes evolves, α decreases, standard deviation of the IBI detrended signal diminishes (heart rate signal becomes more "rigid", skewness with respect to the median approaches zero (signal fluctuations gain symmetry, and kurtosis increases (fluctuations concentrate around the median. Diabetes produces not only a rigid heart rate, but also increases symmetry and has leptokurtic distributions. SBP time series exhibit the most variable behavior for recently diagnosed DM with platykurtic distributions. Under controlled breathing, SBP has symmetric distributions for DM patients, while control subjects have non-zero skewness. This may be due to a progressive decrease of parasympathetic and sympathetic activity to the heart and blood vessels as diabetes evolves.

  20. Nucleation and structural growth of cluster crystals

    CERN Document Server

    Leitold, Christian

    2016-01-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n=4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply-occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, w...

  1. Cavitation Bubble Nucleation by Energetic Particles

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  2. A method for analyzing the non-stationary nucleation and overall transition kinetics: A case of water

    Science.gov (United States)

    Mokshin, Anatolii V.; Galimzyanov, Bulat N.

    2014-01-01

    We present the statistical method as a direct extension of the mean first-passage time concept to the analysis of molecular dynamics simulation data of a phase transformation. According to the method, the mean first-passage time trajectories for the first (i = 1) as well as for the subsequent (i = 2, 3, 4,…) nucleation events should be extracted that allows one to calculate the time-dependent nucleation rate, the critical value of the order parameter (the critical size), the waiting times for the nucleation events, and the growth law of the nuclei - i.e., all the terms, which are usually necessary to characterize the overall transition kinetics. There are no restrictions in the application of the method by the specific thermodynamic regions; and the nucleation rate parameters are extracted according to their basic definitions. The method differs from the Wedekind-Bartell scheme and its modification [A. V. Mokshin and B. N. Galimzyanov, J. Phys. Chem. B 116, 11959 (2012)], where the passage-times for the first (largest) nucleus are evaluated only and where the average waiting time for the first nucleation event is accessible instead of the true steady-state nucleation time scale. We demonstrate an efficiency of the method by its application to the analysis of the vapor-to-liquid transition kinetics in water at the different temperatures. The nucleation rate/time characteristics and the droplet growth parameters are computed on the basis of the coarse-grained molecular dynamics simulation data.

  3. A method for analyzing the non-stationary nucleation and overall transition kinetics: A case of water

    Energy Technology Data Exchange (ETDEWEB)

    Mokshin, Anatolii V., E-mail: anatolii.mokshin@mail.ru; Galimzyanov, Bulat N. [Kazan Federal University, Kremlevskaya Street 18, 420000 Kazan (Russian Federation)

    2014-01-14

    We present the statistical method as a direct extension of the mean first-passage time concept to the analysis of molecular dynamics simulation data of a phase transformation. According to the method, the mean first-passage time trajectories for the first (i = 1) as well as for the subsequent (i = 2, 3, 4,…) nucleation events should be extracted that allows one to calculate the time-dependent nucleation rate, the critical value of the order parameter (the critical size), the waiting times for the nucleation events, and the growth law of the nuclei – i.e., all the terms, which are usually necessary to characterize the overall transition kinetics. There are no restrictions in the application of the method by the specific thermodynamic regions; and the nucleation rate parameters are extracted according to their basic definitions. The method differs from the Wedekind-Bartell scheme and its modification [A. V. Mokshin and B. N. Galimzyanov, J. Phys. Chem. B 116, 11959 (2012)], where the passage-times for the first (largest) nucleus are evaluated only and where the average waiting time for the first nucleation event is accessible instead of the true steady-state nucleation time scale. We demonstrate an efficiency of the method by its application to the analysis of the vapor-to-liquid transition kinetics in water at the different temperatures. The nucleation rate/time characteristics and the droplet growth parameters are computed on the basis of the coarse-grained molecular dynamics simulation data.

  4. Nucleation in an ultra low ionization environment

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Enghoff, Martin Andreas Bødker; Paling, Sean

    filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor...... at near atmospheric conditions. The chamber contains clean air with the addition of water vapour, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulphuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front...

  5. Quantum Bubble Nucleation beyond WKB Resummation of Vacuum Bubble Diagrams

    CERN Document Server

    Suzuki, H; Suzuki, Hiroshi; Yasuta, Hirofumi

    1998-01-01

    On the basis of Borel resummation, we propose a systematical improvement of bounce calculus of quantum bubble nucleation rates. We study a metastable super-renormalizable field theory, D dimensional O(N) symmetric \\phi^4 model (D<4) with an attractive interaction. The validity of our proposal is tested in D=1 (quantum mechanics) by using the perturbation series of ground state energy to high orders. We also present a result in D=2 based on an explicit calculation of vacuum bubble diagrams to five loop orders.

  6. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  7. Nucleation and growth of a multicomponent metallic glass@

    Indian Academy of Sciences (India)

    Arun Pratap; K G Raval; Ajay Gupta; S K Kulkarni

    2000-06-01

    The metallic glass samples of Fe67Co18B14Si1 (2605CO), prepared by the melt spinning technique were procured from the Allied Corporation. The kinetics of crystallization of this multicomponent glassy alloy is studied using differential scanning calorimetry (DSC). The crystallization data have been examined in terms of modified Kissinger and Matusita equations for the non-isothermal crystallization. The results show enhanced bulk nucleation in general. At high heating rates added to it is surface induced abnormal grain growth resulting in fractal dimensionality.

  8. Experimental and theoretical study on rapid transient nucleated boiling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A laser heater has been used to impose a pulsed high power laser beam on a metal film inunersed in liquid to generate a very high rate of temperature rise up to 9.3 × 106K/s in the metal film. The rapid transient boiling phenomena have been observed and the temperature variations in the metal film have been measured. Theoretical calculations have been carried out with the fluctuation nucleation theory and the heat conduction theory to compare with the experimental results, and some results are reported.

  9. Nucleation kinetics of paracetamol-ethanol solutions from metastable zone widths

    Science.gov (United States)

    Mitchell, Niall A.; Frawley, Patrick J.

    2010-09-01

    A study of the nucleation kinetics for a cooling crystallisation of paracetamol-ethanol solutions in a batch reactor is described in this paper. Metastable zone width (MSZW) experiments were conducted in order to estimate the nucleation kinetics of the system. Measured MSZWs can be affected by numerous process parameters, such as cooling rate, concentration, agitation rate, and working volume. Two theoretical approaches were employed to estimate the nucleation kinetics, the classical mass based approach of Nývlt, and a more recent approach by Kubota, which also considers number density. Both approaches were found to produce similar estimates for the nucleation rates of the paracetamol-ethanol solutions as a function of supersaturation for an assumed nucleus size of 10 μm. The theory of Kubota was found to predict satisfactory estimates for the induction time of the nucleation process from MSZW data. The induction time was observed to be independent of the solution temperature as suggested by Kubota's theory. This is a novel finding and serves to validate the induction time theory of Kubota. In this investigation, MSZWs were observed to decrease with increased levels of agitation and found to be independent of working volume.

  10. Time Resolved Nucleation and Growth of Monodisperse FeOOH Nanoparticles Observed in situ

    Science.gov (United States)

    Legg, B. A.; Zhu, M.; Zhang, H.; Waychunas, G.; Banfield, J. F.

    2012-12-01

    The nucleation and growth of oxide minerals from aqueous solution is a poorly understood process. Complexities such as two-stage precipitation, phase transformation, and hydrolysis often inhibit simple interpretation. In this study, we track the thermally induced nucleation and growth of akaganeite (β-FeOOH) nanoparticles from FeCl3 solutions, using in situ time resolved small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Variations in reaction temperature (from 37 deg C to 80 deg C) and FeCl3 concentration (from 5 mM to 800 mM) produce systematic changes in nucleation rate, growth rate, particle size distribution, and aspect ratio. Low FeCl3 concentrations and high temperatures lead to formation of very small particles via rapid nucleation. (FeCl3 solutions are actually more supersaturated with respect to akaganeite when concentrations are low, due to the acid-base chemistry of ferric iron.) Increasing the FeCl3 concentration leads to large, highly monodisperse particles via size focused growth. Suspensions of highly monodisperse, elongated particles are found to self-organize into two dimensional colloidal crystals. The well-controlled growth processes in this system make it possible to conduct detailed kinetic modeling, and determine how both nucleation and growth rate respond to changes in the experimental conditions.

  11. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    Science.gov (United States)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    samples induced deposition ice nucleation below 230 K as low as 120% RHice, took up water at about 80% RH, and nucleated subsequently via condensation freezing above 230 K at mean RH of 88-94% and 89-100%, respectively. Experimentally derived ice nucleation rate coefficients and activated IN fractions for estimation of ice crystal production rates are presented. Particles sampled in the L.A. area can induce ice formation at conditions typical for cirrus and mixed-phase clouds and exhibit significantly different ice nucleation efficiencies than particles sampled in and around Mexico City.

  12. An empirical approach to the nucleation of sulfuric acid droplets in the atmosphere

    Directory of Open Access Journals (Sweden)

    P. R. Turco

    2003-06-01

    Full Text Available We use quantum mechanical evaluations of the Gibbs free energy of the hydrates of sulfuric acid, H2SO4. nH2O and (H2SO42 . nH2O to evaluate an empirical surface tension for sulfuric acid-water clusters containing few molecules. We use this surface tension to evaluate nucleation rates using classical heteromolecular theory. At low temperatures (T 213 K the nucleation rates obtained with the empirical surface tensions are signifi cantly greater than those using bulk values of the surface tension. At higher temperatures the difference disappears.

  13. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping.

    Science.gov (United States)

    Fernandez-Martinez, Alejandro; Hu, Yandi; Lee, Byeongdu; Jun, Young-Shin; Waychunas, Glenn A

    2013-01-02

    The precipitation of carbonate minerals--mineral trapping--is considered one of the safest sequestration mechanisms ensuring long-term geologic storage of CO(2). However, little is known about the thermodynamic factors controlling the extent of heterogeneous nucleation at mineral surfaces exposed to the fluids in porous reservoirs. The goal of this study is to determine the thermodynamic factors controlling heterogeneous nucleation of carbonate minerals on pristine quartz (100) surfaces, which are assumed representative of sandstone reservoirs. To probe CaCO(3) nucleation on quartz (100) in solution and with nanoscale resolution, an in situ grazing incidence small-angle X-ray scattering technique has been utilized. With this method, a value of α' = 36 ± 5 mJ/m(2) for the effective interfacial free energy governing heterogeneous nucleation of CaCO(3) has been obtained by measuring nucleation rates at different solution supersaturations. This value is lower than the interfacial energy governing calcite homogeneous nucleation (α ≈ 120 mJ/m(2)), suggesting that heterogeneous nucleation of calcium carbonate is favored on quartz (100) at ambient pressure and temperature conditions, with nucleation barriers between 2.5% and 15% lower than those expected for homogeneous nucleation. These observations yield important quantitative parameters readily usable in reactive transport models of nucleation at the reservoir scale.

  14. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms

    Directory of Open Access Journals (Sweden)

    S.-L. Sihto

    2006-01-01

    Full Text Available We have investigated the formation and early growth of atmospheric secondary aerosol particles building on atmospheric measurements. The measurements were part of the QUEST 2 campaign which took place in spring 2003 in Hyytiälä (Finland. During the campaign numerous aerosol particle formation events occurred of which 15 were accompanied by gaseous sulphuric acid measurements. Our detailed analysis of these 15 events is focussed on nucleation and early growth (to a diameter of 3 nm of fresh particles. It revealed that new particle formation seems to be a function of the gaseous sulphuric acid concentration to the power from one to two when the time delay between the sulphuric acid and particle number concentration is taken into account. From the time delay the growth rates of freshly nucleated particles from 1 nm to 3 nm were determined. The mean growth rate was 1.2 nm/h and it was clearly correlated with the gaseous sulphuric acid concentration. We tested two nucleation mechanisms – recently proposed cluster activation and kinetic type nucleation – as possible candidates to explain the observed dependences, and determined experimental nucleation coefficients. We found that some events are dominated by the activation mechanism and some by the kinetic mechanism. Inferred coefficients for the two nucleation mechanisms are the same order of magnitude as chemical reaction coefficients in the gas phase and they correlate with the product of gaseous sulphuric acid and ammonia concentrations. This indicates that besides gaseous sulphuric acid also ammonia has a role in nucleation.

  15. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  16. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    Science.gov (United States)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  17. Reversible island nucleation and growth with anomalous diffusion

    Science.gov (United States)

    Sabbar, Ehsan H.; Amar, Jacques G.

    2017-10-01

    Motivated by recent experiments on submonolayer organic film growth with anomalous diffusion, a general rate-equation (RE) theory of submonolayer island nucleation and growth was developed (Amar and Semaan, 2016) [23], which takes into account the critical island-size i, island fractal dimension df, substrate dimension d, and diffusion exponent μ, and good agreement with simulations was found for the case of irreversible growth corresponding to a critical island-size i = 1 with d = 2 . However, since many experiments correspond to a critical island-size larger than 1, it is of interest to determine if the RE predictions also hold in the case of reversible island nucleation with anomalous diffusion. Here we present the results of simulations of submonolayer growth with i = 2 (d = 2) which were carried out for both the case of superdiffusion (μ > 1) and subdiffusion (μ dependence of the island and monomer densities at fixed coverage on deposition rate F. In addition, the exponents do not depend on whether or not monomers remain superdiffusive or are thermalized (e.g. undergo regular diffusion) after detaching from a dimer. However, we also find that, as was previously found in the case of irreversible growth, the exponent χ only approaches its asymptotic value logarithmically with increasing 1/F. This result has important implications for the interpretation of experiments. Good agreement with the RE theory is also found in the case of subdiffusion for point-islands. However, in the case of ramified islands with subdiffusion and i = 2 , the exponents are significantly higher than predicted due to the fact that monomer capture dominates in the nucleation regime. A modified RE theory which takes this into account is presented, and excellent agreement is found with our simulations.

  18. H2O2 production rate in Lactobacillus johnsonii is modulated via the interplay of a heterodimeric flavin oxidoreductase with a soluble 28 Kd PAS domain containing protein.

    Directory of Open Access Journals (Sweden)

    Ricardo B Valladares

    2015-07-01

    Full Text Available Host and commensals crosstalk, mediated by reactive oxygen species (ROS, has triggered a growing scientific interest to understand the mechanisms governing such interaction. However, the majority of the scientific studies published do not evaluate the ROS production by commensals bacteria. In this context we recently showed that Lactobacillus johnsonii N6.2, a strain of probiotic value, modulates the activity of the critical enzymes 2,3-indoleamine dioxygenase via H2O2 production. L. johnsonii N6.2 by decreasing IDO activity, is able to modify the tryptophan/kynurenine ratio in the host blood with further systemic consequences. Understanding the mechanisms of H2O2 production is critical to predict the probiotic value of these strains and to optimize bacterial biomass production in industrial processes. We performed a transcriptome analysis to identify genes differentially expressed in L. johnsonii N6.2 cells collected from cultures grown under different aeration conditions. Herein we described the biochemical characteristics of a heterodimeric FMN reductase (FRedA/B whose in vitro activity is controlled by LjPAS protein with a typical Per-Arnst-Sim (PAS sensor domain. Interestingly, LjPAS is fused to the FMN reductase domains in other lactobacillaceae. In L. johnsonii, LjPAS is encoded by an independent gene which expression is repressed under anaerobic conditions (>3 fold. Purified LjPAS was able to slow down the FRedA/B initial activity rate when the holoenzyme precursors (FredA, FredB and FMN were mixed in vitro. Altogether the results obtained suggest that LjPAS module regulates the H2O2 production helping the cells to minimize oxidative stress in response to environmental conditions.

  19. Multistep nucleation of nanocrystals in aqueous solution

    Science.gov (United States)

    Loh, N. Duane; Sen, Soumyo; Bosman, Michel; Tan, Shu Fen; Zhong, Jun; Nijhuis, Christian A.; Král, Petr; Matsudaira, Paul; Mirsaidov, Utkur

    2017-01-01

    The nucleation and growth of solids from solutions impacts many natural processes and is fundamental to applications in materials engineering and medicine. For a crystalline solid, the nucleus is a nanoscale cluster of ordered atoms that forms through mechanisms still poorly understood. In particular, it is unclear whether a nucleus forms spontaneously from solution via a single- or multiple-step process. Here, using in situ electron microscopy, we show how gold and silver nanocrystals nucleate from supersaturated aqueous solutions in three distinct steps: spinodal decomposition into solute-rich and solute-poor liquid phases, nucleation of amorphous nanoclusters within the metal-rich liquid phase, followed by crystallization of these amorphous clusters. Our ab initio calculations on gold nucleation suggest that these steps might be associated with strong gold-gold atom coupling and water-mediated metastable gold complexes. The understanding of intermediate steps in nuclei formation has important implications for the formation and growth of both crystalline and amorphous materials.

  20. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  1. Nucleation theory and growth of nanostructures

    CERN Document Server

    Dubrovskii, Vladimir G

    2013-01-01

    Semiconductor nanostructures such as nanowires are promising building blocks of future nanoelectronic, nanophotonic and nanosensing devices. Their physical properties are primarily determined by the epitaxy process which is rather different from the conventional thin film growth. This book shows how the advanced nucleation theory can be used in modeling of growth properties, morphology and crystal phase of such nanostructures.

  2. Surface nucleation in complex rheological systems

    Science.gov (United States)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  3. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  4. Heterogeneous nucleation of aspartame from aqueous solutions

    Science.gov (United States)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  5. Final Report: " Growth Rates of Freshly Nucleated Particles"

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter H; Smith, James N

    2013-03-12

    This report lists of archival journal articles that were written with support from this grant. Research objectives from the original proposal are given, along with papers that were written to meet each of those objectives. The papers are all available in the archival literature.

  6. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.

    Science.gov (United States)

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V; Stanley, H Eugene; Reguera, David; Franzese, Giancarlo

    2015-06-22

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.

  7. Time lag effects in the nucleation of particles in stellar atmospheres

    Science.gov (United States)

    Walker, G. H.

    1975-01-01

    When a system goes from a saturated state to a supersaturated one, the classical nucleation-rate formula is not instantly valid; rather, the nucleation rate relaxes exponentially (with a characteristic time - the time lag) to the value given by the steady-state formula. Under some circumstances, particularly those found in some cool stellar atmospheres, the time lag can be quite long and a decisve factor in determining the possibility of particle formation. Carbon condensation in the atmospheres of Mira variables is considered and found to be unlikely on the basis of classical nucleation theory because of the long time lags involved, unless the parameters describing the physical conditions in these atmospheres are significantly different from current estimates.

  8. Multivariable theory of droplet nucleation in a single-component vapor

    CERN Document Server

    Alekseechkin, Nikolay V

    2014-01-01

    The multivariable theory of nucleation [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)] is applied to the droplet nucleation in a supersaturated single-component vapor; the droplet volume V, temperature T, and volume change rate U=V_dot are the variables of the theory. A new approach based on macroscopic kinetics is developed for the droplet evolution and results in the derived equations for U_dot, V_dot, and T_dot. It is shown that there is no the viscosity effect in the employed ideal gas approximation, so the variable U can be omitted. The nonisothermal effect (the discrepancy between the actual and isothermal nucleation rates) earlier studied numerically is analytically examined here. The calculated steady state distribution function of droplets shows their average overheating relatively the vapor temperature. An inert background gas is shown to diminish the nonisothermal effect in comparison with a pure vapor case.

  9. Nucleation of Alpha lactose monohydrate induced using flow through a venturi orifice

    Science.gov (United States)

    McLeod, J. S.; Paterson, A. H. J.; Bronlund, J. E.; Jones, J. R.

    2010-03-01

    Nucleation is a determinant of the final crystal size distribution produced during a crystallization process. Other studies in the literature have shown that mixing influences alpha lactose monohydrate nucleation. To investigate this in more detail, three different sized Venturi orifices were used to provide a point of passive mixing for supersaturated lactose solutions. This system allowed the study of different factors associated with characterising the mixing process, including cavitation, power input, Reynolds number and vortex formation. A strong relationship was found between the number of vortices created in the system and the nucleation rate. It is speculated that the vortices decrease the distance required for diffusion of molecules in the system, increasing the rate at which they can come together to form a stable nuclei.

  10. Supersaturation dependence of glycine polymorphism using laser-induced nucleation, sonocrystallization and nucleation by mechanical shock.

    Science.gov (United States)

    Liu, Yao; van den Berg, Mees H; Alexander, Andrew J

    2017-07-26

    The nucleation of glycine from aqueous supersaturated solution has been studied using non-photochemical laser-induced nucleation (NPLIN), ultrasound (sonocrystallization), and mechanical shock of sample vials. It was found that at higher supersaturation, samples were more susceptible to nucleation and produced more of the γ-glycine polymorph. The results are described in terms of a mechanism common to all three nucleation methods, involving the induction of cavitation events and pressure shockwaves. The switch in preference from α- to γ-glycine was observed to occur over a narrower range of supersaturation values for NPLIN. We attribute this to induction of cavitation events with higher energies, which result in higher localized pressures and supersaturations. Experiments on NPLIN using circularly versus linearly polarized light showed no evidence for binary polarization switching control of glycine polymorphism.

  11. Numerical study and control method of interaction of nucleation and boundary layer separation in condensing flow

    Institute of Scientific and Technical Information of China (English)

    Liansuo AN; Zhi WANG; Zhonghe HAN

    2009-01-01

    The spontaneous nucleation flow in turbine cascade was numerically studied. The model was imple-mented within a full Navier-Stokes viscous flow solution procedure and the process of condensation was calculated by the quadrature method of moments that shows good accuracy with very broad size distributions.Results were presented for viscous and inviscous flow,showing the influence of boundary layer separation and wake vortices on spontaneous nucleation. The results show that the degree of flow separation in wet steam flow is greater than that in superheated steam flow due to condensation shock and that the loss cannot be neglected.Furthermore, the impact of boundary layer separation and wake vortices on velocity profiles and its implications for profile loss were considered. The calculations showed that layer separation and wake vortices influence nucleation rate, leading to different droplet distributions. A method for controlling homogeneous nucleation and for reducing degree of flow separation in high-speed transonic wet steam flow was presented. The liquid phase parameter distribution is sensitive to the suction side profile of turbine cascade, which impacts the nucleation rate distribution leading to different droplet distributions and affects the degree of flow separation. The numerical study provides a practical design method for turbine blade to reduce wetness losses.

  12. Nucleation Pathways For Freezing Of Two Grades Of Zirconium

    Science.gov (United States)

    Rhim, Won-Kyu; Rulison, Aaron; Bayuzick, Robert; Hofmeister, William; Morton, Craig

    1996-01-01

    Report discusses classical nucleation theory of freezing and describes experimental study of nucleation mechanisms that predominate during freezing of spherical specimens of initially molten zirconium levitated electrostatically in vacuum.

  13. Seeded Induction Period and Secondary Nucleation of Lithium Carbonate

    Institute of Scientific and Technical Information of China (English)

    SUN Yu-zhu; SONG Xing-fu; WANG Jin; LUO Yan; YU Jian-guo

    2009-01-01

    Seeded nucleation of lithinm carbonate in aqueous solution during reactive crystallization was monitored by FBRM (focused beam reflectance measurement) and PVM (particle video microscope). The impacts of operating variables, such as seed size and loading, stirring speed, on induction period and secondary nucleation were investigated and explained by an adsorption model. The results show that seed surface area plays an important role in secondary nucleation, for more surface area has higher adsorption capacity and consumes more supersaturation on seed growth, thus restrains nucleation better. A method through comparison between pure breakage/attrition and nucleation process was put forward to distinguish attrition-induced and surface-induced nucleations quantitatively, which can reveal the contributions of different nucleation mechanisms. The nucleation processes in different conditions were studied, the principles and valuable experimental data were obtained for seeding approach primarily. FBRM and PVM are useful on-line apparatuses to facilitate seed selection and seeding optimization.

  14. Heart Rate and Systolic Blood Pressure Variability in the Time Domain in Patients with Recent and Long-Standing Diabetes Mellitus

    Science.gov (United States)

    Rivera, Ana Leonor; Estañol, Bruno; Sentíes-Madrid, Horacio; Fossion, Ruben; Toledo-Roy, Juan C.; Mendoza-Temis, Joel; Morales, Irving O.; Landa, Emmanuel; Robles-Cabrera, Adriana; Moreno, Rene; Frank, Alejandro

    2016-01-01

    Diabetes Mellitus (DM) affects the cardiovascular response of patients. To study this effect, interbeat intervals (IBI) and beat-to-beat systolic blood pressure (SBP) variability of patients during supine, standing and controlled breathing tests were analyzed in the time domain. Simultaneous noninvasive measurements of IBI and SBP for 30 recently diagnosed and 15 long-standing DM patients were compared with the results for 30 rigorously screened healthy subjects (control). A statistically significant distinction between control and diabetic subjects was provided by the standard deviation and the higher moments of the distributions (skewness, and kurtosis) with respect to the median. To compare IBI and SBP for different populations, we define a parameter, α, that combines the variability of the heart rate and the blood pressure, as the ratio of the radius of the moments for IBI and the same radius for SBP. As diabetes evolves, α decreases, standard deviation of the IBI detrended signal diminishes (heart rate signal becomes more “rigid”), skewness with respect to the median approaches zero (signal fluctuations gain symmetry), and kurtosis increases (fluctuations concentrate around the median). Diabetes produces not only a rigid heart rate, but also increases symmetry and has leptokurtic distributions. SBP time series exhibit the most variable behavior for recently diagnosed DM with platykurtic distributions. Under controlled breathing, SBP has symmetric distributions for DM patients, while control subjects have non-zero skewness. This may be due to a progressive decrease of parasympathetic and sympathetic activity to the heart and blood vessels as diabetes evolves. PMID:26849653

  15. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  16. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    Science.gov (United States)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  17. The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Katrin, E-mail: katrin.thieme@uni-jena.de; Rüssel, Christian

    2015-07-15

    Stoichiometric lithium disilicate glasses were doped with up to 2 mol% Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5}. The additives led to an increase in viscosities and to a change in the crystallization behavior. The steady-state nucleation rates, the induction times and the crystal growth velocities were studied as a function of the temperature using in situ optical hot stage microscopy. While the nucleation rates decrease by up to three orders of magnitude, the induction times significantly increase. The effect of nucleation inhibition is not solely based on higher viscosities. It is assumed that the glasses consists of SiO{sub 4} tetrahedra and MO{sub 6} (M = Nb, Ta) octahedra and hence, with increasing additive concentration, the structural similarities between glass and lithium disilicate crystal decrease leading to smaller nucleation rates. Moreover, the crystal growth velocities decrease drastically. Optical micrographs indicate a lamellar growth proceeding from the crystal center. During growth, the lithium disilicate crystals get a constriction in their center leading to a dumbbell-like shape. - Highlights: • Li{sub 2}O·2SiO{sub 2} glasses were doped with up to 2 mol% Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5}. • The dopants decrease the nucleation rates and increase the induction times. • The crystal growth velocities are drastically decreased by the additives. • The crystals grow in form of several lamellae similar to spherulitic growth. • A possible explanation for the effect of the nucleation inhibitors is given.

  18. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways

    Science.gov (United States)

    Lifanov, Yuri; Vorselaars, Bart; Quigley, David

    2016-12-01

    We study a three-species analogue of the Potts lattice gas model of nucleation from solution in a regime where partially disordered solute is a viable thermodynamic phase. Using a multicanonical sampling protocol, we compute phase diagrams for the system, from which we determine a parameter regime where the partially disordered phase is metastable almost everywhere in the temperature-fugacity plane. The resulting model shows non-trivial nucleation and growth behaviour, which we examine via multidimensional free energy calculations. We consider the applicability of the model in capturing the multi-stage nucleation mechanisms of polymorphic biominerals (e.g., CaCO3). We then quantitatively explore the kinetics of nucleation in our model using the increasingly popular "seeding" method. We compare the resulting free energy barrier heights to those obtained via explicit free energy calculations over a wide range of temperatures and fugacities, carefully considering the propagation of statistical error. We find that the ability of the "seeding" method to reproduce accurate free energy barriers is dependent on the degree of supersaturation, and severely limited by the use of a nucleation driving force Δμ computed for bulk phases. We discuss possible reasons for this in terms of underlying kinetic assumptions, and those of classical nucleation theory.

  19. Indirect radiative forcing by ion-mediated nucleation of aerosol

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-12-01

    Full Text Available A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN in generating new particles and cloud condensation nuclei (CCN in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5. Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN, the presence of ionization (i.e., IMN halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~3, CCN burden by ~10% (at 0.2% supersaturation to 65% (at 1.0% supersaturation, and cloud droplet number burden by ~18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing (SWCF by 3.67 W m−2 (more negative and longwave cloud forcing by 1.78 W m−2 (more positive, with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2 is a factor of ~3 higher that of a previous study (1.15 W m−2 based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (~−0.02 W m−2 but have larger inter-annual (from −0.18 to 0.17 W m−2 and spatial variations.

  20. Control of nucleation and growth in protein crystal growth

    Science.gov (United States)

    Rosenberger, Franz; Meehan, Edward J.

    1988-01-01

    The potential advantages of nucleation and growth control through temperature, rather than the addition of precipitants or removal of solvent, are discussed. A simple light scattering arrangement for the characterization of nucleation and growth conditions in solutions is described. The temperature dependence of the solubility of low ionic strength lysozyme solutions is applied in preliminary nucleation and growth experiments.

  1. TRANSFORMATION KINETICS FOR NUCLEATION ON RANDOM PLANES AND LINES

    Directory of Open Access Journals (Sweden)

    Elena Villa

    2011-11-01

    Full Text Available Birth and growth processes are known in materials science as nucleation and growth processes. In crystalline materials nucleation almost always takes place in an internal crystalline defect. These defects are classified according to their dimensionality: point, line or planar defects. Therefore, investigating nucleation on sets of dimensionality lower than the set in which the transformation takes place is of paramount importance. Cahn (1956 in a classical work derived expressions for transformation kinetics when nucleation took place on random planes and on random straight lines. He used these expressions to describe nucleation in polycrystalline materials. He considered that nucleation on grain faces could be treated as nucleation on random planes and, likewise, nucleation on grain edges could be treated as nucleation on random lines. The present work revisits and generalizes Cahn’s treatment of nucleation on planes and lines. First a general expression for the case of nucleation on lower dimensional sets is obtained. After that general expressions for nucleation on random planes and random lines are given. This paper provides the mathematical basis for the development of more specific expressions to be used in practical applications. Although this work has been done bearing applications to materials science in mind the results obtained here may be applied to birth and growth processes in any field of science.

  2. Quark matter nucleation in neutron stars and astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Bombaci, Ignazio [Universita di Pisa, Dipartimento di Fisica ' ' E. Fermi' ' , Pisa (Italy); INFN, Pisa (Italy); European Gravitational Observatory, Cascina (Italy); Logoteta, Domenico [INFN, Pisa (Italy); Vidana, Isaac; Providencia, Constanca [University of Coimbra, CFisUC, Department of Physics, Coimbra (Portugal)

    2016-03-15

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot β-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10{sup 53} erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M{sub cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M{sub cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars. (orig.)

  3. Representation of nucleation mode microphysics in global aerosol microphysics models

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-02-01

    Full Text Available In models, nucleation mode (1 nm Dp J10 and the burdens and lifetimes of ultrafine mode (10 nm Dp J10 and shorter coagulation lifetimes of ultrafine mode particles than the model with explicit dynamics (i.e. 1 nm boundary. The spatial distributions of CN10 (Dp > 10 nm and CCN(0.2% (i.e. CCN concentrations at 0.2% supersaturation are moderately affected, especially CN10 predictions above ~ 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by the overprediction of J10 or J3 with the parameterized microphysics possibly due to the instantaneous growth rate assumption in the survival and growth parameterization. The errors in CN10 predictions are sensitive to the choice of the lower size boundary but not to the choice of the time step applied to the microphysical processes. The spatial distribution of CCN(0.2% with the 3 nm boundary is almost identical to that with the 1 nm boundary, but that with the 10 nm boundary can differ more than 10–40% in some areas. We found that the deviation in the 10 nm simulations is partly due to the longer time step (i.e. 1-h time step used in the 10 nm simulations compared to 10-min time step used in the benchmark simulations but, even with the same time step, the 10 nm cutoff showed noticeably higher errors than the 3 nm cutoff. In conclusion, we generally recommend using a lower diameter boundary of 3 nm for studies focused on aerosol indirect effects but down to 1 nm boundary for studies focused on CN10 predictions or nucleation.

  4. Quark matter nucleation in neutron stars and astrophysical implications

    Science.gov (United States)

    Bombaci, Ignazio; Logoteta, Domenico; Vidaña, Isaac; Providência, Constança

    2016-03-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T=0 and hot β -stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 1053erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.

  5. Nucleation and growth constraints and outcome in the natural gas hydrate system

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2016-12-01

    Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism

  6. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  7. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studie....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  8. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    Science.gov (United States)

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  9. Diamond nucleation on surface of C60 thin layers

    Institute of Scientific and Technical Information of China (English)

    杨国伟; 袁放成; 刘大军; 何金田; 张兵临

    1997-01-01

    Diamond nucleation on the surface of C60 thin layers and intermediate layer of Si substrates are studied by scanning electron microscopy (SEM). The cross-section SEM images of diamond films show that diamond grains really nucleate on the surface of C60 thin layers. The SEM images of diamond nucleating sites show the nucleating aggregation of diamond on C60 surfaces. The preferential oriented diamond films are observed. The plasma pre-treatment of C60 sublimating layers is a key factor for diamond nucleation.

  10. Analysis of the Effect of Water Activity on Ice Formation Using a New Theory of Nucleation

    Science.gov (United States)

    Barahona, Donifan

    2013-01-01

    In this work a new theory of nucleation is developed and used to investigate the effect of water activity on the formation of ice within super-cooled droplets. The new theory is based on a novel concept where the interface is assumed to be made of liquid molecules trapped by the solid matrix. Using this concept new expressions are developed for the critical ice germ size and the nucleation work, with explicit dependencies on temperature and water activity. However unlike previous approaches, the new theory does not depend on the interfacial tension between liquid and ice. Comparison against experimental results shows that the new theory is able to reproduce the observed effect of water activity on nucleation rate and freezing temperature. It allows for the first time a theoretical derivation of the constant shift in water activity between melting and nucleation. The new theory offers a consistent thermodynamic view of ice nucleation, simple enough to be applied in atmospheric models of cloud formation.

  11. Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald's daemon

    CERN Document Server

    Horsch, Martin; Vrabec, Jadran

    2009-01-01

    The most interesting step of condensation is the cluster formation up to the critical size. In a closed system, this is an instationary process, as the vapour is depleted by the emerging liquid phase. This imposes a limitation on direct molecular dynamics (MD) simulation of nucleation by affecting the properties of the vapour to a significant extent so that the nucleation rate varies over simulation time. Grand canonical MD with McDonald's daemon is discussed in the present contribution and applied for sampling both nucleation kinetics and steady-state properties of a supersaturated vapour. The idea behind that approach is to simulate the production of clusters up to a given size for a specified supersaturation. In that way, nucleation is studied by a steady-state simulation. A series of simulations is conducted for the truncated and shifted Lennard-Jones fluid which accurately describes the fluid phase coexistence of noble gases and methane. The classical nucleation theory is found to overestimate the free e...

  12. Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces

    Science.gov (United States)

    Shevkunov, S. V.

    2008-12-01

    Monte Carlo simulations of water vapor nucleation on a perfect crystal surface and on a surface with defects are performed. Mass exchange with the vapor phase is modeled by using an open ensemble. Cluster-substrate interaction is described in terms of conventional atom-atom potentials. The Hamiltonian of the system includes expressions for electrostatic, polarization, exchange, and dispersion interactions. The Gibbs free energy and work of adsorption are calculated by Monte Carlo simulation in the bicanoĭnical ensemble. The microscopic structure of nuclei is analyzed in terms of pair correlation functions. Periodic boundary conditions are used to simulate an infinite substrate surface. Molecule-substrate and molecule-molecule long-range electrostatic interactions are calculated by summing the Fourier harmonics of the electrostatic potential. Dispersion interactions are calculated by direct summation over layers of unit cells. Nucleation on a surface with matching structure follows a layer-by-layer mechanism. The work of adsorption per molecule of a monolayer on the substrate surface has a maximum as a function of nucleus size. The steady rate of nucleation of islands of supercritical size is evaluated. The work of adsorption per molecule for layer-by-layer film growth is an oscillating function of cluster size. As a function of layer number, it has a minimum depending on the vapor pressure. The electric field generated by a microscopic surface protrusion destroys the layered structure of the condensate and eliminates free-energy nucleation barriers. However, point lattice defects do not stimulate explosive nucleation.

  13. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation.

    Science.gov (United States)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-27

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of "melting pots in a supercomputer" is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  14. Graphite Surface Modification by Heterogeneous Nucleation Process

    Institute of Scientific and Technical Information of China (English)

    CAO Ran; LI Hongxia

    2006-01-01

    Flaky graphite particles were coated by ZrOCl2·8H2O as precursors by heterogeneous nucleation process.The effects of factors such as pH values (2.4-5.1),concentration of the precursor solution (0.005-0.1 mol·L-1 ) , mixing method of graphite and precursor solution on the surface modification of graphite were studied. Result shows that: 1) the preferable technical process for heterogeneous nucleation modified graphite is to mix the graphite suspension and precursor solution with concentration 0. 025 mol·L -1 and then drip ammonia water to adjust the pH value to 3.6; 2)By surface modification, the ZrO2 particles are evenly coated on graphite surface and therefore improve oxidation resistance and dispersion ability of graphite.

  15. Surface Nanobubble Nucleation Visualized with TIRF Microscopy

    CERN Document Server

    Chan, Chon U

    2012-01-01

    Nanobubbles are observed with optical microscopy using the total internal reflection fluorescence (TIRF) excitation. We report on TIRF visualization using Rhodamine 6G at 5$\\mu\\,$M concentration which results to strongly contrasted pictures. The preferential absorption and the high spatial resolution allow to detect nanobubbles with diameters of 230\\,nm and above. We present a study of the nucleation dynamics from the water-ethanol-water exchange and report the size distributions. Nanobubble nucleation is observed within 4 min after the exchange, later a stable population of nanobubbles with a surface density of 0.55 bubbles\\,/$\\mu$m$^2$ is formed. Interestingly, unstable, slowly dissolving nanobubbles are observed during the first stage of water-ethanol exchange; only after the ethanol-water exchange stable nanobubbles appear.

  16. Induced Nucleation of Diamond Films on ZnS Substrates Precoated with Ceramic Interlayer

    Institute of Scientific and Technical Information of China (English)

    GAO Xu-Hui; YANG Hai; LU Fan-Xiu; TONG Yu-Mei; GUO Hui-Bin; TANG Wei-Zhong; LI Cheng-Ming; CHEN Guang-Chao; YU Huai-Zhi; CHENG Hong-Fan

    2004-01-01

    @@ We attempt to coat a multi-spectrum chemical-vapour-deposition ZnS substrate with smooth crystalline diamond films on the top of properly designed ceramic interlayer, which provides protection for ZnS against corrosion by the H2-CH4 microwave plasma and mitigates the thermal expansion coefficient mismatching between diamond and ZnS. However, difficulties in the homogeneous diamond nucleation on a ceramic interlayer were encountered.It was found that high rate nucleation of diamond could be induced by a metal or semiconductor mask placed on the top of ZnS.

  17. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface

    Science.gov (United States)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2016-12-01

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).

  18. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates...

  19. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Easter, R.C. (Pacific Northwest Lab., Richland, WA (United States)); Peters, L.K. (Kentucky Univ., Lexington, KY (United States). Dept. of Chemical Engineering)

    1993-01-01

    This report discusses binary homogeneous nucleation involving H[sub 2]SO[sub 4] and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H[sub 2]SO[sub 4] vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H[sub 2]SO[sub 4]/H[sub 2]O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H[sub 2]SO[sub 4] vapor. Furthermore, the vapor pressure of H[sub 2]SO[sub 4] is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H[sub 2]SO[sub 4] vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  20. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Easter, R.C. [Pacific Northwest Lab., Richland, WA (United States); Peters, L.K. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemical Engineering

    1993-01-01

    This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  1. Nucleation of {sup (4)}R brane universes

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de FIsica, Escuela Superior de FIsica y Matematicas del IPN, Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, DF (Mexico); Rojas, EfraIn [Facultad de FIsica e Inteligencia Artificial, Universidad Veracruzana, Sebastian Camacho 5, Xalapa, Veracruz, 91000 (Mexico)

    2004-09-07

    The creation of brane universes induced by a totally antisymmetric tensor living in a fixed background spacetime is presented, where a term involving the intrinsic curvature of the brane is considered. A canonical quantum mechanical approach employing the Wheeler-DeWitt equation is used. The probability nucleation for the brane is calculated by means of the corresponding instanton and the WKB approximation. Some cosmological implications from the model are presented.

  2. Understanding the ice nucleation characteristics of feldspars suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2017-04-01

    Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a rotor-stator homogenizer for 40 s at a rotation frequency of 7000 rpm. 4 - 10 mg of this mixture is pipetted in an aluminum pan (closed hermetically), placed in the DSC and subjected to three freezing cycles. The first and the third freezing cycles are executed at a cooling rate of 10 K/min to control the stability of the sample. The second freezing cycle is executed at a 1 K/min cooling rate and is used for evaluation. Freezing temperatures are obtained by evaluating the onset of the freezing signal in the DSC curve and plotted against water activity. Results Based on Koop et al. (2000), a general decreasing trend in ice nucleation efficiency of the mineral samples with increasing solute concentrations is expected. Interestingly, feldspars (microcline, sanidine, plagioclase) in very dilute solutions of ammonia and ammonium salts (water activity close to one) show an increase in ice nucleation efficiency of 4 to 6 K compared to that in pure water. Similar trends but less pronounced are observed for kaolinite while quartz shows barely any effect. Therefore, there seem to be specific interactions between the feldspar surface and ammonia and/or ammonium ions which result in an increase in freezing temperatures at low solute concentrations. The surface ion exchange seems to be secondary for this effect since it is also present in ammonia solution. We hypothesize that ammonia adsorbs on the aluminol/silanol groups present on feldspar (viz. aluminosilicate surface) surfaces (Nash and Marshall, 1957; Belchinskaya et al., 2013). Hence allowing one of the N-H bonds to stick outwards from the surface, facing towards the bulk water and providing a favorable template for ice to grow. The current study gives an insight into the ice nucleation behavior of aluminosilicate minerals when present in conjunction with chemical species, eg. ammonium/sulfates, which is of high atmospheric relevance. References Koop et al., (2000

  3. How important is biological ice nucleation in clouds on a global scale?

    Energy Technology Data Exchange (ETDEWEB)

    Hoose, C; Kristjansson, J E [Department of Geosciences, University of Oslo, Oslo (Norway); Burrows, S M, E-mail: corinna.hoose@kit.edu [Max Planck Institute for Chemistry, Mainz (Germany)

    2010-04-15

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10{sup -5}%, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  4. Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust

    Directory of Open Access Journals (Sweden)

    S. L. Broadley

    2012-01-01

    Full Text Available Atmospheric dust rich in illite is transported globally from arid regions and impacts cloud properties through the nucleation of ice. We present measurements of ice nucleation in water droplets containing known quantities of an illite rich powder under atmospherically relevant conditions. The illite rich powder used here, NX illite, has a similar mineralogical composition to atmospheric mineral dust sampled in remote locations, i.e. dust which has been subject to long range transport, cloud processing and sedimentation. Arizona Test Dust, which is used in other ice nucleation studies as a model atmospheric dust, has a significantly different mineralogical composition and we suggest that NX illite is a better surrogate of natural atmospheric dust.

    Using optical microscopy, heterogeneous nucleation in the immersion mode by NX illite was observed to occur dominantly between 246 K and the homogeneous freezing limit. In general, higher freezing temperatures were observed when larger surface areas of NX illite were present within the drops. Homogenous nucleation was observed to occur in droplets containing low surface areas of NX illite. We show that NX illite exhibits strong particle to particle variability in terms of ice nucleating ability, with ~1 in 105 particles dominating ice nucleation when high surface areas were present. In fact, this work suggests that the bulk of atmospheric mineral dust particles may be less efficient at nucleating ice than assumed in current model parameterisations.

    For droplets containing ≤2 × 10−6 cm2 of NX illite, freezing temperatures did not noticeably change when the cooling rate was varied by an order of magnitude. The data obtained during cooling experiments (surface area ≤2 × 10−6 cm2 is shown to be inconsistent with the single component stochastic model, but is well described by the singular model (ns(236

  5. [Twenty-four hour time and frequency domain variability of systolic blood pressure and heart rate in an experimental model of arterial hypertension plus obesity].

    Science.gov (United States)

    Pelat, M; Verwaerde, P; Lazartiques, E; Cabrol, P; Galitzky, J; Berlan, M; Montastruc, J L; Senard, J M

    1998-08-01

    Modifications of heart rate (HR) and systolic blood pressure (SBP) variabilities (V) have been reported in the human syndrome arterial hypertension plus insulin-resistance. The aim of this study was to characterize the 24 h SBPV and HRV in both time and frequency domains during weight increase in dogs fed ad libitum with a high fat diet. Implantable transmitter units for measurement of blood pressure and heart rate were surgically implanted in five beagle male dogs. BP and HR were continuously recorded using telemetric measurements during 24 hours, before and after 6 and 9 weeks of hypercaloric diet in quiet animals submitted to a 12h light-dark cycle. To study nychtemeral cycle of SBP and HR, two periods were chosen: day (from 6.00 h to 19.00 h) and night (from 23.00 h to 6.00 h). Spontaneous baroreflex efficiency was measured using the sequence method. Spectral variability of HR and SBP was analyzed using a fast Fourier transformation on 512 consecutive values and normalized units of low (LF: 50-150 mHz, reflecting sympathetic activity) and high (HF: respiratory rate +/- 50 mHz, reflecting parasympathetic activity) frequency bands were calculated. The energy of total spectrum (from 0.004 to 1 Hz) was also studied. Body weight (12.4 +/- 0.9 vs 14.9 +/- 0.9 kg, p < 0.05). SBP (132 +/- 1 vs 147 +/- 1 mmHg, p < 0.05) significantly increased after 9 weeks of hypercaloric diet. A nycthemeral HR rhythm was present at baseline (day: 79 +/- 1 vs night: 71 +/- 1 bpm) but not after 9 weeks (day: 91 +/- 4 bpm ; night: 86 +/- 2 bpm). Concomitantly, the efficiency of spontaneous baroreflex decreased at 6 weeks (36 +/- 1 vs 42 +/- 2 mmHg/ms, p < 0.05). A significant decrease in HF energy of HRV was found after 6 but not after 9 weeks. LF energy of SBPV was increased at 6 but not at 9 weeks (table). [table: see text] In conclusion, this study shows that an hyperlipidic and hypercaloric diet induces transient variations in autonomic nervous system activity which could be the

  6. Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001)

    Science.gov (United States)

    Barrett, C. S. C.; Martin, T. P.; Bao, X.-Y.; Kennon, E. L.; Gutierrez, L.; Martin, P.; Sanchez, E.; Jones, K. S.

    2016-09-01

    GaAs is a material of interest as a potential buffer layer in future III-V semiconductor-based transistor technologies integrated on Si wafers. The goal of this study was to investigate the effect of growth temperature on the propagation and annihilation of antiphase domain boundaries (APBs) in GaAs films grown on Si(001) by metal-organic chemical vapor deposition (MOCVD). No intentional wafer off-cuts or high temperature pre-growth anneals (>1000 °C) were employed as both of these practices complicate integration with other devices. To evaluate the role of growth temperature on the APB evolution, a 200 nm thick layer of GaAs was grown on the Si at a fixed temperature of 530 °C so that all samples started with the same approximate APB density. Subsequently, 600 nm of GaAs was grown at temperatures varying between 530 °C and 650 °C. Chemical etching combined with scanning electron microscopy (SEM) was used to profile the density of the APBs in each sample as a function of depth. The APB annihilation rate, i.e. the exponential decay rate of APB density with respect to film thickness, increases from 2.6 μm-1 to 10.7 μm-1 as the growth temperature increases from 530 °C to 610 °C and then saturates. The increase in annihilation rate with increasing temperatures suggests that the higher temperatures remove kinetic barriers to the reduction of the overall APB interfacial area. An activation energy of 1.1 eV was extracted using an Arrhenius relationship and likely corresponds to the energy needed for APBs to kink from {110} to higher-index planes, e.g. {112}. Dark field transmission electron microscopy showed that at higher growth temperatures the APBs can shift from vertical {110} habit planes to {112} planes leading to self-annihilation with sufficient thickness.

  7. Images and properties of individual nucleated particles

    Science.gov (United States)

    Németh, Zoltán; Pósfai, Mihály; Nyirő-Kósa, Ilona; Aalto, Pasi; Kulmala, Markku; Salma, Imre

    2015-12-01

    Atmospheric aerosol particles were collected in Budapest, Hungary in April-June onto lacey Formvar substrates by using an electrostatic precipitator during the beginning phase of the particle growth process in ten nucleation and growth events. Median contribution of the nucleated particles - expressed as the concentration of particles with a diameter between 6 and 25 nm to the total particle number concentration - was 55%, and the median electrical mobility diameter of the particles was approximately 20 nm. The sample was investigated using high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Major types of individual particles such as soot, sulphate/organic and tar ball particles were identified in the sample. In addition, particles with an optical diameter range of 10-30 nm were also observed. They clearly differed from the other particle types, showed homogeneous contrast in the bright-field TEM images, and evaporated within tens of seconds when exposed to the electron beam. They were interpreted as representatives of freshly nucleated particles.

  8. Nonclassical nucleation and growth of inorganic nanoparticles

    Science.gov (United States)

    Lee, Jisoo; Yang, Jiwoong; Kwon, Soon Gu; Hyeon, Taeghwan

    2016-08-01

    The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

  9. Nucleation of copper films on platinum: Effect of benzotriazole

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M.J.; Muller, R.H. (Lawrence Berkeley Lab., CA (USA) California Univ., Berkeley, CA (USA). Dept. of Chemical Engineering)

    1990-04-01

    The sub-micron topography of Cu deposits during the initial stages of deposition was studied with scanning tunneling microscopy (STM) to investigate the effect of benzotriazole (BTA). The brightness of a surface, characterized by a low intensity of scattered light, has been related to its topography. Additives such as benzotriazole are used in plating baths to reduce the roughness. The average particle size in a deposit can be determined by dividing the deposition rate by the nucleation rate. In this study the number density of nuclei of Cu on Pt was derived from Fourier transforms of the STM data from 54 {angstrom} thick Cu films. The effects of BTA concentration and overpotential on the Cu number density of nuclei were determined. 2 refs., 4 figs.

  10. Nucleation and crystallization behavior of RE - doped tellurite glasses

    Science.gov (United States)

    Goncharuk, V.; Mamaev, A.; Silant'ev, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    The microstructure and crystallization of the glasses with composition (100-x-y)TeO2-xPbO·P2O5-yPbF2:zMF3 (M= Er, Eu, Nd; x=42.5-30, y=5-30, z=0.5-3.0) were investigated by transmission electron microscopy (TEM) and luminescence methods. It was found that the doping with the rare-earth (III) fluorides promoted nucleation in the bulk glasses. The sizes of generated particles are about 2-5 nanometers and their shapes are close to spherical. The growth rate of crystallites depended on the lead fluoride content and glass forming rate. The heat treatment of the samples promotes the glass ceramic formation, where the crystalline phase is Pb2P2O7.

  11. Bubble nucleation in superhydrophobic microchannels due to subcritical heating

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2016-11-01

    We report on experiments that investigate the effects of heating on laminar flow in superhydrophobic (SH) microchannels. The parallel plate microchannels (180 μm spacing) consist of two surfaces: a rib/cavity structured SH surface and a smooth glass surface. The back of the SH surface is in contact with an aluminum strip that is heated and a camera is used to image through the glass surface to visualize the flow. Thermocouples embedded in the aluminum obtain the temperature profile along the length of the channel. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Both degassed and air-saturated water are used. When air-saturated water is used, the cavities of the SH surfaces act as nucleation sites and air is desorbed out of the water. Depending on the surface type/configuration, large bubbles can form and result in a large increase in fRe and channel surface temperatures. When degassed water is used no bubble nucleation is observed, however, the air trapped in the cavities of the SH surfaces is quickly absorbed and the surfaces transition to a wetted state. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881).

  12. In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine.

    Science.gov (United States)

    Genge, Brian R; Wu, Licia N Y; Wuthier, Roy E

    2007-09-07

    Annexins A5, A2, and A6 (Anx-A5, -A2, and -A6) are quantitatively major proteins of the matrix vesicle nucleational core that is responsible for mineral formation. Anx-A5 significantly activated the induction and propagation of mineral formation when incorporated into synthetic nucleation complexes made of amorphous calcium phosphate (ACP) and Anx-A5 or of phosphatidylserine (PS) plus ACP (PS-CPLX) and Anx-A5. Incorporation of Anx-A5 markedly shortened the induction time, greatly increasing the rate and overall amount of mineral formed when incubated in synthetic cartilage lymph. Constructed by the addition of Ca(2+) to PS, emulsions prepared in an intracellular phosphate buffer matched in ionic composition to the intracellular fluid of growth plate chondrocytes, these biomimetic PS-CPLX nucleators had little nucleational activity. However, incorporation of Anx-A5 transformed them into potent nucleators, with significantly greater activity than those made from ACP without PS. The ability of Anx-A5 to enhance the nucleation and growth of mineral appears to stem from its ability to form two-dimensional crystalline arrays on PS-containing monolayers. However, some stimulatory effect also may result from its ability to exclude Mg(2+) and HCO(-)(3) from nucleation sites. Comparing the various annexins for their ability to activate PS-CPLX nucleation yields the following: avian cartilage Anx-A5 > human placental Anx-A5 > avian liver Anx-A5 > or = avian cartilage Anx-A6 > cartilage Anx-A2. The stimulatory effect of human placental Anx-A5 and avian cartilage Anx-A6 depended on the presence of PS, since in its absence they either had no effect or actually inhibited the nucleation activity of ACP. Anx-A2 did not significantly enhance mineralization.

  13. Assessment of parameterizations of heterogeneous ice nucleation in cloud and climate models

    Directory of Open Access Journals (Sweden)

    J. A. Curry

    2010-02-01

    Full Text Available Several different types of parameterization of heterogeneous ice nucleation for cloud and climate models have been developed over the past decades, ranging from empirically-derived expressions to parameterizations of ice crystal nucleation rates derived from theory (including the parameterization developed by the authors, hereafter referred to as KC. Parameterizations schemes that address the deliquescence-freezing (DF, which combines the thermodynamically indistinguishable modes of condensation freezing and immersion freezing, are assessed here in the context of thermodynamic constraints, laboratory measurements, and recent field measurements. It is shown that empirical schemes depending only on the ice saturation ratio or only on temperature can produce reasonable crystal concentrations, but ice crystal nucleation is thermodynamically prohibited in certain regions of the temperature-saturation ratio phase space. Some recent empirical parameterizations are shown to have insufficient efficiency, yielding clouds that are almost entire liquid at temperatures as low as −35 °C. A reasonable performance of the KC ice nucleation scheme is demonstrated by comparison with data from several recent field campaigns, laboratory data, climatology of cloud phase-state, and GCM parameterizations. Several mis-applications of the KC parameterization that appeared recently in the literature are described and corrected, by emphasizing that a correct application of the KC scheme with simultaneous dependence on the temperature and saturation ratio requires integration of the individual nucleation rates over the measured size spectrum of the environmental aerosol, and not over the spectrum of ice nuclei equal to the crystal concentration at the exit of an experimental device. Simulation with a spectral bin model and correct application of KC scheme adequately describes ice nucleation via the DF mode and yields crystal concentrations and phase state close to those

  14. Inorganic Nanoparticle Nucleation on Polymer Matrices

    Science.gov (United States)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  15. Relationship Between Changes in Pulse Pressure and Frequency Domain Components of Heart Rate Variability During Short-Term Left Ventricular Pacing in Patients with Cardiac Resynchronization Therapy

    Science.gov (United States)

    Urbanek, Bożena; Ruta, Jan; Kudryński, Krzysztof; Ptaszyński, Paweł; Klimczak, Artur; Wranicz, Jerzy Krzysztof

    2016-01-01

    Background The aim of the study was to explore the relationship between changes in pulse pressure (PP) and frequency domain heart rate variability (HRV) components caused by left ventricular pacing in patients with implanted cardiac resynchronization therapy (CRT). Material/Methods Forty patients (mean age 63±8.5 years) with chronic heart failure (CHF) and implanted CRT were enrolled in the study. The simultaneous 5-minute recording of beat-to-beat arterial systolic and diastolic blood pressure (SBP and DBP) by Finometer and standard electrocardiogram with CRT switched off (CRT/0) and left ventricular pacing (CRT/LV) was performed. PP (PP=SBP-DBP) and low- and high-frequency (LF and HF) HRV components were calculated, and the relationship between these parameters was analyzed. Results Short-term CRT/LV in comparison to CRT/0 caused a statistically significant increase in the values of PP (P<0.05), LF (P<0.05), and HF (P<0.05). A statistically significant correlation between ΔPP and ΔHF (R=0.7384, P<0.05) was observed. The ΔHF of 6 ms2 during short-term CRT/LV predicted a PP increase of ≥10% with 84.21% sensitivity and 85.71% specificity. Conclusions During short-term left ventricular pacing in patients with CRT, a significant correlation between ΔPP and ΔHF was observed. ΔHF ≥6 ms2 may serve as a tool in the selection of a suitable site for placement of a left ventricular lead. PMID:27305349

  16. The ice nucleation activity of biological aerosols

    Science.gov (United States)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  17. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: a comparison of simulation techniques.

    Science.gov (United States)

    Filion, L; Hermes, M; Ni, R; Dijkstra, M

    2010-12-28

    Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.

  18. Experimental determination of the solid-liquid equilibrium, metastable zone, and nucleation parameters of the flunixin meglumine-ethanol system

    Science.gov (United States)

    Wu, Songgu; Feng, Fei; Zhou, Lina; Gong, Junbo

    2012-09-01

    Measurements of the metastable zone and solubility for flunixin meglumine-ethanol system were obtained. The solubility was measured within the temperature range from 288.15 to 328.15 K. The mole fraction solubility was correlated satisfactorily with the temperature by the equation: xeq=2.35×10-12e0.07121T. The value of enthalpy of dissolution, enthalpy of fusion and enthalpy of mixing were determined to be 49.04, 64.03 and -14.99 kJ mol-1 respectively. The metastable zone width of flunixin meglumine was measured by an electric conductivity method. A comparison of the nucleation temperatures from electric conductivity measurement and from focused beam reflectance measurement (FBRM) shows that both detection techniques give almost the same results for flunixin meglumine. The nucleation parameters of flunixin meglumine in ethanol were determined from the metastable zone data. Over the equilibrium temperature range from 312.28 to 325.55 K, the nucleation rate constant was varied from 0.00001 to 0.00120 #/m2 min, whereas the nucleation order was varied from 2.23022 to 3.39299. The obtained high values of nucleation order indicated a high rate of nucleation.

  19. Partitioning of ice nucleating particles: Which modes matter?

    Science.gov (United States)

    Hande, Luke; Hoose, Corinna

    2017-04-01

    Ice particles in clouds have a large impact on cloud lifetime, precipitation amount, and cloud radiative properties through the indirect aerosol effect. Thus, correctly modelling ice formation processes is important for simulations preformed on all spatial and temporal scales. Ice forms on aerosol particles through several different mechanisms, namely deposition nucleation, immersion freezing, and contact freezing. However there is conflicting evidence as to which mode dominates, and the relative importance of the three heterogeneous ice nucleation mechanisms, as well as homogeneous nucleation, remains an open question. The environmental conditions, and hence the cloud type, have a large impact on determining which nucleation mode dominates. In order to understand this, simulations were performed with the COSMO-LES model, utilising state of the art parameterisations to describe the different nucleation mechanisms for several semi-idealised cloud types commonly occurring over central Europe. The cloud types investigated include a semi-idealised, and an idealised convective cloud, an orographic cloud, and a stratiform cloud. Results show that immersion and contact freezing dominate at warmer temperatures, and under most conditions, deposition nucleation plays only a minor role. In clouds where sufficiently high levels of water vapour are present at colder temperatures, deposition nucleation can play a role, however in general homogeneous nucleation dominates at colder temperatures. Since contact nucleation depends on the environmental relative humidity, enhancements in this nucleation mode can be seen in areas of dry air entrainment. The results indicate that ice microphysical processes are somewhat sensitve to the environmental conditions and therefore the cloud type.

  20. Overview: Experimental studies of crystal nucleation: Metals and colloids

    Science.gov (United States)

    Herlach, Dieter M.; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael

    2016-12-01

    Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal

  1. Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models

    Directory of Open Access Journals (Sweden)

    J. A. Curry

    2012-01-01

    Full Text Available Several different types of parameterization of heterogeneous ice nucleation for cloud and climate models have been developed over the past decades, ranging from empirically-derived expressions to parameterizations of ice crystal nucleation rates derived from theory, including the parameterization developed by the authors that includes simultaneous dependence on the temperature and saturation ratio, hereafter referred to as KC. Parameterizations schemes that address the deliquescence-heterogeneous-freezing (DHetF, which combines the modes of condensation freezing and immersion freezing, are assessed here in the context of thermodynamic constraints, laboratory measurements, and recent field measurements. It is shown that empirical schemes depending only on the ice saturation ratio or only on temperature can produce reasonable crystal concentrations, but ice crystal nucleation is thermodynamically prohibited in certain regions of the temperature-saturation ratio phase space. Some recent empirical parameterizations yield clouds that are almost entire liquid at temperatures as low as −35 °C in contrast to cloud climatology. Reasonable performance of the KC ice nucleation scheme is demonstrated by comparison with numerous data from several recent field campaigns, laboratory data, climatology of cloud phase-state. Several mis-applications of the KC parameterization that appeared recently in the literature are described and corrected. It is emphasized here that a correct application of the KC scheme requires integration of the individual nucleation rates over the measured size spectrum of ice nuclei that represent a fraction or several fractions of the environmental aerosol with specific ice nucleation properties. The concentration in these fractions can be substantially smaller than that of the total aerosol, but greater than the crystal concentration measured by an experimental device. Simulations with temperature-dependent active site area or with

  2. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation.

    Directory of Open Access Journals (Sweden)

    Zhenwei Gao

    Full Text Available Spider silk is protein fibers with extraordinary mechanical properties. Up to now, it is still poorly understood how silk proteins are kept in a soluble form before spinning into fibers and how the protein molecules are aligned orderly to form fibers. Minor ampullate spidroin is one of the seven types of silk proteins, which consists of four types of domains: N-terminal domain, C-terminal domain (CTD, repetitive domain (RP and linker domain (LK. Here we report the tertiary structure of CTD and secondary structures of RP and LK in aqueous solution, and their roles in protein stability, solubility and fiber formation. The stability and solubility of individual domains are dramatically different and can be explained by their distinct structures. For the tri-domain miniature fibroin, RP-LK-CTD(Mi, the three domains have no or weak interactions with one another at low protein concentrations (<1 mg/ml. The CTD in RP-LK-CTD(Mi is very stable and soluble, but it cannot stabilize the entire protein against chemical and thermal denaturation while it can keep the entire tri-domain in a highly water-soluble state. In the presence of shear force, protein aggregation is greatly accelerated and the aggregation rate is determined by the stability of folded domains and solubility of the disordered domains. Only the tri-domain RP-LK-CTD(Mi could form silk-like fibers, indicating that all three domains play distinct roles in fiber formation: LK as a nucleation site for assembly of protein molecules, RP for assistance of the assembly and CTD for regulating alignment of the assembled molecules.

  3. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  4. Domains in Ferroelectric Nanostructures

    Science.gov (United States)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device

  5. Nucleation of C60 on ultrathin SiO2

    Science.gov (United States)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  6. Genetic Algorithms and Nucleation in VIH-AIDS transition.

    Science.gov (United States)

    Barranon, Armando

    2003-03-01

    VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.

  7. Nucleation kinetics of the formation of low dimensional calcium sulfate dihydrate crystals in isopropyl alcohol medium

    Energy Technology Data Exchange (ETDEWEB)

    Sandhya, S.; Sureshbabu, S.; Varma, H.K.; Komath, Manoj [Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695 012 (India)

    2012-07-15

    Calcium sulfate dihydrate, constituted as uniform crystals of low dimensions, is a potential biomaterial for clinical applications like bone graft substitution and drug delivery. In this work, isopropyl alcohol has been used as a solvent to obtain low dimensional calcium sulfate dihydrate crystals from calcium nitrate - sulfuric acid system. Reactants in 0.5 molar concentration at ambient conditions generated uniform rod-shaped crystals of length 3-5 {mu}m. Analysis using X-ray Diffractometry and Fourier Transform Infrared Spectrometry showed the material to be well crystallized, phase-pure calcium sulfate dihydrate. The nucleation kinetics has been studied by observing the induction time of phase formation in solutions of millimolar concentrations through turbidimetry at 300 K. The data have been analysed using classical nucleation theory to deduce parameters like interfacial tension (or surface free energy), nucleation rate and critical radius. The surface free energy obtained (5.6 mJ/m{sup 2}) is comparatively lower than that reported for aqueous precipitation, which could be attributed to the presence of isopropyl alcohol. On escalating the supersaturation ratio, the nucleation rate drastically increased and the critical radius decreased exponentially. Particles formed at supersaturation 1.39 showed a monomodal distribution centered at 8.2 nm in Dynamic Light Scattering analysis. Comparable particle sizes were obtained in Transmission Electron Microscopy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  9. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    Science.gov (United States)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  10. Model-driven experimental evaluation of struvite nucleation, growth and aggregation kinetics.

    Science.gov (United States)

    Galbraith, S C; Schneider, P A; Flood, A E

    2014-06-01

    Nutrient stewardship is emerging as an issue of global importance, which will drive the development of nutrient recovery in the near to medium future. This will impact wastewater treatment practices, environmental protection, sustainable agriculture and global food security. A modelling framework for precipitation-based nutrient recovery systems has been developed, incorporating non-ideal solution thermodynamics, a dynamic mass balance and a dynamic population balance to track the development of the precipitating particles. The mechanisms of crystal nucleation and growth and, importantly, aggregation are considered. A novel approach to the population balance embeds the nucleation rate into the model, enabling direct regression of its kinetic parameters. The case study chosen for the modelling framework is that of struvite precipitation, given its wide interest and commercial promise as one possible nutrient recovery pathway. Power law kinetic parameters for nucleation, crystal growth and particle aggregation rates were regressed from an ensemble data set generated from 14 laboratory seeded batch experiments using synthetic solutions. These experiments were highly repeatable, giving confidence to the regressed parameter values. The model successfully describes the dynamic responses of solution pH, the evolving particle size distribution subject to nucleation, growth and aggregation effects and the aqueous magnesium concentration in the liquid phase. The proposed modelling framework could well be extended to other, more complex systems, leading to an improved understanding and commensurately greater confidence in the design, operation and optimisation of large-scale nutrient recovery processes from complex effluents.

  11. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    Science.gov (United States)

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV

  12. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far......The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...

  13. Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior

    Directory of Open Access Journals (Sweden)

    D. Niedermeier

    2011-01-01

    Full Text Available Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  14. Investigation of nucleation events vertical extent: a long term study at two different altitude sites

    Directory of Open Access Journals (Sweden)

    J. Boulon

    2011-06-01

    Full Text Available In this work we present an analysis of the occurrence of nucleation events during more than three years of measurements at two different rural altitude sites, the puy de Dôme research station (1465 m a.s.l. and the Opme station (660 m a.s.l., central France. The collected database is a unique combination of scanning mobility particle sizer (10–400 nm, air ion spectrometers (from 0.8 to 42 nm for NTP-conditions, and, neutral clusters and air ion spectrometers (from 0.8 to 42 nm for NTP-conditions measurements at these two different altitudes nearly located research stations, from February 2007 to June 2010. The seasonality of the frequency of nucleation events was studied at the puy de Dôme station and maximum of events frequency was found during early spring and early autumn. During the measurement period, neither the particle formation rates (J2= 1.382 ± 0.195 s−1 nor the growth rates (GR1.3−20 nm = 6.20 ± 0.12 nm h−1 differ from one site to the other on average. Hovewer, we found that, on 437 sampling days in common to the two sites, the nucleation frequency was higher at the puy de Dôme station (35.9 %, 157 days than at the low elevation station of Opme (20.8 %, 91 days. LIDAR measurements and the evolution of the potential equivalent temperature revealed that the nucleation could be triggered either (i within the whole low tropospheric column at the same time from the planetary boundary layer to the top of the interface layer (29.2 %, 47 events, (ii above the planetary boundary layer upper limit (43.5 %, 70 events, and (iii at low altitude and then transported, conserving dynamic and properties, at high altitude (24.8 %, 40 events. This is the first time that the vertical extent of nucleation can be studied over a long observational period, allowing for a rigorous

  15. Titanium carbide@polypyrrole core-shell nanoparticles prepared by controlled heterogeneous nucleation for rechargeable batteries.

    Science.gov (United States)

    Weng, Yu-Ting; Wu, Nae-Lih

    2013-11-28

    A unique nanostructure consisting of a TiC nanoparticle core and a conformal polypyrrole shell doped with p-toluene sulfonate has been synthesized by a controlled heterogeneous nucleation process. As an electrode material in a Li-ion containing organic electrolyte, the nanocomposite exhibits remarkable high-rate (up to 400 C-rate) charge-discharge capability and cycling stability even at 50 °C.

  16. Epitaxial Nucleation on Rationally Designed Peptide Functionalized Interface

    Science.gov (United States)

    2011-07-19

    in order to generate intricate biomimetic architectures , matrix mediated nucleation needs to be a multi- step process,23 This hypothesis is known as... tectonic ” nucleation and growth,24 and we apply our biomimetic interfacially confined peptide to explore this phenomenon at an addressable air...template functional hybrid materials. Figure 2. Tectonic hypothesis for nucleation and growth. 23 Figure 3. Objectives and progress. Progress in

  17. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2012-08-09

    The multivariable theory of nucleation (J. Chem. Phys. 2006, 124, 124512) is applied to the problem of vapor bubbles formation in pure liquids. The presented self-consistent macroscopic theory of this process employs thermodynamics (classical, statistical, and linear nonequilibrium), hydrodynamics, and interfacial kinetics. As a result of thermodynamic study of the problem, the work of formation of a bubble is obtained and parameters of the critical bubble are determined. The variables V (the bubble volume), ρ (the vapor density), and T (the vapor temperature) are shown to be natural for the given task. An equation for the dependence of surface tension on bubble state parameters is obtained. An algorithm of writing the equations of motion of a bubble in the space {V, ρ, T}--equations for V, ρ, and T--is offered. This algorithm ensures symmetry of the matrix of kinetic coefficients. The equation for T written on the basis of this algorithm is shown to represent the first law of thermodynamics for a bubble. The negative eigenvalue of the motion equations which alongside with the work of the critical bubble formation determines the stationary nucleation rate of bubbles is obtained. Various kinetic limits are considered. One of the kinetic constraints leads to the fact that the nucleation cannot occur in the whole metastable region; it occurs only in some subregion of the latter. Zeldovich's theory of cavitation is shown to be a limiting case of the theory presented. The limiting effects of various kinetic processes on the nucleation rate of bubbles are shown analytically. These are the inertial motion of a liquid as well as the processes of particles exchange and heat exchange between a bubble and surrounding liquid. The nucleation rate is shown to be determined by the slowest kinetic process at positive and moderately negative pressures in a liquid. The limiting effects of the processes of evaporation-condensation and heat exchange vanish at high negative

  18. Fracture energies at the rupture nucleation points of large strike-slip earthquakes on the Xianshuihe fault, southwestern China

    Science.gov (United States)

    Xie, Yuqing; Kato, Naoyuki

    2017-02-01

    Earthquake cycles along a pure strike-slip fault were numerically simulated using a rate- and state-dependent friction law to obtain the fracture energies at the rupture nucleation points. In the model, deep aseismic slip is imposed on the fault, which generates recurrent earthquakes in the shallower velocity-weakening friction region. The fracture energy at the rupture nucleation point for each simulated earthquake was calculated using the relation between shear stress and slip, which indicates slip-weakening behavior. The simulation results show that the relation between the fracture energy at the nucleation point and other source parameters is consistent with a theoretical approach based on fracture mechanics, in that an earthquake occurs when the energy release rate at the tip of the aseismic slip zone first exceeds the fracture energy. Because the energy release rate is proportional to the square of the amount of deep aseismic slip during the interseismic period, which can be estimated from the recurrence interval of earthquakes and the deep aseismic slip rate, the fracture energies for strike-slip earthquakes can be calculated. Using this result, we estimated the fracture energies at the nucleation points of large earthquakes on selected segments of the Xianshuihe fault, southwestern China. We find that the estimated fracture energies at the rupture nucleation points are generally smaller than the values of average fracture energy for developed ruptures as estimated in previous studies, suggesting that the fracture energy tends to increase with the rupture propagation distance.

  19. Suppression of heterogeneous bubble nucleation by upstream subcooled liquid flow

    Science.gov (United States)

    Li, J.; Peterson, G. P.

    2006-05-01

    The threshold levels for quasi-steady-state bubble nucleation on a smooth platinum surface located in a microchannel, both with and without liquid flow, are explored. The measured threshold for motionless liquid compares well with the theoretical value as calculated from the classical kinetics of nucleation. The measured threshold for the case of flow in the microchannel exceeds the measured value for motionless liquid and even exceeds the theoretical value. The observed phenomena suggest that in the absence of impurities, classical theory can accurately predict the heterogeneous nucleation. In addition, subcooled fluids were found to suppress bubble nucleation.

  20. Theoretical analysis of bubble nucleation in GASAR materials

    Institute of Scientific and Technical Information of China (English)

    刘源; 李言祥

    2003-01-01

    Nucleation of gaseous hydrogen bubbles is the initial stage of GASAR process. Through the theoretical analysis, it has been identified that heterogeneous nucleation of bubbles as caps on the solid surfaces of impurities is impossible and only the heterogeneous nucleation in pits and cracks in impurities is the most feasible way in the GASAR process. The results also show that the probability of bubble nucleation progressively decreases from Al, Cu and Ni to Fe molten metal, which is the result of the increasing adhesion work of liquid metal on alumina.

  1. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  2. Thermodynamics of ice nucleation in liquid water.

    Science.gov (United States)

    Wang, Xin; Wang, Shui; Xu, Qinzhi; Mi, Jianguo

    2015-01-29

    We present a density functional theory approach to investigate the thermodynamics of ice nucleation in supercooled water. Within the theoretical framework, the free-energy functional is constructed by the direct correlation function of oxygen-oxygen of the equilibrium water, and the function is derived from the reference interaction site model in consideration of the interactions of hydrogen-hydrogen, hydrogen-oxygen, and oxygen-oxygen. The equilibrium properties, including vapor-liquid and liquid-solid phase equilibria, local structure of hexagonal ice crystal, and interfacial structure and tension of water-ice are calculated in advance to examine the basis for the theory. The predicted phase equilibria and the water-ice surface tension are in good agreement with the experimental data. In particular, the critical nucleus radius and free-energy barrier during ice nucleation are predicted. The critical radius is similar to the simulation value, suggesting that the current theoretical approach is suitable in describing the thermodynamic properties of ice crystallization.

  3. Earthquake nucleation in weak subducted carbonates

    Science.gov (United States)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Christopher J.; Behrmann, Jan H.

    2016-09-01

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests performed on simulated fault gouges prepared from ocean-floor carbonates and clays, cored during IODP drilling offshore Costa Rica. Clay-rich gouges show internal friction coefficients (that is, the slope of linearized shear stress versus normal stress data) of μint = 0.44 - 0.56, irrespective of temperature and pore-fluid pressure (Pf). By contrast, μint for the carbonate gouge strongly depends on temperature and pore-fluid pressure, with μint decreasing dramatically from 0.84 at room temperature and Pf = 20 MPa to 0.27 at T = 140 °C and Pf = 120 MPa. This effect provides a fundamental mechanism of shear localization and earthquake generation in subduction zones, and makes carbonates likely nucleation sites for plate-boundary earthquakes. Our results imply that rupture nucleation is prompted by a combination of temperature-controlled frictional instability and temperature- and pore-pressure-dependent weakening of calcareous fault gouges.

  4. Nucleation phenomena during molecular beam epitaxy of GaN observed by line-of-sight quadrupole mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koblmueller, G.; Averbeck, R.; Riechert, H. [Infineon Technologies AG, Corporate Research Photonics, Otto-Hahn-Ring 6, 81739 Munich (Germany); Pongratz, P. [Vienna University of Technology, Institute of Solid State Physics, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2002-12-16

    We investigate nucleation and growth phenomena during molecular beam epitaxy of GaN on sapphire, 6H-SiC and GaN templates using in situ line-of-sight quadrupole mass spectrometry. Moreover, this method allows the quantitative study of nucleation phenomena by monitoring desorption processes. Heteroepitaxial growth of GaN on sapphire and 6H-SiC faces a high energy barrier to nucleation giving rise to a substantial Ga desorption during the initial phase of nucleation. The amount of initial Ga desorption in heteroepitaxy is independent of the chosen substrate material and is as high as 8 {+-} 1.5 nm equivalent GaN thickness. Once critical-sized islands have nucleated they grow three-dimensional (3D) leading to a quadratic increase of the GaN coverage and finally to a steady growth rate after coalescence, as also determined by Rutherford backscattering and atomic force microscopy. In contrast, homoepitaxy on Ga- and N-face GaN templates is distinguished by immediate nucleation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  5. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  6. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  7. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    Science.gov (United States)

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  8. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    Science.gov (United States)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  9. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  10. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2014-06-25

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  11. Stardust silicate nucleation kick-started by SiO+TiO₂.

    Science.gov (United States)

    Goumans, T P M; Bromley, Stefan T

    2013-07-13

    Dust particles are quintessential for the chemical evolution of the Universe. Dust nucleates in stellar outflows of dying stars and subsequently travels through the interstellar medium, continuously evolving via energetic processing, collisions and condensation. Finally, dust particles are incorporated in the next-generation star or its surrounding planetary system. In oxygen-rich stellar outflows, silicates are observed in the condensation zone (1200-1000 K), but, in spite of several decades of experimental and theoretical study, the stardust nucleation process remains poorly understood. We have previously shown that under these conditions ternary Mg-Si-O clusters may start forming at high enough rates from SiO, Mg and H₂O through heteromolecular association processes. In this reaction scheme, none of the possible initial association reactions was thermodynamically favourable owing to the large entropy loss at these temperatures. Here, we follow a previous idea that the incorporation of TiO₂ could help to initiate stardust nucleation. In contrast to these studies, we find that there is no need for TiO₂ cluster seeds-instead, one molecule of TiO₂ is sufficient to kick-start the subsequent nucleation of a silicate dust particle.

  12. Ab initio thermodynamic study on two-dimensional atomic nucleation on ZnO polar surfaces

    Science.gov (United States)

    Zhu, Rui; Zhao, Qing; Xu, Jun; Liu, Banggui; Leprince-Wang, Yamin; Yu, Dapeng

    2017-08-01

    Structures of the two-dimensional atomic nuclei on ZnO (0001)-Zn and (000 1 bar)-O polar surfaces were studied by first principles density functional theory. The polarity-dependent nucleation dynamics was investigated by simulating two-dimensional (2D) nuclei consisting of 1-8 ZnO monomers on both polar surfaces. According to total energy calculations, average binding energy per ZnO monomer of the surface nuclei was analyzed to investigate if the nucleation and growth will proceed reasonably in physics. We found nucleation on (0001)-Zn surface was easier than that on (000 1 bar)-O surface. By using atomistic thermodynamics analysis, we calculated the Gibbs free energy of formation of these nuclei and made a comparison between the two polar surfaces. On (0001)-Zn surface, the critical Gibbs free energy of formation is much lower than that on (000 1 bar)-O surface under the same supersaturation, which leads to a much larger ZnO growth rate and rougher morphology, in accordance with experimental results. In addition, energetic analysis of nucleation at real thermodynamic conditions was achieved by introducing the temperature- and pressure-dependent chemical potentials of ZnO precursors.

  13. Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2013-09-01

    Full Text Available Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM. The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  14. Nucleation of nanocrystalline diamond by fragmentation of fullerene precursors.

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. M.

    1998-05-04

    Growth of diamond films from C{sub 60}/Ar microwave discharges results in a nanocrystalline microstructure with crystallite sizes in the range 3-10 nm. Heterogeneous nucleation rates of 10{sup 10} cm{sup {minus}2} sec are required to account for the results. The nucleation mechanism presented here fulfills this requirement and is based on the insertion of carbon dimer, C{sub 2}, molecules, produced by fragmentation of C{sub 60}, into the n-bonded dimer rows of the reconstructed (100) surface of diamond. Density functional theory is used to calculate the energetic of C{sub 2} insertion into carbon clusters that model the (100) surface. The reaction of singlet C{sub 2} with the double bond of the C{sub 9}H{sub 12} cluster leads to either carbene structures or a cyclobutynelike structure. At the HF/6-31G* level, the carbene product has a C{sub 2v} structure, while at the B3LYP/6-31G* levels of theory, it has a C{sub s} structure with the inserted C{sub 2} tilted. No barrier for insertion into the C=C double bond of the C{sub 9}H{sub 12} cluster was found at the HF/6-31G* and B3LYP/6-31G* levels of theory. Thus, calculations including correlation energy and geometry optimization indicate that insertion of C{sub 2} into a C=C double bond leads to a large energy lowering, {approximately}120 kcal/mol for a C{sub 9}H{sub 12} cluster, and there is no barrier for insertion.

  15. β-hairpin-mediated nucleation of polyglutamine amyloid formation

    Science.gov (United States)

    Kar, Karunakar; Hoop, Cody L.; Drombosky, Kenneth W.; Baker, Matthew A.; Kodali, Ravindra; Arduini, Irene; van der Wel, Patrick C. A.; Horne, W. Seth; Wetzel, Ronald

    2013-01-01

    The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington’s disease (HD). Here we explore the response of various biophysical parameters to the introduction of β-hairpin motifs within polyQ sequences. These motifs (trpzip, disulfide, D-Pro-Gly, Coulombic attraction, L-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well-correlated with their known abilities to enhance β-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n* = 4 for a simple, unbroken Q23 sequence to approximate unitary n* values for similar length polyQs containing β-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of SSNMR 13C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a β-hairpin polyQ. Importantly, while β-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn* values remain quite low (~ 10−10) and there is no evidence for significant embellishment of β-structure within the monomer ensemble. The results indicate an important role for β-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases. PMID:23353826

  16. Nucleation on a stepped surface with an Ehrlich-Schwöbel barrier

    Science.gov (United States)

    Chromcova, Z.; Tringides, M. C.; Chvoj, Z.

    2013-07-01

    During deposition on a stepped surface the growth mode depends on the conditions such as temperature T, deposition rate F and width of the terraces w. In this work we studied the influence of all the above mentioned characteristics using the kinetic Monte Carlo (kMC) technique. We concentrated on the conditions on the terrace at the moment of the first nucleation. The critical density of monomers for nucleation ηm decreases with the width of the terrace and the nucleation starts at surprisingly low densities of monomers. We tested several definitions of the critical width for nucleation wc used in various articles in the past and we compared our results with results of the analytical steady-state mean-field model (Ranguelov and Altman 2007 Phys. Rev. B 75 245419). To check how the simplified assumption about the steady-state regime during deposition influences the resulting dependence of wc ≃ (D/F)κ, we set and also solved a time-dependent analytical model. This analytical model as well as kMC predict that wc ≃ (D/F)1/5. kMC simulation also shows that the Ehrlich-Schwöbel barrier has only limited influence on the nucleation on the stepped surface at conditions close to the nucleation regime. For all widths of terraces there is a critical value of the Ehrlich-Schwöbel barrier \\Delta {E}_{{ES}}^{{c}}/{k}_{{B}}T\\sim 7.3 (\\Delta {E}_{{ES}}^{{c}}\\sim 0.1 1 eV at T = 175 K), and only below this critical value does the Ehrlich-Schwöbel barrier affect the final value of the density of nuclei. The results of the kMC are summarized in a semi-empirical analytical formula which describes the dependence of the step-flow growth and nucleation on the terrace width w, diffusion coefficient D and deposition rate F. In our simulations we tested two models of the stepped surface with different thicknesses of the step, both with an Ehrlich-Schwöbel barrier on the edge of the terrace.

  17. Contribution of ion nucleation to the new particle formation in a tropical urban environment

    Science.gov (United States)

    Kanawade, V. P.; Tripathi, S. N.; Gautam, A. S.; Siingh, D. K.; Kamra, A. K.; Srivastava, A. K.

    2012-12-01

    New particle formation (NPF) has been observed globally at the Earth's surface, which can have climatic effects via cloud condensation nuclei (CCN) activation. While such NPF events have been widely reported globally, the observations of NPF in a tropical urban environment are very limited. During the pre-monsoon (March-May) season of 2012, we carried out first comprehensive observation of ion and aerosol properties at the Indian Institute of Tropical Meteorology (IITM), Pune, India. These include particle number-size distributions in the diameter range of 4-750 nm from two sets of scanning mobility particle sizers (SMPS) in combination with butanol condensation particle counter (CPC, TSI 3775), ion number-size distributions in the diameter range of 0.5-40 nm from neutral air-ion spectrometer (NAIS), radon/thoron concentrations using a radon/thoron monitor (RTM 2200), together with sulfur dioxide (SO2) and meteorological parameters. We have used an aerosol microphysical box model, incorporated with ion induced nucleation (IIN) and binary homogeneous nucleation (BHN) parameterizations, to examine contribution of nucleation processes to the observed NPF. Additionally, particle growth and nucleation inverse model (PARGAN) was also used to calculate particle growth rates (GR) and nucleation rates (J1) from the measured particle number-size distributions. We observed frequent particle bursts during the pre-monsoon season followed by significant growth over several hours (35% out of 69 days). The HYSPLIT back trajectory, NPF start time and box model simulations led us to believe that particle nucleation occurred somewhere else in the anthropogenic plume, containing high SO2 concentrations. The calculated GR and J1 were comparable to those found in other urban locations worldwide. Our key finding is that IIN could explain only up to 30% of observed NPF whereas BHN failed to explain NPF at all for observed environmental conditions. This presentation will also synthesize

  18. Nucleation barriers at corners for cubic-to-tetragonal phase transformation

    CERN Document Server

    Bella, Peter

    2013-01-01

    We are interested in the energetic cost of a martensitic inclusion of volume $V$ in austenite for the cubic-to-tetragonal phase transformation. In contrast with the work of [Kn\\"upfer, Kohn, Otto: Comm. Pure Appl. Math. 66 (2013), no. 6, 867--904], we consider domain with a corner and obtain a better scaling law for the minimal energy ($E_{min} \\sim \\min(V^{2/3},V^{7/9})$). Our predictions are in a good agreement with physical experiments where nucleation of martensite is usually observed near the corners of the specimen.

  19. Intragranular nucleation sites of massive gamma grains in a TiAl-based alloy

    DEFF Research Database (Denmark)

    Dey, Suhash Ranjan; Bouzy, E.; Hazotte, A.

    2007-01-01

    Massive gamma grains were generated in a TiAl-based alloy through ice-water quenching from the alpha domain. Apart from those located along alpha(2)/alpha(2) grain boundaries, a few massive gamma grains were detected inside the alpha(2) grains. Some of these intragranular grains were revealed...... to be attached to particular alpha(2) twins (K-1: "{212103}" eta(1): ), in a Blackburn orientation relationship with them. Others were identified as developing in feathery colonies of similar crystallographic orientation. Whatever the nucleation site, further growth of all massive gamma grains involves...

  20. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1

    Science.gov (United States)

    He, Gen; Dahl, Tom; Veis, Arthur; George, Anne

    2003-08-01

    Bones and teeth are biocomposites that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Acidic extracellular matrix proteins play a pivotal role during biomineral formation. However, the mechanisms of protein-mediated mineral initiation are far from understood. Here we report that dentin matrix protein 1 (DMP1), an acidic protein, can nucleate the formation of hydroxyapatite in vitro in a multistep process that begins by DMP1 binding calcium ions and initiating mineral deposition. The nucleated amorphous calcium phosphate precipitates ripen and nanocrystals form. Subsequently, these expand and coalesce into microscale crystals elongated in the c-axis direction. Characterization of the functional domains in DMP1 demonstrated that intermolecular assembly of acidic clusters into a β-sheet template was essential for the observed mineral nucleation. Protein-mediated initiation of nanocrystals, as discussed here, might provide a new methodology for constructing nanoscale composites by self-assembly of polypeptides with tailor-made peptide sequences.

  1. Preparation and nucleation of spherical metallic droplet

    Directory of Open Access Journals (Sweden)

    Bing-ge Zhao

    2015-03-01

    Full Text Available The preparation and solidification of metallic droplets attract more and more attention for their significance in both engineering and scientific fields. In this paper, the preparation and characterization of Sn-based alloy droplets using different methods such as atomization and consumable electrode direct current arc (CDCA technique are reviewed. The morphology and structure of these droplets were determined by optical microscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The solidification behavior of single droplet was systematically studied by means of scanning calorimetry (DSC, and the nucleation kinetics was also calculated. In particular, the development of fast scanning calorimetry (FSC made it possible to investigate the evolution of undercooling under ultrafast but controllable heating and cooling conditions. The combination of CDCA technique and FSC measurements opens up a new door for quantitative studies on droplet solidification, which is accessible to demonstrate some theories by experiments.

  2. Aggregate geometry in amyloid fibril nucleation

    CERN Document Server

    Irbäck, A; Linnemann, N; Linse, B; Wallin, S; 10.1103/PhysRevLett.110.058101

    2013-01-01

    We present and study a minimal structure-based model for the self-assembly of peptides into ordered beta-sheet-rich fibrils. The peptides are represented by unit-length sticks on a cubic lattice and interact by hydrogen bonding and hydrophobicity forces. By Monte Carlo simulations with >100,000 peptides, we show that fibril formation occurs with sigmoidal kinetics in the model. To determine the mechanism of fibril nucleation, we compute the joint distribution in length and width of the aggregates at equilibrium, using an efficient cluster move and flat-histogram techniques. This analysis, based on simulations with 256 peptides in which aggregates form and dissolve reversibly, shows that the main free-energy barriers that a nascent fibril has to overcome are associated with changes in width.

  3. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers...... in a monoclinic cholesterol . H2O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before...... transformation to the triclinic phase of cholesterol . H2O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves...

  4. Some ice nucleation characteristics of Asian and Saharan desert dust

    Directory of Open Access Journals (Sweden)

    P. R. Field

    2006-01-01

    Full Text Available The large (7 m×4 m cylinder, 84 m3 AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber facility at Forschungszentrum, Karlsruhe, Germany was used to test the ice nucleating ability of two desert dust samples from the Sahara and Asia. Aerosol samples were lognormally distributed with a mode diameter of 0.4(±0.1 μm and geometric standard deviation of ~1.7(±0.2. At temperatures warmer than −40°C droplets were formed before ice crystals formed and there was generally no deposition nucleation observed. At temperatures colder than −40°C both dust samples exhibited dual nucleation events that were observed during the same expansion experiment. The primary nucleation event occurred at ice saturation ratios of 1.1 to 1.3 and is likely to be a deposition nucleation mode. The secondary nucleation event occurred at ice saturation ratios between 1.35 and 1.5. We cannot categorically determine whether this ice nucleation event is via a further deposition mode or a condensation mode, but the presence of some soluble material in the dust samples leads us to favour the latter process. The activated fractions of desert dust ranged from ~5–10% at −20°C to 20–40% at temperatures colder than −40°C. There was no obvious difference between the nucleation behaviour of the two dust samples.

  5. Bubble nucleation in an explosive micro-bubble actuator

    NARCIS (Netherlands)

    Broek, van den D.M.; Elwenspoek, M.C.

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  6. Nucleation of ferrite in austenite: the role of crystallography

    NARCIS (Netherlands)

    Landheer, H.

    2010-01-01

    The nucleation mechanisms during solid-state phase transformations in polycrystalline materials are still not completely understood. The nucleation stage has a strong influence on the overall evolution of phase transformations, which determines the final microstructure and thereby the properties of

  7. Nucleation at hardness indentations in cold rolled Al

    DEFF Research Database (Denmark)

    Xu, C.L.; Zhang, Yubin; Wu, G.L.

    2015-01-01

    Nucleation of recrystallization near hardness indentations has been investigated in slightly cold rolled high purity aluminium. Samples were cold rolled to 12% and 20% reductions in thickness and indentations were done with two different loads (500 g and 2000 g). The samples were annealed at 300 ...... and stored energy distributions and thus on nucleation are discussed....

  8. An analysis of dislocation nucleation near a free surface

    NARCIS (Netherlands)

    Liu, Yufu; Van der Giessen, Erik; Needleman, Alan

    2007-01-01

    Molecular dynamics analyses of defect-free aluminum single crystals subject to bending are carried out to investigate dislocation nucleation from free surfaces. A principal aim of the analyses is to provide background for the development of dislocation nucleation criteria for use in discrete

  9. Nucleation of ferrite in austenite: the role of crystallography

    NARCIS (Netherlands)

    Landheer, H.

    2010-01-01

    The nucleation mechanisms during solid-state phase transformations in polycrystalline materials are still not completely understood. The nucleation stage has a strong influence on the overall evolution of phase transformations, which determines the final microstructure and thereby the properties of

  10. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    Science.gov (United States)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  11. Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry.

    Science.gov (United States)

    Klosterman, Luke; Riley, John K; Bettinger, Christopher John

    2015-03-24

    Dopamine-melanin (DM or "polydopamine") can be deposited on virtually any substrate from solution through autoxidation of dopamine. The versatility of this process has allowed surface-mediated assembly of DM for a wide variety of functional coatings. Here we report the impact of well-defined surface chemistries on the nucleation and growth of such films. DM was deposited on silicon dioxide (SiO2) and SiO2 substrates modified with self-assembled monolayers (SAMs) bearing octadecyl (C18), phenethyl, and aminopropyl functional groups. Atomic force microscopy revealed three-dimensional islands whose areal density and surface coverage are lowest on bare SiO2 substrates and highest on the neutral aromatic and aliphatic substrates. Increasing the pH of the solution from 8.2 to 10 dissociates catechol moieties in DM and inhibits adsorption on negatively charged SiO2 substrates. The growth rate of DM films on SAM-modified SiO2 is maximized at pH 9.5 and almost completely abolished at pH 10 because of increased DM solubility. The initial rates of DM adsorption were measured using quartz crystal microbalance with dissipation measurements. The initial adsorption rate is proportional to the nucleation density, which increases as the hydrophobicity of the substrate increases. Taken together, these data provide insight into the rates of heterogeneous nucleation and growth of DM on substrates with well-defined chemistries.

  12. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  13. TEM observation on nucleation of Ca a-Sialon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ca a-Sialon compacts pressurelessly-sintered to the intermediate temperature (1 450℃) were investigated with TEM for an overall composition Ca1.8Si6.6Al5.4O1.8N14.2. It was found that in most cases, the newly-formed a-Sialon grains had no epitaxial orientation relationship with the Si3N4 particles; only occasionally heteroepitaxial nucleation of a-Sialon on a-Si3N4 was detected. Further EDAX analysis revealed a much higher Ca concentration in the non-epi- taxially nucleated a-Sialon than in the heteroepitaxially nucleated a-Sialon. Thus a possible correlation between the concentration of metal cations in the a-Sialon structure and the nucleation mechanism has been proposed, i.e. a-Sialon compositions with higher Ca concentration show a stronger trend of non-epitaxial nucleation.

  14. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  15. Prediction of the solidification structure of casting and heterogeneous nucleation

    Institute of Scientific and Technical Information of China (English)

    K. Ohsasa; H. Shirosawa; T. Narita

    2003-01-01

    The frequency of heterogeneous nucleation during the solidification of Al-Si binary alloy was estimated by comparing ex-perimentally obtained macrostructures of castings with numerically simulated ones. A molten alloy was unidirectionally solidifiedfrom a water-cooled copper chill in an adiabatic mold. The location of colunmar to equiaxed transition (CET) in the solidified alloyingot was measured. A numerical simulation for grain structure formation based on the Monte Carlo method was carried out, and thefrequency of heterogeneous nucleation in the alloy was evaluated by producing similar structure with the experimental one. The fre-quency of heterogeneous nucleation was expressed as a probabilistic function with an exponential form of undercooling that deter-mines the probability of nucleation event in the simulation. The value of the exponent is regarded as the nucleation parameter. Thenucleation parameter of Al-Si binary alloy varied with initial Sicontent.

  16. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling

    Institute of Scientific and Technical Information of China (English)

    ZOU Yu; HUAI Xiu-Lan; LIANG Shi-Qiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range.

  17. Observations on the nucleation of ice VII in compressed water

    Science.gov (United States)

    Stafford, Samuel J. P.; Chapman, David J.; Bland, Simon N.; Eakins, Daniel E.

    2017-01-01

    Water can freeze upon multiple shock compression, but the window material determines the pressure of the phase transition. Several plate impact experiments were conducted with liquid targets on a single-stage gas gun, diagnosed simultaneously using photonic doppler velocimetry (PDV) and high speed imaging through the water. The experiments investigated why silica windows instigate freezing above 2.5 GPa whilst sapphire windows do not until 7 GPa. We find that the nucleation of ice occurs on the surfaces of windows and can be affected by the surface coating suggesting the surface energy of fused silica, likely due to hydroxyl groups, encourages nucleation of ice VII crystallites. Aluminium coatings prevent nucleation and sapphire surfaces do not nucleate until approximately 6.5 GPa. This is believed to be the threshold pressure for the homogeneous nucleation of water.

  18. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  19. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    Science.gov (United States)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x

  20. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    Science.gov (United States)

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmrepresentation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost-layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries

  1. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  2. Investigation of Vapor-Liquid Nucleation for Associating Fluids by Density Gradient Theory

    Institute of Scientific and Technical Information of China (English)

    FU Dong; LIU Jianmin

    2009-01-01

    An equation of state (EOS) applicable to both the uniform and non-uniform associating fluids was established by using the density-gradient expansion, in which the influence parameter κis formulated as a function of tempera-ture. The molecular parameters were regressed by fitting to the experimental data of vapor pressures and liquid den-sities. Within the framework of density gradient theory (DGT), the nucleation rates for water, heavy water, metha-nol, ethanol, 1-propanoi, 1-butanol, 1-pentanol and 1-hexanol were calculated. The results were satisfactory com-pared with the experimental data. Our study shows that DGT preserves all the advantages of density functional the-ory (DFT) in capturing the structure and properties of nucleus but gives much more accurate nucleation rates by adjusting the influence parameter.

  3. Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2001-01-01

    dislocation densities in the foils after deformation. This was interpreted as evidence for a new dislocation-free deformation mechanism, resulting in a very high vacancy production rate. In this paper we investigate this proposition using large-scale computer simulations of bulk and thin films of copper......Recently, a dislocation-free deformation mechanism was proposed by Kiritani et al. on the basis of a series of experiments where thin foils of fee metals were deformed at very high strain rates. In the experimental study, they observed a large density of stacking fault tetrahedra but very low....... The dislocations are nucleated as single Shockley partials. The large stresses required before dislocations are nucleated result in a very high dislocation density, and therefore in many inelastic interactions between the dislocations. These interactions create vacancies and a very large vacancy concentration...

  4. Grain Nucleation Parameters for Aluminum Alloys: Experimental Determination and Model Validation

    Science.gov (United States)

    Ahmadein, M.; Pustal, B.; Berger, R.; Subašić, E.; Bührig-Polaczek, A.

    2009-03-01

    A statistical grain nucleation model was implemented as a part of a multiphase flow and solidification simulation code for metallic alloys. Three characteristic parameters control the solution accuracy of the nucleation model: the total grain density, the mean undercooling, and the standard deviation of the undercooling. These parameters were obtained experimentally for grain-refined (GR) A356, GR AlCu4, and unrefined (UR) AlCu4 aluminum alloys. An apparatus was constructed and equipped with a cooling system to provide different cooling rates throughout the cast sample. The local grain density related to each cooling rate and undercooling was determined. The model parameters were obtained via statistical tools and were used to perform a simulation for the solidification of the cast sample. Calculated results were compared to experimental results, and the model exhibited good agreement with the experiments.

  5. Structural Characterization of the Early Events in the Nucleation-Condensation Mechanism in a Protein Folding Process.

    Science.gov (United States)

    Kukic, Predrag; Pustovalova, Yulia; Camilloni, Carlo; Gianni, Stefano; Korzhnev, Dmitry M; Vendruscolo, Michele

    2017-05-24

    The nucleation-condensation mechanism represents a major paradigm to understand the folding process of many small globular proteins. Although substantial evidence has been acquired for this mechanism, it has remained very challenging to characterize the initial events leading to the formation of a folding nucleus. To achieve this goal, we used a combination of relaxation dispersion NMR spectroscopy and molecular dynamics simulations to determine ensembles of conformations corresponding to the denatured, transition, and native states in the folding of the activation domain of human procarboxypeptidase A2 (ADA2h). We found that the residues making up the folding nucleus tend to interact in the denatured state in a transient manner and not simultaneously, thereby forming incomplete and distorted versions of the folding nucleus. Only when all the contacts between these key residues are eventually formed can the protein reach the transition state and continue folding. Overall, our results elucidate the mechanism of formation of the folding nucleus of a protein and provide insights into how its folding rate can be modified during evolution by mutations that modulate the strength of the interactions between the residues forming the folding nucleus.

  6. Effect of Pt Doping on Nucleation and Crystallization in Li2O.2SiO2 Glass: Experimental Measurements and Computer Modeling

    Science.gov (United States)

    Narayan, K. Lakshmi; Kelton, K. F.; Ray, C. S.

    1996-01-01

    Heterogeneous nucleation and its effects on the crystallization of lithium disilicate glass containing small amounts of Pt are investigated. Measurements of the nucleation frequencies and induction times with and without Pt are shown to be consistent with predictions based on the classical nucleation theory. A realistic computer model for the transformation is presented. Computed differential thermal analysis data (such as crystallization rates as a function of time and temperature) are shown to be in good agreement with experimental results. This modeling provides a new, more quantitative method for analyzing calorimetric data.

  7. Controls of ionic strength and macromolecule chemistry on calcite nucleation: Salinity and ion hydration as levers for regulating biomineralization

    Science.gov (United States)

    Dove, P. M.; Giuffre, A. J.; Mergelsberg, S. T.; Han, N.; De Yoreo, J. J.

    2016-12-01

    Organisms form shells and skeletons with remarkable fidelity by controlling the timing and placement of the minerals that nucleate and subsequently grow. An extensive effort has identified features of the organic matrix that regulate this process. Recent measurements from our group show the energy barrier to nucleation onto polysaccharide (PS) substrates is dependent upon hydrophilicity through functional group chemistry and suggest that free energy of the macromolecule-liquid interface influences where and when mineral nucleation occurs (Giuffre et al., 2013, PNAS). The importance of interfacial free energy in regulating nucleation raises the question of whether local changes in salinity or electrolyte composition can be tuned to further modulate the onset of calcite nucleation. Using alginate (negatively charged by carboxyl groups) and chitosan (small positive charge by amine groups), the rate of calcite nucleation was measured at controlled supersaturations and pH as a function of NaCl concentration (65-600 mM). Analyses of the data show the thermodynamic barrier to calcite nucleation onto both types of PS increases with ionic strength. The evidence suggests this effect arises from an increasing concentration of solvated ions at the PS-water interface while also increasing the hydrophilic character of that interface; thus decreasing the substrate-liquid interfacial free energy. To test this explanation, a second group of nucleation experiments used a suite of electrolytes (alkali chlorides for alginate and sodium halides for chitosan) while holding ionic strength constant. Indeed, the nucleation barriers for calcite formation are electrolyte-specific and correlated with the hydration free energy of the ion. This suggests solvated electrolyte ions indirectly regulate calcite nucleation onto substrates through their competition with the substrate for water thereby influencing net interfacial free energy. These effects are consistent with the long

  8. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

    Science.gov (United States)

    Das, Shantanu; Drucker, Jeff

    2017-03-01

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate<