WorldWideScience

Sample records for doe waste inventories

  1. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  2. Inventory and sources of transuranic solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    In the past, solid radioactive waste has often been buried in the most accessible and convenient vacant place, without a great deal of thought for the long-term consequences. The transuranium (TRU) elements were very strictly conserved and, at first, solid waste containing separated fission products was not a serious land burial problem. Wartime pressures for production and lack of knowledge or understanding led to siting and operational practices that, in many situations, are unsatisfactory by present day standards. Purpose of this report is to support the development of standards and criteria which will specifically address the problem of TRU contaminated waste generated by Department of Energy (DOE) nuclear programs and commercial application of nuclear technology. This report covers: DOE facilities, commercial disposal sites, commercial nuclear industry, TRU-contaminated waste inventory, and waste projections. (DLC)

  3. Transuranic waste baseline inventory report. Revision No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Transuranic Waste Baseline Inventory Report (TWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties from across the U.S. Department of Energy (DOE) transuranic (TRU) waste system into a series of {open_quotes}waste profiles{close_quotes} that can be used as the basis for waste form discussions with regulatory agencies. The purpose of Revisions 0 and 1 of this report was to provide data to be included in the Sandia National Laboratories/New Mexico (SNL/NM) performance assessment (PA) processes for the Waste Isolation Pilot Plant (WIPP). Revision 2 of the document expanded the original purpose and was also intended to support the WIPP Land Withdrawal Act (LWA) requirement for providing the total DOE TRU waste inventory. The document included a chapter and an appendix that discussed the total DOE TRU waste inventory, including nondefense, commercial, polychlorinated biphenyls (PCB)-contaminated, and buried (predominately pre-1970) TRU wastes that are not planned to be disposed of at WIPP.

  4. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  5. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  6. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  7. Inventory routing for dynamic waste collection

    NARCIS (Netherlands)

    Mes, Martijn R.K.; Schutten, Johannes M.J.; Perez Rivera, Arturo Eduardo

    2013-01-01

    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense

  8. Inventory routing for dynamic waste collection

    NARCIS (Netherlands)

    Mes, Martijn R.K.; Schutten, Johannes M.J.; Perez Rivera, Arturo Eduardo

    2014-01-01

    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense

  9. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation, Rev. 00

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2001-09-17

    This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with respect to the 10,000-year performance period specified in 40 CFR Part 197.30 (66 FR 32074 [DIRS 155216], p. 32134) with regard to radiation-protection standards. The EPA Final Rule 40 CFR Part 197 has three separate standards, individual-protection, human-intrusion, and groundwater-protection standards, all with a compliance timeframe of 10,000 years. These calculations evaluate the dose to receptors for each of these standards. Further, this Letter Report includes the results of simulations to the 1,000,000-year performance period described in 40 CFR Part 197.35 (66 FR 32074 [DIRS 155216], p. 32135) which calls for the calculation of the peak dose to the Reasonably Maximally Exposed Individual (RMEI) that would occur after 10,000 years and within the period of geological stability. In accordance with TSPA-SR the ''period of geologic stability'' is from zero to 1,000,000 years after repository closure. The calculations also present the 5th and 95th percentiles, and the mean and median of the set of probabilistic simulations used to evaluate various disposal scenarios.

  10. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  11. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  12. Inventory routing for dynamic waste collection.

    Science.gov (United States)

    Mes, Martijn; Schutten, Marco; Rivera, Arturo Pérez

    2014-09-01

    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense networks, the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations due to daily and seasonal effects, we need an anticipatory policy that balances the workload over time. We propose a relatively simple heuristic consisting of several tunable parameters depending on the day of the week. We tune the parameters of this policy using optimal learning techniques combined with simulation. We illustrate our approach using a real life problem instance of a waste collection company, located in The Netherlands, and perform experiments on several other instances. For our case study, we show that costs savings up to 40% are possible by optimizing the parameters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  14. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  15. Low and intermediate level waste in SFR-1. Reference waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Riggare, P.; Johansson, Claes

    2001-06-01

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR-1 at the time of closure. This report is a part of the SAFE project (Safety Assessment of Final Repository for Radioactive Operational Waste), i.e. the renewed safety assessment of SFR-1. The accounted waste inventory has been used as input to the release calculation that has been performed in the SAFE project. The waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 40 years and that closure of the SFR repository will happen in 2030. In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemo toxic material has been identified in the waste. The inventory is based on so called waste types and the waste types reference waste package. The reference waste package combined with a prognosis of the number of waste packages to the year 2030 gives the final waste inventory for SFR-1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of {sup 60}Co and {sup 137} Cs in waste packages and on measurements {sup 239}Pu and {sup 240}Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors. In the SAFE project's prerequisites it was said that one realistic and one conservative (pessimistic) inventory should be produced. The conservative one should then be used for the release calculations. In this report one realistic and one conservative radionuclide inventory is presented. The conservative one adds up to 10{sup 16} Bq. Regarding materials there is only one inventory given since it is not certain what is a conservative assumption.

  16. National inventory of radioactive wastes; Inventaire national des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.). 16 refs.

  17. The On-line Waste Library (OWL): Usage and Inventory Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rogers, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-23

    The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin). A potential DRep also appears to be safe in the range of geologic mined repository concepts but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.

  18. Low and intermediate level waste in SFR-1. Reference Waste Inventory 2007

    Energy Technology Data Exchange (ETDEWEB)

    Almkvist, Lisa (Vattenfall Power Consultant AB, Stockholm (SE)); Gordon, Anna (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-11-15

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR 1 at the time of closure. The report will form the basis for the release calculation in the safety analysis for SFR 1. Three different scenarios are explored in this report; the waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 50 and 60 years and that closure of the SFR 1 repository will take place in 2040 or 2050 respectively. The third scenario is where the repository is full (one part where the activity adds up to 1016 Bq and one part where the repository is considered full regarding volume). In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemotoxic material has been identified in the waste. The inventory is estimated using the Prosit-interface which extracts information from the Triumf database. The inventory is based on so called 'waste types' and the waste types' 'reference waste package'. The reference waste package combined with a prognosis of the number of waste packages to be delivered to SFR 1 gives the final waste inventory for SFR 1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of 60Co and 137Cs in waste packages and on measurements of 239Pu and 240Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors

  19. Low and intermediate level waste in SFR-1. Reference Waste Inventory 2007

    Energy Technology Data Exchange (ETDEWEB)

    Almkvist, Lisa (Vattenfall Power Consultant AB, Stockholm (SE)); Gordon, Anna (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-11-15

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR 1 at the time of closure. The report will form the basis for the release calculation in the safety analysis for SFR 1. Three different scenarios are explored in this report; the waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 50 and 60 years and that closure of the SFR 1 repository will take place in 2040 or 2050 respectively. The third scenario is where the repository is full (one part where the activity adds up to 1016 Bq and one part where the repository is considered full regarding volume). In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemotoxic material has been identified in the waste. The inventory is estimated using the Prosit-interface which extracts information from the Triumf database. The inventory is based on so called 'waste types' and the waste types' 'reference waste package'. The reference waste package combined with a prognosis of the number of waste packages to be delivered to SFR 1 gives the final waste inventory for SFR 1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of 60Co and 137Cs in waste packages and on measurements of 239Pu and 240Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors

  20. De-Inventory Plan for Transuranic Waste Stored at Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christensen, Davis V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shepard, Mark D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this work and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also

  1. Status of inventory, recycling, and storage of hazardous waste in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Yermekbayeva, L. [Ministry of Ecology and Bioresources, Almaty (Kazakhstan)

    1996-12-31

    Conditions associated with toxic and radioactive waste in the Republic of Kazakstan are discussed. At present, more than 19 billion tons of various wastes, including toxic, radioactive, and other hazardous waste, have accumulated in the country, and about 1 billion tons of waste are generated each year. Ecological legislation for toxic waste storage is being examined. However, the definition and classification of waste inventories are not finalized. Furthermore, the country does not have sites for salvaging, rendering harmless, or disposing of these wastes. Kazakstan also has problems with radioactive waste that are complicated by the activity at the Semipalatinsk nuclear testing site. Here, nuclear explosions occurred because of economic and other reasons. In ecologically challenged regions, high levels of pollutants from chemical, toxic, industrial, and radioactive wastes and pesticides cause many diseases. These complex problems may be resolved by establishing a Governmental body to manage industrial and consumer waste, including toxic and radioactive waste, and also by developing legal and other regulations. 3 tabs.

  2. Tank waste source term inventory validation. Volume 1. Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1995-04-28

    The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories. This document is Volume I of the Letter Report entitled Tank Waste Source Term Inventory Validation.

  3. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  4. DOE mixed waste treatment capacity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  5. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

  6. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  7. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  8. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  9. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  10. DOE mixed wastes: What are they and where can thermal technologies be applied?

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A. [Pacific Northwest Lab., Richland, WA (United States); Borduin, L.C. [Los Alamos National Lab., NM (United States); Musgrave, B.C. [Lawrence Livermore National Lab., CA (United States)

    1992-05-01

    The Mixed Waste Treatment Project (MWTP) has collected and analyzed mixed low-level waste data to assist in developing treatment capability for the US Department of Energy is (DOE) wastes. Initial data on the characteristics of mixed waste was obtained from the Waste Management Information System (WMIS) data base, and has been updated based on visits to DOE sites where most of the wastes are generated and stored. The streams of interest to the MWTP have a current inventory of about 70,000 m{sup 3} and a generation rate of about 7,700 m{sup 3}/yr. The 12 sites with the most significant processing needs are Fernald, Hanford, K-25 (Oak Ridge), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, Rocky Flats Plant (RFP), Savannah River Site (SRS), and Y-12 (Oak Ridge). These 12 sites account for about 98% of the mixed waste volumes. The wastes have been assigned to specific waste characterization categories and a flowsheet that identifies applicable technologies has been developed. The largest waste stream category, when considering the current inventory in storage, is inorganic solids, with sludges, filter cakes, and residues the largest specific subcategories. Aqueous liquids are the largest currently generated stream. The other large categories are solid organics, metals wastes, and heterogenous wastes. Organic liquids, which have been a major focus, are the smallest of the categories. The major thermal treatment units include evaporators, incinerators, vitrifiers, metal melters, and off-gas treatment systems.

  11. DOE mixed wastes: What are they and where can thermal technologies be applied

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.A. (Pacific Northwest Lab., Richland, WA (United States)); Borduin, L.C. (Los Alamos National Lab., NM (United States)); Musgrave, B.C. (Lawrence Livermore National Lab., CA (United States))

    1992-05-01

    The Mixed Waste Treatment Project (MWTP) has collected and analyzed mixed low-level waste data to assist in developing treatment capability for the US Department of Energy is (DOE) wastes. Initial data on the characteristics of mixed waste was obtained from the Waste Management Information System (WMIS) data base, and has been updated based on visits to DOE sites where most of the wastes are generated and stored. The streams of interest to the MWTP have a current inventory of about 70,000 m[sup 3] and a generation rate of about 7,700 m[sup 3]/yr. The 12 sites with the most significant processing needs are Fernald, Hanford, K-25 (Oak Ridge), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, Rocky Flats Plant (RFP), Savannah River Site (SRS), and Y-12 (Oak Ridge). These 12 sites account for about 98% of the mixed waste volumes. The wastes have been assigned to specific waste characterization categories and a flowsheet that identifies applicable technologies has been developed. The largest waste stream category, when considering the current inventory in storage, is inorganic solids, with sludges, filter cakes, and residues the largest specific subcategories. Aqueous liquids are the largest currently generated stream. The other large categories are solid organics, metals wastes, and heterogenous wastes. Organic liquids, which have been a major focus, are the smallest of the categories. The major thermal treatment units include evaporators, incinerators, vitrifiers, metal melters, and off-gas treatment systems.

  12. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  13. Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Plansky, L.E.; Hoiland, S.A.

    1992-02-01

    This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

  14. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  15. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  16. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Layton, Deborah L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  17. An Exploration of Healthcare Inventory and Lean Management in Minimizing Medical Supply Waste in Healthcare Organizations

    Science.gov (United States)

    Hicks, Rodney

    2013-01-01

    The purpose of this study was to understand how lean thinking and inventory management technology minimize expired medical supply waste in healthcare organizations. This study was guided by Toyota's theory of lean and Mintzberg's theory of management development to explain why the problem of medical supply waste exists. Government…

  18. An Exploration of Healthcare Inventory and Lean Management in Minimizing Medical Supply Waste in Healthcare Organizations

    Science.gov (United States)

    Hicks, Rodney

    2013-01-01

    The purpose of this study was to understand how lean thinking and inventory management technology minimize expired medical supply waste in healthcare organizations. This study was guided by Toyota's theory of lean and Mintzberg's theory of management development to explain why the problem of medical supply waste exists. Government…

  19. For a national reference inventory of of radioactive wastes; Pour un inventaire national de reference des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    This document is the second volume of the report concerning the mission of the ANDRA on the radioactive wastes inventory methodology. It presents the annexes of the mission management, the main channels of wastes production, the existing inventories, the foreign experiments, a first version of the specification of the inventories data management united system, the management system of reprocessing wastes for foreigner customers, order of magnitude, bibliography and glossary. (A.L.B.)

  20. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  1. Radioactive waste and recoverable material in France. Summary of the National Inventory 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Thorough knowledge is needed if the various types of radioactive waste are to be managed openly, consistently and in a safe manner. All French radioactive material users have subscribed to this process for many years. Under the terms of the French Act of Parliament of 30 December 1991, the Government commissioned the French National Agency for Radioactive Waste Management (or ANDRA) to carry out a survey of all the radioactive waste present on French Territory. Through its efforts to collect and confirm information from many sources over the years, that is mainly from statements made by waste producers and handlers, ANDRA has built up a database on existing waste and its geographical location. This constantly updated resource has been regularly circulated. At the beginning of the century the Government decided to extend the areas covered by this database, in response to the recommendations made by the National Review Board (CNE) and the Parliamentary Office for Evaluating Scientific and Technology Options (OPECST). This is how the first edition of the National Inventory, published in 2004, came about. The National Inventory of Radioactive Waste and Recoverable Material, presents a full panorama of radioactive waste that it groups into waste families that present homogenous characteristics. It describes the state of the waste that may be conditioned (that is, in its final form) or may not be conditioned (that is, has not been put through sufficient treatments to arrive at its final form) at the end of 2004. Furthermore it presents not only a statistical and geographical summary, but a predictive summary, as it provides waste quantity forecasts for 2010, 2020 and beyond. The Inventory also includes recoverable materials that contain radioactivity. They are always accounted for separately because of their special nature. The data is presented in a synthesis report. This summary is the general public version of the report. The synthesis report offers more in

  2. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  3. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  4. What Does the Narcissistic Personality Inventory Really Measure?

    Science.gov (United States)

    Ackerman, Robert A.; Witt, Edward A.; Donnellan, M. Brent; Trzesniewski, Kali H.; Robins, Richard W.; Kashy, Deborah A.

    2011-01-01

    The Narcissistic Personality Inventory (NPI) is a widely used measure of narcissism. However, debates persist about its exact factor structure with researchers proposing solutions ranging from two to seven factors. The present research aimed to clarify the factor structure of the NPI and further illuminate its nomological network. Four studies…

  5. DOE guidelines for management of radioactive waste - historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kluk, A.F. [Dept. of Energy, Germantown, MD (United States); Neal, R.M. [Scientech, Inc., Germantown, MD (United States)

    1996-12-31

    From the beginning of the Manhattan Project in 1942 through the signing of the Atomic Energy Act (AEA) in 1946 and its reenactment in 1954, new policies and techniques began to evolve for managing waste produced in the manufacture of nuclear weapons. Even in the early days of war-time urgency, public health and safety were the major considerations in managing waste from this new technology. The Atomic Energy Commission (AEC), which took over from the Manhattan Engineer District (MED) in 1947, established initial waste category management guidelines (high level waste stored in tanks, solid low level waste disposed of primarily in trenches, and liquid waste released to ponds, cribs, and pits) based on the management concepts developed by the MED. The AEC and its successor agencies managed radioactive waste in a manner consistent with existing industrial health and safety requirements of that era. With the formation of the Department of Energy (DOE) in September 1977, techniques and internal requirements were already in place or being established that, in some cases, were more protective of human health and the environment than existing legislation and environmental standards. With the transition to environmental cleanup of former DOE weapons production facilities, new and revised guidelines were created to address hazardous and radioactive mixed waste, waste minimization, and recycling. This paper reviews the waste management guidelines as they have evolved from the MED through the resent time.

  6. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-08-14

    When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5(th) best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. National inventory of the radioactive wastes and the recycling materials; Inventaire national des dechets radioactifs et des matieres valorisables

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.C

    2006-07-01

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  8. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  9. Analysis of radionuclide inventory in accelerator wastes; Analytische Bestimmung des Radionuklidinventars in Beschleunigerabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, D.; Weinreich, R.; Atchison, F.; Beer, H.F. [Paul Scherrer Inst., Villigen (Switzerland)

    2005-07-01

    For the determination of the radionuclide inventory of a PSI beam dump {gamma}-spectroscopic as well as -after chemical separation - AMS (Accelerator mass spectrometry) measurements were performed. The results serve as a validation of a calculation code which predict the radionuclide content of the waste for disposal. The chemical separation techniques necessary for isolation of several element fractions are described. (orig.)

  10. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  11. Radioactive wastes and valorizable materials in France: summary of the 2004 national inventory; Dechets radioactifs et matieres valorisables en France: resume de l'inventaire national 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The French national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. This summary document contains: 1 - general introduction; 2 - classification of radioactive wastes: the 5 main categories; 3 - origin of the wastes; 4 - processing and conditioning; 5 - inventory of existing wastes: geographical inventory, inventory per category; 6 - prospective inventory: prospective scenarios, forecasting of waste production; 7 - valorizable radioactive materials; 8 - synthesis and perspective; 9 - glossary. (J.S.)

  12. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  13. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  14. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  15. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  16. DOE methods for evaluating environmental and waste management samples

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K. [eds.

    1994-10-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  17. Inventory of Tank Farm equipment stored or abandoned aboveground

    Energy Technology Data Exchange (ETDEWEB)

    Hines, S.C.; Lakes, M.E.

    1994-10-12

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment.

  18. What does the narcissistic personality inventory really measure?

    Science.gov (United States)

    Ackerman, Robert A; Witt, Edward A; Donnellan, M Brent; Trzesniewski, Kali H; Robins, Richard W; Kashy, Deborah A

    2011-03-01

    The Narcissistic Personality Inventory (NPI) is a widely used measure of narcissism. However, debates persist about its exact factor structure with researchers proposing solutions ranging from two to seven factors. The present research aimed to clarify the factor structure of the NPI and further illuminate its nomological network. Four studies provided support for a three-factor model consisting of the dimensions of Leadership/Authority, Grandiose Exhibitionism, and Entitlement/Exploitativeness. The Leadership/Authority dimension was generally linked to adaptive outcomes whereas the other two dimensions, particularly Entitlement/Exploitativeness, were generally linked to maladaptive outcomes. These results suggest that researchers interested in the psychological and behavioral outcomes associated with the NPI should examine correlates at the facet level. In light of the findings, we propose a hierarchical model for the structure of the NPI and provide researchers with a scoring scheme for this commonly used instrument.

  19. An evaluation of alternative household solid waste treatment practices using life cycle inventory assessment mode.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro

    2012-06-01

    Waste disposal is an important part of the life cycle of a product and is associated with environmental burdens like any other life-cycle stages. In this study, an integrated assessment for solid waste treatment practices, especially household solid waste, was undertaken to evaluate the impact contribution of household solid waste treatment alternatives towards the sustainable development by using Life Cycle Inventory Assessment method. A case study has been investigated under various possible scenarios, such as (1) landfill without landfill gas recovery, (2) landfill with landfill gas recovery and flaring, (3) landfill with landfill gas recovery and electric generation, (4) composting, and (5) incineration. The evaluation utilized the Life Cycle Inventory Assessment method for multiple assessments based on various aspects, such as greenhouse gas emission/reduction, energy generation/consumption, economic benefit, investment and operating cost, and land use burden. The results showed that incineration was the most efficient alternative for greenhouse gas emission reduction, economic benefit, energy recovery, and land use reduction, although it was identified as the most expensive for investment and operating cost, while composting scenario was also an efficient alternative with quite economic benefit, low investment and operating cost, and high reduction of land use, although it was identified as existing greenhouse gas emission and no energy generation. Furthermore, the aim of this study was also to establish localized assessment methods that waste management agencies, environmental engineers, and environmental policy decision makers can use to quantify and compare the contribution to the impacts from different waste treatment options.

  20. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Thomas Russell

    2002-08-01

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  1. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.R.

    2002-05-06

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  2. The Danish inventory of radioactive waste and the required repository type

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gerhard [Oeko-Institut e.V., Darmstadt (Germany). Div. on Nuclear Engineering and Facility Safety

    2014-11-15

    Denmark has a relatively small inventory of radioactive wastes. As Denmark never built and operated nuclear power plants, the wastes resulted only from various research activities. In order to manage those wastes, the Danish Government has ordered to describe those wastes and the available management options. Based on vague criteria, most of the waste types were termed as ''short-lived'' and as suitable for a surface-near disposal facility. The Government then ordered the Geological survey organization of Denmark, GEUS, to scan Denmark for suitable locations. ''Suitable'' depth was defined as 0 to 100 m below ground. Neither were isolation properties or other requirements for geological layers defined nor were those criteria agreed in a broader sense (with experts, with the public). GEUS identified a number of potentially suitable locations and selected six of those as the most promising. In this paper the basic decision of preferring surface-near disposal for most of the waste types is analysed. As a central criterion for the suitability of the waste types for surface-near disposal is defined that those waste types decay within 300 years to below today's clearance levels. The results show, that none of the Danish types of waste meets this simple requirement. All are above that criterion, most of them by several orders of magnitude and over very much longer times such as 100.000 years or even longer. The basic assumption of the performed site selection procedure, to search for near-surface locations for short-lived wastes, so proves to be invalid. The whole process should be re-done on the basis that the long-term isolation of those wastes in impermeable layers has to be guaranteed. The suitability criteria should focus on the long-term isolation of all wastes and should be agreed in advance.

  3. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  4. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of); Sung, Nak-Hoon; Jung, Seung Hyuk [KONES Corp., Seoul (Korea, Republic of)

    2016-10-15

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis.

  5. A life cycle inventory tool for integrated waste management : a municipal focus

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, R. [St. Lawrence Cement, Mississauga, ON (Canada)

    2000-07-01

    The value of a life cycle methodology in providing important information for municipal waste decision making was discussed. Life cycle models are tools designed to help municipalities evaluate the environmental performance of different elements of their existing and proposed waste management systems and to determine their sustainability. The use of life cycle models is predicted to increase as standardization for inventory is mandated and more reliable data becomes available. Also, life cycle models will be practiced more frequently as the impact of assessment methodologies becomes more evident in the future. The following specific environmental parameters were chosen for examination by a life cycle methodology model; energy consumption, greenhouse gas emissions, emissions of acid gases, emissions of smog precursors, air emissions of heavy metals, water emissions of heavy metals, biochemical oxygen demand (BOD), and residual solid waste. The functional unit used in the model is the user specified quantity and composition of waste generated in a given area.

  6. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  7. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  8. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  9. Inventory of wastes coming from EDF reactors exploitation; Inventaire des dechets issus de l'exploitation des reacteurs EDF

    Energy Technology Data Exchange (ETDEWEB)

    Errera, J. [Electricite de France (EDF-DPN), Groupe Environnement, 93 - Saint-Denis (France)

    2001-07-01

    The present document shows the situation in the radioactive waste management of the nuclear power plants in operation. This document pays particular attention to make an inventory by waste nature the flows produced and the waste parcels delivered to the Aube plant on the period 96-99 and presents the current actions or project in order to improve the management notably for the waste without outlet. (N.C.)

  10. Determination of the radionuclide inventory in accelerator waste using calculation and radiochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, D.; Neuhausen, J.; Weinreich, R. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Atchison, F. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: francis.atchison@psi.ch; Kubik, P.; Synal, H.-A. [Paul Scherrer Institut, c/o Institute of Particle Physics, ETH Zuerich, CH-8093 Zurich (Switzerland); Korschinek, G.; Faestermann, Th.; Rugel, G. [Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2007-11-15

    We use a description of the work carried out to determine the radioactive inventory for a redundant beam-dump from the PSI accelerator complex, as an illustration of techniques for the classification and characterisation of accelerator waste and how some difficulties can be circumvented. The work has been carried out using a combination of calculation and sample analysis: The inventory calculation effectively involves a large scale Monte-Carlo transport calculation of a medium-sized spallation facility and for the sample analysis, standard radiochemical analysis techniques have had to be extended to include AMS measurements so as to allow measurement of some of the long half-life, waste disposal relevant, nuclides.

  11. [Does cerebral salt wasting syndrome exist?].

    Science.gov (United States)

    Leblanc, P-E; Cheisson, G; Geeraerts, T; Tazarourte, K; Duranteau, J; Vigué, B

    2007-11-01

    Increased natriuresis is a frequent situation after subarachnoid haemorrhage (SAH). It may be responsible for hyponatremia, which can be dangerous in case of severe hypo-osmolarity or hypovolemia. Inappropriate secretion of antidiuretic hormone or cerebral salt wasting syndrome (CSWS) have been incriminated for hyponatremia after SAH, but it remains difficult to distinguish between both syndromes. There are many explanations for increased natriuresis after SAH, depending on the level of blood pressure, the volemia, and the presence or not of natriuretic peptides. The cerebral insult and the treatments, which are done to fight against elevated intracranial pressure or vasospasm, can modify any of these parameters. So it appears that the word "cerebral" in CSWS is probably not a good term and it would be better to talk about appropriate or non-appropriate natriuretic response. Corticoïds or urea can be useful for controlling hypernatriuresis.

  12. Estimation of Hanford SX tank waste compositions from historically derived inventories

    Science.gov (United States)

    Lichtner, Peter C.; Felmy, Andrew R.

    2003-04-01

    Migration of radionuclides under the SX-tank farm at the Hanford nuclear waste complex involves interaction of sediments with concentrated NaOH-NaNO 3-NaNO 2 solutions that leaked from the tanks. This study uses a reaction path calculation to estimate tank supernatant compositions from historical tank inventory data. The Pitzer activity coefficient algorithm based on the computer code GMIN is combined with the reactive transport code FLOTRAN to carry out the simulations. An extended version of the GMIN database is used which includes Al and Si species. In order for the reaction path calculations to converge, a pseudo-kinetic approach employing a rate limiter for precipitation kinetics is introduced. The rate limiter enables calculations to be carried out with the reaction path approach which previously could only be accomplished using a Gibbs free energy minimization technique. Because the final equilibrium state is independent of the reaction path, the value used for the rate limiter does not affect the calculation for the tank supernatant composition. Three different tanks are considered: SX-108, SX-109 and SX-115, with supernatant compositions ranging from extremely to moderately concentrated. Results of the simulations indicate that sodium concentrations much higher than previously expected are possible for the SX-108 tank. This result has important implications for the migration of cesium released from the tank within the vadose zone. The mineral cancrinite was predicted to form in all three tanks consistent with recent experiments. The calculated supernatant pH ranged from 14 to 12.8 for the tanks considered and Eh was mildly reducing determined by the redox couple NO 3-NO 2.

  13. Comparison of alternative treatment systems for DOE mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

  14. Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung; Hansen, Francis D.

    2005-07-01

    This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper

  15. Questionnaire established for the Brazilian inventory of low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio T., E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Fabio; Pinto, Antonio Juscelino, E-mail: silvaf@cdtn.br, E-mail: ajp@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Taveira, Gerson L.S., E-mail: gersonluizst@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Engenharia de Producao Civil

    2015-07-01

    The Nuclear Technology Development Center (CDTN), an institute of Brazilian National Commission of Nuclear Energy (CNEN), is responsible for the technical coordination of the Brazilian Repository Project (RBMN), for Low and Intermediate Level Radioactive Wastes. To establish the inventory of the low and intermediate radioactive level waste to be disposed in the national Repository, a questionnaire was elaborated to be filled on line, via WEB, exclusively to registered users, which involved CNEN's institutes, ELETRONUCLEAR, INB and CTMSP. Based on all standardized information received from questionnaires, an easy use database to inventory the radioactive waste was created in Microsoft Access® that supported the calculation of the volume of radioactive waste treated and non-treated, stored and generated presently in Brazil. In addition, from this database it will be possible to establish some disposal procedures and the necessary area of construction. The objective of this work is to present this database and some general information about the radwastes in Brazil. (author)

  16. Data sharing report characterization of the surveillance and maintenance project miscellaneous process inventory waste items Oak Ridge National Laboratory, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  17. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  18. Managing DOE scrap metal inventories: Implementation of a market-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W. [DOE Oak Ridge Operations, TN (United States)

    1997-12-31

    The author describes the program objectives of the National Center for RSM Recycle. Objectives include: investment recovery; active inventory management; consistent characterization; creation of a `virtual` scrapyard; development of economies of scale in processing and sales; encouragement of commercial participation; promotion of site reutilization; waste minimization and environmental stewardship. There are significant quantities of high value metals, often dispersed over scattered sites. Inventories need to be made, including material segregation by type and contamination, which will allow lotting of materials to meet possible demand or economics of scale for cost effective processing. This center is a unique approach to the problem, and allows access to advantages of economics of scale, provides a single point of focus for large customers, and can attract the use of multiple technologies to process the contaminated scrap.

  19. Inventory of radioactive waste and spent fuel. Edition 2004; Inventario de residuos radiactivos y combustible gastado. Edificio 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Since it was founded, ENRESA has drafted and updated an inventory of radioactive waste in Spain, based on the data received from the producers of this waste. Initially, a study was made of the situation at 1 January 1986 regarding the main producers generating radioactive waste, using the resources available with a view to preparing the first draft of the 1st General Radioactive Waste Plan. Subsequently, with the collaboration of the electricity companies, hospital and research centres, industrial companies using radioactive isotopes, etc. our detailed knowledge of the situation has improved. This has enabled us to elaborate strategies and management programmes with greater precision. In order to facilitate the availability of data, computer based systems have been developed which allow information on the situation to be collected instantaneously for use in short and medium term projects, which in turn facilitate long term predictions. This document constitutes a synthesis of the radioactive waste inventory based on the information available to ENRESA. The inventory is basically intended to provide information on the volume of the waste which was stored at each installation as of 31 December 2004, as well as providing a forecast of future waste generation for all producer installations and, consequently, supplying data on the total inventory of waste to be managed in Spain. Nevertheless, it should be pointed out that the values for forecasts given in this report are based on the experience of ENRESA and on studies carried out, and it was decided to round off the values. Therefore, this data may not match other data given in the past or at a possible future data. After describing the classification of radioactive waste to be managed, chapter 3 of this document lists and briefly describes the radioactive waste producers and the main characteristics of the waste generated. Chapter 4 contains the inventory of radioactive waste, focused on the type of producer

  20. [DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.

    1995-04-01

    The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

  1. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.A. [Science Applications International Corp., Oak Ridge, TN (United States). Environmental Compliance Group

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solid Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.

  2. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  3. Mass balances and life cycle inventory of home composting of organic waste

    DEFF Research Database (Denmark)

    Andersen, Jacob Kragh; Boldrin, Alessio; Christensen, Thomas Højlund

    2011-01-01

    A comprehensive experimental setup with six single-family home composting units was monitored during 1year. The composting units were fed with 2.6–3.5kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life...... wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3–0.6% of the total loss of C and 1......-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63–77% in the six composting units...

  4. Status report: Pretreatment chemistry evaluation FY1997 -- Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets.

  5. Inventory decision in a closed-loop supply chain with inspection, sorting, and waste disposal

    Science.gov (United States)

    Dwicahyani, A. R.; Jauhari, W. A.; Kurdhi, N. A.

    2016-02-01

    The study of returned item inventory management in a closed-loop supply chain system has become an important issue in recent years. So far, investigations about inventory decision making in a closed-loop supply chain system have been confined to traditional forward and reverse oriented material flow supply chain. In this study, we propose an integrated inventory model consisting a supplier, a manufacturer, and a retailer where the manufacturer inspects all of the returned items collected from the customers and classifies them as recoverable or waste. Returned items that recovered through the remanufacturing process and the newly manufactured products are then used to meet the demand of the retailer. However, some recovered items which are not comparable to the ones in quality, classified as refurbished items, are sold to a secondary market at a reduced price. This study also suggests that the flow of returned items is controlled by a decision variable, namely an acceptance quality level of recoverable item in the system. We apply multiple remanufacturing cycle and multiple production cycle policy to the proposed model and give the corresponding iterative procedure to determine the optimal solutions. Further, numerical examples are presented for illustrative purpose.

  6. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-05-31

    The selection of a glass-making option for the solidification of nuclear waste has dominated DOE waste form programs since the early 1980's. Both West Valley and Savannah River are routinely manufacturing glass logs from the high level waste inventory in tank sludges. However, for some wastes, direct conversion to glass is clearly not the optimum strategy for immobilization. INEEL, for example, has approximately 4400 m{sup 3} of calcined high level waste with an activity that produces approximately 45 watts/m{sup 3}, a rather low concentration of radioactive constituents. For these wastes, there is value in seeking alternatives to glass. An alternative approach has been developed and the efficacy of the process demonstrated that offers a significant savings in both human health and safety exposures and also a lower cost relative to the vitrification option. The alternative approach utilizes the intrinsic chemical reactivity of the highly alkaline waste with the addition of aluminosilicate admixtures in the appropriate proportions to form zeolites. The process is one in which a chemically bonded ceramic is produced. The driving force for reaction is derived from the chemical system itself at very modest temperatures and yet forms predominantly crystalline phases. Because the chemically bonded ceramic requires an aqueous medium to serve as a vehicle for the chemical reaction, the proposed zeolite-containing waste form can more adequately be described as a hydroceramic. The hydrated crystalline materials are then subject to hot isostatic pressing (HIP) which partially melts the material to form a glass ceramic. The scientific advantages of the hydroceramic/CBC approach are: (1) Low temperature processing; (2) High waste loading and thus only modest volumetric bulking from the addition of admixtures; (3) Ability to immobilize sodium; (4) Ability to handle low levels of nitrate (2-3% NO{sub 3}{sup -}); (5) The flexibility of a vitrifiable waste; and (6) A process

  7. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  8. Inventory Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    C. Leigh

    2000-11-03

    The purpose of the inventory abstraction as directed by the development plan (CRWMS M&O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in

  9. INVENTORY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest

  10. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility.

    Science.gov (United States)

    Dorado, Antonio D; Husni, Shafik; Pascual, Guillem; Puigdellivol, Carles; Gabriel, David

    2014-02-01

    Emissions of volatile organic compounds (VOCs) from the compost maturation building in a municipal solid waste treatment facility were inventoried by solid phase microextraction and gas chromatography-mass spectrometry. A large diversity of chemical classes and compounds were found. The highest concentrations were found for n-butanol, methyl ethyl ketone and limonene (ppmv level). Also, a range of compounds exceeded their odor threshold evidencing that treatment was needed. Performance of a chemical scrubber followed by two parallel biofilters packed with an advanced packing material and treating an average airflow of 99,300 m(3) h(-1) was assessed in the treatment of the VOCs inventoried. Performance of the odor abatement system was evaluated in terms of removal efficiency by comparing inlet and outlet abundances. Outlet concentrations of selected VOCs permitted to identify critical odorants emitted to the atmosphere. In particular, limonene was found as the most critical VOC in the present study. Only six compounds from the odorant group were removed with efficiencies higher than 90%. Low removal efficiencies were found for most of the compounds present in the emission showing a significant relation with their chemical properties (functionality and solubility) and operational parameters (temperature, pH and inlet concentration). Interestingly, benzaldehyde and benzyl alcohol were found to be produced in the treatment system.

  11. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  12. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    Energy Technology Data Exchange (ETDEWEB)

    Mctaggert, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [CBFO

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  13. Planned revision to DOE Order 5820.2A, Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G.J. [Dept. of Energy, Washington, DC (United States); Williams, R.E.; Kudera, D.E. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.; Bailey, D.E. [NJG, Inc. (United States)

    1993-03-01

    US Department of Energy Headquarters initiated efforts to revise DOE Order 5820.2A, ``Radioactive Waste Management``. The purpose of the revision is to enhance DOE waste management requirements, reflect new DOE organizational responsibilities, and consolidate requirements for management of all waste, under the responsibility of Environmental Restoration and Waste Management, into a single order. This paper discusses the revision philosophy, objectives of the revision, and strategy for the revision. Issues being considered for inclusion in the revision and recommended methods of resolving each issue are also discussed.

  14. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  15. Radwaste inventories and projections: an overview. [Integrated Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Notz, K.J. (ed.)

    1982-07-01

    The Integrated Data Base program was set up to provide fully integrated and reconciled inventories, characteristics, and projections for spent nuclear fuel and all categories of radioactive waste. Eight summary papers, six of which were presented at an ANS special session in Los Angeles in June 1982, are included in this report: data base needs and functions: national planning; integrated data base for spent fuel and radwaste: inventories; integrated data base projections; RAWSYM: radioactive waste management system; NWTS program waste projection data needs; low-level waste management data base system; waste sludge composition at the Savannah River Plant; and summary of characteristics of transuranic waste found at DOE sites. (DLC)

  16. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  17. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  18. Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-12-01

    This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

  19. Complex-wide review of DOE`s management of low-level radioactive waste - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.

    1995-12-31

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE`s Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste.

  20. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  1. 1994 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, E.F.; Poligone, S.E.

    1995-10-16

    The Y-12 Plant serves as a key manufacturing technology center for the development and demonstration of unique materials, components, and services of importance to the Department of Energy (DOE) and the nation. This is accomplished through the reclamation and storage of nuclear materials, manufacture of nuclear materials, manufacture of components for the nation`s defense capabilities, support to national security programs, and services provided to other customers as approved by DOE. We are recognized by our people, the community, and our customers as innovative, responsive, and responsible. We are a leader in worker health and safety, environmental protection, and stewardship of our national resources. As a DOE facility, Y-12 also supports DOE`s waste minimization mission. Data contained in this report represents waste generation in Tennessee.

  2. DOE model conference on waste management and environmental restoration

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Reports dealing with current topics in waste management and environmental restoration were presented at this conference in six sessions. Session 1 covered the Hot Topics'' including regulations and risk assessment. Session 2 dealt with waste reduction and minimization; session 3 dealt with waste treatment and disposal. Session 4 covered site characterization and analysis. Environmental restoration and associated technologies wee discussed in session 5 and 6. Individual papers have been cataloged separately.

  3. Mercury and tritium removal from DOE waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, E.T. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  4. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  5. How Does Disaggregating a Pooled Inventory Affect a Marine Aircraft Group?

    Science.gov (United States)

    2014-12-01

    Squadron 101’s (VMFAT-101) inventory allowances from MALS-11’s warehouses to VMFAT-101’s squadron spaces. The intent of this policy was to decrease...time and capacity utilization. In addition, we examine the new inventory policy’s other effects, such as workflow efficiency ...Logistics Squadron 11 (MALS-11) to move Marine Fighter Attack Training Squadron 101’s (VMFAT-101) inventory allowances from MALS-11’s warehouses to

  6. Where are the radioactive wastes in France? 2006 geographic inventory of radioactive wastes; Ou sont les dechets radioactifs en France? Inventaire geographique 2006 des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents, by region, the localization of existing radioactive wastes in France at the date of December 31, 2004. In addition to the geographic situation, this inventory is presented by site and by category of waste producer or owner. The collection of these data is based on the free declaration made by waste owners or producers. The gathered information has been reformatted and homogenized and is reported in a synthetic way in the form of tables and files. Thus, 899 sites have been indexed, among which 159 are presented in the form of a detailed file. For each region, a table details the registered sites by category of producer/owner and the location of the main ones is reported on a regional map. The registered waste producers are radionuclide users belonging to 4 specific domains: medical, research, industry and national defense. The corresponding wastes are in general modest both in quantity and activity. The sites polluted by radioactive substances are also mentioned, even if they are already decontaminated or not. (J.S.)

  7. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  8. Occurrences and inventories of heavy metals and brominated flame retardants in wastes from printed circuit board production.

    Science.gov (United States)

    Zhou, Xiaoyu; Guo, Jie; Zhang, Wei; Zhou, Peng; Deng, Jingjing; Lin, Kuangfei

    2014-09-01

    Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper > > zinc > tin ≈ nickel > lead > chromium > > TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (-0.10 < log K TS < 2.12) was observed for most pollutants, indicating the emission pathway from SW to the airborne atmosphere in the workshop. Although SW met the toxicity characteristic leaching procedure, drilling powder with the smallest particle diameter still showed high leachabilities of lead and tin which may lead to a negative environmental impact during disposal.

  9. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.

  10. Waste not - want not. DOE appropriate technology small grants program

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The work reported was to look at various alternatives for local solid waste management and develop an implementation strategy for a resource conservation and recovery plan for the community of Berea, Kentucky. A library on recycling and conservation of resources was compiled, and state and local plans were examined. To get a better understanding of how the community would respond to a waste reduction and recycling program, a series of surveys was conducted. A community recycling project plan is proposed. (LEW)

  11. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

  12. Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.S. (ed.)

    1985-12-01

    A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

  13. Mixed wasted integrated program: Logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  14. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families; Inventaire national des dechets radioactifs et des matieres valorisables 2006. Catalogue descriptif des familles de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  15. Superfund and Toxic Release Inventory Sites - MO 2010 Permitted Hazardous Waste Sites - Areas(SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This is a polygon data set depicting locations of facilities' property boundaries. The data set contains sites permitted to treat, store or dispose of hazardous...

  16. Comparative considerations on the radionuclide inventories of radioactive wastes; Vergleichende Betrachtungen zu Radionuklidinventaren von radioaktiven Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, Rainer [Nuclear Control and Consulting GmbH, Braunschweig (Germany)

    2015-07-01

    The radioactive waste disposal is not only a geoscientific and technical challenge, but also a social one. Besides the scientific discussion of experts knowledge and technical information has to be communicated to the interested public. Descriptive comparisons are used to demonstrate abstract terms like activities or radiation doses. This concept is illustrated in the contribution using the example of heat generating wastes and the prognostic amount of wastes.

  17. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  18. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    Science.gov (United States)

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inventory of contaminants in waste wood; Inventering av foeroreningar i returtrae

    Energy Technology Data Exchange (ETDEWEB)

    Jermer, Joeran; Ekvall, Annika; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-03-01

    Waste wood is increasingly used as fuel in Sweden. It is of Swedish origin as well as imported, mainly from Germany and the Netherlands. The waste wood is contaminated by e.g. paint and wood preservatives and objects of metal, glass, plastics etc. The contaminants may cause technical problems such as deposits and corrosion as well as plugging of air openings. The present study has focussed on potential contaminants in waste wood that could cause problems of technical as well as environmental nature. The major chemical contaminants are surface treatments (paints etc) and wood preservatives. The surface treatments contribute in particular to contaminants of zinc and lead. In some cases zinc has been found to cause severe deposits in the furnaces. Surface treatments also contribute to increased levels of sodium, chlorine, sulphur and nitrogen. Preservative-treated wood is the most important source of increased levels of copper, chromium and arsenic in the waste wood. Waste wood imported from Germany contains less arsenic but the same amount of copper and chromium as Swedish waste wood. The contents of mercury in German waste wood can be expected to be higher than in waste wood of Swedish origin. The fraction consisting of wood-based panels is comparably free from contaminants but as a result of the high contents of adhesives wood-based panels contribute to a higher proportion of nitrogen in waste wood than in forest residues. A great number of non-wood compounds (such as plastics and metals) do also contaminate waste wood. By careful and selective demolition and various sorting procedures most non-wood compounds will be separated from the waste wood. Waste sorting analyses carried out indicate that the waste wood contains approximately 1% non-wood compounds, mainly plastic and metal compounds, glass, dirt, concrete, bricks and gypsum. This may seem to be a small proportion, but if large amounts of waste wood are incinerated the non-wood compounds will inevitably cause

  20. Work plan for defining a standard inventory estimate for wastes stored in Hanford site underground tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kupfer, M.J.

    1995-09-29

    This work plan addresses the methodology for defining a tank waste database that will provide a best basis estimate of waste characteristics for each underground storage tank. The resulting database is expected to be in place in a network accessible electronic form by September 1996.

  1. TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-03

    Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

  2. An SAR-compliant radionuclide inventory management system for a DOE research and development laboratory

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; Lux, C.R.; Clements, J.A.

    2000-07-01

    The US Department of Energy Complex contains many laboratories that require inventory management and control of large stores of radionuclides. While the overall quantities of radionuclides are bounded by Authorization-Basis (AB) documents, the spatial distribution may change rapidly according to facility experimentation and storage limits. Thus, the consequences of postulated accident events may be difficult to quantify as the location of radiological species becomes uncertain. Furthermore, a situation of this nature may be compounded by management of fissile materials in the same laboratory. Although radionuclide inventory management, fissile material control, and compliance with AB limits may be handled individually, a systematic and consistent approach would be to integrate all three functions. A system with these characteristics, an upgraded Radionuclide Inventory and Administrative Control (RI-AC) System, has been implemented for the Savannah River Technology Center (SRTC) located on the Savannah River Site (SRS), and is summarized in this paper.

  3. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  4. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  5. National inventory of radioactive wastes and valorizable materials. Synthesis report; Inventaire national des dechets radioactifs et des matieres valorisables. Rapport de synthese

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  6. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    Science.gov (United States)

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  7. What Does an Inventory of Recent Innovation Experiences Tell Us about Agricultural Innovation in Africa?

    Science.gov (United States)

    Triomphe, Bernard; Floquet, Anne; Kamau, Geoffrey; Letty, Brigid; Vodouhe, Simplice Davo; Ng'ang'a, Teresiah; Stevens, Joe; van den Berg, Jolanda; Selemna, Nour; Bridier, Bernard; Crane, Todd; Almekinders, Cornelia; Waters-Bayer, Ann; Hocde, Henri

    2013-01-01

    Purpose: Within the context of the European-funded JOLISAA project (JOint Learning in and about Innovation Systems in African Agriculture), an inventory of agricultural innovation experiences was made in Benin, Kenya and South Africa. The objective was to assess multi-stakeholder agricultural innovation processes involving smallholders. Approach:…

  8. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    Science.gov (United States)

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  9. Engineering task plan for AX-104 residual waste volume and inventory data collection

    Energy Technology Data Exchange (ETDEWEB)

    Boechler, G.N., Fluor Daniel Hanford

    1997-03-06

    The purpose of this Engineering Task Plan is to document the strategy, equipment and responsibilities of the tasks required to preform the volume and inventory data collection of tank AX-104. The project is a part of the Hanford Tanks Initiative Plan document number WHC-SD-WM-PMP-022 Revision D.

  10. Special case waste located at Oak Ridge National Laboratory facilities: Survey report

    Energy Technology Data Exchange (ETDEWEB)

    Forgy, J.R. Jr.

    1995-11-01

    Between October 1994 and October 1995, a data base was established at the Oak Ridge National Laboratory (ORNL) to provide a current inventory of the radioactive waste materials, located at ORNL, for which the US Department of Energy (DOE) has no definite planned disposal alternatives. DOE refers to these waste materials as special case waste. To assist ORNL and DOE management in future planning, an inventory system was established and a baseline inventory prepared. This report provides the background of the ORNL special case waste survey project, as well as special case waste category definitions, both current and anticipated sources and locations of special case waste materials, and the survey and data management processes. Special case waste will be that waste material which, no matter how much practical characterization, treatment, and packaging is made, will never meet the acceptance criteria for permanent disposal at ORNL, and does not meet the criteria at a currently planned off-site permanent disposal facility.

  11. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  12. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

  13. Does improved waste treatment have demonstrable biological benefits?

    Science.gov (United States)

    Seagle, Henry H.; Hendricks, Albert C.; Cairns, John

    1980-01-01

    Since 1972, 10 benthic surveys and 9 static fish bioassays have been conducted to assess the impact of AVTEX Fibers, Inc. effluent on the lower South Fork of the Shenandoah River. AVTEX (formerly FMC Corp.) is a rayon and polyester fibers plant located in Front Royal, Virginia. Benthic samples were taken at four stations, one above and three below the plant discharges. Single surveys in 1972 and 1973 indicated a severe impact on the benthic community along the right side of the river, below the plant, as a result of the channelized effluent. Diversity values (¯ d) were low (0 2.42) and numbers of taxa and organisms were reduced. A fish bioassay in 1973 indicated the effluent to be acutely toxic at the 34.5% level (mixture of effluent and river water). In early 1974, FMC Corp. constructed an activated sludge treatment system to reduce BOD and supplement the neutralization and chemical precipitation (zinc hydroxide and liquid-solid separation) facilities that had been used to treat waste waters since 1948. After the new equipment was placed in operation, the previously stressed area became more stable. In 1975 and 1976 the stressed area exhibited greater ¯ d values (1.19 3.39) and an increased number of taxa and organisms. Bioassays showed the effluent to be acutely toxic to fish only once since 1973. The major improvements in the effluent were a 70% reduction in BOD5 and a 60% reduction in the amount of zinc entering the river. Community conditions in 1977 indicated a partial remission of improvement, probably due to drought conditions. The rehabilitation of damaged ecosystems is a process important to all biologists. An important factor in encouraging industry to participate in this activity is evidence that improved waste treatment will often have demonstrable biological benefits rather soon. As data accumulate on the recovery process it may be possible to predict the degree of rehabilitation and time required more precisely.

  14. Waste Cleanup: Status and Implications of DOE’s Compliance Agreements

    Science.gov (United States)

    2002-05-01

    Paducah Gaseous Diffusion Plant ...Consent Order, In the Matter of U.S. DOE: Portsmouth Gaseous Diffusion Plant , No. OH7-890- 008-983; 8/12/1997 3 Establish oversight roles for...deal with revelations about longstanding problems at the Paducah and Portsmouth Uranium Enrichment plants . Page 21 GAO-02-567 Waste Cleanup

  15. Automation of ORIGEN2 calculations for the transuranic waste baseline inventory database using a pre-processor and a post-processor

    Energy Technology Data Exchange (ETDEWEB)

    Liscum-Powell, J. [Sandia National Labs., Albuquerque, NM (United States). Nuclear Safety and Systems Analysis

    1997-06-01

    The purpose of the work described in this report was to automate ORIGEN2 calculations for the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Database (WTWBID); this was done by developing a pre-processor to generate ORIGEN2 input files from WWBID inventory files and a post-processor to remove excess information from the ORIGEN2 output files. The calculations performed with ORIGEN2 estimate the radioactive decay and buildup of various radionuclides in the waste streams identified in the WTWBID. The resulting radionuclide inventories are needed for performance assessment calculations for the WIPP site. The work resulted in the development of PreORG, which requires interaction with the user to generate ORIGEN2 input files on a site-by-site basis, and PostORG, which processes ORIGEN2 output into more manageable files. Both programs are written in the FORTRAN 77 computer language. After running PreORG, the user will run ORIGEN2 to generate the desired data; upon completion of ORIGEN2 calculations, the user can run PostORG to process the output to make it more manageable. All the programs run on a 386 PC or higher with a math co-processor or a computer platform running under VMS operating system. The pre- and post-processors for ORIGEN2 were generated for use with Rev. 1 data of the WTWBID and can also be used with Rev. 2 and 3 data of the TWBID (Transuranic Waste Baseline Inventory Database).

  16. Estimation of product specific emissions from municipal solid waste landfills for the inventory phase in LCA

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    for the model are e.g. distribution of the wasteproduct in different countries, composition of the product and physical/chemical/biological properties of waste product components.Output data of the model are product specific estimates of 1) emissions to atmosphere 2) emissions to aquatic recipients 3) remainsin...... disposed inlandfills and it has been made operational in the computer tool LCA-LAND. In the model, waste products are subdivided into fivegroups of components: general organic matter (e.g. paper), specific organic compounds (e.g. organic solvents), inert components(e.g. PVC), metals (e.g. cadmium...... of materials and components and the manufacture, transportation and use of the product to thefinal disposal and possible recycling of the product. Although LCA has developed significantly during recent years, product specific emissions from disposed waste have only got minorattention in the literature leaving...

  17. Spent fuel data for waste storage programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  18. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Crolley, R.; Thompson, M.

    2011-01-31

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  19. Economic instruments and waste policies in the Netherlands: Inventory and options for extended use

    NARCIS (Netherlands)

    Oosterhuis, F.; Bartelings, H.; Linderhof, V.G.M.; Beukering, van P.J.M.

    2009-01-01

    In recent years, the interest in the use of economic instruments in environmental policy has been growing, reflecting increasing awareness of their potential cost-effectiveness as well as the need to diversify the ‘policy toolbox’. Waste policy is no exception to this tendency. The present study exp

  20. APPLYING A JUST-IN-TIME INTEGRATED SUPPLY CHAIN MODEL WITH INVENTORY AND WASTE REDUCTION CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    Li-Hsing Ho

    2013-01-01

    Full Text Available Just-In-Time (JIT has been playing an important role in supply chain environments. Countless firms have been applying JIT in production to gain and maintain a competitive advantage. This study introduces an innovative model which integrates inventory and quality assurance in a JIT supply chain. This approach assumes that manufacturing will produce some defective items and those products will not influence the buyer’s purchase policy. The vendor absorbs all the inspection costs. Using a function to compute the expected amount of total cost every year will minimize the total cost and the nonconforming fraction. Finally, a numerical example further confirms this model.

  1. Estimation of product specific emissions from municipal solid waste landfills for the inventory phase in LCA

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    disposed inlandfills and it has been made operational in the computer tool LCA-LAND. In the model, waste products are subdivided into fivegroups of components: general organic matter (e.g. paper), specific organic compounds (e.g. organic solvents), inert components(e.g. PVC), metals (e.g. cadmium......Life Cycle Assessment (LCA) is an environmental management tool used to examine and evaluate the environmental impactsassociated with the existence of products. The focus of LCA is on the entire life cycle of the product, i.e. from the extraction of theraw materials through the production...... of materials and components and the manufacture, transportation and use of the product to thefinal disposal and possible recycling of the product. Although LCA has developed significantly during recent years, product specific emissions from disposed waste have only got minorattention in the literature leaving...

  2. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells

    Science.gov (United States)

    2011-10-01

    per day into clean methane gas. This waste is now a source of fuel for a 600-kilowatt (kW) solid oxide fuel cell system that provides power and...assets/documents/2009fedleader_eo_rel.pdf. Page 3 DOD-DOE Workshop Summary on Converting Waste to Energy Using Fuel Cells F igure 1. W orks...for both at current costs, when federal and state incentives are available • The integration of stationary fuel cells with biomass gasification is a

  3. DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Crocker; Verna M. Carpenter

    2003-05-21

    Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase

  4. Does recyclable separation reduce the cost of municipal waste management in Japan?

    Science.gov (United States)

    Chifari, Rosaria; Lo Piano, Samuele; Matsumoto, Shigeru; Tasaki, Tomohiro

    2017-02-01

    Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization and inventory of PCDD/Fs and PBDD/Fs emissions from the incineration of waste printed circuit board.

    Science.gov (United States)

    Duan, Huabo; Li, Jinhui; Liu, Yicheng; Yamazaki, Norimasa; Jiang, Wei

    2011-08-01

    Many developing countries have not significantly changed their course with regard to electronic waste contamination, and they are still facing the specter of mountains of hazardous electronic waste, with serious consequences for both the environment and public health. An efficient and stable analytical method was developed to determine the inventory and emission factors of polybrominated dibenzo-p-dioxin and dibenzofurans (PBDD/Fs) and polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) formed from the incineration of scrap printed circuit boards (PCBs). Both PBDD/Fs and PCDD/Fs have been found in all experimental sections with a maximum formation rate at temperatures between 250 and 400 °C. The amounts tended first to increase and then began to decrease as the temperature rose. When subjected to a heating temperature of 325 °C, the total content of twelve 2,3,7,8-substituted PBDD/Fs congeners (tetra- through octabromo-) gathered from three outputs was the largest, at 19 000, 160 000, and 57 ng TEQ/kg in solid, liquid, and gaseous fractions, respectively; the total content of seventeen 2,3,7,8-substituted PCDD/Fs congeners (tetra- through octachloro-) was 820, 550, and 1.4 ng TEQ/kg. The formation of PCDD/Fs was remarkably less than that of PBDD/Fs because bromine concentrations considerably exceeded chlorine concentrations. The ingredients and conditions necessary to form PCDD/Fs or PBDD/Fs were definitely present, such as products of incomplete combustion, halogenides, an oxidizing atmosphere, and a catalyst-Cu salts being the most effective, significantly increasing the yields of PCDD/Fs and PBDD/Fs and decreasing the optimum temperature range.

  6. Process waste assessment approach, training and technical assistance for DOE contractors; FY93 report, ADS {number_sign}35303C

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, S

    1994-03-01

    The Department of Energy (DOE) and its contractors are faced with a large waste management problem as are other industries. One of the tools used in a successful waste minimization pollution prevention (WMin/P2) program is a process waste assessment (PWA). The purpose of this project was to share the Kansas City Plant`s (KCP`s) PWA expertise with other DOE personnel and DOE contractors. This consisted of two major activities: (1) The KCP`s PWA graded approach methodology was modified with the assistance of DOE/Defense Program`s laboratories, and (2) PWA training and technical assistance were provided to interested DOE personnel and DOE contractors. This report documents the FY93 efforts, lesson learned, and future plans for both PWA-related activities.

  7. 78 FR 15358 - DOE's Preferred Alternative for Certain Tanks Evaluated in the Final Tank Closure and Waste...

    Science.gov (United States)

    2013-03-11

    ... support its decision making process, DOE prepared the TC & WM EIS pursuant to the National Environmental... Preferred Alternative for Certain Tanks Evaluated in the Final Tank Closure and Waste Management... evaluated in the Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford...

  8. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study

    Science.gov (United States)

    Kumar, Sunil; Mondal, A. N.; Gaikwad, S. A.; Devotta, Sukumar; Singh, R. N.

    2004-09-01

    In developing countries like India, urban solid waste (SW) generation is increasing enormously and most of the SWs are disposed off by land filling in low-lying areas, resulting into generation of large quantities of biogas. Methane, the major constituent gas is known to cause global warming due to green house gas (GHG) effect. There is a need to study the ever-increasing contribution of SW to the global GHG effect. To assess the impacts, estimation of GHG emission is must and to avoid misguidance by these emission-data, qualitative assessment of the estimated GHG is a must. In this paper, methane emission is estimated for a particular landfill site, using default methodology and modified triangular methodology. Total methane generation is same for both theoretical methodologies, but the modified triangular method has an upper hand as it provides a time-dependent emission profile that reflects the true pattern of the degradation process. To check the quality of calculated emission-data, extensive sampling is carried out for different seasons in a year. Field results show a different trend as compared to theoretical results, this compels for logical thinking. Each methane emission-data is backed up by the uncertainty associated with it, this further strengthens the quality check of these data. Uncertainty calculation is done using Monte Carlo simulation technique, recommended in IPCC Guideline. In the due course of qualitative assessment of methane emission-data, many site-specific sensitive parameters are discovered and are briefly discussed in this paper.

  9. THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516

    Energy Technology Data Exchange (ETDEWEB)

    Fellinger, A.

    2009-12-08

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  10. RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2010-06-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuation of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and

  11. A DOE contractor`s perspective of environmental monitoring requirements at a low-level waste facility

    Energy Technology Data Exchange (ETDEWEB)

    Ferns, T.W. [Idaho National Engineering Lab., ID (United States)

    1989-11-01

    Environmental monitoring at a low-level waste disposal facility (LLWDF) should, (1) demonstrate compliance with environmental laws; (2) detect any spatial or temporal environmental changes; and (3) provide information on the potential or actual exposure of humans and/or the environment to disposed waste and/or waste by-products. Under the DOE Order system the LLWDF site manager has more freedom of implementation for a monitoring program than either the semi-prescriptive NRC, or the prescriptive EPA hazardous waste programs. This paper will attempt to compare and contrast environmental monitoring under the different systems (DOE, NRC, and EPA), and determine if the DOE might benefit from a more prescriptive system.

  12. Improvements to the DOE low-level waste regulatory structure and process under recommendation 94-2 - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, E.

    1995-12-31

    Among the concerns expressed by the Defense Nuclear Facility Safety Board (DNFSB) in its Recommendation 94-2 was the lack of a clearly defined and effective internal Department of Energy (DOE) regulatory oversight and enforcement process for ensuring that low-level radioactive waste management health, safety, and environmental requirements are met. Therefore, part of the response to the DNFSB concern is a task to clarify and strengthen the low-level waste management regulatory structure. This task is being conducted in two steps. First, consistent with the requirements of the current DOE waste management order and within the framework of the current organizational structure, interim clarification of a review process and the associated organizational responsibilities has been issued. Second, in coordination with the revision of the waste management order and consistent with the organizational responsibilities resulting from the strategic alignment of DOE, a rigorous, more independent regulatory oversight structure will be developed.

  13. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  14. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  15. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A.; Knox, L. [Argonne National Lab., Argonne, IL (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the {open_quotes}problem{close_quotes} DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization.

  16. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J. [SAIC, Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  17. Landfills - Municipal Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  18. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

  19. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    Energy Technology Data Exchange (ETDEWEB)

    Jasen, W.G.

    1998-01-07

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  20. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  1. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  2. Toxics Release Inventory (TRI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). It contains information on the release and waste...

  3. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  4. Controlling Inventory: Real-World Mathematical Modeling

    Science.gov (United States)

    Edwards, Thomas G.; Özgün-Koca, S. Asli; Chelst, Kenneth R.

    2013-01-01

    Amazon, Walmart, and other large-scale retailers owe their success partly to efficient inventory management. For such firms, holding too little inventory risks losing sales, whereas holding idle inventory wastes money. Therefore profits hinge on the inventory level chosen. In this activity, students investigate a simplified inventory-control…

  5. Controlling Inventory: Real-World Mathematical Modeling

    Science.gov (United States)

    Edwards, Thomas G.; Özgün-Koca, S. Asli; Chelst, Kenneth R.

    2013-01-01

    Amazon, Walmart, and other large-scale retailers owe their success partly to efficient inventory management. For such firms, holding too little inventory risks losing sales, whereas holding idle inventory wastes money. Therefore profits hinge on the inventory level chosen. In this activity, students investigate a simplified inventory-control…

  6. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  7. Evaluation and compilation of DOE [Department of Energy] waste package test data; Biannual report, February 1988--July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab.

  8. Putting a Price on Trash: Does Charging for Food Waste Reduce Total Waste? The Case of Korea

    OpenAIRE

    Bak, Nahyeon; Coggins, Jay S.

    2014-01-01

    The purpose of this paper is to estimate the impact of the new unit-based pricing system (UPS) for food waste on the volume of solid waste collected, accounting for the effect of cross price elasticity and environmental activism. Based on causal inference using a natural experiment with a difference-in-differences model for Korea for 2003-2010, this paper shows that adopting UPS for food waste has a significant negative effect on the volume of solid waste. A key contribution relative to the b...

  9. Treatment of DOE and commercial mixed waste by the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  10. Comparison of low-level waste disposal programs of DOE and selected international countries

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  11. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  12. Converting City Waste into compost pilot Nairobi (LNV-BO-10-006-115) : report phase one: inventory and assessment

    NARCIS (Netherlands)

    Kirai, P.; Gachugi, J.; Scheinberg, A.

    2009-01-01

    The ‘Converting City Waste in Compost Project’ is being implemented in an effort to explore options for the development of a viable system of collecting, processing, distribution and marketing of valorized organic city waste material, for application in urban and peri-urban agriculture within East

  13. Converting City Waste into compost pilot Nairobi (LNV-BO-10-006-115) : report phase one: inventory and assessment

    NARCIS (Netherlands)

    Kirai, P.; Gachugi, J.; Scheinberg, A.

    2009-01-01

    The ‘Converting City Waste in Compost Project’ is being implemented in an effort to explore options for the development of a viable system of collecting, processing, distribution and marketing of valorized organic city waste material, for application in urban and peri-urban agriculture within East A

  14. Vugraph presentations of the fourth DOE Industry/University/Lab Forum on Robotics for Environmental Restoration and Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This document is a compilation of various presentations from the Fourth DOE Industry/University/Lab Forum on Robotics for Environmental Restoration and Waste Management held in Albuquerque, New Mexico July 19--21, 1993. Separate abstracts were prepared for each presentation of this report.

  15. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    Science.gov (United States)

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt.

  16. Development of a method to determine the nuclide inventory in bituminized waste packages; Entwicklung eines Verfahrens zur Bestimmung des Nuklidinventars in bituminierten Abfallgebinden

    Energy Technology Data Exchange (ETDEWEB)

    Mesalic, E.; Kortman, F.; Lierse von Gostomski, C. [Technische Univ. Muenchen, Garching (Germany). Zentrale Technisch-Wissenschaftliche Betriebseinheit Radiochemie Muenchen (RCM)

    2014-01-15

    Until the 1980s, bitumen was used as a conditioning agent for weak to medium radioactive liquid waste. Its use can be ascribed mainly to the properties that indicated that the matrix was optimal. However, fires broke out repeatedly during the conditioning process, so that the method is meanwhile no longer permitted in Germany. There are an estimated 100 waste packages held by the public authorities in Germany that require a supplementary declaration. In contrast to the common matrices, such as for example resins or sludges, there is still no standardized technology for taking samples and subsequently determining the radio-nuclide for bitumen. Aspects, such as the thermoplastic behaviour, make determining the nuclide inventory more difficult in bituminized waste packages. The development of a standardized technology to take samples with a subsequent determination of the radio-nuclide analysis is the objective of a project funded by the BMBF. Known, new methods, specially developed for the project, are examined on inactive bitumen samples and then transferred to active samples. At first non-destructive methods are used. The resulting information forms an important basis to work out and apply destructive strategy for sampling and analysis. Since the project is on-going, this report can only address the development of the sampling process. By developing a sampling system, it will be possible to take samples from an arbitrary selected location of the package across the entire matrix level and thus gain representative analysis material. The process is currently being optimized. (orig.)

  17. Review of DOE waste package program. Subtask 1.1. National waste package program, April-September 1983. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P. (ed.)

    1984-08-01

    The current effort is part of an ongoing task to review the national high-level waste package effort. It includes evaluations of reference waste form, container, and packing material components with respect to determining how they may contribute to the containment and controlled release of radionuclides after waste packages have been emplaced in salt, basalt, and tuff repositories. In the current Biannual Report a section on carbon steel container corrosion has been included to complement prior work on TiCode-12 and Type 304 stainless steel. The use of crushed tuff as a packing material is discussed and waste package component interaction test data are included. Licensing data requirements to estimate the degree of compliance with NRC performance objectives are specified. 41 figures, 24 tables.

  18. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

  19. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  20. MATRIX 1 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-09-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). It has been proposed that a team of glass formulation and processing experts at the Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Vitreous State Laboratory (VSL) at Catholic University of America develop a systematic approach to increase HLW throughput (by increasing WL with minimal or positive impacts on melt rate). Programmatically, this task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. The following four specific tasks have been proposed to meet this programmatic objective: (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. The details of these tasks can be found in the associated task plan WSRC-STI-2007-00483. The current study is focused on Task 2 (crystal accumulation modeling and higher waste loading glasses) and involves glass formulation and physical property testing by both PNNL and SRNL (as defined in the PNNL and SRNL test plans). The intent of this report is to document the chemical composition and Product Consistency Test (PCT) results and statistical analysis of PNNL's Test Matrix 1 glasses. Note that this document is only a compilation of the data collected by SRNL for PNNL's glasses in support of this task and no conclusions will be drawn.

  1. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  2. Evaluation and compilation of DOE waste package test data; Volume 8: Biannual report, August 1989--January 1990

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (MSEL), Gaithersburg, MD (United States). Metallurgy Div.

    1993-06-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices.

  3. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  4. Recycling in SA – How does the National Domestic Waste Collection Standards affect consumers?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2011-10-01

    Full Text Available The backlog in waste service delivery in South Africa is a well known fact, and there is increased pressure on municipalities to provide waste collection services to all and introduce seperation of waste at source. To redress past imbalances...

  5. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  6. Structures, Mixed Types - Residual Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Residual Waste Operation is a DEP primary facility type related to the Waste Management Residual Waste Program. Residual waste is waste generated at an industrial,...

  7. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the

  8. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  9. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS MELT RATE ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2011-01-19

    be determined. Overall, the results show an excellent potential for these additives to significantly improve waste throughput for DOE vitrification facilities. A complete report from KRI is included as an appendix to this document.

  10. An Overview of Food Loss and Waste: why does it Matter?

    Science.gov (United States)

    Ghosh, Purabi R.; Sharma, Shashi B.; Haigh, Yvonne T.; Evers, A. L. Barbara; Ho, Goen

    2015-10-01

    This paper provides an overview of food waste in the context of food security, resources management and environment health. It compares approaches taken by various governments, community groups, civil societies and private sector organisations to reduce food waste in the developed and developing countries. What constitutes ‘food waste’ is not as simple as it may appear due to diverse food waste measurement protocols and different data documentation methods used worldwide. There is a need to improve food waste data collection methods and implementation of effective strategies, policies and actions to reduce food waste. Global initiatives are urgently needed to: enhance awareness of the value of food; encourage countries to develop policies that motivate community and businesses to reduce food waste; encourage and provide assistance to needy countries for improving markets, transport and storage infrastructure to minimise food waste across the value chain; and, develop incentives that encourage businesses to donate food. In some countries, particularly in Europe, initiatives on food waste management have started to gain momentum. Food waste is a global problem and it needs urgent attention and integrated actions of stakeholders across the food value chain to develop global solutions for the present and future generations.

  11. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  12. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  13. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

  14. Validation of the Millon Clinical Multiaxial Inventory for Axis II disorders: does it meet the Daubert standard?

    Science.gov (United States)

    Rogers, R; Salekin, R T; Sewell, K W

    1999-08-01

    Relevant to forensic practice, the Supreme Court in Daubert v. Merrell Dow Pharmaceuticals, Inc. (1993) established the boundaries for the admissibility of scientific evidence that take into account its trustworthiness as assessed via evidentiary reliability. In conducting forensic evaluations, psychologists and other mental health professionals must be able to offer valid diagnoses, including Axis II disorders. The most widely available measure of personality disorders is the Million Clinical Multiaxial Inventory (MCMI) and its subsequent revisions (MCMI-II and MCMI-III). We address the critical question, "Do the MCMI-II and MCMI-III meet the requirements of Daubert?" Fundamental problems in the scientific validity and error rates for MCMI-III appear to preclude its admissibility under Daubert for the assessment of Axis II disorders. We address the construct validity for the MCMI and MCMI-II via a meta-analysis of 33 studies. The resulting multitrait-multimethod approach allowed us to address their convergent and discriminant validity through method effects (Marsh, 1990). With reference to Daubert, the results suggest a circumscribed use for the MCMI-II with good evidence of construct validity for Avoidant, Schizotypal, and Borderline personality disorders.

  15. U.S. EPA/U.S. DOE MINE WASTE TECHNOLOGY PROGRAM

    Science.gov (United States)

    Mining is essential to maintain our way of life. However, based upon industry’s reporting in the most recent Toxic Release Inventory (TRI), the primary sources of heavy metal releases to the environment are mining and mining-related activities. The hard rock mining industry rel...

  16. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

  17. Proceedings of the DOE residue and waste fuels utilization program contract or review meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Commercialization of wood combustion was discussed at this meeting. The use of agricultural and wood wastes as energy sources was also discussed. Separate abstracts were written for individual items. (DC)

  18. Evaluation and compilation of DOE waste package test data; Biannual report, February 1989--July 1989: Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (IMSE), Gaithersburg, MD (United States). Metallurgy Div.

    1991-12-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, February through July 1989. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Outlines for planned interpretative reports on the topics of aqueous corrosion of copper, mechanisms of stress corrosion cracking and internal failure modes of Zircaloy cladding are included. For the publications reviewed during this reporting period, short discussions are given to supplement the completed reviews and evaluations. Included in this report is an overall review of a 1984 report on glass leaching mechanisms, as well as reviews for each of the seven chapters of this report.

  19. ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

    1994-06-01

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

  20. ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States); Han, W.T.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, MI (United States)

    1992-03-01

    This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal.

  1. Does performance evaluation help public managers? A Balanced Scorecard approach in urban waste services.

    Science.gov (United States)

    Guimarães, Bernardo; Simões, Pedro; Marques, Rui Cunha

    2010-12-01

    The urban waste market has evolved significantly in the past decades, which among other changes, has led to the creation of new utilities and new business models. However, very few things have changed for the users. Urban waste collection remains mainly under the responsibility of local authorities and the charges paid by the users in most countries are very low compared to the provision costs. This situation forces the injection of public money into the system, encouraging the 'quiet-life' within the utilities and, therefore, inefficiency. The present study intends to analyze the potential for the application of the Balanced Scorecard (BSc) methodology into the waste utilities. After a comprehensive revision of the urban waste sector in Portugal, the methodology of BSc and its application in local public services is described and discussed. Focusing on implementation rather than on strategy, a set of performance indicators is proposed to be utilized in the different management models of waste utilities in Portugal: the municipalities, semi-autonomous utilities, municipal companies and mixed companies. This implementation is then exemplified through four case studies, one for each type of utility. This paper provides a flexible framework proposal to be applied to waste utilities operating both in Portugal and abroad. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years.

  3. Guidance document for revision of DOE Order 5820.2A, Radioactive Waste Technical Support Program. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, D.E.; McMurtrey, C.D.; Meagher, B.G.

    1993-04-01

    This document provides guidance for the revision of DOE Order 5820.2A, ``Radioactive Waste Management.`` Technical Working Groups have been established and are responsible for writing the revised order. The Technical Working Groups will use this document as a reference for polices and procedures that have been established for the revision process. The overall intent of this guidance is to outline how the order will be revised and how the revision process will be managed. In addition, this document outlines technical issues considered for inclusion by a Department of Energy Steering Committee.

  4. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Science.gov (United States)

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  5. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Directory of Open Access Journals (Sweden)

    Jens T Stevens

    Full Text Available Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA program reflects the timing of historical high-severity (i.e. stand-replacing fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1 the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2 recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  6. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  7. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  8. Waste Tank Summary Report for Month Ending February 28 2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-03-21

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 435.I (DOE-RL, July 1999, Radioactive Waste Management, U.S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  9. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 01/2004

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2004-03-02

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28,2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  10. Waste Tank Summary Report for Month ending March 31 2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-05-05

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  11. Waste tank summary report for month ending October 31 2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-12-04

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site, Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities. and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D. C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  12. Waste Tank summary report for month ending November 30 2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-12-31

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tank and special surveillance facilities. and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  13. Waste tank summary report for month ending January 31 2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-03-17

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy--Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  14. Waste tank summary report for month ending November 30 2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-02-12

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28.2001. Radioactive Waste Management. US. Department of Energy-Washington. D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  15. Waste tank summary report for month ending August 31 2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-10-14

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  16. Waste Tank Summary Report for Month Ending January 31 2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-03-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 435.I (DOE-RL, July 1999, Radioactive Waste Management, U.S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  17. Research Program to Determine Redox Reactions and Their Effects on Speciation and Mobility of Plutonium in DOE Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Choppin, G.R.; Rai, D.

    2000-10-01

    Plutonium in geologic matrices undergoes a variety of complex reactions which complicate its environmental behavior. These complexities in plutonium chemistry whereby a large variety of precipitation, dissolution, adsorption/desorption, and redox reactions control plutonium speciation and concentrations, result in the need for a rather large amount of reliable, fundamental data to predict Pu behavior in geologic media. These data are also needed for evaluation of remediation strategies that involve removing most of the contaminants by selective methods, followed by in situ immobilization of residual contaminants. Two areas were studied during this project: (1) thermodynamic data for Th(IV) and Pu(IV) complexes of EDTA and for Pu(V) interactions with chloride; (2) kinetic data for redox reactions of Pu in the presence of common redox agents (e.g., H{sub 2}O{sub 2}, MnO{sub 2}, and NaOCl) encountered under waste disposal conditions. These studies are relevant to understanding Pu behavior in wastes disposed of in diverse geologic conditions (e.g., at the WIPP and YUCCA Mountain repositories and in contaminated sediments at many different DOE sites) and also for developing effective remediation strategies (e.g., processing of high level waste tanks). These studies have yielded data to address redox reactions of plutonium in the presence of environmentally important agents (e.g. organic and inorganic oxidants/reductants).

  18. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  19. Evaluation of Low Activity Waste Feed Supplemental Treatment Options by the C3T Mission Acceleration Initiative Team for DOE-ORP

    Energy Technology Data Exchange (ETDEWEB)

    CHOHO, A F; GASPER, K A

    2002-07-02

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation of the Hanford Site tank farms, including the 53 million gallons of highly radioactive mixed waste contained in 149 single-shell tanks (SST) and 28 double-shell tanks (DST). ORP manages the River Protection Project (RPP). Under the RPP, wastes retrieved from the tanks will be partitioned to separate the highly radioactive constituents from the very large volumes of chemical wastes that exist in the tanks. The volume of waste is the result of chemicals used in various Hanford Site processes, chemicals that were added to the tanks to reduce tank corrosion, and chemicals used in reprocessing and extraction of cesium and strontium. The highly radioactive constituents are to be vitrified, stored onsite, and ultimately disposed of as high-level waste (HLW) in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), also would be vitrified and then disposed of onsite in trenches that comply with the Resource Conservation Act of 1976 (RCRA) and in compliance with DOE O 435.1, Radioactive Waste Management.

  20. DOE Waste Package Project. Quarterly progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-05-01

    Research progress is reported on the design of containers for high-level radioactive wastes to be emplaced at the Yucca Mountain underground repository. Tasks included: temperature distribution and heat flow around the containers; failure possibility due to mechanical stresses and pitting corrosion; robotic manipulation of the containers; and design requirements of rock tunnel drift for long term storage.

  1. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  2. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  3. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest

  4. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest

  5. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  6. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  7. Project of an information integrated system to provide support to the regulatory control of the radioactive waste inventory; Projeto de um sistema integrado de informacao para suporte ao controle regulatorio do inventario de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Christovao, Marilia Tavares

    2005-05-15

    Sources and radioactive waste deriving from industry activities, medical practice and other areas are collected, received, and stored as waste on Brazilian Nuclear Energy Commission (CNEN) Institutes, that also generate, treat and store their own radioactive waste. The object of this project is to present an Integrated Information System named SICORR, having as guidelines, the referred processes to the radioactive waste regulatory control, under the responsibility of the Radioactive Waste Division (DIREJ), the General Coordination of Licensing and Control (CGLC), the Directorate of Safety and Radiation Protection (DRS) and the CNEN. The main objective of the work was reached, once the project SICORR modeling considers the radioactive waste control inventory, enclosing the treatment and integration of the radioactive waste and the radionuclides data and processes; the installations that produce, use, transport or store radiation sources data; and, CNEN Institutes responsible for the radioactive waste management data. The SICORR functions or essential modules involve the data treatment, integration, standardization and consistency between the processes. The SICORR specification and the analysis results are registered in documents, Software Specification Proposal (PESw) and Software Requirements Specification (ERSw), and are presented in text, in diagrams and user interfaces. Use cases have been used in the SICORR context diagram. The user interfaces for each use case have been detailed, defining the graphical layout, the relationships description with other interfaces, the interface details properties and the commands and the product entrances and exits. For objects radioactive waste and radionuclides, states diagrams have been drawn. The activities diagram represents the business model process. The class diagram represents the static objects and relationships that exist between them, under the specification point of view. The class diagram have been determined

  8. Mixed waste focus area technical baseline report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

  9. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  10. Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base.

  11. Inventory Management

    Science.gov (United States)

    1983-01-01

    Known as MRO for Maintenance, Repair and Operating supplies, Tropicana Products, Inc.'s automated inventory management system is an adaptation of the Shuttle Inventory Management System (SIMS) developed by NASA to assure adequate supply of every item used in support of the Space Shuttle. The Tropicana version monitors inventory control, purchasing receiving and departmental costs for eight major areas of the company's operation.

  12. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  13. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  14. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  15. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  16. Waste characterization: What's on second

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J.; Smith,. M.A.

    1989-07-01

    Waste characterization is the process whereby the physical properties and chemical composition of waste are determined. Waste characterization is an important element which is necessary to certify that waste meets the acceptance criteria for storage, treatment, or disposal. Department of Energy (DOE) Orders list and describe the germane waste form, package, and container criteria for the storage of both solid low-level waste package, and container criteria for the storage of both solid low-level waste (SLLW) and transuranic (TRU) waste, including chemical composition and compatibility, hazardous material content (e.g., lead), fissile material content, radioisotopic inventory, particulate content, equivalent alpha activity, thermal heat output, and absence of free liquids, explosives, and compressed gases. At the Oak Ridge National Laboratory (ORNL), the responsibility for waste characterization begins with the individual or individuals who generate the waste. The generator must be able to document the type and estimate the quantity of various materials (e.g., waste forms -- physical characteristics, chemical composition, hazardous materials, major radioisotopes) which have been placed into the waste container. Analyses of process flow sheets and a statistically valid sampling program can provide much of the required information as well as a documented level of confidence in the acquired data. A program is being instituted in which major generator facilities perform radionuclide assay of small packets of waste prior to being placed into a waste drum. 17 refs., 1 fig., 4 tabs.

  17. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  18. Envirotoxins from waste incineration - how does the supervision work?; Miljoegifter fraan avfallsfoerbraenningen - hur fungerar tillsynen?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    Incineration of household wastes has increased rapidly in Sweden during the last few years, and new plants are being built. The volume of residues from waste incineration is expected to grow from 450,000 tons in 1999 to 1,100,000 tons in 2008. The National Audit Office (SNAO) has made an inquiry into the supervision by responsible authorities of incineration plants and landfills in order to how the environmental legislation is applied in practise. The investigation includes case studies of six incineration plants and seven landfills where the residues from the plants are disposed. The supervision is part of a complex system made up of state, local and private actors who all have a responsibility for applying the environmental legislation. SNAO has found serious shortcomings in the operational supervision of all incineration plants studied and several landfills concerning the risk of toxins leaching into the environment. SNAO also points at the lack of knowledge at the Swedish EPA regarding the potential environmental problems of incineration residues and the need for evaluation of the supervisory function. SNAO recommends that the government take an initiative for making more detailed demands in the environmental legislation, and that the Swedish EPA should improve its knowledge about the quality of the operational supervision in accordance with the legislation.

  19. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  20. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  1. Transuranic contaminated waste container characterization and data base. Revision I

    Energy Technology Data Exchange (ETDEWEB)

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  2. Inventory Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.; Miley, Terri B.; Nelson, Iral C.; Strenge, Dennis L.; Evans, John C.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might make a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.

  3. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  4. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  5. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-01-01

    Full Text Available In this study white mustard (Sinapis alba plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retarded growth or necrotic changes were not recorded. The performed phytotoxicity tests show that the analyzed composts produced in the composting plant situated on the landfill surface achieved high percentages of the germinating capacity of white mustard (Sinapis alba seeds and can be therefore used in the subsequent reclamation of the concerned landfill.

  6. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.; Flach, G.

    2012-03-29

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  7. The Present Near-Surface Inventory of Water on Mars: How well does it Constrain the Existence of a Former Ocean?

    Science.gov (United States)

    Clifford, S. M.

    2015-12-01

    Carr and Head (Geophys. Res. Lett., 42, 726-732, 2015) have estimated that the size of the present-day inventory of near-surface water on Mars (that which exists in climatically exchangeable reservoirs) is equal to a global equivalent layer (GEL) ~34 m deep. Based on this estimate, they have attempted to extrapolate the evolution of this inventory backward in time, taking into account the introduction of new water by volcanism and outflow channel activity and the loss of water by exospheric escape. They conclude that, at the end of the Noachian, Mars had a near-surface water inventory of ~24 m which, they argue, was incompatible with the existence of a former ocean. Here, we argue that the uncertainties associated with Carr and Head analysis are significant and preclude its use as a reliable constraint on the size of the Noachian inventory of water or the presence of an early ocean. Indeed, consideration of the geologic evolution of the northern plains suggest that, if early Mars possessed an inventory of water sufficient to form an early ocean, then a frozen relic of that body may survive at depth to the present day. While sublimation undoubtedly depleted some fraction of the ocean's initial inventory of ice, the subsequent accumulation of ~0.5 - 1.5 km of sediments and volcanics, combined with recurrent episodes of outflow channel activity and obliquity-driven polar ice redistribution, could have led to the development of a complex volatile stratigraphy throughout the northern plains (at depths far below those that can be assessed as part of the present-day near-surface inventory). Thus, even if the present near-surface inventory of ice could be determined with high precision, it would place no constraint on either the past near-surface inventory of H2O or the former presence of a northern ocean.

  8. Syndrome of inappropriate antidiuresis and cerebral salt wasting syndrome: are they different and does it matter?

    Science.gov (United States)

    Moritz, Michael L

    2012-05-01

    The syndrome of inappropriate antidiudresis (SIAD) and cerebral salt wasting (CSW) are similar conditions with the main difference being the absence or presence of volume depletion. The two conditions may be indistinguishable at presentation, as volume status is difficult to assess, which can lead to under-diagnosis of CSW in patients with central nervous system (CNS) disease. Carefully conducted studies in patients with CNS disease have indicated that CSW may be more common than SIAD. CSW may be differentiated from SIAD based on the persistence of hypouricemia and increased fractional excretion of urate following the correction of hyponatremia. Hyponatremia should be prevented if possible and treated promptly when discovered in patients with CNS disease as even mild hyponatremia could lead to neurological deterioration. Fluid restriction should not be used for the prevention or treatment of hyponatremia in hospitalized patients with CNS disease as it could lead to volume depletion especially if CSW is present. 0.9% sodium chloride may not be sufficiently hypertonic for the prevention of hyponatremia in hospitalized patients with CNS disease and a more hypertonic fluid may be required. The preferred therapy for the treatment of hyponatremia in patients with CNS disease is 3% sodium chloride.

  9. DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status.

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canisters, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenge identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

  10. Adapting just-in-time inventory control to the hospital setting.

    Science.gov (United States)

    Chapman, S N

    1986-10-01

    The principles of Just-in-Time inventory management are essentially those of sensible management of productivity and waste. Much of the literature written about JIT, however, is limited in scope in that it focuses on applications in a manufacturing operation. The best way to assess JIT's applicability to all businesses, including hospitals, is to synthesize the characteristics into a basic, conceptual model, which the author does in the following article.

  11. MATRIX 2 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-10-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this study was to generate supplemental validation data that could be used to determine the applicability of the current liquidus temperature (TL) model to expanded DWPF glass composition regions of interest based on higher WLs. Two specific flowsheets were used in this study to provide such insight: (1) Higher WL glasses (45 and 50%) based on future sludge batches that have (and have not) undergone the Al-dissolution process. (2) Coupled operations supported by the Salt Waste Processing Facility (SWPF), which increase the TiO{sub 2} concentration in glass to greater than 2 wt%. Glasses were also selected to address technical issues associated with Al{sub 2}O{sub 3} solubility, nepheline formation, and homogeneity issues for coupled operations. A test matrix of 28 glass compositions was developed to provide insight into these issues. The glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), TL measurement and the Product Consistency Test (PCT). The results of this study are summarized below: (1) TiO{sub 2} concentrations up to {approx} 3.5 wt% were retained in DWPF type glasses, where retention is defined as the absence of crystalline TiO{sub 2} (i.e., unreacted or undissolved) in the as-fabricated glasses. Although this TiO{sub 2} content does not bound the projected SWPF high output flowsheet (up to 6 wt% TiO{sub 2} may be required in glass), these data demonstrate the potential for increasing the TiO{sub 2} limit in glass above the current limit of 2 wt

  12. MATRIX 2 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-10-23

    High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this study was to generate supplemental validation data that could be used to determine the applicability of the current liquidus temperature (TL) model to expanded DWPF glass composition regions of interest based on higher WLs. Two specific flowsheets were used in this study to provide such insight: (1) Higher WL glasses (45 and 50%) based on future sludge batches that have (and have not) undergone the Al-dissolution process. (2) Coupled operations supported by the Salt Waste Processing Facility (SWPF), which increase the TiO{sub 2} concentration in glass to greater than 2 wt%. Glasses were also selected to address technical issues associated with Al{sub 2}O{sub 3} solubility, nepheline formation, and homogeneity issues for coupled operations. A test matrix of 28 glass compositions was developed to provide insight into these issues. The glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), TL measurement and the Product Consistency Test (PCT). The results of this study are summarized below: (1) TiO{sub 2} concentrations up to {approx} 3.5 wt% were retained in DWPF type glasses, where retention is defined as the absence of crystalline TiO{sub 2} (i.e., unreacted or undissolved) in the as-fabricated glasses. Although this TiO{sub 2} content does not bound the projected SWPF high output flowsheet (up to 6 wt% TiO{sub 2} may be required in glass), these data demonstrate the potential for increasing the TiO{sub 2} limit in glass above the current limit of 2 wt

  13. Inventory parameters

    CERN Document Server

    Sharma, Sanjay

    2017-01-01

    This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.

  14. A hybrid neural network structure for application to nondestructive TRU waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.

  15. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  16. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-11-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  17. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    Energy Technology Data Exchange (ETDEWEB)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  18. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  19. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  20. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  1. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  2. Tank farm surveillance and waste status summary report for December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1994-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special 9 surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U.S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  3. Tank farm surveillance and waste status summary report for May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  4. Tank farm surveillance and waste status summary report for November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  5. Tank farm surveillance and waste status summary report for November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1994-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I. Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  6. Tank Farm surveillance and waste status summary report for September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1994-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  7. Tank Farm surveillance and waste status summary report for February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, B.M.

    1994-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is Intended to meet the requirement of US Department of Energy Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  8. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 08/31/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-10-08

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy, Washington. D. C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  9. Waste tank summary report for month ending 07/30/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-09-19

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  10. Waste Tank Summary Report for Month Ending 03/31/2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-05-09

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  11. Waste Tank Summary Report for Month Ending 03/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-05-03

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U S. Department of Energy-Richland Operations Office Order 435.1 (DOE-RL, July 1999, Radioactive Waste Management, U.S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  12. Waste Tank Summary Report for Month Ending 10/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-12-20

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 435 I (DOE-RL, July 1999 Radioactive Waste Management US Department of Energy-Richland Operations Office Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  13. Waste tank summary report for month ending 04/30/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-06-10

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  14. Waste Tank Summary Report for Month Ending 11/30/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-02-04

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy order 435 I (DOE-HQ August 28 2001 Radioactive Waste Management US Department of Energy-Washington DC) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  15. Waste Tank Summary Report for Month Ending 2/28/2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-04-16

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  16. Waste Tank Summary Report for Month Ending 12/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-02-25

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depicts the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy Order 435 I (DOE-HQ August 28, 2001 Radioactive Waste Management, US Department of Energy, Washington, DC) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  17. Waste tank summary report for month ending 06/30/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-08-18

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  18. Waste tank summary report for month ending 05/31/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-07-07

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  19. Waste Tank Summary Report for Month Ending 04/30/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-05-30

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U S Department of Energy-Richland Operations Office Order 435 I (DOE-RL July 1999 Radioactive Waste Management U S Department of Energy-Richland Operations Office Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  20. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 09/30/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-10-31

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities. and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy, Washington, D. C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  1. Waste Tank Summary Report for Month Ending 07/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-09-06

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 435.1 (DOE-RL, July 1999 Radioactive Waste Management US Department of Energy-Richland Operations Office Richland Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  2. Waste Tank Summary Report for Month Ending 04/30/2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-06-05

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  3. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 11/30/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2004-01-14

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  4. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 12/31/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2004-02-06

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  5. Waste Tank Summary Report for Month Ending 1/31/2002

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2002-04-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  6. Waste tank summary report for month ending 02/28/2003

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2003-04-08

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy, Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks.

  7. Waste Tank Summary Report for Month Ending 08/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    HANLON, B.M.

    2001-10-11

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities and supplemental information regarding tank surveillance anomalies and ongoing investigations This report is intended to meet the requirement of US Department of Energy Richland Operations Office Order 435 I (DOE-RL Jury 1999 Radioactive Waste Management US Department of Energy-Richland Operations Office Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks.

  8. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, CO; Miller, D.E. [S.M. Stoller Corporation, Grand Junction, CO; Morris, S.A. [S.M. Stoller Corporation, Grand Junction, CO; Sheader, L.R. [S.M. Stoller Corporation, Grand Junction, CO; Glenn, E.P. [University of Arizona, Tucson, AZ; Moore, D. [University of Arizona, Tucson, AZ; Carroll, K.C. [University of Arizona, Tucson, AZ; Benally, L. [Navajo Nation, Window Rock, AZ; Roanhorse, M. [Navajo Nation, Window Rock, AZ; Bush, R.P. [U.S. Department of Energy, Grand Junction, CO; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  9. Demonstration of NFS DeHg Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference Number 2229

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with < 260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3 (Conley, Morris, Osborne-Lee, and Hulet 1998). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels, the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards and to be feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base. (TEM)

  11. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-11-11

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

  12. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  13. Integration of the informal sector into municipal solid waste management in the Philippines--what does it need?

    Science.gov (United States)

    Paul, Johannes G; Arce-Jaque, Joan; Ravena, Neil; Villamor, Salome P

    2012-11-01

    The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

  14. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  15. Does Classification of Persons with Fibromyalgia into Multidimensional Pain Inventory Subgroups Detect Differences in Outcome after a Standard Chronic Pain Management Program?

    Directory of Open Access Journals (Sweden)

    Martin L Verra

    2009-01-01

    Full Text Available INTRODUCTION: The present study aimed to replicate and validate the empirically derived subgroup classification based on the Multidimensional Pain Inventory (MPI in a sample of highly disabled fibromyalgia (FM patients. Second, it examined how the identified subgroups differed in their response to an intensive, interdisciplinary inpatient pain management program.

  16. Does classification of persons with fibromyalgia into Multidimensional Pain Inventory subgroups detect differences in outcome after a standard chronic pain management program?

    NARCIS (Netherlands)

    Verra, M.L.; Angst, F.; Brioschi, R.; Lehmann, S.; Keefe, F.J.; Staal, J.B.; Bie, R.A. de; Aeschlimann, A.

    2009-01-01

    INTRODUCTION: The present study aimed to replicate and validate the empirically derived subgroup classification based on the Multidimensional Pain Inventory (MPI) in a sample of highly disabled fibromyalgia (FM) patients. Second, it examined how the identified subgroups differed in their response to

  17. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Schmeltzer, J. S.; Millier, J. J.; Gustafson, D. L.

    1993-01-01

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  18. 41 CFR 109-27.5104-3 - Perpetual inventory records.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Perpetual inventory... PROCUREMENT 27-INVENTORY MANAGEMENT 27.51-Management of Precious Metals § 109-27.5104-3 Perpetual inventory records. Perpetual inventory records shall be maintained as specified in Chapter V of DOE Order...

  19. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  20. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  1. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  2. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  3. Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

  4. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  5. Use of waste fuels. Fulfilment of the inventory plan and independent review of the emission inventories for greenhouse gases. Subtask 02; Einsatz von Sekundaerbrennstoffen. Umsetzung des Inventarplanes und nationale unabhaengige Ueberpruefung der Emissionsinventare fuer Treibhausgase. Teilvorhaben 02

    Energy Technology Data Exchange (ETDEWEB)

    Lechtenboehmer, Stefan; Nanning, Sabine [Wuppertal Institut (Germany); Hillebrand, Bernhard; Buttermann, Hans-Georg [EEFA GmbH, Muenster (Germany)

    2006-03-15

    This study provides an essential contribution to the improvement of the national greenhouse gas inventory. It makes data available on the use of secondary fuels in chosen industry sectors. In terms of this study data means the physical inputs on secondary fuels as well as the associated emissions factors to calculate absolute quantities i.e. of carbon dioxide. The information for the use of secondary fuels, so far scattered to the four winds, have been systematically sighted and if necessary supplemented by estimations. The data has been collected in close collaboration with the associations of the following industries: - Cement Industry - Lime Industry - Iron and Steel Industry and - Pulp and Paper Industry The catchphrased time series data (from 1990 until 2004) gathered in this study has been implemented into the data base ''ZSE''. Time series data of secondary fuels divided by sectors and fuel types are supplemented by appropriate emission factors. And so called split factors, which characterise the share of biogenous carbon content in the whole quantity. (orig.)

  6. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  7. DOE EM industry programs robotics development

    Energy Technology Data Exchange (ETDEWEB)

    Staubly, R.; Kothari, V. [Dept. of Energy, Morgantown, WV (United States)

    1997-12-01

    The Office of Science and Technology (OST) manages an aggressive program for RD&D, as well as testing and evaluation for the U.S. Department of Energy`s (DOE) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. OST has organized technology management activities along focus teams for each major problem area. There are currently five focus areas: decontamination and decommissioning, tanks, subsurface contaminants, mixed waste, and plutonium. In addition, OST is pursuing research and development (R&D) that cuts across these focus areas by having applications in two or more focus areas. Currently, there are three cross-cutting programs: the robotics technology development; characterization, monitoring, and sensor technologies; and efficient separations and processing.

  8. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  9. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach; Stephanie Sanford

    2006-09-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators’ concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: - quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; - are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; - are concerned equally about technological and implementation issues; and - believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites.

  10. Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Park, Heeho Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy waste packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.

  11. Options for compiling an inventory of mining waste sites throughout Europe by combining Landsat-TM derived information with national and pan-European thematic data sets

    Science.gov (United States)

    Vijdea, Anca-Marina; Sommer, Stefan

    2004-10-01

    Presently no reliable synoptic picture of number, extent, distribution and emissions from mining waste sites exists, neither for EU member states, nor for the Accession and Candidate Countries. At EU level, this information is needed to assess the large range of environmental impacts caused by mining wastes and their emissions in a coherent way across the different policies addressing the protection and sustainable use of environmental resources. The core task lies in the harmonised collection and standardised compilation and evaluation of existing data and in connecting them to a geographical reference system compatible with other European data sets. In the proposed approach information from national registers of mining wastes is linked to related standardized spatial data layers such as CORINE Land Cover (the classes of mineral extraction sites, dump sites) or other data sets available in the EUROSTAT GISCO data base, thus adding the spatial dimension at regional scale. Higher level of spatial detail and distinction between mineral extraction site and waste sites with or without accumulation of potentially hazardous material is added by remote sensing, applying a semi-automated principal component analysis (PCA) to selected spectral channels of geo-referenced Landsat-TM full scenes. The method was demonstrated on large areas covering approximately 120000 km2 of Slovakia and Romania and was validated against mining-related features from Pan-European and/or national databases, detailed geological maps, mineral resource maps, as well as by a GIS analysis showing the distribution of anomalous pixels in the above-mentioned features compared to the main land cover classes.

  12. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  13. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  14. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  15. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    O' LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with

  16. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  17. Hazardous Material Storage Facilities and Sites - Commercial Hazardous Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Commercial Hazardous Waste Operation is a DEP primary facility type related to the Waste Management Hazardous Waste Program. The sub-facility types related to...

  18. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    Energy Technology Data Exchange (ETDEWEB)

    NATHAN HANCOCK

    2013-01-13

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the

  19. View graph presentations of the sixth DOE industry/university/lab forum on robotics for environmental restoration and waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The mission of the Robotics Technology Development Program involves the following: develop robotic systems where justified by safety, cost, and/or efficiency arguments; integrate the best talent from National Labs, industry, and universities in focused teams addressing complex-wide problems; and involve customers in the identification and development of needs driven technologies. This presentation focuses on five areas. They are: radioactive tank waste remediation (Richland); mixed waste characterization, treatment, and disposal (Idaho Falls); decontamination and decommissioning (Morgantown); landfill stabilization (Savannah River); and contaminant plumes containment and remediation (Savannah River).

  20. 1993 baseline solid waste management system description

    Energy Technology Data Exchange (ETDEWEB)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  1. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  2. Landfills, Hazardous Waste - WASTE_INDUSTRIAL_IDEM_IN: Industrial Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_INDUSTRIAL_IDEM_IN is a point shapefile that contains industrial waste site locations in Indiana, provided by personnel of Indiana Department of Environmental...

  3. A first landslide inventory in the Rwenzori Mountains, Uganda

    Science.gov (United States)

    Jacobs, Liesbet; Dewitte, Olivier; Poesen, Jean; Sekajugo, John; Maes, Jan; Mertens, Kewan; Kervyn, Matthieu

    2015-04-01

    Landslides have significant impacts in many equatorial regions, particularly in the East-African highlands characterized by mountainous topography, intense rainfalls, deep weathering profiles, high population density and high vulnerability to geohazards. With its exceptionally steep topography, wet climate and active faulting, landslides can be expected to occur in the Rwenzori region as well. Whether or not this region is prone to landsliding is however unclear due to a lack of scientific studies and representation of this region in global landslide databases. In order to address this question, a first landslide inventory based on archive information is built. In total, 48 landslide and flashflood events, or combinations of these, are found. They caused 56 fatalities, considerable damage to road infrastructure, buildings and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. This archive inventory provided the basis for a thorough field inventory executed in three sub-regions of each 40-50 km² situated in the three districts of the Rwenzori Mountains and covering the main lithological units. Over 300 landslides were mapped in the field. Various contrasting mass wasting processes occur among which translational debris and soil slides, debris avalanches, debris flows and rotational soil slides. Landslides occur on almost all lithological groups present in the Rwenzori (Gneiss, Schists and Miocene to recent sediments), with the exception of Amphibolite, which does not appear to be susceptible to landslides. The majority of events are triggered by intense rainfall, although also earthquake-triggered landslides are identified, mostly related to the Mw 6.2 earthquake of 1994. The field inventory will be complemented and validated using very high resolution remotely sensed data and aerial photographs. This multi-temporal landslide inventory will

  4. Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

    1996-09-01

    This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

  5. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pHSb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration.

  6. Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

  7. Waste Handeling Building Conceptual Study

    Energy Technology Data Exchange (ETDEWEB)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  8. 1999 Annual Report on Waste Generation and Pollution Prevention Progress as Required by DOE Order 5400.1

    Energy Technology Data Exchange (ETDEWEB)

    SEGALL, P.

    2000-03-01

    Hanford's missions are to safely clean-up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or clean-up mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infrastructure, and site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The clean-up activity is an immense and challenging undertaking. Including characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  9. TWRS Privatization Phase I waste characterization data evaluation for the request for proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01

    Radioactive wastes have been stored in large underground tanks at Hanford since 1944. In 1991, The Tank Waste Remediation System (TWRS) program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, effective manner. DOE believes that it is feasible to privatize portions of the TWRS program. Under the Privatization strategy embodied in the request for proposal, DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price type of contract. Phase I is a proof-of- concept/commercial demonstration-scale effort. Method used to achieve the objective of producing a technically reviewed inventory is outlined. Organic speciation and physical properties were gathered for the tank wastes and may be found in the individual tank section of this document; reference reviews and tank volume and sampling summary graphs are also provided for each tank.

  10. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  11. Development of a three-dimensional groundwater flow model for Western Melton Valley: Application of P-FEM on a DOE waste site

    Energy Technology Data Exchange (ETDEWEB)

    West, O.R.; Toran, L.E.

    1994-04-01

    Modeling the movement of hazardous waste in groundwater was identified by the US Department of Energy (DOE) as one of the grand challenges in scientific computation. In recognition of this need, DOE has provided support for a group of scientists from several national laboratories and universities to conduct research and development in groundwater flow and contaminant transport modeling. This group is part of a larger consortium of researchers, collectively referred to as the Partnership in Computational Science (PICS), that has been charged with the task of applying high-performance computational tools and techniques to grand challenge areas identified by DOE. One of the goals of the PICS Groundwater Group is to develop a new three-dimensional groundwater flow and transport code that is optimized for massively parallel computers. An existing groundwater flow code, 3DFEMWATER, was parallelized in order to serve as a benchmark for these new models. The application of P-FEM, the parallelized version of 3DFEMWATER, to a real field site is the subject of this report.

  12. Central Waste Complex (CWC) Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    ELLEFSON, M.D.

    1999-12-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  13. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  14. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  15. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  16. The Second Opening of the Waste Isolation Pilot Plant? Review of Salient Characteristics and Unique Operational Considerations for Remote Handled Transuranic Waste

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Walker, B.A.

    2003-02-24

    The U.S. Department of Energy (DOE) intends to dispose of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) beginning in 2005. (1) Four principle regulatory agencies are involved in the process of approving the RH TRU waste activities. The DOE is responsible for operational activities. The U. S. Nuclear Regulatory Commission (NRC) approves the design and use of shipping containers. The U.S. Environmental Protection Agency (EPA) is responsible for assuring safe and environmentally effective long-term disposal of the radioactive component of the waste and operational environmental monitoring. The New Mexico Environment Department (NMED) is responsible for the handling and the disposal of the non-radioactive hazardous component of the waste. The Environmental Evaluation Group (EEG) is responsible for performing independent technical oversight of all WIPP activities, and will comment on documents and practices for the various regulated RH TRU waste activities. The DOE has already obtained the necessary approvals from the NRC, and has submitted a Class 3 Modification request to the NMED. On December 16, 2002 the DOE Carlsbad Field Office (CBFO) provided the EPA with a notice of proposed change, in accordance with 40 CFR 194.4 (b) (3), to receive and dispose of remote handled transuranic waste. (2) WIPP procedures for the management of RH TRU waste at the site are being developed. While there are no issues with current NRC Certificates of Compliance for the RH TRU waste shipping containers, it is likely that there will be some controversy over other aspects of the currently planned RH TRU waste program. These issues may include: (1) the published RH TRU waste inventory, (2) the characterization of the radionuclide portion of the waste, for which one planned method is to use dose-to-Curie conversions, and (3) the plans to use bounding estimates for the hazardous portion of the WIPP waste, rather than measuring VOCs on a container

  17. Inventory Reduction Without Regret: Balancing Storage and Rebuy Costs

    Science.gov (United States)

    2015-01-01

    savings. Unfortunately, some managers view the Army’s currently high (relative to current demand) parts inventory as an inherent source of waste...which has led to a push within the Army to dispose of inventory . This push is unlikely to save money. The primary metric now used to assess the cost of... inventory is its total dollar value, calculated as purchase price times the quantity on hand. Setting a goal to reduce the dollar value of parts

  18. Proceedings of the fourth annual participants' information meeting, DOE Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Large, D.E.: Mezga, L.J.; Stratton, L.E.; Rose, R.R. (comps.)

    1982-10-01

    The Fourth Annual Participants' Information Meeting of the Department of Energy Low-Level Waste Management Program was held in Denver, Colorado, August 31 to September 2, 1982. The purpose of the meeting was to report and evaluate technology development funded by the program and to examine mechanisms for technology transfer. The meeting consisted of an introductory plenary session, followed by two concurrent overview sessions and then six concurrent technical sessions. There were two group meetings to review the findings of the technical sessions. The meeting concluded with a plenary summary session in which the major findings of the meeting were addressed. All papers have been abstracted and indexed for the Energy Data Base.

  19. Oxidation, characterization, and separation of non-pertechnetate species in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, N.C. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Under DOE`s privatization initiative, Lockheed Martin and British Nuclear Fuels Limited are preparing to stabilize the caustic tank waste generated from plutonium production at the Hanford Site. Pretreatment of Hanford tank waste will separate it into low-level waste (LLW) and high-level waste (HLW) fractions. The scope of the technetium problem is indicated by its inventory in the waste: {approximately}2000 kg. Technetium would normally exist as the pertechnetate anion, TcO{sub 4}{sup {minus}}, in aqueous solution. However, evidence obtained at Los Alamos National Laboratory (LANL) indicates that the combination of radiolysis, heat, organic complexants, and time may have reduced and complexed a significant fraction of the technetium in the tank waste. These species are in a form that is not amenable to current separation techniques based on pertechnetate removal. Thus, it is crucial that methods be developed to set technetium to pertechnetate so these technologies can meet the required technetium decontamination factor. If this is not possible, then alternative separation processes will need to be developed to remove these non-pertechnetate species from the waste. The simplest, most cost-effective approach to this problem is to convert the non-pertechnetate species to pertechnetate. Chemical, electrochemical, and photochemical oxidation methods, as well as hydrothermal treatment, are being applied to Hanford waste samples to ensure that the method works on the unknown technetium species in the waste. The degree of oxidation will be measured by determining the technetium distribution coefficient, {sup Tc}K{sub d}, between the waste and Reillex{trademark}-HPQ resin, and comparing it to the true pertechnetate K{sub d} value for the waste matrix. Other species in the waste, including all the organic material, could be oxidized by these methods, thus selective oxidation is desirable to minimize the cost, time, and secondary waste generation.

  20. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  1. Strategic special nuclear material Inventory Differences

    Science.gov (United States)

    1985-07-01

    This sixteenth periodic semiannual report of Inventory Differences (ID) covers the last six months of fiscal year 1984 (April 1, 1984, through September 30, 1984), for the Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of strategic special nuclear material (SSNM). Inventory Differences are simply the differences between the amount of material shown in the accounting records and the amount of material reported in the physical inventory. These differences are generally due to errors in estimating material in unmeasurable form at the time of an inventory, unmeasurable holdup in equipment, measurement imprecisions, inaccuracies in initial determinations of SSNM produced or used in nuclear reactors, and inventory or bookkeeping errors. Both DOE and contractors operating DOE facilities carefully maintain, analyze, and investigate ID data. Inventory Differences are expected in nuclear material processing and are not, in and of themselves, evidence of lost or stolen material. On the other hand, ID analysis provides valuable information on the effectiveness of the safeguards system's physical protection and material control measures as well as a check on the process controls and material management procedures. If necessary, an operation may be shut down until an ID is resolved.

  2. Radioactive Waste Streams: Waste Classification for Disposal

    Science.gov (United States)

    2006-12-13

    acidity with caustic soda or sodium nitrate to condition it for storage in the carbon-steel tanks. (The neutralization reaction formed a...waste ranges between from 47 to 147 curies/cubic-meter based on the Waste Isolation Pilot Plant inventory. The vitrified high-level waste processed by...Facility St T Assembly MTHM 1. Arkansas Nuclear One AK P 1,517 666.7 46. Shearon Harris Nuclear Power Plant NC P 3,814 964.5 I 552 241.4 47. Cooper

  3. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  4. 7 CFR 767.102 - Leasing non-real estate inventory property.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Leasing non-real estate inventory property. 767.102..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INVENTORY PROPERTY MANAGEMENT Lease of Real Estate Inventory Property § 767.102 Leasing non-real estate inventory property. The Agency does not lease non-real estate...

  5. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  6. Determination of scaling factors to estimate the radionuclide inventory in waste with low and intermediate-level activity from the IEA-R1 reactor; Determinacao de fatores de escala para estimativa do inventario de radionuclideos em rejeitos de media e baixa atividades do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Maria Helena Tirollo

    2013-07-01

    Regulations regarding transfer and final disposal of radioactive waste require that the inventory of radionuclides for each container enclosing such waste must be estimated and declared. The regulatory limits are established as a function of the annual radiation doses that members of the public could be exposed to from the radioactive waste repository, which mainly depend on the activity concentration of radionuclides, given in Bq/g, found in each waste container. Most of the radionuclides that emit gamma-rays can have their activity concentrations determined straightforwardly by measurements carried out externally to the containers. However, radionuclides that emit exclusively alpha or beta particles, as well as gamma-rays or X-rays with low energy and low absolute emission intensity, or whose activity is very low among the radioactive waste, are generically designated as Difficult to Measure Nuclides (DTMs). The activity concentrations of these DTMs are determined by means of complex radiochemical procedures that involve isolating the chemical species being studied from the interference in the waste matrix. Moreover, samples must be collected from each container in order to perform the analyses inherent to the radiochemical procedures, which exposes operators to high levels of radiation and is very costly because of the large number of radioactive waste containers that need to be characterized at a nuclear facility. An alternative methodology to approach this problem consists in obtaining empirical correlations between some radionuclides that can be measured directly – such as {sup 60}Co and {sup 137}Cs, therefore designated as Key Nuclides (KNs) – and the DTMs. This methodology, denominated Scaling Factor, was applied in the scope of the present work in order to obtain Scaling Factors or Correlation Functions for the most important radioactive wastes with low and intermediate-activity level from the IEA-R1 nuclear research reactor. (author)

  7. The nuclide inventory in SFR-1; Nuklidinventariet i SFR-1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2001-10-01

    This report is an account for a project carried out on behalf of the Swedish Radiation Protection Authority (SSI): 'Nuclide inventory in SFR-1' (The Swedish underground disposal facility for low and intermediate level reactor waste). The project comprises the following five sub-projects: 1) Measuring methods for nuclides, difficult to measure, 2) The nuclide inventory in SFR-1, 3) Proposal for nuclide library for SFR-1 and ground disposal, 4) Nuclide library for exemption, and 5) Characterising of the nuclide inventory and documentation for SFL waste. In all five sub-projects long-lived activity, including Cl-36, has been considered.

  8. DOE Ofice of Civilian Radioactive Waste Management Systems studies plan, fiscal years 1991 and 1992. [Appendix lists system studies with respective abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, T W; Haffner, D R; Fletcher, J F

    1991-08-01

    The Systems Engineering Management Plan for the DOE Office of Civilian Radioactive Waste Management, which defines the systems engineering process for the Federal Radioactive Waste System (FWMS), requires that systems studies to support the integration, evaluation, and optimization of the system be identified. These studies are generally directed toward further defining system or system-element functional requirements, including interface requirements, evaluating alternative system configurations or operational rules, or optimizing design features to achieve system integration. Because the decisions based on these studies are conducted within the overall configuration management process, a consistent and documented framework for the identification and conduct of systems studies must be available. A planned approach is needed so that results from defensible and referenceable systems analyses are available to make informed decisions in a timely manner. This Plan covers top level'' studies (i.e., those involving system requirements generally and the definition of requirements for system elements). This Plan is focused on the FY 1991 and 1992 period, and will be updated periodically as required to ensure its currency. Proposed systems studies for FY 1991 and 1992, their recommended timing, and their relations to one another, current studies, and major program milestones are identified. In general, only those studies supporting monitored retrievable storage (MRS) design requirements are recommended for immediate initiation. The studies are grouped into five major decision groups to allow scheduling to support specific decision windows. The proposed system studies schedule is generally a conservative one, with studies occurring early in or before the associated decision window. These proposed studies are described in this Plan. 16 refs., 6 figs., 2 tabs.

  9. Landfills, Hazardous Waste - CONSTRUCTION_DEMOLITION_WASTE_IDEM_IN: Construction and Demoliton Waste Facilities in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — CONSTRUCTION_DEMOLITION_WASTE_IDEM_IN is a point shapefile that contains construction and demolition waste facility locations in Indiana, provided by personnel of...

  10. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  11. Performance assessment for the disposal of low-level waste in the 200 east area burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I., Westinghouse Hanford

    1996-08-15

    A performance assessment analysis was completed for the 200 East Area Low-Level Burial Grounds (LLBG) to satisfy compliance requirements in DOE Order 5820.2A. In the analysis, scenarios of radionuclide release from the 200 East Area Low-Level waste facility was evaluated. The analysis focused on two primary scenarios leading to exposure. The first was inadvertent intrusion. In this scenario, it was assumed that institutional control of the site and knowledge of the disposal facility has been lost. Waste is subsequently exhumed and dose from exposure is received. The second scenario was groundwater contamination.In this scenario, radionuclides are leached from the waste by infiltrating precipitation and transported through the soil column to the underlying unconfined aquifer. The contaminated water is pumped from a well 100 m downstream and consumed,causing dose. Estimates of potential contamination of the surrounding environment were developed and the associated doses to the maximum exposed individual were calculated. The doses were compared with performance objective dose limits, found primarily in the DOE order 5850.2A. In the 200 East Area LLBG,it was shown that projected doses are estimated to be well below the limits because of the combination of environmental, waste inventory, and disposal facility characteristics of the 200 East Area LLBG. Waste acceptance criteria were also derived to ensure that disposal of future waste inventories in the 200 East Area LLBG will not cause an unacceptable increase in estimated dose.

  12. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  13. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  14. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  15. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  16. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, April 1, 1988--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hadden, C.T.; Benson, S.B.; Osborne, T.R.; Revis, N.W.

    1988-12-31

    Perchloroethylene (PCE) is a persistent environmental contaminant whose chemical stability and hydrophobicity have made it difficult to remove from contaminated groundwater. PCE is also toxic and has been implicated as a carcinogen. This study was aimed at assessing methods for biological degradation of PCE. As a part of the study, the authors have characterized possible products of the degradation of PCE, and have determined the effects of detergents and solvents on the water solubility of PCE and on the toxic effects of PCE on bacteria. The authors have also isolated PCE-resistant microorganisms from monitoring wells at Y-12. To date all of the PCE-resistant bacteria isolated from the monitoring wells have been of the genus Bacillus. One of these isolates appears to be able to degrade PCE, as indicated by the disappearance of PCE from cultures of growing cells. The organism does not grow on PCE as the sole carbon source, so degradation of the solvent must occur by cometabolism.

  17. DOSE ASSESSMENT OF THE FINAL INVENTORIES IN CENTER SLIT TRENCHES ONE THROUGH FIVE

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.; Hamm, L.; Smith, F.

    2011-05-02

    In response to a request from Solid Waste Management (SWM), this study evaluates the performance of waste disposed in Slit Trenches 1-5 by calculating exposure doses and concentrations. As of 8/19/2010, Slit Trenches 1-5 have been filled and are closed to future waste disposal in support of an ARRA-funded interim operational cover project. Slit Trenches 6 and 7 are currently in operation and are not addressed within this analysis. Their current inventory limits are based on the 2008 SA and are not being impacted by this study. This analysis considers the location and the timing of waste disposal in Slit Trenches 1-5 throughout their operational life. In addition, the following improvements to the modeling approach have been incorporated into this analysis: (1) Final waste inventories from WITS are used for the base case analysis where variance in the reported final disposal inventories is addressed through a sensitivity analysis; (2) Updated K{sub d} values are used; (3) Area percentages of non-crushable containers are used in the analysis to determine expected infiltration flows for cases that consider collapse of these containers; (4) An updated representation of ETF carbon column vessels disposed in SLIT3-Unit F is used. Preliminary analyses indicated a problem meeting the groundwater beta-gamma dose limit because of high H-3 and I-129 release from the ETF vessels. The updated model uses results from a recent structural analysis of the ETF vessels indicating that water does not penetrate the vessels for about 130 years and that the vessels remain structurally intact throughout the 1130-year period of assessment; and (5) Operational covers are included with revised installation dates and sets of Slit Trenches that have a common cover. With the exception of the modeling enhancements noted above, the analysis follows the same methodology used in the 2008 PA (WSRC, 2008) and the 2008 SA (Collard and Hamm, 2008). Infiltration flows through the vadose zone are

  18. Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

  19. World Glacier Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Glacier Inventory (WGI) contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation,...

  20. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  1. Science Inventory | US EPA

    Science.gov (United States)

    The Science Inventory is a searchable database of research products primarily from EPA's Office of Research and Development. Science Inventory records provide descriptions of the product, contact information, and links to available printed material or websites.

  2. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count (HIC)....

  3. HHS Enterprise Data Inventory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Enterprise Data Inventory (EDI) is the comprehensive inventory listing of agency data resources including public, restricted public, and non-public datasets.

  4. Integrated inventory information system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Kunte, P.D.

    The nature of oceanographic data and the management of inventory level information are described in Integrated Inventory Information System (IIIS). It is shown how a ROSCOPO (report on observations/samples collected during oceanographic programme...

  5. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  6. From National Forest Inventory to National Forest GHG Inventories

    OpenAIRE

    de Jong, Ben; PANDEY Devendra; Achard, Frederic

    2010-01-01

    Chapter 3.3 presents two national case studies for forest inventories in tropical countries: the Indian and Mexican national forest inventories. These national forest inventories have been use to report GHG inventories to the UNFCC

  7. LINGUISTIC INVENTORY PROBLEMS

    OpenAIRE

    CHIH HSUN HSIEH

    2011-01-01

    The work presented in this paper has been motivated primarily by Zadeh's idea of linguistic variables intended to provide rigorous mathematical modeling of natural language and CWW, Computing With Words. This paper reports some modeling of the linguistic inventory problems where CWW have been implemented: linguistic production inventory, linguistic inventory models under linguistic demand and linguistic lead time, linguistic production inventory models based on the preference of a decision ma...

  8. Central Waste Complex (CWC) Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    ELLEFSON, M.D.

    2000-01-06

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  9. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  10. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  11. Canadian mercury inventories: the missing pieces

    Energy Technology Data Exchange (ETDEWEB)

    Hagreen, L.A.; Lourie, B.A. [Summerhill Group, Toronto, ON (Canada)

    2004-07-01

    Research was conducted to determine the significance of the deliberate use of mercury in products in Canada and the associated releases from these sources. Through a combination of literature review and new calculations, the reservoir, flux, and releases of mercury from eight product sources were calculated, and these results compared to historical Canadian inventories. Mercury contributions from the waste sector were also assessed and compared to total Canadian mercury releases and to mercury releases from coal-fired generating stations. Results suggest the use and release of mercury associated with its use in products is 4.5 times what previous inventories indicate. Including dental amalgam and sewage sludge, the total releases of mercury to all environmental compartments in Canada totals 20 tonnes per year. This accounts for less than one-half of the 44 tonnes per year of mercury released from mercury waste disposal each year in Canada. Waste mercury contributions from hazardous waste imports, unknown product sources, and incomplete information on the use of mercury in known products may account for this discrepancy. Waste-related mercury releases and transfers for disposal and recycling are 11 times greater than that of electricity generation in Canada. Results indicate that Canadian inventories have underestimated the significance of mercury use and release associated with products, calling into question the current priorities for mercury management. This paper was developed as part of a panel session at the International Joint Commission 'Mercury in the Ecosystem' workshop, February 26-27, 2003, Windsor, ON, Canada, as a complement to the information on Canadian Inventories presented by Luke Trip (Senes Consulting, Ottawa, ON, Canada).

  12. DOE EM industry programs robotics development

    Energy Technology Data Exchange (ETDEWEB)

    Staubly, R.; Kothari, V.

    1998-12-31

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy`s (DOE`s) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution.

  13. Review of C-14 inventory for the SFR facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Graham; Merino, Joan; Kerrigan, Emma

    2002-08-01

    The Swedish Radiation Protection Authority (SSI) is currently reviewing SKB's continuing assessment for disposal of radioactive waste to the SFR facility at Forsmark. Among the wastes disposed are reactor operating wastes. Among the relevant radionuclides is C-14, which is relatively difficult to measure and to control because of its mobility. This report documents a review of the C-14 inventory material submitted by SKB for the SFR-facility, to determine its validity and comment on the appropriate assumptions for C-14 content of wastes due to be disposed of to the SFR. The review is based on information provided by SSI as well as other relevant international experience. Conclusions are drawn upon: the chemical form of the C-14 in the waste from BWRs and PWRs; the production rate of C-14 in BWRs and PWRs and quantification of the source term in the IEX waste; the distribution of the C-14 in the IEX waste from BWR between the resins used for treatment of the primary cooling water and the resins used for treatment of the condensate water; quantification of the uncertainties. A suggestion is made that the C-14 inventory could be better developed based upon a mass balance assessment of all the C-14 produced in reactors, and its ultimate fate in effluent and solid wastes, taking account of the reactor specific operational factors identified in the review as relevant to C-14 inventory assessment.

  14. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  15. Utilizing a Simulation Exercise to Illustrate Critical Inventory Management Concepts

    Science.gov (United States)

    Umble, Elisabeth; Umble, Michael

    2013-01-01

    Most undergraduate business students simply do not appreciate the elegant mathematical beauty of inventory models. So how does an instructor capture students' interest and keep them engaged in the learning process when teaching inventory management concepts? This paper describes a competitive and energizing in-class simulation game that introduces…

  16. Utilizing a Simulation Exercise to Illustrate Critical Inventory Management Concepts

    Science.gov (United States)

    Umble, Elisabeth; Umble, Michael

    2013-01-01

    Most undergraduate business students simply do not appreciate the elegant mathematical beauty of inventory models. So how does an instructor capture students' interest and keep them engaged in the learning process when teaching inventory management concepts? This paper describes a competitive and energizing in-class simulation game that introduces…

  17. Characterization and Disposition of Legacy Low-Level Waste at the Y-12 National Security Complex - 12133

    Energy Technology Data Exchange (ETDEWEB)

    Tharp, Tim [B and W Technical Services Y-12, LLC, Oak Ridge, Tennessee 37831 (United States); Donnelly, Jim [National Nuclear Security Administration Y-12 Site Office, Oak Ridge, Tennessee, 37831 (United States)

    2012-07-01

    The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and process knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)

  18. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  19. Does the use of tubular digesters to treat livestock waste lower the risk of infection from Cryptosporidium parvum and Giardia lamblia?

    Science.gov (United States)

    Kinyua, Maureen N; Wald, Ileana; Camacho-Céspedes, Fabricio; Izurieta, Ricardo; Haas, Charles N; Ergas, Sarina J

    2016-10-01

    Worldwide, high incidences of cryptosporidiosis and giardiasis are attributed to livestock waste. Quantitative microbial risk assessment can be used to estimate the risk of livestock related infections from Cryptosporidium parvum and Giardia lamblia. The objective of this paper was to assess the occupational and public health risks associated with management of raw and anaerobically digested livestock waste in two rural communities in Costa Rica based on fomite, soil and crop contamination and livestock waste management exposure pathways. Risks related to cattle waste were greater than swine waste due to cattle shedding more (oo)cysts. Cryptosporidium parvum also posed a greater risk than Giardia lamblia in all exposure pathways due to livestock shedding high loads of Cryptosporidium parvum oocysts and oocysts' lower inactivation rates during anaerobic digestion compared with Giardia lamblia cysts. The risk of infection from exposure to contaminated soil and crops was significantly lower for a community using tubular anaerobic digesters to treat livestock waste compared to a community where the untreated waste was applied to soil. The results indicate that treatment of livestock waste in small-scale tubular anaerobic digesters has the potential to significantly decrease the risk of infection below the World Health Organization's acceptable individual annual risk of infection (10(-4)).

  20. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  1. Danish emission inventories for stationary combustion plants. Inventories until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, M.; Hjelgaard, K.

    2010-10-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO{sub 2}, NO{sub x}, NMVOC, CH{sub 4}, CO, CO{sub 2}, N{sub 2}O, NH{sub 3}, particulate matter, heavy metals, dioxins, HCB and PAH. The CO{sub 2} emission in 2008 was 16 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH{sub 4} has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However, the emission has decreased in recent years due to structural changes in the Danish electricity market. The N{sub 2}O emission was higher in 2008 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO{sub 2}, NO{sub x} and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants. (Author)

  2. Inventory evaluation and prognosis of NORM residues for the final disposal in a radioactive waste final repository. Final report; Bestandsaufnahme und Prognose von NORM-Rueckstaenden fuer die Endlagerung in einem Endlager fuer radioaktive Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ettenhuber, E.; Gellermann, R.; Kahnwald, S.; Kunze, C.; Weiss, D.; Schulz, H.

    2014-11-15

    The report on the evaluation and prognosis of NORM residues for the final disposal covers the following issues: scope of the project; practice of release of NORM residues for utilization and disposal and its impact on the mass balance of NORM wastes; compilation of the amount of NORM residues with improbable clearance from radiation protection monitoring; identification of so far existing storage sites and interim storage possibilities and their capacities; NORM residues that are not released from radiation surveillance and need presumably the delivering to a radioactive waste repository; estimation of cost and evaluation of economic aspects for the options interim storage and final disposal; options for the final disposal of NORM wastes.

  3. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: • Defining contaminated reaches of sediments along the IOU waterways • Identifying separate segments within each IOU waterway to evaluate individually • Computing the volume and mass of contaminated soil associated with each segment, or “compartment” • Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU • Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, • Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs • Computing the

  4. Medical waste: a minimal hazard.

    Science.gov (United States)

    Keene, J H

    1991-11-01

    Medical waste is a subset of municipal waste, and regulated medical waste comprises less than 1% of the total municipal waste volume in the United States. As part of the overall waste stream, medical waste does contribute in a relative way to the aesthetic damage of the environment. Likewise, some small portion of the total release of hazardous chemicals and radioactive materials is derived from medical wastes. These comments can be made about any generated waste, regulated or unregulated. Healthcare professionals, including infection control personnel, microbiologists, public health officials, and others, have unsuccessfully argued that there is no evidence that past methods of treatment and disposal of regulated medical waste constitute any public health hazard. Historically, discovery of environmental contamination by toxic chemical disposal has followed assurances that the material was being disposed of in a safe manner. Therefore, a cynical public and its elected officials have demanded proof that the treatment and disposal of medical waste (i.e., infectious waste) do not constitute a public health hazard. Existent studies on municipal waste provide that proof. In order to argue that the results of these municipal waste studies are demonstrative of the minimal potential infectious environmental impact and lack of public health hazard associated with medical waste, we must accept the following: that the pathogens are the same whether they come from the hospital or the community, and that the municipal waste studied contained waste materials we now define as regulated medical waste.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Preschool Connected Speech Inventory.

    Science.gov (United States)

    DiJohnson, Albert; And Others

    This speech inventory developed for a study of aurally handicapped preschool children (see TM 001 129) provides information on intonation patterns in connected speech. The inventory consists of a list of phrases and simple sentences accompanied by pictorial clues. The test is individually administered by a teacher-examiner who presents the spoken…

  6. Denmark's National Inventory Report

    DEFF Research Database (Denmark)

    Illerup, J. B.; Lyck, E.; Winther, M.

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by 15 April 2001. The report contains information on Denmark's inventories for all years' from 1990 to 1999 for CO2, CH4, N2O, CO...

  7. Denmark's National Inventory Report

    DEFF Research Database (Denmark)

    Illerup, J. B.; Lyck, E.; Winther, M.

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by 15 April 2001. The report contains information on Denmark's inventories for all years' from 1990 to 1999 for CO2, CH4, N2O, ...

  8. Denmark's National Inventory Report

    DEFF Research Database (Denmark)

    Illerup, J. B.; Lyck, E.; Winther, M.

    This report is Denmark's National Inventory Report reported to the Conference of the Parties under the United Nations Framework Convention on Climate Change (UNFCCC) due by 15 April 2001. The report contains information on Denmark's inventories for all years' from 1990 to 1999 for CO2, CH4, N2O, CO...

  9. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For policy purpose

  10. Preschool Connected Speech Inventory.

    Science.gov (United States)

    DiJohnson, Albert; And Others

    This speech inventory developed for a study of aurally handicapped preschool children (see TM 001 129) provides information on intonation patterns in connected speech. The inventory consists of a list of phrases and simple sentences accompanied by pictorial clues. The test is individually administered by a teacher-examiner who presents the spoken…

  11. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  12. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  13. Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

  14. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S.M.; Conzelmann, G.; Gillette, J.L.; Kier, P.H.; Poch, L.A.

    1996-12-01

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the U.S. Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative.

  15. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S.M.; Conzelmann, G.; Gillette, J.L.; Kier, P.H.; Poch, L.A.

    1996-12-01

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the U.S. Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative.

  16. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  17. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  18. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    2000-12-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  19. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  20. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  1. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  2. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  3. Hazardous Material Storage Facilities and Sites - WASTE_SEPTAGE_SITES_IDEM_IN: Septage Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SEPTAGE_SITES_IDEM_IN is a point shapefile that contains septage waste site locations in Indiana, provided by personnel of Indiana Department of Environmental...

  4. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  5. SBA Network Components & Software Inventory

    Data.gov (United States)

    Small Business Administration — SBA’s Network Components & Software Inventory contains a complete inventory of all devices connected to SBA’s network including workstations, servers, routers,...

  6. Interactive Inventory Monitoring

    Science.gov (United States)

    Garud, Sumedha

    2013-01-01

    Method and system for monitoring present location and/or present status of a target inventory item, where the inventory items are located on one or more inventory shelves or other inventory receptacles that communicate with an inventory base station through use of responders such as RFIDs. A user operates a hand held interrogation and display (lAD) module that communicates with, or is part of the base station to provide an initial inquiry. lnformation on location(s) of the larget invenlory item is also indicated visibly and/or audibly on the receptacle(s) for the user. Status information includes an assessment of operation readiness and a time, if known, that the specified inventory item or class was last removed or examined or modified. Presentation of a user access level may be required for access to the target inventgory item. Another embodiment provides inventory informatin for a stack as a sight-impaired or hearing-impaired person adjacent to that stack.

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  8. Mixed Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  9. Danish emission inventories for stationary combustion plants. Inventories until year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Nielsen, Malene; Boll Illerup, J.

    2007-04-15

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. A considerable decrease of the SO2, NOX and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The emission of CH4 has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. The dioxin emission decreased due to flue gas cleaning on waste incineration plants. Uncertainties for the emissions and trends have been estimated. (au)

  10. Mercury Contamination - Amalgamate (contract with NFS and ADA). Demonstration of DeHgSM Process. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  11. Mercury Contamination - Amalgamate (contract with NFS and ADA). Demonstration of DeHgSM Process. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  12. Miscellaneous information regarding operation and inventory of 618-11 Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C.R.

    1993-06-01

    This report is a compilation of inventories and radiation surveys taken for the 618-11 Burial Ground at Hanford. This report deals with waste management activities at the facility during the early to mid-1960s.

  13. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated

  14. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  15. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  16. Preliminary Performance Assessment for the Waste Management Area C at the Hanford Site in Southeast Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P. [Washington River Protection Solutions LLC, Richland, WA (United States); Singleton, Kristin M. [Washington River Protection Solutions LLC, Richland, WA (United States); Eberlein, Susan J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-01-07

    A performance assessment (PA) of Single-Shell Tank (SST) Waste Management Area C (WMA C) located at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington is being conducted to satisfy the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO), as well as other Federal requirements and State-approved closure plans and permits. The WMP C PA assesses the fate, transport, and impacts of radionuclides and hazardous chemicals within residual wastes left in tanks and ancillary equipment and facilities in their assumed closed configuration and the subsequent risks to humans into the far future. The part of the PA focused on radiological impacts is being developed to meet the requirements for a closure authorization under DOE Order 435.1 that includes a waste incidental to reprocessing determination for residual wastes remaining in tanks, ancillary equipment, and facilities. An additional part of the PA will evaluate human health and environmental impacts from hazardous chemical inventories in residual wastes remaining in WMA C tanks, ancillary equipment, and facilities needed to meet the requirements for permitted closure under RCRA.

  17. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  18. Supplemental Information Source Document Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Halpern, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mond, Michael du [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shain, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This Supplemental Information Source Document for Waste Management was prepared in support of future analyses including those that may be performed as part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Environmental Impact Statement. This document presents information about waste management practices at SNL/NM, including definitions, inventory data, and an overview of current activities.

  19. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    Energy Technology Data Exchange (ETDEWEB)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  20. Raccoon abundance inventory report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the results of a raccoon abundance inventory on Clarence Cannon National Wildlife Refuge in 2012. Determining raccoon abundance allows for...

  1. Business Process Inventory

    Data.gov (United States)

    Office of Personnel Management — Inventory of maps and descriptions of the business processes of the U.S. Office of Personnel Management (OPM), with an emphasis on the processes of the Office of the...

  2. Logistics and Inventory System -

    Data.gov (United States)

    Department of Transportation — The Logistics and Inventory System (LIS) is the agencys primary supply/support automation tool. The LIS encompasses everything from order entry by field specialists...

  3. Land Type Inventory

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an inventory of the number of acres of various land types found at Kenai National Moose Range. Forestlands are the predominant land type, followed by tundra,...

  4. Wetlands Inventory Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Nevada wetlands inventory is a unit of a nationwide survey undertaken by the Fish and Wildlife Service to locate and tabulate by habitat types the important...

  5. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  6. Asset Inventory Database

    Data.gov (United States)

    US Agency for International Development — AIDM is used to track USAID assets such as furniture, computers, and equipment. Using portable bar code readers, receiving and inventory personnel can capture...

  7. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  8. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  9. Software Document Inventory Program

    Science.gov (United States)

    Merwarth, P. D.

    1984-01-01

    Program offers ways to file and locate sources of reference. DOCLIB system consists of two parts to serve needs of two type of users: general user and librarian. DOCLIB systems provides user with interactive, menudriven document inventory capability.

  10. Shuttle Inventory Management

    Science.gov (United States)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  11. The Danish CORINAIR Inventories

    DEFF Research Database (Denmark)

    Winther, M.; Illerup, J. B.; Fenhann, J.;

    CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub-divided, a......CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub...... of emissions per unit activity. This report describes the structure of the Danish CORINAIR emission inventory on a 1996 level and international conventions to which Denmark submits emission data. Furthermore the most important activities in the Danish inventory are explained. Subsequently the Danish 1996...

  12. China's Glacier Inventory Completed

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ A 12-volume Chinese Glacier Inventory has recently been finished by a group of Chinese glaciologists headed by Prof. Shi Yafeng from the Cold and Arid Regions Environmental and Engineering Research Institute under CAS.

  13. The Danish CORINAIR Inventories

    DEFF Research Database (Denmark)

    Winther, M.; Illerup, J. B.; Fenhann, J.

    CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub-divided, a......CORINAIR is the most comprehensive European air emission inventory programme. It consists of a defined emission calculation methodology and software for storing and further data processing. In CORINAIR 28 different emission species are estimated in 11 main sectors which are further sub...... of emissions per unit activity. This report describes the structure of the Danish CORINAIR emission inventory on a 1996 level and international conventions to which Denmark submits emission data. Furthermore the most important activities in the Danish inventory are explained. Subsequently the Danish 1996...

  14. VA Enterprise Data Inventory

    Data.gov (United States)

    Department of Veterans Affairs — The Department of Veterans Affairs Enterprise Data Inventory accounts for all of the datasets used in the agency's information systems. This entry was approved for...

  15. National Emission Inventory (NEI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data exchange allows states to submit data to the US Environmental Protection Agency's National Emissions Inventory (NEI). NEI is a national database of air...

  16. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  17. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  18. Inventory Control Crucial

    Institute of Scientific and Technical Information of China (English)

    CHRIS; DEVONSHIRE-ELLIS

    2008-01-01

    Inventory control is one of the most important business processes during the operation of a trading or manufacturing company as it relates to purchases,sales and logistic activities,In order to have clear inven- tory management,a company should focus not only on logistic management but also on sales and purchase management.The general view is that the warehouse serves as the most important component of inventory manage- ment and that the accounting department is

  19. Traffic Signs Inventory System

    Directory of Open Access Journals (Sweden)

    J. Ružbarský

    2013-06-01

    Full Text Available The paper is focused on practical application of Cambridge Correlator. The goal is to propose a traffic signs inventory system by using excellent characteristics of correlator in the rapid optical correlation. The proposal of this inventory system includes obtaining of traffic signs to create the database either collecting the GPS coordinates. It is necessary to know the traffic signs position and also to document the entire surface route for later evaluation in offline mode.

  20. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  1. Complexity of Groundwater Contaminants at DOE Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base

  2. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated

  3. Compilation and evaluation of a Paso del Norte emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Funk, T.H.; Chinkin, L.R.; Roberts, P.T. [Sonoma Technology, Inc., 1360 Redwood Way, Suite C, 94954-1169 Petaluma, CA (United States); Saeger, M.; Mulligan, S. [Pacific Environmental Services, 5001 S. Miami Blvd., Suite 300, 27709 Research Triangle Park, NC (United States); Paramo Figueroa, V.H. [Instituto Nacional de Ecologia, Avenue Revolucion 1425, Nivel 10, Col. Tlacopac San Angel, Delegacion Alvaro Obregon, C.P., 01040, D.F. Mexico (Mexico); Yarbrough, J. [US Environmental Protection Agency - Region 6, 1445 Ross Avenue, Suite 1200, 75202-2733 Dallas, TX (United States)

    2001-08-10

    Emission inventories of ozone precursors are routinely used as input to comprehensive photochemical air quality models. Photochemical model performance and the development of effective control strategies rely on the accuracy and representativeness of an underlying emission inventory. This paper describes the tasks undertaken to compile and evaluate an ozone precursor emission inventory for the El Paso/Ciudad Juarez/Southern Dona Ana region. Point, area and mobile source emission data were obtained from local government agencies and were spatially and temporally allocated to a gridded domain using region-specific demographic and land-cover information. The inventory was then processed using the US Environmental Protection Agency (EPA) recommended Emissions Preprocessor System 2.0 (UAM-EPS 2.0) which generates emissions files compatible with the Urban Airshed Model (UAM). A top-down evaluation of the emission inventory was performed to examine how well the inventory represented ambient pollutant compositions. The top-down evaluation methodology employed in this study compares emission inventory ratios of non-methane hydrocarbon (NMHC)/nitrogen oxide (NO{sub x}) and carbon monoxide (CO)/NO{sub x} ratios to corresponding ambient ratios. Detailed NMHC species comparisons were made in order to investigate the relative composition of individual hydrocarbon species in the emission inventory and in the ambient data. The emission inventory compiled during this effort has since been used to model ozone in the Paso del Norte airshed (Emery et al., CAMx modeling of ozone and carbon monoxide in the Paso del Norte airshed. In: Proc of Ninety-Third Annual Meeting of Air and Waste Management Association, 18-22 June 2000, Air and Waste Management Association, Pittsburgh, PA, 2000)

  4. JIT: A Strategic Tool of Inventory Management

    Science.gov (United States)

    Singh, D. K.; Singh, Satyendra

    2012-03-01

    Investment in inventory absorbs a large portion of the working capital of a company and often it represents a large portion of the total assets of a business. By improving return on investment by increasing the rate of inventory turnover, management often wants to ensure economic efficiency. Effective inventory management enables a firm to provide lower costs, rapid response and flexibility for its customers. Just-in-time (JIT) philosophy is most widely adopted and practices in the recent years worldwide. It aims at reducing total production costs by producing only what is immediately needed and eliminates wastes. It is based on a radically different concept, deviating substantially from the existing manufacturing practices in many respects. It is a very effective tool to reduce the wastage of inventory and manage it effectively. It has the potential to bring substantial changes in the existing setup of a company; can give it a new face, broaden its acceptability and ensure a longer life. It can strategically change the atmosphere needed for longer survival. JIT is radically different from MRP and goes beyond materials management. The new outlook acquired by the company can meet global expectations of the cust

  5. Tank waste information network system II (TWINS2) year 2000 compliance assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.R.

    1998-04-16

    The scope of this plan includes the Tank Waste Information Network System II (TWINS2) that contains the following major components: Tank Characterization Database (TCD), Tank Vapor Database (TVD), Data Source Access (DSA), automated Tank Characterization Report, Best-Basis Inventory Model (BBIM), and Tracker (corrective action tracking) function. The automated Tank Characterization Report application currently in development also will reside on-the TWINS system as will the BBIM. Critical inputs to TWINS occur from the following databases: Labcore and SACS. Output does not occur from TWINS to these two databases.

  6. Low-level radioactive waste source terms for the 1992 integrated data base

    Energy Technology Data Exchange (ETDEWEB)

    Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

    1995-01-01

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

  7. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  8. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... decrease of the SO2, NOX and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,3% since 1990. The emission of CH4, however, has increased due to increased use of lean-burn gas engines in CHP...

  9. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... decrease of the SO2, NOx and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,5% since 1990. The emission of CH4, however, has increased due to increased use of lean-burn gas engines in CHP...

  10. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10......% lower than in 1990. However fluctuations in the emission level are large as a result of electricity import/export. The emission of CH4 has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. However the emission has decreased in recent years due...... to structural changes in the Danish electricity market. The N2O emission was higher in 2007 than in 1990 but the fluctuations in the time-series are significant. A considerable decrease of the SO2, NOx and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste...

  11. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... was 30 % lower than in 1990. However, fluctuations in the emission level are large as a result of electricity import/export. The emission of CH4 has increased due to increased use of lean-burn gas engines in combined heating and power (CHP) plants. In recent years, the emission has declined. This is due...

  12. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  13. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  14. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  15. Methods of inventory control.

    Science.gov (United States)

    Lindley, C; Mackowiak, J

    1985-01-01

    Various methods for controlling inventory are described, and the advantages and disadvantages of each are discussed. The open-to-buy (OTB) budget method limits purchases to a specific amount of funds available for purchasing pharmaceuticals during a specified period. The emphasis of the OTB method is financial control of the pharmacy inventory. Although it is useful in monitoring and adjusting the dollar value of the inventory, it should be combined with other methods for a total inventory control system. The primary emphasis of the short-list method is to provide accurate and timely inventory information to the person responsible for order placement. The short list identifies the items that are in short supply. It is the most common feedback and control mechanism in use, but it is best suited for settings where duplicate or reserve stock is maintained and monitored by more rigorous methods. The main objective of the minimum and maximum method is to determine when and how much to order of each item. It also provides limited dollar control. The major disadvantage of this method is the time it requires to establish the minimum and maximum levels and to update them regularly to reflect changes in demand. The stock record card method is used to record information on the movement of goods in and out of the storage area. Stock cards can also be used to monitor inventory levels and facilitate order initiation. It is probably the optimum method to be used alone. The most effective system of inventory control is one employing a combination of these methods tailored to meet the institution's needs and available resources.

  16. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    Energy Technology Data Exchange (ETDEWEB)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B. [Oak Ridge National Lab., TN (United States); Guay, K.P. [S. M. Stroller Corp. (United States); Smith, L.C. [United Energy Services Corp. (United States)

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

  17. Environmental and economic evaluation of pre-disaster plans for disaster waste management: Case study of Minami-Ise, Japan.

    Science.gov (United States)

    Tabata, Tomohiro; Wakabayashi, Yohei; Tsai, Peii; Saeki, Takashi

    2017-03-01

    Although it is important that disaster waste be demolished and removed as soon as possible after a natural disaster, it is also important that its treatment is environmentally friendly and economic. Local municipalities do not conduct environmental and economic feasibility studies of pre-disaster waste management; nevertheless, pre-disaster waste management is extremely important to promote treatment of waste after natural disasters. One of the reasons that they cannot conduct such evaluations is that the methods and inventory data required for the environmental and economic evaluation does not exist. In this study, we created the inventory data needed for evaluation and constructed evaluation methods using life cycle assessment (LCA) and life cycle cost (LCC) methodologies for future natural disasters. We selected the Japanese town of Minami-Ise for the related case study. Firstly, we estimated that the potential disaster waste generation derived from dwellings would be approximately 554,000t. Based on this result, the land area required for all the temporary storage sites for storing the disaster waste was approximately 55ha. Although the public domain and private land area in this case study is sufficient, several sites would be necessary to transport waste to other sites with enough space because local space is scarce. Next, we created inventory data of each process such as waste transportation, operation of the temporary storage sites, and waste treatment. We evaluated the environmental burden and cost for scenarios in which the disaster waste derived from specified kinds of home appliances (refrigerators, washing machines, air-conditioners and TV sets) was transported, stored and recycled. In the scenario, CO2, SOx, NOX and PM emissions and total cost were 142t, 7kg, 257kg, 38kg and 1772 thousand USD, respectively. We also focused on SOx emission as a regional pollution source because transportation and operation of the temporary storage sites generates air

  18. USE OF CHEMICAL INVENTORY ACCURACY MEASUREMENTS AS LEADING INDICATORS

    Energy Technology Data Exchange (ETDEWEB)

    Kuntamukkula, M.

    2011-02-10

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: what properties make leading indicators effective, how chemical inventories can be used as a leading indicator, how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and what a subpar inventory accuracy measurement portends.

  19. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-01-01

    coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred......The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO3, Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results...... and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced....

  20. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  1. The MEK-Inhibitor Selumetinib Attenuates Tumor Growth and Reduces IL-6 Expression but Does Not Protect against Muscle Wasting in Lewis Lung Cancer Cachexia

    Science.gov (United States)

    Au, Ernie D.; Desai, Aditya P.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia, or wasting of skeletal muscle and fat, afflicts many patients with chronic diseases including cancer, organ failure, and AIDS. Muscle wasting reduces quality of life and decreases response to therapy. Cachexia is caused partly by elevated inflammatory cytokines, including interleukin-6 (IL-6). Others and we have shown that IL-6 alone is sufficient to induce cachexia both in vitro and in vivo. The mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor Selumetinib has been tested in clinical trials for various cancers. Moreover, Selumetinib has also been shown to inhibit the production of IL-6. In a retrospective analysis of a phase II clinical trial in advanced cholangiocarcinoma, patients treated with Selumetinib experienced significant gains in skeletal muscle vs. patients receiving standard therapy. However, the use of Selumetinib as a treatment for cachexia has yet to be investigated mechanistically. We sought to determine whether MEK inhibition could protect against cancer-induced cachexia in mice. In vitro, Selumetinib induced C2C12 myotube hypertrophy and nuclear accretion. Next we tested Selumetinib in the Lewis lung carcinoma (LLC) model of cancer cachexia. Treatment with Selumetinib reduced tumor mass and reduced circulating and tumor IL-6; however MEK inhibition did not preserve muscle mass. Similar wasting was seen in limb muscles of Selumetinib and vehicle-treated LLC mice, while greater fat and carcass weight loss was observed with Selumetinib treatment. As well, Selumetinib did not block wasting in C2C12 myotubes treated with LLC serum. Taken together, out results suggest that this MEK inhibitor is not protective in LLC cancer cachexia despite lowering IL-6 levels, and further that it might exacerbate tumor-induced weight loss. Differences from other studies might be disease, species or model-specific. PMID:28149280

  2. Shortening the Xerostomia Inventory

    Science.gov (United States)

    Thomson, William Murray; van der Putten, Gert-Jan; de Baat, Cees; Ikebe, Kazunori; Matsuda, Ken-ichi; Enoki, Kaori; Hopcraft, Matthew; Ling, Guo Y

    2011-01-01

    Objectives To determine the validity and properties of the Summated Xerostomia Inventory-Dutch Version in samples from Australia, The Netherlands, Japan and New Zealand. Study design Six cross-sectional samples of older people from The Netherlands (N = 50), Australia (N = 637 and N = 245), Japan (N = 401) and New Zealand (N = 167 and N = 86). Data were analysed using the Summated Xerostomia Inventory-Dutch Version. Results Almost all data-sets revealed a single extracted factor which explained about half of the variance, with Cronbach’s alpha values of at least 0.70. When mean scale scores were plotted against a “gold standard” xerostomia question, statistically significant gradients were observed, with the highest score seen in those who always had dry mouth, and the lowest in those who never had it. Conclusion The Summated Xerostomia Inventory-Dutch Version is valid for measuring xerostomia symptoms in clinical and epidemiological research. PMID:21684773

  3. Classification of waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.P.; Sauer, M.; Rojahn, T. [Versuchsatomkraftwerk GmbH, Kahl am Main (Germany)

    2001-07-01

    A barrel gamma scanning unit has been in use at the VAK for the classification of radioactive waste materials since 1998. The unit provides the facility operator with the data required for classification of waste barrels. Once these data have been entered into the AVK data processing system, the radiological status of raw waste as well as pre-treated and processed waste can be tracked from the point of origin to the point at which the waste is delivered to a final storage. Since the barrel gamma scanning unit was commissioned in 1998, approximately 900 barrels have been measured and the relevant data required for classification collected and analyzed. Based on the positive results of experience in the use of the mobile barrel gamma scanning unit, the VAK now offers the classification of barrels as a service to external users. Depending upon waste quantity accumulation, this measurement unit offers facility operators a reliable and time-saving and cost-effective means of identifying and documenting the radioactivity inventory of barrels scheduled for final storage. (orig.)

  4. Quantitative measurements of inventory control.

    Science.gov (United States)

    Noel, M W

    1984-11-01

    The use of quantitative measurements for improving inventory management efficiency in hospital pharmacy is reviewed. Proper management of the pharmacy inventory affects the financial operation of the entire hospital. Problems associated with maintaining inadequate or excessive inventory investment are discussed, and the use of inventory valuation and turnover rate for assessing inventory control efficiency is described. Frequency of order placement has an important effect on inventory turnover, carrying costs, and ordering costs. Use of the ABC system of inventory classification for identifying products constituting the majority of inventory dollar investment is outlined, and the economic order value concept is explained. With increasing regulations aimed at controlling hospital costs, pharmacy managers must seek every possible means to improve efficiency. Reducing the amount of money obligated to inventory can substantially improve the financial position of the hospital without requiring a reduction in personnel or quality of service.

  5. Inventory-driven costs.

    Science.gov (United States)

    Callioni, Gianpaolo; de Montgros, Xavier; Slagmulder, Regine; Van Wassenhove, Luk N; Wright, Linda

    2005-03-01

    In the 199os, Hewlett-Packard's PC business was struggling to turn a dollar, despite the company's success in winning market share. By 1997, margins on its PCs were as thin as a silicon wafer, and some product lines hadn't turned a profit since 1993. The problem had everything to do with the PC industry's notoriously short product cycles and brutal product and component price deflation. A common rule of thumb was that the value of a fully assembled PC decreased 1% a week. In such an environment, inventory costs become critical. But not just the inventory costs companies traditionally track, HP found, after a thorough review of the problem. The standard "holding cost of inventory"--the capital and physical costs of inventory--accounted for only about 10% of HP's inventory costs. The greater risks, it turned out, resided in four other, essentially hidden costs, which stemmed from mismatches between demand and supply: Component devaluation costs for components still held in production; Price protection costs incurred when product prices drop on the goods distributors still have on their shelves; Product return costs that have to be absorbed when distributors return and receive refunds on overstock items, and; Obsolescence costs for products still unsold when new models are introduced. By developing metrics to track those costs in a consistent way throughout the PC division, HP has found it can manage its supply chains with much more sophistication. Gone are the days of across-the-board measures such as,"Everyone must cut inventories by 20% by the end of the year," which usually resulted in a flurry of cookie-cutter lean production and just-in-time initiatives. Now, each product group is free to choose the supply chain configuration that best suits its needs. Other companies can follow HP's example.

  6. Information Sharing in a Multi-Echelon Inventory System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of different information sharing scenarios in a single supplier-single retailer supply chain is analyzed. The five information sharing scenarios are centralized information sharing, full information sharing, supplier-dominated information sharing, retailer-dominated information sharing, and noninformation sharing. Iterative procedures are developed to obtain the inventory policies and the system costs at equilibrium points. Numerical examples show that the cost of a centralized inventory system is about 20% - 40% lower than that of a decentralized system with non-information sharing. Furthermore, a higher information sharing level does not always lead to a lower system cost in a decentralized supply chain due to inventory competition.

  7. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...

  8. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  9. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  10. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  11. Materials inventory management manual

    Science.gov (United States)

    1992-01-01

    This NASA Materials Inventory Management Manual (NHB 4100.1) is issued pursuant to Section 203(c)(1) of the National Aeronautics and Space Act of 1958 (42 USC 2473). It sets forth policy, performance standards, and procedures governing the acquisition, management and use of materials. This Manual is effective upon receipt.

  12. The Bayesian Inventory Problem

    Science.gov (United States)

    1984-05-01

    Bayesian Approach to Demand Estimation and Inventory Provisioning," Naval Research Logistics Quarterly. Vol 20, 1973, (p607-624). 4 DeGroot , Morris H...page is blank APPENDIX A SUFFICIENT STATISTICS A convenient reference for moat of this material is DeGroot (41. Su-pose that we are sampling from a

  13. Inventory Control and Purchasing.

    Science.gov (United States)

    Nelson, Mason

    1981-01-01

    An inventory control system stimulates competitive bidding, resulting in the best price for an item. Other cost savings can be achieved by specifying prepayment of freight charges by the successful bidder, seeking standardization of products, and purchasing jointly with nearby municipalities and school districts. (Author/MLF)

  14. Calculating Optimal Inventory Size

    Directory of Open Access Journals (Sweden)

    Ruby Perez

    2010-01-01

    Full Text Available The purpose of the project is to find the optimal value for the Economic Order Quantity Model and then use a lean manufacturing Kanban equation to find a numeric value that will minimize the total cost and the inventory size.

  15. Waste acceptance criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  16. 1993 Annual progress report for subsidiary agreement No. 2 (1991--1996) between AECL and US/DOE for a radioactive waste management technical co-operative program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A coordinated research program on radioactive waste disposal is being carried out by the Atomic Energy of Canada Limited and the US Department of Energy. This annual report describes progress in the following eight studies: Fundamental materials investigations; In-situ stress determination; Development of a spent fuel dissolution model; Large block tracer test--Experimental testing of retardation models; Laboratory and field tests of in-situ hydrochemical tools; Cigar Lake--Analogue study, actinide and fission product geochemistry; Performance assessment technology exchange; and Development of multiple-well hydraulic test and field tracer test methods.

  17. Inner-City Energy and Environmental Education Consortium: Inventory of existing programs. Appendix 13.5

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-21

    This is the ``first effort`` to prepare an inventory of existing educational programs, focused primarily on inner-city youth, in operation in Washington, DC, Baltimore, and Philadelphia. The purpose of the inventory is to identify existing programs which could be augmented, adapted, or otherwise strengthened to help fulfil the mission of the Department of Energy-sponsored Inner-City Energy and Environmental Education Consortium, the mission of which is to recruit and retain inner-city youth to pursue careers in energy-related scientific and technical areas and in environmental restoration and waste management. The Consortium does not want to ``reinvent the wheel`` and all of its members need to learn what others are doing. Each of the 30 participating academic institutions was invited to submit as many program descriptions as they wished. Due to the summer holidays, or because they did not believe than they were carrying out programs relevant to the mission of the Consortium, some institutions did not submit any program descriptions. In addition, several industries, governmental agencies, and not-for-profit institutions were invited to submit program descriptions.

  18. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  19. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  20. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  1. Dioxin air emission inventory 1990-2004

    Energy Technology Data Exchange (ETDEWEB)

    Capral Henriksen, T.; Illerup, J.B.; Nielsen, Ole-Kenneth [DMU, Dept. of Policy Analysis (Denmark)

    2006-12-15

    The present Danish dioxin air emission inventory shows that the emission has been reduced from 68.6 g I-TEQ in 1990 to 22.0 g I-TEQ in 2004, or about 68% over this period. Most of the significant reductions have been achieved in the industrial sector, where emissions have been reduced from 14.67 g I-TEQ in 1990 to 0.17 g I-TEQ in 2004; a reduction of almost 99%. Lower emissions from steel and aluminium reclamation industries form the major part of the reduction within industry. Emissions from waste incineration reduced from 32.5 g I-TEQ in 1990 to 2.1 g ITEQ in 2004; which is approx. 94%. This is due to installation of dioxin abatement equipment in incineration plants. The most important source of emission in 2004 is residential wood combustion, at 8.5 g I-TEQ, or around 40% of the total emission. In 2004, accidental fires, which are estimated to emit 6.1 g I-TEQ/year, are the second most important source, contributing with around 28% of the total emission. The present dioxin emission inventory for Denmark shows how emissions in 2004 come from sources other than waste incineration plants and industry, which were the largest sources in 1990. (au)

  2. Local waste management constraints and waste administrators in China.

    Science.gov (United States)

    Chung, Shan Shan; Lo, Carlos W H

    2008-01-01

    Local level waste authorities and their officials directly interact and serve the people on behalf of higher governments. Given the influential positions they have on the quality of life of the citizens, these local waste authorities deserve more attention from researchers. This study throws light on the factors related to local waste management and administrators that have caused waste management failures in three mainland Chinese cities. Based on a survey conducted in 2002-2003, it was found that waste administrators in these cities are not professionally competent in their jobs and they are also not confident in using economic instruments to address waste management issues in their cities. These local waste authorities are generally under-funded, and funding politics has to some extent eroded the incentives to carry out the instructions of higher waste authorities. The community at large also does not respect local waste management work. The residents frequently litter, are unobservant of waste collection times and are unwilling to pay for waste collection service. All of these are handicapping environmentally sound waste management.

  3. Road Routes for Waste Disposal - MDC_WCSBulkyBook

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The WCS Bulky Books (Books) polygon feature class was created for the Miami-Dade Enterprise Technology Department with data provided by the Department of Solid Waste...

  4. Road Routes for Waste Disposal - MDC_WCSBulkyBook

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The WCS Bulky Books (Books) polygon feature class was created for the Miami-Dade Enterprise Technology Department with data provided by the Department of Solid Waste...

  5. Landfills - MO 2006 Solid Waste Management Districts (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set contains boundaries and contact information for Missouri Solid Waste Management districts and regions. The districts were created by statute to foster...

  6. Road Routes for Waste Disposal - MDC_RecyclingRoute

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This CURBSIDE RECYCLING ROUTES BOUNDARIES LAYER IS A polygon feature class created for the Miami-Dade Department of Solid Waste Management (DSWM). It contains the...

  7. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, S.

    1998-09-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

  8. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  9. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  10. Transuranic Waste Characterization Quality Assurance Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  11. Transuranic Waste Characterization Quality Assurance Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  12. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  13. Waste reduction plan for The Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.M.

    1990-04-01

    The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associated with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.

  14. Vendor-managed inventory

    DEFF Research Database (Denmark)

    Govindan, Kannan

    2013-01-01

    Vendor-managed inventory (VMI) represents the methodology through which the upstream stage of a supply chain (vendor) takes responsibility for managing the inventories at the downstream stage (customer) based on previously agreed limits. VMI is another method by which supply chains can be managed......, and, owing to centralised decision-making and constant information sharing, the benefits are much higher than in traditional supply chain case. However, there exists a lack of research that identifies the dimensions of VMI, benefits of VMI, methods, and levels used in the VMI environment. The focus...... of this paper is to explore the existing literature on VMI, to categorise it according to the criteria evaluated, and to present a systematic review. In this study, we have classified the review into three categories such as dimension-based, methodology-based, and level-based. From the thorough literature...

  15. Perishable Inventory Challenges

    DEFF Research Database (Denmark)

    Damgaard, Cecilie Maria; Nguyen, Vivi Thuy; Hvolby, Hans-Henrik

    2012-01-01

    The paper investigates how inventory control of perishable items is managed and line up some possible options of improvement. This includes a review of relevant literature dealing with the challenges of determining ordering policies for perishable products and a study of how the current procedure...... in the retail supply chains. The goal is to find and evaluate the parameters which affect the decision making process, when finding the optimal order quantity and order time. The paper takes a starting point in the retail industry but links to other industries.......The paper investigates how inventory control of perishable items is managed and line up some possible options of improvement. This includes a review of relevant literature dealing with the challenges of determining ordering policies for perishable products and a study of how the current procedures...

  16. Queensland coal inventory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-01

    Australia's black coal resources rank in the top five globally, around 50% of which are located in the sedimentary basins of Queensland. The Bowen Basin is the most prolific coal repository, hosting over 60% of the currently established resource inventory. Large volumes of thermal coal are present in the Surat and Galilee basins as well as small extensional and pull apart basins such as Blair Athol and Tarong. The article examines Queensland's coal industry from a government perspective. It first discusses the current coal market, then introduces the concept of inventory coal and explains the Australia Joint Ore Reserves Committee (JORC) code - a resource evaluation system. The stratigraphy of each of Queensland's coal basins is then discussed in sections headed Permian coals, Triassic coals, Jurassic and Cretaceous coals, and Tertiary coals. 3 figs.

  17. Managing the inventory control system.

    Science.gov (United States)

    Daniels, C E

    1985-02-01

    The four functions of management--planning, organizing, directing, and controlling--are described in relation to the hospital pharmacy inventory control system. Planning includes the development of inventory system objectives and identification of the resources needed to complete them. Organizing requires the manager to decide on the best method of grouping system activities and resources to complete the objectives in order of priority. Directing is a continual activity that involves obtaining optimal performance from the inventory system resources available. Controlling consists of regulation and verification of inventory system activities. The effective inventory system manager integrates planning, organizing, directing, and controlling in a continuous cycle.

  18. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  19. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  20. Waste management and quality assurance: Reasonable co-existence?

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.