WorldWideScience

Sample records for doe low-level waste

  1. DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Mezga, L.J.

    1983-01-01

    The Oak Ridge National Laboratory (ORNL) in its role as associate lead contractor of the DOE LLWMP has responsibility for the management of program-funded technology development activities. In this role with general guidance provided by DOE and the lead contractor (EG and G Idaho), the ORNL program office is charged with the responsibility to (1) develop program plans for the major technology areas, (2) recommend allocations for the program resources, (3) review the technology development tasks to ensure that program objectives are being met, and (4) to assist the lead contractor in coordinating the DOE LLWMP with other on-going US and foreign waste technology programs. Although the ORNL office generally assists the lead laboratory in management of the total program, our emphasis is on management of R and D for development of basic technology and to assess concepts for alternative systems of processing and disposal of LLW. Technical progress for each of the tasks of this program for FY 1982 is summarized

  2. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  3. DOE low-level waste long term technology development

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1982-01-01

    The objective of the Department of Energy's Low-Level Waste Management Program is to provide a low-level waste management system by 1986. Areas of concentration are defined as: (1) Waste Generation Reduction Technology, (2) Process and Handling Technology, (3) Environmental Technology, (4) Low-Level Waste Disposal Technology. A program overview is provided with specific examples of technical development. 2 figures

  4. Twelfth annual US DOE low-level waste management conference

    International Nuclear Information System (INIS)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990

  5. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  6. Status of vitrification for DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Jantzen, C.M.; Plodinec, M.J.

    1993-04-01

    Vitrification is being considered by the Department of Energy for solidification of many low-level mixed waste streams. Some of the advantages, requirements, and potential problem areas are described. Recommendations for future efforts are presented

  7. DOE's planning process for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Case, J.T.; Letourneau, M.J.; Chu, M.S.Y.

    1995-01-01

    A disposal planning process was established by the Department of Energy (DOE) Mixed Low-Level Waste (MLLW) Disposal Workgroup. The process, jointly developed with the States, includes three steps: site-screening, site-evaluation, and configuration study. As a result of the screening process, 28 sites have been eliminated from further consideration for MLLW disposal and 4 sites have been assigned a lower priority for evaluation. Currently 16 sites are being evaluated by the DOE for their potential strengths and weaknesses as MLLW disposal sites. The results of the evaluation will provide a general idea of the technical capability of the 16 disposal sites; the results can also be used to identify which treated MLLW streams can be disposed on-site and which should be disposed of off-site. The information will then serve as the basis for a disposal configuration study, which includes analysis of both technical as well as non-technical issues, that will lead to the ultimate decision on MLLW disposal site locations

  8. Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts

    International Nuclear Information System (INIS)

    1985-08-01

    The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities

  9. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  10. Proceedings of the eighth annual DOE low-level waste management forum: Technical Session 8, Future DOE low-level waste management

    International Nuclear Information System (INIS)

    1987-02-01

    This volume contains the following papers: (1) DOE Systems Approach and Integration; (2) Impacts of Hazardous Waste Regulation on Low-Level Waste Management; (3) Site Operator Needs and Resolution Status; and (4) Establishment of New Disposal Capacity for the Savannah River Plant. All papers have been processed for inclusion in the Energy Data Base. (AT)

  11. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  12. Proceedings of the tenth annual DOE low-level waste management conference: Session 5: Waste characterization and quality assurance

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains six papers on various aspects of low-level radioactive waste management. Topics include quality assurance programs; source terms; waste characterization programs; and DOE's information network modifications. Individual papers were processed separately for the data base

  13. Complex-wide review of DOE's management of low-level radioactive waste - progress to date

    International Nuclear Information System (INIS)

    Letourneau, M.J.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE's Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste

  14. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  15. Proceedings of the seventh annual participants' information meeting. DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    1986-02-01

    The Seventh Annual Department of Energy (DOE) Low-Level Waste Management Program (LLWMP) Participants' Information Meeting was held September 10-13, 1985 in Las Vegas, Nevada. The purpose of the meeting was to provide a forum for exchange of information on low-level radioactive waste management activities, requirements, and plans. Attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, interim operations offices and their contractor operators; representatives from the US Nuclear Regulatory Commission, US Environmental Protection Agency, US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of Great Britain, France, and Canada; representatives of utilities, private contractors, and parties concerned with low-level waste management issues. The meeting was organized by topical areas to allow for the exchange of information and the promotion of discussion on specific aspects of low-level waste management. Plenary sessions were held at the start and conclusion of the meeting while seven concurrent topical sessions were held during the intervening day and a half. Session chairmen from each of these concurrent sessions presented a summary of the discussion and conclusions resulting from their respective sessions at the final plenary session

  16. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  17. DOE systems approach to a low-level waste management information system: summary paper

    International Nuclear Information System (INIS)

    Esparza, V.

    1987-01-01

    The LLWMP is performing an assessment of waste information systems currently in use at each DOE site for recording LLW data. The assessment is being conducted to determine what changes to the waste information systems, if any, are desirable to support implementation of this systems approach to LLW management. Recommendations will be made to DOE from this assessment and what would be involved to modify current DOE waste generator information practices to support an appropriately structured overall DOE LLW data systems. In support of reducing the uncertainty of decision-making, DOE has selected a systems approach to keep pace with an evolving regulatory climate to low-level waste. This approach considers the effects of each stage of the entire low-level waste management process. The proposed systems approach starts with the disposal side of the waste management system and progresses towards the waste generation side of the waste management system. Using this approach provides quantitative performance to be achieved. In addition, a systems approach also provides a method for selecting appropriate technology based on engineering models

  18. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  19. Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Cole, L.; Kudera, D.; Newberry, W.

    1995-12-01

    This document results from the Secretary of Energy's response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ''address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. '' The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities

  20. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  1. Complex-wide review of DOE`s management of low-level radioactive waste - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.

    1995-12-31

    The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 includes a recommendation that the Department of Energy (DOE) conduct a comprehensive, complex-wide review of the low-level waste issue to establish the dimensions of the low-level waste problem and to identify necessary corrective actions to address the safe disposition of past, present, and future volumes. DOE`s Implementation Plan calls for the conduct of a complex-wide review of low-level radioactive waste treatment, storage, and disposal sites to identify environmental, safety, and health vulnerabilities. The complex-wide review focuses on low-level waste disposal facilities through a site evaluation survey, reviews of existing documentation, and onsite observations. Low-level waste treatment and storage facilities will be assessed for their ability to meet waste acceptance criteria for disposal. Results from the complex-wide review will be used to form the basis for an integrated and planned set of actions to correct the identified vulnerabilities and to prompt development of new requirements for managing low-level waste.

  2. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    International Nuclear Information System (INIS)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs

  3. Assessment of the requirements for DOE's annual report to congress on low-level radioactive waste

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-level Radioactive Waste Policy Amendments Act of 1985 (PL99-240; LLRWPAA) requires the Department of Energy (DOE) to ''submit to Congress on an annual basis a report which: (1) summarizes the progress of low-level waste disposal siting and licensing activities within each compact region, (2) reviews the available volume reduction technologies, their applications, effectiveness, and costs on a per unit volume basis, (3) reviews interim storage facility requirements, costs, and usage, (4) summarizes transportation requirements for such wastes on an inter- and intra-regional basis, (5) summarizes the data on the total amount of low-level waste shipped for disposal on a yearly basis, the proportion of such wastes subjected to volume reduction, the average volume reduction attained,, and the proportion of wastes stored on an interim basis, and (6) projects the interim storage and final disposal volume requirements anticipated for the following year, on a regional basis (Sec. 7(b)).'' This report reviews and assesses what is required for development of the annual report specified in the LLRWPAA. This report addresses each of the subject areas set out in the LLRWPAA

  4. DOE Low-Level Waste Management Program perspective on technology transfer: opportunities and challenges

    International Nuclear Information System (INIS)

    Large, D.E.

    1982-01-01

    The Department of Energy's Low-Level Waste Management Program (DOE LLWMP) perspective in regard to transfer of LLWMP technology to current and potential users in both the commercial and defense sectors is discussed. Past, present, and future opportunities and challenges for the whole nuclear waste management are indicated. Elements considered include: historical and evolutionary events and activities; the purpose of the Program and its inherent opportunities and challenges; achievements and expected accomplishments; supporters and interactors; packaging and delivering technology; implementing and serving potential users; determining and meeting users' needs; and identifying and responding to opportunities and challenges. The low-level waste management effort to improve shallow land burial technology began in FY 1977 and has expanded to include waste treatment and alternative disposal methods. Milestones have been established and are used as principal management control items. This technology, the Program Product, is described and is made available. This year, the Program has drafted criteria for inclusion in a DOE order for radioactive waste management operations at DOE sites

  5. Reversal of fortune for industry in DOE low-level waste decision

    International Nuclear Information System (INIS)

    Lobsenz, G.

    1994-01-01

    Thanks to the Energy Department, states have triumphed over industry groups in a battle over the disposition of surcharge money collected for low-level radioactive waste disposal. In a March 31 announcement, the Energy Department ruled against industry groups seeking to prevent certain states from receiving partial rebates of surcharge money collected by DOE from generators of low-level radioactive waste. The rebated money would have gone back to generators had DOE sided with the industry groups, which included the Edison Electric Institute. The surcharge issue became controversial when some states decided to sign 18-month contracts with South Carolina to continue sending waste shipments to an existing disposal site at Barnwell, SC. South Carolina was the only one of three states with an existing low-level disposal site to keep it open to outside shipments; Nevada and Washington closed their disposal sites in June 1992 to all states outside their regional compacts. Industry groups charged that the 18-month contracts for disposal at Barnwell did not meet the statutory requirements for states to receive the surcharge rebates. They maintained the law effectively required states to develop new disposal capacity, rather than continuing to rely on Barnwell or the other two existing sites under a limited duration contract. DOE rejected that reasoning, saying that while the law was designed to encourage new capacity, it did not require it for compliance with the January 1993 milestone

  6. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Geimer, R.M.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  7. Regional LLRW [low-level radioactive waste] processing alternatives applying the DOE REGINALT systems analysis model

    International Nuclear Information System (INIS)

    Beers, G.H.

    1987-01-01

    The DOE Low-Level Waste Management Progam has developed a computer-based decision support system of models that may be used by nonprogrammers to evaluate a comprehensive approach to commercial low-level radioactive waste (LLRW) management. REGINALT (Regional Waste Management Alternatives Analysis Model) implementation will be described as the model is applied to a hypothetical regional compact for the purpose of examining the technical and economic potential of two waste processing alternaties. Using waste from a typical regional compact, two specific regional waste processing centers will be compared for feasibility. Example 1 will assume will assume that a regional supercompaction facility is being developed for the region. Example 2 will assume that a regional facility with both supercompation and incineration is specified. Both examples will include identical disposal facilities, except that capacity may differ due to variation in volume reduction achieved. The two examples will be compared with regard to volume reduction achieved, estimated occupational exposure for the processing facilities, and life cylcle costs per generated unit waste. A base case will also illustrate current disposal practices. The results of the comparisons will be evaluated, and other steps, if necessary, for additional decision support will be identified

  8. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  9. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base

  10. DOE's performance evaluation project for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Waters, R.D.; Chu, M.S.Y.; Gruebel, M.M.; Lee, D.W.

    1995-01-01

    A performance evaluation (PE) is an analysis that estimates radionuclide concentration limits for 16 potential Department of Energy (DOE) mixed low-level waste (ULLW) disposal sites based on the analysis of two environmental exposure pathways (air and water) to an off-site individual and an inadvertent-intruder exposure pathway. Sites are analyzed for their ability to attenuate concentrations of specific radionuclides that could be released from wastes in a hypothetical ULLW disposal facility. Site-specific data and knowledge are used within a generic framework that is consistent across all sites being evaluated. After estimates of waste concentrations for the three pathways are calculated, the minimum of the waste concentration values is selected as the permissible waste concentration for each radionuclide. The PE results will be used as input to the process for DOE's ULLW disposal configuration. Preliminary comparisons of results from the PE and site-specific performance assessments indicate that the simple PE results generally agree with results of the performance assessments, even when site conditions are complex. This agreement with performance-assessment results increases confidence that similar results can be obtained at other sites that have good characterization data. In addition, the simple analyses contained in the PE illustrate a potential method to satisfy the needs of many regulators and the general public for a simple, conservative, defensible, and easily understandable analysis that provides results similar to those of more complex analyses

  11. Proceedings of the sixth annual Participants' Information Meeting DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    1984-12-01

    Sessions were held on disposal technology, characteristics and treatment of low-level waste, environmental aspects and performance prediction, predicting source terms for low-level wastes (LLW), performance assessment for LLW disposal facilities, and approaches to LLW facility siting and characteristics. Fifty-six papers were indexed separately

  12. Assessment of DOE low-level radioactive solid waste disposal storage activities: task 103. Final report

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    From a survey of DOE sites, facilities, and practices for the disposal/storage of low-level radioactive solid waste, the following can be summarized: (1) No health hazard has been reported. (2) Some burial grounds are releasing small quantities of radionuclides to the immediate environment. These releases are well within release limits at all sites with the exception of on-site concentrations at ORNL. At ORNL, concentrations in the Clinch River are less than 1% of the release limits. (3) Many practices have been instituted in the last few years which have improved disposal/storage operations considerably. The most notable are: (a) improved record keeping and a centralized computer data file, (b) improved burial site surface maintenance and drainage control, (c) initiation of the use of waste compactors and current plans for their use at most burial sites, (d) initiation of studies at major sites for evaluation of the long-term impact of buried waste, (e) improvement of modeling/monitoring programs at all major sites, (f) initiation of studies to provide engineering methods of reducing burial ground discharges at ORNL, and (g) initiation of the shallow land burial technologoy program.Overall, the low-level waste is being disposed of and stored in a safe and orderly manner. Recent and planned improvements will provide increased environmental protection. The only unsatisfactory area involves record keeping. Records of waste buried years ago are either poor or nonexistent. This makes it very difficult to evaluate the total impact of some 30 years of disposal operations. While some of this important history is lost forever, projects now under way should be able to reconstruct most of it

  13. Comparison of alternative treatment systems for DOE mixed low-level waste

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.

    1997-03-01

    From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R ampersand D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350 degrees C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS copyright for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc

  14. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  15. Guidelines for radiological performance assessment of DOE low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Case, M.J.; Otis, M.D.

    1988-07-01

    This document provides guidance for conducting radiological performance assessments of Department of Energy (DOE) low-level radioactive waste (LLW) disposal facilities. The guidance is specifically intended to provide the fundamental approach necessary to meet the performance assessment requirements. The document is written for LLW facility operators or other personnel who will manage the performance assessment task. The document is meant to provide guidance for conducting performance assessments in a generally consistent manner at all DOE LLW disposal facilities. The guidance includes a summary of performance objectives to be met by LLW disposal facilities (these objectives are derived from current DOE and other applicable federal regulatory guidelines); specific criteria for an adequate performance assessment and from which a minimum set of required calculations may be determined; recommendations of methods for screening critical components of the analysis system so that these components can be addressed in detail; recommendations for the selection of existing models and the development of site-specific models; recommendations of techniques for comparison of assessment results with performance objectives; and a summary of reporting requirements

  16. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

  17. Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program

    International Nuclear Information System (INIS)

    Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G.

    1981-12-01

    The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base

  18. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  19. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H.

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ''Radioactive Waste Management.''

  20. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  1. Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    1983-12-01

    The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base

  2. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  3. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1995-01-01

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards

  4. Improvements to the DOE low-level waste regulatory structure and process under recommendation 94-2 - progress to date

    International Nuclear Information System (INIS)

    Regnier, E.

    1995-01-01

    Among the concerns expressed by the Defense Nuclear Facility Safety Board (DNFSB) in its Recommendation 94-2 was the lack of a clearly defined and effective internal Department of Energy (DOE) regulatory oversight and enforcement process for ensuring that low-level radioactive waste management health, safety, and environmental requirements are met. Therefore, part of the response to the DNFSB concern is a task to clarify and strengthen the low-level waste management regulatory structure. This task is being conducted in two steps. First, consistent with the requirements of the current DOE waste management order and within the framework of the current organizational structure, interim clarification of a review process and the associated organizational responsibilities has been issued. Second, in coordination with the revision of the waste management order and consistent with the organizational responsibilities resulting from the strategic alignment of DOE, a rigorous, more independent regulatory oversight structure will be developed

  5. Improvements to the DOE low-level waste regulatory structure and process under recommendation 94-2 - progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, E.

    1995-12-31

    Among the concerns expressed by the Defense Nuclear Facility Safety Board (DNFSB) in its Recommendation 94-2 was the lack of a clearly defined and effective internal Department of Energy (DOE) regulatory oversight and enforcement process for ensuring that low-level radioactive waste management health, safety, and environmental requirements are met. Therefore, part of the response to the DNFSB concern is a task to clarify and strengthen the low-level waste management regulatory structure. This task is being conducted in two steps. First, consistent with the requirements of the current DOE waste management order and within the framework of the current organizational structure, interim clarification of a review process and the associated organizational responsibilities has been issued. Second, in coordination with the revision of the waste management order and consistent with the organizational responsibilities resulting from the strategic alignment of DOE, a rigorous, more independent regulatory oversight structure will be developed.

  6. Regionalization as a strategy for management of low-level and mixed wastes in the DOE system

    International Nuclear Information System (INIS)

    Bradford, J.D.; Garcia, E.C.; Gillins, R.L.

    1988-01-01

    The Department of Energy has been routinely performing low-level waste volume reduction and/or stabilization treatment at various sites for some time. In general, treatment is performed on waste generated onsite. Disposal is also usually performed onsite since most DOE sites have their own LLW disposal facilities. The DOE initiated studies to evaluate strategies for treatment, storage, and disposal of hazardous and mixed wastes covered in the Resource Conservation and Recovery Act (RCRA) and to ensure that DOE sites are in compliance with RCRA. These studies recommend regionalization as the most cost-effective solution to the treatment and disposal of hazardous and mixed wastes. The DOE's Defense Low-Level Waste Management Program conducted an additional survey of DOE sites to evaluate the status of one specific treatment method, incineration, at these sites. This study included facilities currently in use or intended for treatment of low-level and mixed wastes. A summary of the findings is presented in this paper

  7. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  8. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E

    2008-03-31

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest

  9. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1992-01-01

    This paper provides highlights from the spring meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: state and compact reports; New York's challenge to the constitutionality of the Low-Level Radioactive Waste Amendments Act of 1985; DOE technical assistance for 1993; interregional import/export agreements; Department of Transportation requirements; superfund liability; nonfuel bearing components; NRC residual radioactivity criteria

  10. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  11. Proceedings of the fourth annual participants' information meeting, DOE Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Large, D.E.; Mezga, L.J.; Stratton, L.E.; Rose, R.R.

    1982-10-01

    The Fourth Annual Participants' Information Meeting of the Department of Energy Low-Level Waste Management Program was held in Denver, Colorado, August 31 to September 2, 1982. The purpose of the meeting was to report and evaluate technology development funded by the program and to examine mechanisms for technology transfer. The meeting consisted of an introductory plenary session, followed by two concurrent overview sessions and then six concurrent technical sessions. There were two group meetings to review the findings of the technical sessions. The meeting concluded with a plenary summary session in which the major findings of the meeting were addressed. All papers have been abstracted and indexed for the Energy Data Base

  12. Complex-wide review of DOE's Low-Level Waste Management ES ampersand H vulnerabilities. Volume I. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    The Department of Energy (DOE) conducted a comprehensive complex-wide review of its management of low-level waste (LLW) and the radioactive component of mixed low-level waste (MLLW). This review was conducted in response to a recommendation from the Defense Nuclear Facilities Safety Board (DNFSB) which was established and authorized by Congress to oversee DOE. The DNFSB's recommendation concerning conformance with safety standards at DOE LLW sites was issued on September 8, 1994 and is referred to as Recommendation 94-2. DOE's Implementation Plan for its response to Recommendation 94-2 was submitted to the DNFSB on March 31, 1995. The DNFSB recommended that a complex-wide review of DOE's LLW management be initiated. The goal of the complex-wide review of DOE's LLW management system was to identify both programmatic and physical vulnerabilities that could lead to unnecessary radiation exposure of workers or the public or unnecessary releases of radioactive materials to the environment. Additionally, the DNFSB stated that an objective of the complex-wide review should be to establish the dimensions of the DOE LLW problem and support the identification of corrective actions to address safe disposition of past, present, and future volumes of LLW. The complex-wide review involved an evaluation of LLW management activities at 38 DOE facilities at 36 sites that actively manage LLW and MLLW

  13. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    International Nuclear Information System (INIS)

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics

  14. Groundwater modeling of source terms and contaminant plumes for DOE low-level waste performance assessments

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.; Wilson, J.E.

    1994-01-01

    Under US Department of Energy (DOE) Order 5820.2A, all sites within the DOE complex must analyze the performance of planned radioactive waste disposal facilities before disposal takes place through the radiological performance assessment process. These assessments consider both exposures to the public from radionuclides potentially released from disposal facilities and protection of groundwater resources. Compliance with requirements for groundwater protection is often the most difficult to demonstrate as these requirements are generally more restrictive than those for other pathways. Modeling of subsurface unsaturated and saturated flow and transport was conducted for two such assessments for the Savannah River site. The computer code PORFLOW was used to evaluate release and transport of radionuclides from different types of disposal unit configurations: vault disposal and trench disposal. The effectiveness of engineered barriers was evaluated in terms of compliance with groundwater protection requirements. The findings suggest that, due to the limited lifetime of engineered barriers, overdesign of facilities for long-lived radionuclides is likely to occur if compliance must be realized for thousands of years

  15. Low-level waste certification plan

    International Nuclear Information System (INIS)

    Greenhalph, W.O.

    1995-01-01

    This plan describes the organization and methodology for the certification of solid low-level waste (LLW) and mixed-waste (MW) generated at any of the facilities or major work activities of the Engineered Process Application (EPA) organization. The primary LLW and MW waste generating facility operated by EPA is the 377 Building. This plan does not cover the handling of hazardous or non-regulated waste, though they are mentioned at times for completeness

  16. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  17. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  18. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  19. A decision methodology for the evaluation of mixed low-level radioactive waste management options for DOE sites

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, J. [Dept. of Energy, Washington, DC (United States); Abashian, M.S.; Chakraborti, S.; Devarakonda, M.; Djordjevic, S.M. [IT Corp., Albuquerque, NM (United States)

    1993-03-01

    Currently, many DOE sites are developing site-specific solutions to manage their mixed low-level wastes. These site-specific MLLW programs often result in duplication of efforts between the different sites, and consequently, inefficient use of DOE system resources. A nationally integrated program for MLLW eliminates unnecessary duplication of effort, but requires a comprehensive analysis of waste management options to ensure that all site issues are addressed. A methodology for comprehensive analysis of the complete DOE MLLW system is being developed by DOE-HQ to establish an integrated and standardized solution for managing MLLW. To be effective, the comprehensive systems analysis must consider all aspects of MLLW management from cradle-to-grave (i.e. from MLLW generation to disposal). The results of the analysis will include recommendations for alternative management options for the complete DOE MLLW system based on various components such as effectiveness, cost, health and safety risks, and the probability of regulatory acceptance for an option. Because of the diverse nature of these various components and the associated difficulties in comparing between them, a decision methodology is being developed that will integrate the above components into a single evaluation scheme for performing relative comparisons between different MLLW management options. The remainder of this paper provides an overview of the roles and responsibilities of the various participants of the DOE MLLW Program, and discusses in detail the components involved in the development of the decision methodology for a comprehensive systems analysis.

  20. Use of DOE site selection criteria for screening low-level waste disposal sites on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Stinton, L.H.

    1983-09-01

    The proposed Department of Energy (DOE) site selection criteria were applied to the Oak Ridge Reservation, and the application was evaluated to determine the criteria's usefulness in the selection of a low-level waste disposal site. The application of the criteria required the development of a methodology to provide a framework for evaluation. The methodology is composed of site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site capable of satisfying the site selection criteria. The site characterization stage relies on a detailed site investigation to determine site acceptability. The site selection criteria were applied to the DOE Oak Ridge Reservation through the site screening stage. Results of this application were similar to those of a previous siting study on the Oak Ridge Reservation. The DOE site selection criteria when coupled with the methodology that was developed were easily applied and would be adaptable to any region of interest

  1. Complex-wide review of DOE's Low-Level Waste Management ES ampersand H vulnerabilities. Volume II. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    Volume I of this report presents a summary of DOE's complex-wide review of its low-level waste management system, including the assessment scope and methodology, site-specific and complex-wide vulnerabilities, and DOE's conclusions and recommendations. Volume II presents a more detailed discussion of the assessment methodology and evaluation instruments developed by the Assessment Working Group for identifying site-specific vulnerabilities, categorizing and classifying vulnerabilities, and identifying and analyzing complex-wide vulnerabilities. Attachments A and B of this volume contain, respectively, the Site Evaluation Survey and the Vulnerability Assessment Form used in those processes. Volume III contains the site-specific assessment reports for the 36 sites (38 facilities) assessed in the complex-wide review from which the complex-wide vulnerabilities were drawn

  2. Low-level radioactive waste

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1983-03-01

    This bibliography contains information on low-level radioactive waste included in the Department of Energy's Energy Data Base for January through December 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Low-Level Radioactive Wastes/Transport. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each proceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 492 references

  3. An exposure assessment of radionuclide emissions associated with potential mixed-low level waste disposal facilities at fifteen DOE sites

    International Nuclear Information System (INIS)

    Lombardi, D.A.; Socolof, M.L.

    1996-01-01

    A screening method was developed to compare the doses received via the atmospheric pathway at 15 potential DOE MLLW (mixed low-level waste) sites. Permissible waste concentrations were back calculated using the radioactivity NESHAP (National Emissions Standards for Hazardous Air Pollutants) in 40 FR 61 (DOE Order 5820.2A performance objective). Site-specific soil and meteorological data were used to determine permissible waste concentrations (PORK). For a particular radionuclide, perks for each site do not vary by more than one order of magnitude. perks of 14 C are about six orders of magnitude more restrictive than perks of 3 H because of differences in liquid/vapor partitioning, decay, and exposure dose. When comparing results from the atmospheric pathway to the water and intruder pathways, 14 C disposal concentrations were limited by the atmospheric pathway for most arid sites; for 3 H, the atmospheric pathway was not limiting at any of the sites. Results of this performance evaluation process are to be used for planning for siting of disposal facilities

  4. Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base

  5. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  6. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  7. Application of DOE prescribed guides to the evaluation of Hanford's Mixed Low Level Solid Waste Treatment Options

    International Nuclear Information System (INIS)

    Campbell, B.F.; Nash, C.R.

    1994-10-01

    A recent Westinghouse Hanford Company report (WHC-SD-W100-ES-008, February, 1994), compared a Vitrification process to the WRAP-2A Grout/PE process for the treatment of Mixed Low Level Waste (MLLW). This comparison applied a limited scope numerical evaluation to compare technology complexity of the two processes, but focused primarily on capital and operating costs. The work reported here is supplementary to WHC-SD-Wl00-ES-008. It provides a record of the application of the more formal DOE-prescribed criteria (Treatment Selection Guides for Federal Facility Compliance Act Draft Site Treatment Plans) to the Vitrification and Grout/PE processes previously evaluated. Results of the evaluation favored the Grout/PE process by a weighted score of 83 to 78 over the Plasma arc vitrification process

  8. Processing of low-level wastes

    International Nuclear Information System (INIS)

    Vance, J.N.

    1986-01-01

    Although low-level wastes have been generated and have required processing for more than two decades now, it is noteworthy that processing methods are continuing to change. The changes are not only attributable to improvements in technology, but are also the result of changing regulations and economics and uncertainties regarding the future availabilities of burial space for disposal. Indeed, because of the changes which have and are taking place in the processing of low-level waste, an overview of the current situation is in order. This presentation is a brief overview of the processing methods generally employed to treat the low-level wastes generated from both fuel cycle and non-fuel cycle sources. The presentation is far too brief to deal with the processing technologies in a comprehensive fashion, but does provide a snapshot of what the current or typical processing methods are and what changes are occurring and why

  9. Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  11. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database

  12. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base

  13. Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees

    International Nuclear Information System (INIS)

    1987-02-01

    The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base

  14. Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base.

  15. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  16. Potential impact of DOE's performance objective for protection of inadvertent intruders on low-level waste disposals at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1993-01-01

    Performance objectives for disposal of low-level radioactive waste at Department of Energy (DOE) sites include limits on radiation dose to inadvertent intruders. This paper investigates the potential impact of DOE's performance objective for protection of inadvertent intruders on the acceptability of low-level waste disposals at Oak Ridge National Laboratory (ORNL). The analysis is based on waste volumes and radionuclide inventories for recent disposals and estimated doses to an inadvertent intruder for assumed exposure scenarios. The analysis indicates that more than 99% of the total volume of waste in recent disposals meets the performance objective for inadvertent intruders, and the volume of waste found to be unacceptable for disposal is only about 16 m 3 . Therefore, DOE's performance objective for protection of inadvertent intruders probably will not have unreasonably adverse impacts on acceptable waste disposals at ORNL

  17. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    International Nuclear Information System (INIS)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance

  18. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  19. Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

  20. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  1. Mixed low-level waste form evaluation

    International Nuclear Information System (INIS)

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-01-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance

  2. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  3. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the open-quotes problemclose quotes DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization

  4. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite

  5. Low level waste shipment accident lessons learned

    International Nuclear Information System (INIS)

    Rast, D.M.; Rowe, J.G.; Reichel, C.W.

    1995-01-01

    On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident

  6. Case study and presentation of the DOE treatability group concept for low-level and mixed waste streams

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.; Heath, B.A.; Davis, K.D.

    1994-01-01

    The Federal Facility Compliance Act of 1992 requires the US Department of Energy (DOE) to prepare an inventory report of its mixed waste and treatment capacities and technologies. Grouping waste streams according to technological requirements is the logical means of matching waste streams to treatment technologies, and streamlines the effort of identifying technology development needs. To provide consistency, DOE has developed a standard methodology for categorizing waste into treatability groups based on three characteristic parameters: radiological, bulk physical/chemical form, and regulated contaminant. Based on category and component definitions in the methodology, descriptive codes or strings of codes are assigned under each parameter, resulting in a waste characterization amenable to a computerized format for query and sort functions. By using only the applicable parameters, this methodology can be applied to all waste types generated within the DOE complex: radioactive, hazardous, mixed, and sanitary/municipal. Implementation of this methodology will assist the individual sites and DOE Headquarters in analyzing waste management technology and facility needs

  7. Assessment of LANL solid low-level waste management documentation

    International Nuclear Information System (INIS)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G.; Davis, K.D.; Rutz, A.C.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  8. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  9. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  10. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  11. Solid low-level waste forecasting guide

    International Nuclear Information System (INIS)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford's experience within the last six years. Hanford's forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford's annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford's forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data

  12. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  13. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  14. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m 3 of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m 3 of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements

  15. Proceedings of the fourth annual participants' information meeting, DOE Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Large, D.E.: Mezga, L.J.; Stratton, L.E.; Rose, R.R. (comps.)

    1982-10-01

    The Fourth Annual Participants' Information Meeting of the Department of Energy Low-Level Waste Management Program was held in Denver, Colorado, August 31 to September 2, 1982. The purpose of the meeting was to report and evaluate technology development funded by the program and to examine mechanisms for technology transfer. The meeting consisted of an introductory plenary session, followed by two concurrent overview sessions and then six concurrent technical sessions. There were two group meetings to review the findings of the technical sessions. The meeting concluded with a plenary summary session in which the major findings of the meeting were addressed. All papers have been abstracted and indexed for the Energy Data Base.

  16. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report

  17. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    International Nuclear Information System (INIS)

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years

  18. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  19. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    Sternwheeler, W.D.E.

    1992-01-01

    This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage

  20. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1992-01-01

    This paper provides highlights from the summer meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: responsibility for nonfuel component disposal; state experiences in facility licensing; and volume projections

  1. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage

  2. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  3. Microbiological treatment of low level radioactive waste

    International Nuclear Information System (INIS)

    Ashley, N.V.; Pugh, S.Y.R.; Banks, C.J.; Humphreys, P.N.

    1992-01-01

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  4. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  5. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  6. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  7. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  8. IEN Low-level-radioactive waste Management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-01-01

    The control, treatment and disposal of the low-level radioactive waste produced in the units of IEN-CNEN, in Brazil are presented, in details. These wastes are generated from a particle accelerator (CV-28 cyclotron), radiochemistry laboratories and a nuclear research reactor (Argonaut type). (Author) [pt

  9. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    This paper provides highlights from the October 1990 meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: a special session on liability and financial assurance needs; proposal to dispose of mixed waste at federal facilities; state plans for interim storage; and hazardous materials legislation.

  10. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  11. Assessment of LANL solid low-level mixed waste documentation

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section and the Chemical Waste Operations Section capabilities regarding preparation and maintenance of appropriate criteria, plans, and procedures. Additionally, a comparison is made which identifies areas where these documents are not presently in existence or being fully implemented. The documents being assessed in this report are: Solid Low-Level Mixed Waste Acceptance Criteria, Solid Low-Level Mixed Waste Characterization Plan, Solid Low-Level Mixed waste Certification Plan, Solid Low-Level Mixed Waste Acceptance Procedures, Solid Low-Level Mixed Waste characterization Procedures, Solid Low-Level Mixed Waste Certification Procedures, Solid Low-Level Mixed Waste Training Procedures, and Solid Low-Level Mixed Waste Recordkeeping Requirements. This report compares the current status of preparation and implementation, by the Radioactive Waste Operations Section and the Chemical Waste Operations Section, of these documents to the requirements of DOE 5820.2A,. 40 CFR 260 to 270, and to recommended practice. Chapters 2 through 9 of the report presents the results of the comparison in tabular form for each of the documents being assessed, followed by narrative discussion of all areas which are perceived to be unsatisfactory or out of compliance with respect to the availability and content of the documents. The final subpart of each of the following chapters provides recommendations where documentation practices may be improved to achieve compliance or to follow the recommended practice

  12. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  13. The low-level radioactive waste crisis

    International Nuclear Information System (INIS)

    Bord, R.J.

    1988-01-01

    According to the author, the goals of the 1980 Low-Level Radioactive Waste Policy Act have not been met. That act stipulated that regional disposal sites were to be established by 1986. To date, no new sites have been established and none are anywhere near the construction phase. Congress, responding to existing impasse, has extended the deadline to the end of 1992 with the passage of the Low-Level Radioactive Waste Policy Act. The reasons for the impasse are no mystery: local intransigence regarding waste of any kind, public fears of radiation hazards, and politicians' anxieties about their constituents' fears. The focus of this paper is the viability of ongoing attempts to overcome public intransigence in the case of disposal siting for low-level radioactive waste (LLRW)

  14. Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Ozaki, Calvin B.; Kerr, Thomas A.; Williams, R. Eric

    1991-01-01

    Two national systems comprise the low-level radioactive waste management system in the United States of America. The U.S. Nuclear Regulatory Commission regulates low-level radioactive waste produced in the public sector (commercial waste), and the U.S. Department of Energy manages low-level radioactive waste produced by government-sponsored programs. The primary distinction between the two national systems is the source of regulatory control. This paper discusses two issues critical to the success of each system: the site selection process used by the commercial low-level waste disposal system, and the evaluation process used to determine configuration of the DOE waste management system. The two national systems take different approaches to reach the same goals, which are increased social responsibility, protection of public health and safety, and protection of the environment

  15. Solid low-level waste certification strategy

    International Nuclear Information System (INIS)

    Smith, M.A.

    1991-08-01

    The purpose of the Solid Low-Level Waste (SLLW) Certification Program is to provide assurance that SLLW generated at the ORNL meets the applicable waste acceptance criteria for those facilities to which the waste is sent for treatment, handling, storage, or disposal. This document describes the strategy to be used for certification of SLLW or ORNL. The SLLW Certification Program applies to all ORNL operations involving the generation, shipment, handling, treatment, storage and disposal of SLLW. Mixed wastes, containing both hazardous and radioactive constituents, and transuranic wastes are not included in the scope of this document. 13 refs., 3 figs

  16. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  17. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  18. Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

  19. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  20. Low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T [Radioactive Waste Management Center, Tokyo (Japan)

    1980-08-01

    In the development and utilization of nuclear energy, variety of radioactive wastes arise. A largest part is low level radioactive wastes. In Japan, they are concentrated and solidified, and stored in drums. However, no low level wastes have yet been finally disposed of; there are now about 260,000 drums of such wastes stored on the sites. In Japan, the land is narrow, and its structure is geologically unstable, so that the sea disposal is sought. On the other hand, the development of technology for the ground disposal has lagged behind the sea disposal until recently because of the law concerned. The following matters are described: for the sea disposal, preparatory technology studies, environment safety assessment, administrative measures, and international control; for the ground disposal, experiments, surveys, disposal site selection, and the concept of island repositories.

  1. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  2. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  3. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1993-01-01

    This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues

  4. Siting a low-level waste facility

    International Nuclear Information System (INIS)

    English, M.R.

    1988-01-01

    In processes to site disposal facilities for low-level radioactive waste, volunteerism and incentives packages hold more promise for attracting host communities than they have for attracting host states. But volunteerism and incentives packages can have disadvantages as well as advantages. This paper discusses their pros and cons and summarizes the different approaches that states are using in their relationships with local governments

  5. Low-level radioactive waste management: an economic assessment

    International Nuclear Information System (INIS)

    Peery, R.J.

    1981-07-01

    This paper has presented an overview of the economics of low-level radioactive waste disposal. It is hoped that this paper will assist the states in their efforts to determine their approach to the management of low-level wastes. Although the economies of scale realized by a larger facility are emphasized, the conclusion is that every state and region must examine its need for low-level waste disposal services and consider the interrelated factors that affect the volume of waste to be disposed, including waste reduction techniques, interim storage for not a single recommended capacity for a facility, but an acknowledgement of contingencies. In theory, per cubic foot disposal costs decrease as facility size increases. But theory does not preclude a state from constructing its own site, or a region generating small volumes of waste from building a shared facility. All factors should be weighed before a site is chosen and its size is determined

  6. Proceedings of the ninth annual DOE low-level waste management forum: executive summary, technical and special session summaries, attendees

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This first volume of proceedings contains summaries of each of six technical sessions as well as three special sessions held during the conference. The six technical sessions were: Disposal technology and facility development (15 papers); Institutional and regulatory issues (10); Performance assessment (14); Waste characterization and verification (7); Site closure and stabilization (6); and Waste treatment (8). The three special sessions were: 1) Review of criteria for guidance on alternative disposal technology; 2) Hazardous waste regulatory update; and 3) Challenges to meeting the 1993 deadline. All papers have been indexed for inclusion on the Energy Data Base

  7. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

    International Nuclear Information System (INIS)

    Feng, X.; Ordaz, G.; Krumrine, P.

    1994-01-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program for supporting DOE's environmental restoration efforts. These glassy slags are composed of various metal oxide crystalline phases embedded in an alumino-silicate glass phase. The slags are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and that have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and glassy slag waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The MAWS approach was a plied to glassy slags by blending multiple waste streams to produce the final waste form, minimizing overall waste form volume and reducing costs. The crystalline oxide phases formed in the glassy slags can be specially formulated so that they are very durable and contain hazardous and radioactive elements in their lattice structures. The Structural Bond Strength (SBS) Model was used to predict the chemical durability of the product from the slag composition so that optimized slag compositions could be obtain with a limited number of crucible melts and testing

  8. Liquid low level waste management expert system

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Abraham, T.J.; Jackson, J.R.

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs

  9. State compacts and low-level waste

    International Nuclear Information System (INIS)

    Brown, H.

    1984-01-01

    In 1979, for the first time, low-level waste (LLW) was brought to the attention of policy makers in most states. For several decades, technical personnel had regulated and managed LLW, but elected officials and their staff had been largely ignorant of the origins and destination of low-level radioactive materials. Events in the fall of 1979 set in motion a sequence of events that has compelled the continuing attention of policy makers in every state in the nation. In December 1979, the Executive Committee of the National Governors' Association appointed an eight-member task force, chaired by Governor Bruce Babbitt of Arizona, to review low-level waste management and to formulate state policy by July 1980. The principal findings were as follows: 1. LLW could be managed most efficiently, both technically and politically, at the state level. 2. Each state should take responsibility for its own waste. 3. The creation of a regional waste management system by means of interstate compacts offered the best promise of creating new disposal capacity. 4. Regions should be allowed to exclude waste generated outside their borders after a specified date

  10. Low-level radiation waste management system

    International Nuclear Information System (INIS)

    Kubofcik, K.W.

    1990-01-01

    This patent describes a low-level radiation waste container set for use in conjunction with an open-topped receptacle. It comprises: a receptacle liner having a closed end and an open end, the receptacle liner sized for deployment as an inserted liner in an open-topped receptacle for collecting low-level radiation waste material within the receptacle liner within the open-topped receptacle; a cover sized and shaped to fit over the open top of the open-topped receptacle and the receptacle liner therein with the cover is in a closed position. The cover having a depending skirt which, when the cover is in the closed position, extends downwardly to overlap the open-topped receptacle adjacent the open top thereof and a portion of the receptacle liner received therein; and the receptacle liner and cover being fabricated of flexible radiation shielding material

  11. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  12. Solid low level waste management guidelines

    International Nuclear Information System (INIS)

    Saunders, P.

    1995-01-01

    In the 1980's the nuclear industry began focusing a great deal of attention on minimizing the volume of low level radioactive waste (LLW) that required disposal. This was driven by several factors including rising disposal costs, increased regulatory pressures, and increased pressure from other organizations such as INPO. In the 1990's most utilities are faced with intense competition in the electrical generation market. The survival of a utility is based on their ability to produce electricity by the most efficient and economical means available. Waste management related costs are a substantial portion of most utilities O ampersand M budgets. Disposal site access denial continues to be a major factor in waste management program decision, and the pressures to minimize waste volumes from outside organizations is greater than ever

  13. Integration of U.S. Department of Energy (DOE) contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    International Nuclear Information System (INIS)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers' health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex

  14. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  15. Environmental assessment for DOE permission for the off-loading and transportation of commercial low-level radioactive waste across the Savannah River Site

    International Nuclear Information System (INIS)

    1997-10-01

    The Department of Energy (DOE) prepared this Environmental Assessment (EA) to assess the potential environmental impacts associated with DOE allowing Chem-Nuclear Systems, L.L.C. (CNS) to off-load and transport low-level radioactive waste (LLW) packages across the Savannah River Site (SRS), located near Aiken, South Carolina, to the nearby CNS facility. The proposed action entails DOE granting permission to CNS to use SRS for landing shipping barges at the existing SRS boat ramp and off-loading trailered LLW packages for transportation across SRS to the CNS facility. Project activities would include modification of the SRS boat ramp on the Savannah River, as needed for off-loading activities, and construction of a bridge across Lower Three Runs. The proposed action also encompasses any similar future off-loading and transportation activities for LLW en route to the CNS facility. The National Environmental Policy Act requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an Environmental Impact Statement (EIS)

  16. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  17. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    Peel, J.W.; Levin, G.B.

    1980-01-01

    In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document

  18. IEN low-level radioactive waste management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-09-01

    The low-level radioactive waste produced in Instituto de Engenharia Nuclear is generated basically from three distinct modes: a particle accelerator (CV-28 Cyclotron), radiochemistry laboratories and the operation of a nuclear research reactor (Argonaut type). In the Cyclotron unit, all water flow from hot labs as well as from the decontamination laundry is retained in special tank with homogenizing system and a remote control, that signalizes when the tank gets a pre-specified level. Samples homogenized from the tank are colected for previous analysis. (Author) [pt

  19. Low-level wastes pathways at EDF

    International Nuclear Information System (INIS)

    Hilmoine, R.; Casseau, L.Ph.

    1999-01-01

    First, what are, for EDF, the main issues dealing with the future management of low level wastes (LLW) will be recalled; and followed by a description of what are the implications of implementing these management principles: areas zoning, set up of pathways, traceability of the wastes and associated controls. The origin of the wastes will then be described using both qualitative and quantitative approaches; the description will specifically address the spreading of wastes production in time. LLW management at EDF will then be envisaged: storage in a specific discharge, pathways for treatment and elimination of wastes with acceptable radiological impact and costs. The example of LLW oils will be developed: particularly as far as hypothesis and results concerning the radiological impacts are concerned. The choice of incineration will then be justified, however expected difficulties to implement it industrially will be pointed out. Other on going studies and their main results will be mentioned: the present time is a turning point on that issue between thought and action; to be on going dismantling must take into account the emerging principles and give rise to good communication. (author)

  20. Low level waste solidification practice in Japan

    International Nuclear Information System (INIS)

    Sakata, S.; Kuribayashi, H.; Kono, Y.

    1981-01-01

    Both sea dumping and land isolation are planned to be accomplished for low level waste disposal in Japan. The conceptual design of land isolation facilities has been completed, and site selection will presently get underway. With respect to ocean dumping, safety surveys are being performed along the lines of the London Dumping Convention and the Revised Definitions and Recommendations of the IAEA, and the review of Japanese regulations and applicable criteria is being expedited. This paper discusses the present approach to waste solidification practices in Japan. It reports that the bitumen solidification process and the plastic solidification process are being increasingly used in Japan. Despite higher investment costs, both processes have advantages in operating cost, and are comparable to the cement solidification process in overall costs

  1. Potential impact of DOE's performance objective for protection of inadvertent intruders on low-level waste disposals at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1992-01-01

    The Department of Energy's Order 5820.2A, Chapter III, specifies performance objectives for disposal of low-level radioactive waste which include limits on effective dose equivalent for inadvertent intruders. This paper investigates the potential impact of the performance objective for protection of inadvertent intruders on the acceptability of waste disposals in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The analysis is based on radionuclide inventories and waste volumes for recent disposals in SWSA 6 and calculated doses to an inadvertent intruder per unit concentration of radionuclides in disposed waste for assumed exposure scenarios

  2. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  3. Scoping evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Examples: Sandia National Laboratories and Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gruebel, M.R.; Parsons, A.M.; Waters, R.D.

    1996-01-01

    The disposal of mixed low-level waste has become an issue for the U.S. Department of Energy and the States since the inception of the Federal Facilities Compliance Act in 1992. Fifteen sites, including Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), have been evaluated to estimate their technical capabilities for disposal of this type of waste after it has been subjected to treatment processes. The analyses were designed to quantify the maximum permissible concentrations of radioactive and hazardous constituents in mixed low-level waste that could potentially be disposed of in a facility at one of the fifteen sites and meet regulatory requirements. The evaluations provided several major insights about the disposal of mixed low-level waste. All of the fifteen sites have the technical capability for disposal of some waste. Maximum permissible concentrations for the radioactive component of the waste at and sites such as SNL and LANL are almost exclusively determined by pathways other than through groundwater. In general, for the hazardous component of the waste, travel times through groundwater to a point 100 meters from the disposal facility are on the order of thousands of years. The results of the evaluations will be compared to actual treated waste that may be disposed of in a facility at one of these fifteen evaluated sites. These comparisons will indicate which waste streams may exceed the disposal limitations of a site and which component of the waste limits the technical acceptability for disposal. The technical analyses provide only partial input to the decision-making process for determining the disposal sites for mixed low-level waste. Other, less quantitative factors such as social and political issues will also be considered

  4. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  5. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  6. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  7. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site

  8. Low level radioactive waste management and discharge policies in Turkey

    International Nuclear Information System (INIS)

    Oezdemir, T.; Oezdemir, C.; Uslu, I.

    2005-01-01

    The legal infrastructure in Turkey for the management of low-level radioactive waste covers the liquid, solid and gaseous wastes. Management of these radioactive wastes is briefly described in this paper. Moreover, delay and decay tank systems that are used to collect and store the low level radioactive wastes as a part of low-level radioactive effluent discharge policy are introduced. (author)

  9. Inheritance from low-level radioactive waste

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kume, Tamikazu; Makuuchi, Keizo; Inoue, Tomio; Komoda, Fumio; Maeda, Mitsuru

    2009-01-01

    A benefit born as an inheritance from low-level radioactive waste is considered. In the present study, a direct economic scale of application of radiation in Japanese industry, agriculture and medicine is taken as parameter for quantifying the size of benefit. In 2006, the economic scale is about 21 billion dollars (b$) for industry, 2.5b$ for agriculture and 14b$ for medicine. Economic scale covered the all fields is totaled 37b$. Due to those benefit, one can drive a car and play an internet, pleasure the dinning food. Diagnosis and treatment by nuclear medicine can possible to survive the millions of lives and resulting in improving the quality of life, decreasing pain and suffering. However, most Japanese (80%>) may not aware those benefits to date. This report is prepared for aiming at disseminating those benefits to our peoples. (author)

  10. Draft low level waste technical summary

    International Nuclear Information System (INIS)

    Powell, W.J.; Benar, C.J.; Certa, P.J.; Eiholzer, C.R.; Kruger, A.A.; Norman, E.C.; Mitchell, D.E.; Penwell, D.E.; Reidel, S.P.; Shade, J.W.

    1995-09-01

    The purpose of this document is to present an outline of the Hanford Site Low-Level Waste (LLW) disposal program, what it has accomplished, what is being done, and where the program is headed. This document may be used to provide background information to personnel new to the LLW management/disposal field and to those individuals needing more information or background on an area in LLW for which they are not familiar. This document should be appropriate for outside groups that may want to learn about the program without immediately becoming immersed in the details. This document is not a program or systems engineering baseline report, and personnel should refer to more current baseline documentation for critical information

  11. Conditioning characterization of low level radioactive waste

    International Nuclear Information System (INIS)

    Osman, A. F.

    2010-12-01

    This study has been carried out in the radioactive waste management laboratory Sudan Atomic Energy Commission. The main purpose of this work is method development for treatment and conditioning of low level liquid waste in order to improve radiation protection level in the country. For that purpose a liquid radioactive material containing Cs-137 was treated using the developed method. In the method different type of materials (cement, sands, concrete..etc) were tested for absorption of radiation emitted from the source as well as suitability of the material for storage for long time. It was found that the best material to be used is Smsmia concrete. Where the surface dose reduced from 150 to 3μ/h. Also design of storage container was proposed (with specification: diameter 6.5 cm, height 6 cm, placed in internal cylinder of diameter 10.3 cm, height 12.3 cm) and all are installed on the concrete and cement in the cylinder. Method was used in the process of double-packaging configuration. For more protection it is proposed that a mixed of cement to fill the void in addition to the sand be added to ensure low amount of radiation exposure while transport or storage. (Author)

  12. Issue briefs on low-level radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management

  13. Development of chemical decontamination for low level radioactive wastes

    International Nuclear Information System (INIS)

    Ichikawa, Seigo; Omata, Kazuo; Obinata, Hiroshi; Nakajima, Yoshihiko; Kanamori, Osamu.

    1995-01-01

    During routine intermittent inspection and maintenance at nuclear power plants, a considerable quantity of low level radioactive waste is generated requiring release from the nuclear site or treating additionally. To decontaminate this waste for safe release from the nuclear power plant, the first step could be washing the waste in Methylene chloride, CH 2 Cl 2 , to remove most of the paint coating. However, CH 2 Cl 2 washing does not completely remove the paint coating from the waste, which in the next step is shot blasted with plastic bead media to loose and remove the remaining paint coating. Following in succession, in the third step, the waste is washed in a chelate solution, after which most waste is decontaminated and suitable to be released for recycling. The residual chelate solution may be decomposed into nontoxic carbon dioxide and water by an electrolysis process and then safely discharged into the environment. (author)

  14. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  15. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  16. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  17. Management of low-level radioactive wastes around the world

    International Nuclear Information System (INIS)

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls

  18. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    1996-03-01

    A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site

  19. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site

  20. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-01-01

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  1. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  2. State and Federal activities on low-level waste

    International Nuclear Information System (INIS)

    1983-01-01

    With the passage of the Low-Level Waste Policy Act in December 1980, the states have assumed the management responsibility and the federal government has become a facilitator. State and Federal roles in regulation have not altered. This paper reviews the developments over the last two years to point out the progress made and critical steps that lie ahead. Both technological and political aspects are covered, and a conclusion is presented with a look to the future. Since compact development in the tool chosen by the politicans for low-level waste management, the author reviews the present status starting with the northwest compact which has been introduced into the House and Senate and is subject to hearings. The past two years have seen real progress in technology in the broadest sense. An information development and dissemination system was established in 1978 wih the state-by-state assessment of low-level waste disposal. Annual examinations have been made through 1981 which enables one to understand the generation of low-level wastes. Policy level planning by states can be supported by the base level of information available. Incineration of dry active waste and other non-fuel cycle waste is ready to be fully accepted. Much work has been done on volume reduction of liquids. The increased understanding of the ways to make a disposal site work represents a major technolological improvement. Within the DOE system, there is beginning to be a real understanding of the critical parameters in disposal site performance in the East

  3. Directions in low-level radioactive-waste management. Planning state policy on low-level radioactive waste

    International Nuclear Information System (INIS)

    1982-10-01

    The majority of states face a growing problem in the management of low-level radioactive waste generated within their borders. The current uncertainty regarding the availability of disposal sites for these waste products exacerbates their increasing generation rate. The purpose of this publication is to assist state governments in planning effective policy to address these problems. Background information is presented on the current situation, the responsibilities of state government, and the assistance available to states from federal agencies and national groups. The document then focuses on state policy planning, including: (a) methodology for assessing a state's current waste management status and for projecting future needs, (b) consideration of waste management options for a state, and (c) insight into the possible effects and implications of planned policies. This information is intended primarily for state officials - executive, legislative, and agency - and does not include detailed technical information on waste characteristics or handling techniques

  4. Mixed Low-Level Radioactive Waste (MLLW) Primer

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.

    1999-01-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options

  5. Use of segregation techniques to reduce stored low level waste

    International Nuclear Information System (INIS)

    Nascimento Viana, R.; Vianna Mariano, N.; Antonio do Amaral, M.

    2000-01-01

    This paper describes the use of segregation techniques in reducing the stored Low Level Waste on Intermediate Waste Repository 1, at Angra Nuclear Power Plant Site, from 1701 to 425 drums of compacted waste. (author)

  6. Mixed Low-Level Radioactive Waste (MLLW) Primer

    Energy Technology Data Exchange (ETDEWEB)

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  7. Low-level radioactive waste form qualification testing

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  8. Low-level radioactive waste form qualification testing

    International Nuclear Information System (INIS)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing

  9. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  10. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  11. The Department of Energy's National Disposition Strategy for the Treatment and Disposal of Low Level and Mixed Low Level Waste

    International Nuclear Information System (INIS)

    Peterson, G.R.; Tonkay, D.W.

    2006-01-01

    The U.S. Department of Energy's (DOE) Environmental Management (EM) program is committed to the environmental remediation of DOE sites. This cleanup mission will continue to produce large amounts of Low Level Waste (LLW) and Mixed Low-Level Waste (MLLW). This paper reports on the development of the DOE LLW/MLLW National Disposition Strategy that maps the Department's long-range strategy to manage LLW and MLLW. Existing corporate LLW and MLLW data proved insufficient to develop this strategy. Therefore, new data requirements were developed in conjunction with waste managers. The paper will report on the results of this data collection effort, which will result in development of DOE LLW/MLLW disposition maps. (authors)

  12. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  13. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  14. Classification of the Z-Pinch Waste Stream as Low-Level Waste for Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Singledecker, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data package to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.

  15. Leaching studies of low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Dayal, R.; Arora, H.; Milian, L.; Clinton, J.

    1985-01-01

    A research program has been underway at the Brookhaven National Laboratory to investigate the release of radionuclides from low-level waste forms under laboratory conditions. This paper describes the leaching behavior of Cs-137 from two major low-level waste streams, that is, ion exchange bead resin and boric acid concentrate, solidified in Portland cement. The resultant leach data are employed to evaluate and predict the release behavior of Cs-137 from low-level waste forms under field burial conditions

  16. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  17. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  18. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  19. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  20. Performance assessment for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Cook, J.R.; Hsu, R.H.; Wilhite, E.L.; Yu, A.D.

    1996-01-01

    In October 1994 the Savannah River Site became the first US DOE complex to use concrete vaults to dispose of low-level radioactive solid waste and better prevent soil and groundwater contamination. This article describes the design and gives a performance assessment of the vaults. Topics include the following: Performance objectives; scope; the performance assessment process-assemble a multidisciplinary working group; collect available data; define credible pathways/scenarios; develop conceptual models; conduct screening and detailed model calculations; assess sensitivity/uncertainty; integrate and interpret results; report. 9 figs., 3 tabs

  1. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  2. Guidelines for interim storage of low level waste

    International Nuclear Information System (INIS)

    Hornibrook, C.; Castagnacci, A.; Clymer, G.; Kelly, J.; Naughton, M.; Saunders, P.; Stoner, P.; Walker, N.; Cazzolli, R.; Dettenmeier, R.; Loucks, L.; Rigsby, M.; Spall, M.; Strum, M.

    1992-12-01

    This report presents an overview of on-site storage of Low Level Waste while providing guidelines for using the complete Interim On-Site Storage of Low Level Waste report series. Overall, this report provides a methodology for planning and implementing on-site storage

  3. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cannon, J.B.; Jacobs, D.G.; Lee, D.W.

    1986-02-01

    The performance objectives included in regulations for disposal of low-level radioactive waste (10 CFR 61 for commercial waste and DOE Order 5820.2 for defense waste) are generic principles that generate technical requirements which must be factored into each phase of the development and operation of a shallow land burial facility. These phases include a determination of the quantity and characteristics of the waste, selection of a site and appropriate facility design, use of sound operating practices, and closure of the facility. The collective experience concerning shallow land burial operations has shown that achievement of the performance objectives (specifically, waste isolation and radionuclide containment) requires a systems approach, factoring into consideration the interrelationships of the phases of facility development and operation and their overall impact on performance. This report presents the technical requirements and procedures for the development and operation of a shallow land burial facility for low-level radioactive waste. The systems approach is embodied in the presentation. The report is not intended to be an instruction manual; rather, emphasis is placed on understanding the technical requirements and knowing what information and analysis are needed for making informed choices to meet them. A framework is developed for using the desired site characteristics to locate potentially suitable sites. The scope of efforts necessary for characterizing a site is then described and the range of techniques available for site characterization is identified. Given the natural features of a site, design options for achieving the performance objectives are discussed, as are the operating practices, which must be compatible with the design. Site closure is presented as functioning to preserve the containment and isolation provided at earlier stages of the development and operation of the facility

  4. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  5. Low-level radioactive waste management: French and foreign regulations

    International Nuclear Information System (INIS)

    Coulon, R.

    1991-01-01

    This paper describes radioactive waste management regulations applied in USA, CANADA, SCANDINAVIA and FRANCE. For low level radioactive wastes, it is necessary to adapt waste management regulations which were firt definite for high level radioactive wastes. So the exemption concept is a simplification method of regulations applied to low radiation sources

  6. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  7. Managing low-level radioactive waste in Massachusetts. Final report

    International Nuclear Information System (INIS)

    Bander, S.R.; Goldstein, M.E.

    1983-12-01

    As one of the country's largest generators of low-level radioactive waste, Massachusetts has begun independently seeking solutions to the questions surrounding low-level waste management issues. The Massachusetts Department of Public Health, Radiation Control Program, obtained funding from the U.S. Department ofEnergy through EG and G, Idaho, Inc. to develop a low-level waste management strategy for the Commonwealth. The Working Group was made up of individuals from various waste generating industries, environmental and public interest groups, medical and academic institutions, and affected state agencies. This final report document contains the following staff project reports: Proposed Low-Level Radioactive Waste Management Plan for The Commonwealth of Massachusetts, February 1983 and Low-Level Radioactive Waste Management in Massachusetts - Actions to be Considered for Implementation in 1984-1986, December 1983. These two staff reports represent the completion of the Massachusetts Low-Level Radioactive Waste Management Project. The first report provides some of the background material to the issues and some of the alternative courses of action which can be considered by state policy-makers. The second report provides the next phase in the process by delineating specific steps which may be taken before 1986 in order to address the low-level waste problem, and the estimated amount of time needed to complete each step

  8. Barnwell low-level waste disposal operations

    International Nuclear Information System (INIS)

    Ebenhack, D.G.

    1982-01-01

    The primary issue that underlies all the regulatory and public scrutiny which has been evidenced for the last few years and will continue into the future, is one in which we in the nuclear industry, based upon a scientific and rational scheme, can show others that radioactive waste materials will be isolated from the biosphere until such time as the danger of environmental degradation is passed. The entire area has been marred by emotions and bias on both sides of the issue and only through a rational and informed decision-making process, as well as an education process for both the public and ourselves, will we work through this to a satisfactory end

  9. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  10. Treatment of uncertainty in low-level waste performance assessment

    International Nuclear Information System (INIS)

    Kozak, M.W.; Olague, N.E.; Gallegos, D.P.; Rao, R.R.

    1991-01-01

    Uncertainties arise from a number of different sources in low-level waste performance assessment. In this paper the types of uncertainty are reviewed, and existing methods for quantifying and reducing each type of uncertainty are discussed. These approaches are examined in the context of the current low-level radioactive waste regulatory performance objectives, which are deterministic. The types of uncertainty discussed in this paper are model uncertainty, uncertainty about future conditions, and parameter uncertainty. The advantages and disadvantages of available methods for addressing uncertainty in low-level waste performance assessment are presented. 25 refs

  11. Investigation of novel electrode materials for electrochemically based remediation of high and low-level mixed wastes in the DOE complex. 1997 annual progress report

    International Nuclear Information System (INIS)

    Anderson, M.A.; Lewis, N.S.

    1997-01-01

    'This work is focused on the preparation of novel electrode materials for the degradation of toxic wastes in the DOE complex. One of the goals of this work is to characterize whether it is possible to use controlled doping of TiO 2 with species such as Nb in order to create new electrode materials that will facilitate the destruction of undesirable organics and inorganics, without light and instead only with an applied potential, in the waste tanks at the DOE sites. In the first part of this project, the authors have therefore spent an extensive amount of effort characterizing, as a baseline, the chemical and electrochemical behavior of TiO 2 itself, so that they can make robust comparisons to the behavior of the Nb-doped systems in subsequent work on this project. The preparation of these electrode films is being performed by Marc Anderson at Wisconsin, who is preparing a number of different stoichiometries, grain sizes, etc. for investigation of their electrochemical properties by the Lewis group at Caltech. First they report on the progress of the electrode preparation work, and then they describe progress on the electrochemical work.'

  12. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99's behavior in the environment and in the human body

  13. Low level radioactive liquid waste treatment at ORNL

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lasher, L.C.

    1977-01-01

    A new Process Waste Treatment Plant has been constructed at ORNL. The wastes are processed through a precipitation-clarification step and then through an ion exchange step to remove the low-level activity in the waste before discharge into White Oak Creek

  14. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body

  15. Low-Level Waste Drum Assay Intercomparison Study

    International Nuclear Information System (INIS)

    Greutzmacher, K.; Kuzminski, J.; Myers, S. C.

    2003-01-01

    Nuclear waste assay is an integral element of programs such as safeguards, waste management, and waste disposal. The majority of nuclear waste is packaged in drums and analyzed by various nondestructive assay (NDA) techniques to identify and quantify the radioactive content. Due to various regulations and the public interest in nuclear issues, the analytical results are required to be of high quality and supported by a rigorous Quality Assurance (QA) program. A valuable QA tool is an intercomparison program in which a known sample is analyzed by a number of different facilities. While transuranic waste (TRU) certified NDA teams are evaluated through the Performance Demonstration Program (PDP), low-level waste (LLW) assay specialists have not been afforded a similar opportunity. NDA specialists from throughout the DOE complex were invited to participate in this voluntary drum assay intercomparison study that was organized and facilitated by the Solid Waste Operations and the Safeguards Science and Technology groups at the Los Alamos National Laboratory and by Eberline Services. Each participating NDA team performed six replicate blind measurements of two 55-gallon drums with relatively low-density matrices (a 19.1 kg shredded paper matrix and a 54.4 kg mixed metal, rubber, paper and plastic matrix). This paper presents the results from this study, with an emphasis on discussing the lessons learned as well as desirable follow up programs for the future. The results will discuss the accuracy and precision of the replicate measurements for each NDA team as well as any issues that arose during the effort

  16. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  17. USDOE activities in low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Vath, J.E.

    1981-01-01

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. During the twelve month period ending September 30, 1981, 14 prime US Department of Energy contractors were involved with over 40 low-level radioactive waste disposal technology projects. Three specific projects or task areas have been selected for discussion to illustrate new and evolving technologies, and application of technology developed in other waste management areas to low-level waste treatment. The areas to be discussed include a microwave plasma torch incinerator, application of waste vitrification, and decontamination of metal waste by melting

  18. Successfully burying low-level waste for fun and profit

    International Nuclear Information System (INIS)

    Strong, T.R.; Kirner, N.P.

    1984-01-01

    The state of Washington, now receiving more than half the nation's waste, is here to provide a practical review of the benefits of having a low-level waste disposal site and to provide our perspective on how the state of Washington carries out its responsibilities through regulation of that disposal site. This information is offered in the hope that it may be useful to other states when they accept their responsibility to provide for the disposal of their low-level radioactive waste. The 1980 Low-Level Waste Policy Act very directly gave the responsibility for finding and developing new waste disposal capacity to the states. Through the process of compacting, the states have begun to accept this responsibility. From Washington's perspective, however, the progress shown to date, especially in some states generating very large amounts of waste, has not been adequate to meet the 1986 deadline

  19. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  20. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  1. Conflict resolution in low-level waste facility siting

    International Nuclear Information System (INIS)

    English, M.R.

    1989-01-01

    Siting a low-level waste facility is only one part of the low-level waste management process. But it is a crucial part, a prism that focuses many of the other issues in low-level waste management. And, as the 1990 and 1992 milestones approach, siting has a urgency that makes the use of alternative dispute resolution (ADR) techniques especially appropriate, to avoid protracted and expensive litigation and to reach creative and durable solutions. Drawing upon literature in the ADR field, this paper discusses ADR techniques as they apply to low-level waste management and the groundwork that must be laid before they can be applied. It also discusses questions that can arise concerning the terms under which negotiations are carried out. The paper then give suggestions for achieving win/win negotiations. Potential objections to negotiated agreements and potential answers to those objections are reviewed, and some requisites for negotiation are given

  2. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  3. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    1980-08-01

    This document is a consensus report of the Low-Level Waste Strategy Task Force. It covers system-wide issues; generation, treatment, and packaging; transportation; and disposal. Recommendations are made

  4. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  5. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  6. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  7. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  8. Plans for managing greater-than-glass C low-level waste

    International Nuclear Information System (INIS)

    Newberry, W.F.; Coleman, J.A.

    1990-01-01

    Low-level waste is defined in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I, Public Law 99-240) as radioactive waste that is neither high-level radioactive waste, spent nuclear fuel, nor by-product material (mill tailings). This paper presents proposed plans for the Department of Energy to fulfill its responsibility to dispose of GTCC LLW under the 1985 law, and to ensure that safe options are available for long-term management of such, pending the availability of disposal capacity. In the absence of a concentration-based definition for high-level waste, there currently is no upper bound for the concentration of radionuclides in low-level waste. DOE's plans for managing and disposing of GTCC LLW are generally consistent with a report issued by the Congressional Office of Technology Assessment in October 1988, An Evaluation of Options for Managing Greater-than-Class C Low-Level Radioactive Waste

  9. Low-level radioactive waste data base management

    International Nuclear Information System (INIS)

    Roles, G.W.

    1987-01-01

    This paper outlines the uses of information obtained from a national system for management of low-level waste shipment manifest information from the perspective of the NRC Division of Waste Management (DWM). A background section is first presented which briefly reviews some of the basic attributes of a workable system, as well as the existing data management systems established by the disposal facility operators. This background leads into a more detailed discussion of the major uses to which a regulatory agency would put the manifest information, including technical studies and analyses of a broad nature as well as day-to-day compliance with regulations and disposal site license conditions. The next two sections respectively summarize NRC's current data base capabilities as well as the limitations in these capabilities. The final section addresses the question: Where do we go from Here? One option under consideration is a rule making which would: (1) set forth the minimum information to be included in shipment manifests in greater detail than that currently specified in 10 CFR 20.311, and (2) require that operators of all low-level waste disposal facilities reduce the information on incoming shipment manifests to an electronic data format which would be periodically forwarded to a centralized location. However, this option would conflict with other NRC priorities and probably require considerable time to implement. Much of the groundwork for a national system has already been prepared, and NRC's preferred approach is to work with States, Compacts, disposal site operators, and DOE to upgrade these existing capabilities. 8 references, 1 figure, 2 tables

  10. A model for a national low level waste program

    International Nuclear Information System (INIS)

    Blankenhorn, James A.

    2009-01-01

    A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site

  11. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  12. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  13. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  14. Hanford low-level tank waste interim performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1997-01-01

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives

  15. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available

  16. Low-level radioactive waste management technology development

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1985-01-01

    Although reviews of disposal practices and site performance indicated that there were no releases to the environment that would affect public health and safety, it became clear that: (a) several burial grounds were not performing as expected; (b) long-term maintenance of closed trenches could be a costly problem, and (c) more cost-effective methods could be developed for the treatment, packing, and disposal of low-level waste. As a result of these reviews, the Department of Energy developed the Low-level Waste Management Program to seek improvements in existing practices, correct obvious deficiencies, and develop site closure techniques that would avoid expensive long-term maintenance and monitoring. Such technology developments provide a better understanding of the physical and technical mechanisms governing low-level waste treatment and disposal and lead to improvement in the performance of disposal sites. The primary means of disposal of low-level waste has been the accepted and regulated practice of shallow land disposal, i.e., placement of low-level waste in trenches 5 to 10 meters deep with several meters of special soil cover. Department of Energy waste is primarily disposed at six major shallow land disposal sites. Commercial waste is currently disposed of at three major sites in the nation - Barnwell, South Carolina; Richland, Washington; and Beatty, Nevada. In the late 1970's public concern arose regarding the management practices of sites operated by the civilian sector and by the Department of Energy

  17. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  18. Waste analysis plan for the low-level burial grounds

    International Nuclear Information System (INIS)

    Barnes, B.M.

    1996-01-01

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds that are located in the 200 East and 200 West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize and obtain and analyze representative samples of waste managed at this unit

  19. Commission administration. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1984-09-01

    This report is one in a series of commission option documents prepared for the US Department of Energy, designed to assist regional low-level waste compact commissions in their organization, administration and efforts to effectively manage waste within their regions. In particular, this report addresses topics related to commission administrative procedures, personnel, procurement and finance

  20. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    1983-04-01

    Chapters are devoted to the following: introduction; a brief description of low-level radioactive wastes and their management; system-side issues; waste reduction and packaging; transportation; disposal; issues for further study; and summary of recommendations. Nine appendices are included

  1. Low-level waste packaging--a managerial perspective

    International Nuclear Information System (INIS)

    Motl, G.P.; Hebbard, L.B. Jr.

    1980-01-01

    This paper emphasizes managerial responsibility for assuring that facility waste is properly packaged. Specifically, existing packaging regulations are summarized, several actual violations are reviewed and, lastly, some recommendations are made to assist managerial personnel in fulfilling their responsibility to ensure that low-level waste is packaged safely and properly before shipment to the disposal site

  2. Facility for low-level solid waste treatment

    International Nuclear Information System (INIS)

    Vicente, R.; Miyamoto, H.

    1987-01-01

    A facility for low-level solid waste compaction, encapsulation and storage is described. Solid wastes are compacted in 200 l drums and stored over concrete platforms covered with canvas, for decay or for interim storage before transport to the final disposal site. (Author) [pt

  3. The storage center of very-low level radioactive wastes

    International Nuclear Information System (INIS)

    2008-01-01

    The low level radioactive wastes have a radioactivity level as same as the natural radioactivity. This wastes category and their storage has been taken into account by the french legislation. This document presents the storage principles of the site, containment, safety and the Center organization. (A.L.B.)

  4. Waste analysis plan for the low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Haas, C.R.

    1996-09-19

    This waste analysis plan (WAP) has been prepared for the Low-Level Burial Grounds (LLBG) which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

  5. Low-level waste management at the Nuclear Research Center

    International Nuclear Information System (INIS)

    Montanez, O.; Blanco, D.; Vallarino, V.; Calisto, W.

    1986-01-01

    A general overview of low-level radioactive waste management at the Nuclear Investigation Centre (CIN) of Uruguay is presented. The CIN is a pilot centre of research and development of techniques for implementing measurements for radioactive waste storage and control. (M.C.K.) [pt

  6. Characteristics of medically related low-level radioactive waste

    International Nuclear Information System (INIS)

    Weir, G.J. Jr.; Teele, B.

    1986-07-01

    This report describes a survey that identified the current sources of medically generated radioactive wastes. Included are recommendations on how to reduce the volume of medically-related material classified as low-level radioactive wastes, to improve handling techniques for long-lived radioisotopes, and for options for the use of radioactive materials in medical studies. 8 refs., 11 tabs

  7. Illinois perspective on low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Etchison, D.

    1984-01-01

    Illinois is a big generator of low level radioactive waste. It has had extensive experience with controversial waste disposal and storage facilities. This experience makes it difficult for the public and political leaders in Illinois to support the establishment of new disposal facilities in the state. Yet, with extensive debates and discussions concerning the Low Level Waste Policy Act of 1980 and the proposed Midwest Compact, political leaders and the public are facing up to the fact that they must be responsible for the disposal of the low level radioactive waste generated in the state. The Governor and many political leaders from Illinois support the regional approach and believe it can be an innovative and progressive way for the state to deal with the range of low level waste management and disposal problems. A version of the Midwest Interstate Low Level Waste Compact has become Illinois law, but it has significant differences from the one adopted by five other states. Like other states in the midwest and northeast, Illinois is opposed to Congressional consent of the four pending compacts before the remaining two compacts, the northeast and midwest are sent to Washington and interregional agreements are negotiated between the sited and non-sited regions. A new national system must be established before access to existing commercial disposal becomes restricted

  8. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  9. Modeling and low-level waste management: an interagency workshop

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Stratton, L.E. (comps.)

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  10. Low-level nuclear waste in Washington State

    International Nuclear Information System (INIS)

    Williams, H.

    1986-01-01

    A commercial disposal site for low-level nuclear wastes opened at Hanford in 1965. By 1971 a total of six were in operation: Hanford, Nevada, South Carolina, Kentucky, New York State, and Illinois. The history of the operation of these sites is described. Only the first three listed are still open. The effects of the large volumes of waste expected from Three Mile Island are described. This paper examines the case history of Hanford operations with low-level waste disposal for lessons that might apply in other states being considered for disposal sites

  11. Immobilized low-level waste disposal options configuration study

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed

  12. Modeling and low-level waste management: an interagency workshop

    International Nuclear Information System (INIS)

    Little, C.A.; Stratton, L.E.

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop

  13. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  14. The future of very low level radioactive wastes in question

    International Nuclear Information System (INIS)

    Vignes, Emmanuelle

    2016-01-01

    After having recalled that nuclear plants produce various radioactive wastes, that the Cigeo project is the proposed solution to store these radioactive wastes, this article more particularly addresses the issue of very low level radioactive wastes which are now the main matter of concern for the IRSN as their quantity is expected to increase during the years to come (notably in relationship with nuclear reactor lifetime extension), and as present storage capacities will soon be saturated. The author first outlines that these wastes are not very dangerous but very cumbersome. Among these so-defined 'very low level' wastes, 30 to 50 per cent could be considered as harmless, but are now processed as dangerous wastes through costly processes. Various possibilities are then envisaged such as a diversification of storage options

  15. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  16. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  17. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  18. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  19. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  20. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  1. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  2. Multipurpose container for low-level radioactive waste

    International Nuclear Information System (INIS)

    Anderson, R.T.; Pearson, S.D.

    1993-01-01

    A method is described for disposing of low-level radioactive waste, comprising the steps of (a) introducing the waste into a multipurpose container, the multipurpose container comprising a polymeric inner container disposed within a concrete outer shell, the shape of the inner container conforming substantially to the shape of the outer shell's inner surface, (b) transporting the waste in the same multipurpose container to a storage location, and (c) storing the container at the storage location

  3. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  4. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  5. Electrochemical processing of low-level waste solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Ebra, M.A.

    1987-01-01

    The feasibility of treating low-level Savannah River Plant (SRP) waste solutions by an electrolytic process has been demonstrated. Although the economics of the process are marginal at the current densities investigated at the laboratory scale, there are a number of positive environmental benefits. These benefits include: (1) reduction in the levels of nitrate and nitrite in the waste, (2) further decontamination of 99 Tc and 106 Ru, and (3) reduction in the volume of waste

  6. Low-level radioactive waste minimization for health care institutions

    International Nuclear Information System (INIS)

    Williams, G.

    1990-01-01

    In recent years medical waste has been the subject of considerable public and governmental attention. This has been, in part, due to the media's attraction to unfortunate instances of environmental pollution caused by hazardous and medical wastes. While a considerable amount of information is currently available on the treatment and disposal practices for hazardous wastes, a shortfall of information exists on the subject of medical wastes. Such wastes are generated by various health care institutions. Medical waste is a wide and all encompassing term which refers to a variety of wastes. This presentation addresses medical low-level (LLW) radioactive waste; its generation, recovery and handling. The development of generic waste minimization models and greater use of alternative technologies are part of the discussion

  7. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  8. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  9. The Savannah River Plant low-level waste segregation program

    International Nuclear Information System (INIS)

    Wheeler, V.B.

    1987-01-01

    To extend the life of the Savannah River Plant (SRP) Radioactive Waste Burial Ground, a sitewide program has been implemented to segregate waste that is essentially free of contamination from routine radioactive waste. Much of the low-level waste disposed of as radioactive has no detectable contamination and can be buried in a sanitary landfill. A Landfill Monitoring Facility (LMF) will be constructed at SRP to house the state-of-the-art technology required to provide a final survey on the candidate waste streams that had previously been classified as radioactive. 3 figs

  10. Low-level radioactive waste disposal: radiation protection laws

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Guetat, P.; Garbay, H.

    1991-01-01

    The politics of radioactive waste management is a part of waste management and activity levels are one of the components of potential waste pollutions in order to assume man and environment safety. French regulations about personnel and public' radiation protection defines clearly the conditions of radioactive waste processing, storage, transport and disposal. But below some activity levels definite by radiation protection laws, any administrative procedures or processes can be applied for lack of legal regulations. So regulations context is not actually ready to allow a rational low-level radioactive waste management. 15 refs.; 4 tabs.; 3 figs

  11. Application of EPA regulations to low-level radioactive waste

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs

  12. Development of a low-level radioactive waste shipper model. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-03-01

    During 1982, Inter/Face Associates, Inc., conducted a low-level radioactive waste management survey of Nuclear Regulatory Commission (NRC) licensees in Massachusetts for the US Department of Energy's National Low-Level Waste Management Program. In the process of conducting the survey, a model was developed, based on existing NRC license classification systems, that would identify licensees who ship low-level waste for disposal. This report presents the model and documents the procedures used in developing and testing it. After the model was tested, several modifications were developed with the goal of determining the model's ability to identify waste shippers under different parameters. The report includes a discussion of the modifications

  13. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  14. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  15. Low-level radioactive waste transportation safety history

    International Nuclear Information System (INIS)

    McClure, J.D.

    1997-01-01

    The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation's (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described

  16. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  17. Shallow ground burial of low-level waste

    International Nuclear Information System (INIS)

    Camilleri, A.; Cooper, M.B.; Hargrave, N.J.; Munslow-Davies, L.

    1989-01-01

    Acceptance criteria for the disposal of low-level radioactive wastes are presented for adoption throughout Australia, a continent in which there are readily available areas in arid, sparsely inhabited places, likely to be suitable as sites for shallow ground burial. Drawing upon overseas practices and experiences, criteria have been developed for low-level waste disposal and are intended to be applicable and relevant to the Australian situation. Concentration levels have been derived for a shallow ground burial facility assuming a realistic institutional control period of 200 years. A comparison is made between this period and institutional control for 100 years and 300 years. Longer institutional control periods enable the acceptance of higher concentrations of radionuclides of intermediate half-lives. Scenarios, which have been considered, include current Australian pastoral practices and traditional Aboriginal occupancy. The derived radionuclide concentration levels for the disposal of low level wastes are not dissimilar to those developed in other countries. 17 refs., 6 tabs., 1 fig

  18. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  19. Greater-than-Class-C low-level radioactive waste management concepts

    International Nuclear Information System (INIS)

    Knecht, M.A.

    1988-01-01

    In 1986, Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 assigned to the Federal Government responsibility for the disposal of commercial greater-than-Class-C (GTCC) low-level radioactive waste (LLW). In 1987, DOE committed to Congress to accept GTCC LLW and provide storage and other waste management as necessary until disposal capacity is available. Current estimates are that about 6,000 m 3 of unpackaged GTCC LLW will be generated to the year 2020. Generators estimate that 100 m 3 of raw GTCC LLW might exceed planned storage capacity to the year 2020. This paper reports the activities of the National Low-Level Waste Program to manage GTCC low-level radioactive waste

  20. Waste analysis plan for the low-level burial grounds. Revision 2

    International Nuclear Information System (INIS)

    Pratt, D.A.

    1997-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste 5 acceptance process, sampling methodologies, analytical techniques, and overall 6 processes that are undertaken for waste accepted for disposal at the Low-Level 7 Burial Grounds (LLBG), which are located in the 200 East and 200 West Areas of 8 the Hanford Facility, Richland, Washington. Because dangerous waste does not 9 include the source, special nuclear, and by-product material components of 10 mixed waste, radionuclides are not within the scope of this documentation. 11 The information on radionuclides is provided only for general knowledge. The 12 LLBG also receive low-level radioactive waste for disposal. The requirements 13 of this WAP are not applicable to this low-level waste

  1. Low-level waste injury: liability, insurance, and indemnification

    International Nuclear Information System (INIS)

    Merz, J.F.

    1986-01-01

    It would be worth developing compatible policies to address the issues involving third-party liabilities which remain unanswered before the different states and interstate compact agreements implementing the Low Level Radioactive Waste Policy Act develop a range of approaches. A plan that draws resources from a number of states would have economic and technological benefits, and could help ensure public confidence in the management of low level radioactive wastes. Interstate cooperation and coordination to produce such a plan would benefit from a Congressional mandate. An appendix arranged alphabetically by state illustrates the range of immunity/waiver, insurance, and limits that already exist

  2. Low-level radioactive waste treatment systems in northern Europe

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1987-08-01

    In the United States, the use of low-level waste (LLW) treatment systems by low level waste generators can be expected to expand with increasing costs for disposal and continuing uncertainty over the availability of disposal space. This development increases the need for performance information and operational data and has prompted the US Department of Energy to commission several compilations of LLW systems experience. The present paper summarizes some of the know-how from Northern Europe where the incentive for LLW treatment and volume reduction is very high since deposition space has not been available for many years. 65 refs., 10 figs., 4 tabs

  3. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  4. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  5. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-01-01

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  6. LLW (Low-Level Waste) Forum meeting report, February 10-13, 1998, San Diego, CA

    International Nuclear Information System (INIS)

    1998-01-01

    The Low-Level Radioactive Waste Forum met in San Diego, California, on February 10--13, 1998. Twenty-four Forum Participants, Alternate Forum Participants, and meeting designees representing 19 compacts, host states, and unaffiliated states participated. Additional information was provided by 19 resource people from, variously, the States of California, Colorado, and Utah; the National Governors' Association; the Department of the Army; EPA; DOE and DOE's National Low-Level Waste Management Program; NRC; the Electric Power Research Institute and the Nuclear Energy Institute; US Ecology, Chem-Nuclear Systems, Envirocare of Utah, and Waste Control Specialists (represented by Egan and Associates); and Rocketdyne Propulsion and Power. Also in attendance, as observers, were six other state and compact officials; a staff person from DOE's National Low-Level Waste Management Program; one NRC headquarters staff person; and seven representatives of other interested parties, including a regional generators' organization, two generators, one California anti-nuclear group, and two private companies

  7. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  8. Overview of treatment and conditioning of low-level wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.

    1986-01-01

    The consideration of alternative technologies in low-level waste management is assumed to be partly a response to current demands for lower risk in waste disposal. One of the determinants of risk in waste disposal is the set of characteristics of the materials placed into disposal cells, i.e., the products of treatment and conditioning operations. The treatment and conditioning operations that have been applied to waste streams are briefly examined. Three operations are the most important determinants of the stability that will contribute to reducing risk at the disposal cell: compaction, high-integrity containers, and solidification. The status of these three operations is reviewed

  9. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  10. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  11. Final closure of a low level waste disposal facility

    International Nuclear Information System (INIS)

    Potier, J.M.

    1995-01-01

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m 3 . The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters per square meter and per year)

  12. Alpha low-level stored waste systems design study

    International Nuclear Information System (INIS)

    Feizollahi, F.; Teheranian, B.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT ampersand E) requirements for each of the three concepts

  13. Scenarios of the TWRS low-level waste disposal program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  14. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  15. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  16. National Low-Level Waste Management Program Radionuclide Report Series

    International Nuclear Information System (INIS)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process

  17. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  18. Environment impact of a very low level waste specific landfill

    International Nuclear Information System (INIS)

    Brun-Yaba, C.; Peres, J.M.; Besnus, F.

    1996-01-01

    Operating enrichment plants, nuclear power plants and reprocessing plants and the decommissioning of nuclear facilities will give rise to large volumes of waste material (concrete, steel and others metals, technological wastes heat insulators...) and most of them, in term of quantities, will be categorized as very low level wastes. This paper deals with the environmental impact of a specific landfill as a final destination for the very low level radioactive waste (VLLW) with the aim of providing technical elements for safer workers practices during the operational and the monitoring phases and for a public occupation after closure of the site. This study has been made on the basis of inventories in terms of estimated quantities and spectra of the French VLLW for a set of scenarios which are representative of practices in a landfill. (author)

  19. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  20. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  1. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  2. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  3. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description

  4. Low-level radioactive waste technology: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  5. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  6. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  7. Talk about disposal for very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2008-01-01

    This paper describes the significance of segregation of very low level waste (VLLW), the current VLLW-definition and its limit value, and presents an introduction of four VLLW-disposing approaches operated world wide, as well as disposal of VLLW in China are also briefly discussed and suggested. (authors)

  8. Champagne for France's second low level [radioactive] waste disposal facility

    International Nuclear Information System (INIS)

    Chevrier, G.P.

    1992-01-01

    Located in the southern Champagne region, France's new million m 3 low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m 3 ), which has been operating since 1969. The design of the repository is described. (Author)

  9. Champagne for France's second low level [radioactive] waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Chevrier, G P [ANDRA, Fontenay aux Roses (France)

    1992-10-01

    Located in the southern Champagne region, France's new million m[sup 3] low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m[sup 3]), which has been operating since 1969. The design of the repository is described. (Author).

  10. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994

    International Nuclear Information System (INIS)

    1994-04-01

    This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings

  11. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings.

  12. Extended storage of low-level radioactive waste: an update

    International Nuclear Information System (INIS)

    Siskind, B.

    1986-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW

  13. Hanford low-level waste process chemistry testing data package

    International Nuclear Information System (INIS)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a open-quotes proof of principleclose quotes test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock ampersand Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM)

  14. Extended storage of low-level radioactive waste: an update

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, B.

    1986-01-01

    If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

  15. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  16. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  17. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  18. Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams

    International Nuclear Information System (INIS)

    Blauvelt, Richard; Small, Ken; Gelles, Christine; McKenney, Dale; Franz, Bill; Loveland, Kaylin; Lauer, Mike

    2006-01-01

    Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be

  19. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  20. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  1. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  2. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  3. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  4. Low-level waste management program: technical program overview

    International Nuclear Information System (INIS)

    Lowrie, R.S.

    1981-01-01

    The mission of the technical program is to develop the technology component of the Department of Energy's Low-Level Waste Management Program and to manage research and development, demonstration, and documentation of the technical aspects of the program. Some of the major technology objectives are: develop and demonstrate techniques for waste generation reduction; develop and demonstrate waste treatment, handling and packaging techniques; develop and demonstrate the technology for greater confinement; and develop the technology for remedial action at existing sites. In addition there is the technology transfer objective which is to compile and issue a handbook documenting the technology for each of the above technology objectives

  5. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Gladney, E.S.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  6. Environmental analysis burial of offsite low-level waste at SRP

    International Nuclear Information System (INIS)

    Poe, W.L.; Moyer, R.A.

    1980-12-01

    The environmental effects of receipt and burial of low-level naval waste generated at Department of Energy Laboratories are assessed in this environmental analysis. Through 1979, this low-level DOE waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. DOE announced on October 26, 1979, that DOE-generated low-level waste would no longer be buried at commercial waste burial sites. SRP was selected to receive the naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only slightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared

  7. Progress on the national low level radioactive waste repository and national intermediate level waste store

    International Nuclear Information System (INIS)

    Perkins, C.

    2003-01-01

    The Australian Government is committed to establishing two purpose-built facilities for the management of Australia's radioactive waste; the national repository for disposal of low level and short-lived intermediate level ('low level') waste, and the national store for storage of long-lived intermediate level ('intermediate level') waste. It is strongly in the interests of public security and safety to secure radioactive waste by disposal or storage in facilities specially designed for this purpose. The current arrangements where waste is stored under ad hoc arrangements at hundreds of sites around Australia does not represent international best practice in radioactive waste management. Environmental approval has been obtained for the national repository to be located at Site 40a, 20 km east of Woomera in South Australia, and licences are currently being sought from the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) to site, construct and operate the facility. The national repository may be operating in 2004 subject to obtaining the required licences. The national store will be located on Australian Government land and house intermediate level waste produced by Australian Government departments and agencies. The national store will not be located in South Australia. Short-listing of potentially suitable sites is expected to be completed soon

  8. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  9. Investigation of Novel Electrode Materials for Electrochemically-Based Remediation of High- and Low-Level Mixed Wastes in the DOE Complex - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.S.; Anderson, M.

    2000-12-01

    New materials are investigated, based on degenerately-doped titanias, for use in the electrochemical degradation of organics and nitrogen-containing compounds in sites of concern to the DOE remediation effort. The data collected in this project appear to provide a rational approach for design of more efficient nanoporous electrodes. Also, osmium complexes appear to be promising candidates for further optimization in operating photo electrochemical cells for solar energy conversion applications.

  10. Investigation of Novel Electrode Materials for Electrochemically-Based Remediation of High- and Low-Level Mixed Wastes in the DOE Complex - Final Report

    International Nuclear Information System (INIS)

    Lewis, N.S.; Anderson, M.

    2000-01-01

    New materials are investigated, based on degenerately-doped titanias, for use in the electrochemical degradation of organics and nitrogen-containing compounds in sites of concern to the DOE remediation effort. The data collected in this project appear to provide a rational approach for design of more efficient nanoporous electrodes. Also, osmium complexes appear to be promising candidates for further optimization in operating photo electrochemical cells for solar energy conversion applications

  11. Issues in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Ashbrook, A.W.

    1984-01-01

    All industry finds itself today enmeshed in a morass of regulation, political apathy and public antagonism when it comes to hazardous industrial waste. Our industry is a world-class leader on all three fronts. There are no disposal facilities in Canada for radioactive wastes and the prognosis for the future is bleak. As the industry gets older, more and more facilities will be closed and require decommissioning. New facilities require plans for the long-term management of their wastes. Indeed, one major public issue with the nuclear industry is the fate of the wastes produced. In looking at the situation in which we find ourselves today with respect to the long-term management of naturally-occurring low-level radioactive wastes, one must wonder where we are going in the future, and whether indeed is an end in sight

  12. Biological intrusion of low-level-waste trench covers

    Science.gov (United States)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  13. Treatment of ORNL liquid low-level waste

    International Nuclear Information System (INIS)

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Discontinuation of the hydrofracture disposal method at Oak Ridge National Laboratory (ORNL) has caused intensive efforts to reduce liquid waste generation. Improving the treatment of slightly radioactive liquid waste, called process waste, has reduced the volume of the resulting contaminated liquid radioactive waste effluent by 66%. Proposed processing improvements could eliminate the contaminated liquid effluent and reduce solid low-level waste by an additional one-third. The improved process meets stringent discharge limits for radionuclides. Discharge limits for radionuclides are expected to be enforced at the outfall of the treatment plant to a creek; currently, limits are enforced at the reservation boundary. Plant discharge is monitored according to the National Pollutant Discharge Elimination System (NPDES) permit for ORNL. 1 ref., 4 figs., 2 tabs

  14. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  15. Management of low level wastes at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Moriya, N.; Ochi, E.

    2006-01-01

    Full text: At Rokkasho Reprocessing Plant (RRP), after start-up of the commercial operation, radioactive wastes will be generated. Wastes generated from a reprocessing plant generally consist of many kinds of characteristics in view of ''activity level'', ''nuclide composition'', ''chemical properties'', ''physical properties'', and so on. For stable operation of a reprocessing plant, we should t reat , ''condition'' and ''dispose'' these wastes considering these wastes characteristics. To contribute to the nuclear fuel cycle project, it is important to evaluate technologies such as, ''Treatment'', ''Conditioning'' and ''Final Disposal'', not only for technical but also for economical aspects. Considering the final disposal in the future, the basic policy in ''Treatment'' and ''Conditioning'' at RRP is shown below: Recover and reuse chemicals (such as nitric acid and TBP, etc.) in plant; Radioactive waste shall be divided, classified and managed according to activity level, nuclide composition, the radiation level, its physical properties, chemical properties, etc.; Treat them based on ''classification'' management with proper combination; Condition them as intermediate forms in order to keep flexibility in the future disposal method; Original volume of annually generated wastes at RRP is estimated as 5600m3 except highly radioactive vitrified waste, and these wastes shall be treated in the following units, which are now under commisioning, in order to reduce and stabilize wastes. Low-level concentrated liquid waste to be treated with a ''Drying and peptization'' unit; Spent solvent to be treated with a ''Pyrolysis and hydrothermal solidification'' unit; Relatively low-level non-alfa flammable wastes to be treated with a ''Incineration and hydrothermal solidification'' unit; CB/BP (Channel Box and Burnable Poison) to be processed with a ''Cutting'' unit; Other wastes to be kept as their generated state with a ''Intermediate storage''. As a result of these

  16. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  17. Leaching behavior of various low-level waste solids

    International Nuclear Information System (INIS)

    Ito, Akihiko; Ouchi, Yasuyoshi; Matsuzuru, Hideo; Wadachi, Yoshiki

    1985-01-01

    This report deals with the leaching of radioactive nuclides from low-level wastes solidified with cement, bitumen or plastics. Considerations are made on the effects of type of solidification matrix and waste; type, amount and exchange frequency of leachate; type and conditions of embedding soil; temperature and pressure; and secular deterioration. It is assumed that a waste composite is entirely immersed in leachate and that the amount of the leachate is large compared to the surface area of the waste. Cement solid is characterized by its high alkalinity and porosity while plastic and bitumen solids are dense and neutral. The content of waste in a composite is low for cement and high for plastics. It is generally high in bitumen solid though it should be reduced if the solid is likely to bulge. The leaching of 137 Cs from cement solid is slightly dependent on the waste-cement ratio while it increases with increasing waste content in the case of plastic or bitumen solid. For 60 Co, the leaching from cement solid depends on the alkalinity of the cement material used though it is not affected by the waste-cement ratio. In the case of plastics and bitumen, on the other hand, the pH value of the waste have some effects on the leaching of 60 Co; the leaching decreases with increasing pH. (Nogami, K.)

  18. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  19. Low-level radioactive waste vitrification: effect of Cs partitioning

    International Nuclear Information System (INIS)

    Horton, W.S.; Ougouag, A.M.

    1986-01-01

    The traditional Low-Level Radioactive Waste (LLW) immobilization options are cementation or bituminization. Either of these options could be followed by shallow-land burial (SLB) or above-ground disposal. These rather simple LLW procedures appeared to be readily available, to meet regulatory requirements, and to satisfy cost constraints. The authorization of State Compacts, the forced closure of half of the six SLB disposal facilities of the nation, and the escalation of transportation/disposal fees diminish the viability of these options. The synergetic combination of these factors led to a reassessment of traditional methods and to an investigation of other techniques. This paper analyzes the traditional LLW immobilization options, reviews the impact of the LLW stream composition on Low-Level Waste Vitrification (LLWV), then proposes and briefly discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV)

  20. Ocean dumping of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. The author concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA

  1. Development of a low-level waste risk methodology

    International Nuclear Information System (INIS)

    Fisher, J.E.; Falconer, K.L.

    1984-01-01

    A probabilistic risk assessment method is presented for performance evaluation of low-level waste disposal facilities. The associated program package calculates the risk associated with postulated radionuclide release and transport scenarios. Risk is computed as the mathematical product of two statistical variables: the dose consequence of a given release scenario, and its occurrence probability. A sample risk calculation is included which demonstrates the method. This PRA method will facilitate evaluation of facility performance, including identification of high risk scenarios and their mitigation via optimization of site parameters. The method is intended to be used in facility licensing as a demonstration of compliance with the performance objectives set forth in 10 CFR Part 61, or in corresponding state regulations. The Low-Level Waste Risk Methodology is being developed under sponsorship of the Nuclear Regulatory Commission

  2. Oak Ridge low-level waste disposal facility designs

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Jones, L.S.

    1991-01-01

    The strategic planning process that culuminates in the identification, selection, construction, and ultimate operation of treatment, storage, and disposal facilities for all types of low-level waste (LLW) generated on the Oak Ridge Reservation (ORR) was conducted under the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. This program considered management of various concentrations of short half-life radionuclides generated principally at Oak Ridge National Laboratory (ORNL) and long half-life radionuclides (principally uranium) generated at the Oak Ridge Y-12 Plant and the Oak Ridge K-25 Plant. The LLWDDD Program is still ongoing and involves four phases: (1) alternative identification and evaluation, (2) technology demonstration, (3) limited operational implementation, and (4) full operational implementation. This document provides a discussion of these phases

  3. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  4. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories

  5. Low-level radioactive waste involved in transportation events

    International Nuclear Information System (INIS)

    Cashwell, C.E.

    1990-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information about radioactive materials transportation accidents and incidents that have occurred in the United States from 1971 through 1989. Using data from RMIR, this paper will provide detailed information on transportation accidents and incidents that have occurred with low-level radioactive wastes. Additionally, overview data on the number of transport accidents and incidents that have occurred and by what transport mode will also be provided. 4 refs., 6 tabs

  6. Preliminary radiological assessments of low-level waste repositories

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Sumerling, T.J.; Ashton, J.

    1988-06-01

    Preliminary assessments of the post-closure radiological impact from the disposal of low-level radioactive wastes in shallow engineered facilities at four sites are presented. This provides a framework to practice and refine a methodology that could be used, on behalf of the Department, for independent assessment of any similar proposal from Nirex. Information and methodological improvements that would be required are identified. (author)

  7. The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1991-01-01

    The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These ''mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs

  8. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  9. The NRC perspective on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, H.L. Jr.; Knapp, M.R.

    1987-01-01

    This paper describes the Nuclear Regulatory Commission's (NRC) actions in response to the Low-Level Radioactive Waste Policy Amendments Act (the Act) and NRC's assistance to States and Compacts working to discharge their responsibilities under the Act. Three of NRC's accomplishments which respond explicitly to direction in the Act are highlighted. These are: development of the capability of expedited handling of petitions addressing wastes below regulatory concern (BRC); development of capability to review and process an application within fifteen months; and development of guidance on alternatives to shallow land burial. Certain NRC efforts concerning special topics related to the Act as well as NRC efforts to assist States and Compacts are summarized

  10. Overview of resuspension model: application to low level waste management

    International Nuclear Information System (INIS)

    Healy, J.W.

    1980-01-01

    Resuspension is one of the potential pathways to man for radioactive or chemical contaminants that are in the biosphere. In waste management, spills or other surface contamination can serve as a source for resuspension during the operational phase. After the low-level waste disposal area is closed, radioactive materials can be brought to the surface by animals or insects or, in the long term, the surface can be removed by erosion. Any of these methods expose the material to resuspension in the atmosphere. Intrusion into the waste mass can produce resuspension of potential hazard to the intruder. Removal of items from the waste mass by scavengers or archeologists can result in potential resuspension exposure to others handling or working with the object. The ways in which resuspension can occur are wind resuspension, mechanical resuspension and local resuspension. While methods of predicting exposure are not accurate, they include the use of the resuspension factor, the resuspension rate and mass loading of the air

  11. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  12. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas

  13. Very Low Level Radioactive Solid Waste Management in CHINA

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting Jun [No. 117 Xisanhuanbeilu, Haidian District, Beijing (China)

    2011-06-15

    This paper introduces the policy and regulations on very low level waste (VLLW) management in China. Given the important decommissioning and site restoration program of the old facility, it is considered necessary to create a new disposal facility dedicated to VLLW. Many general design principles are in common with to the disposal facility for low and intermediate level waste (LILW), namely the isolation of the waste by means of a multibarrier system, but using bentonite and/or high density polyethylene membranes instead of the generalized use of concrete barriers. The design of the facility is consistent with the design of disposal facilities for hazardous waste. The engineering design of two VLLW disposal facilities is introduced.

  14. Volume reduction by crystallization of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Grant, D.C.; Murray, A.P.

    1982-01-01

    Low-level radioactive wastes containing boric acid, borax, or sodium sulfate, with radioactive contaminants, are generated during the operation of nuclear power plants. These wastes require disposal, and as such, it is economically and environmentally desirable to reduce their volume. Crystallization was examined in the laboratory as a means of accomplishing this. The crystallizer was operated in both of two modes: evaporative cooling and total evaporation. A 12 wt% boric acid waste feed was concentrated to a 40 to 45 wt% slurry in both modes of operation. Using pure boric acid, a slurry containing over 60 wt% was obtained. An 18.5 wt% borax waste feed was concentrated to 50 wt% in the total evaporative mode and 70 wt% in the evaporatively cooled mode. A 22 wt% sodium sulfate feed was concentrated to a 78 wt% slurry in the total evaporative mode. For all of the feeds, this represents a 4- to 5-fold volume reduction by the crystallizer

  15. Technical responsibilities in low-level waste disposal

    International Nuclear Information System (INIS)

    Murray, R.L.; Walker, C.K.

    1989-01-01

    North Carolina will be the host state for a low-level radioactive waste (LLRW) disposal facility serving the Southeast Compact for 20 yr beginning in 1993. Primary responsibility for the project rests with the North Carolina Low-Level Radioactive Waste Management Authority, a citizen board. The North Carolina project embodies a unique combination of factors that places the authority in a position to exercise technical leadership in the LLRW disposal field. First, the Southeast Compact is the largest in the United States in terms of area, population, and waste generation. second, it is in a humid rather than an arid region. Third, the citizens of the state are intensely interested in preserving life style, environment, and attractiveness of the region to tourists and are especially sensitive to the presence of waste facilities of any kind. Finally, disposal rules set by the Radiation Protection Commission and enforced by the Radiation Protection Section are stricter than the U.S. Nuclear Regulatory Commission's 10CFR61. These four factors support the authority's belief that development of the facility cannot be based solely on engineering and economics, but that social factors, including perceptions of human risk, concerns for the environment, and opinions about the desirability of hosting a facility, should be integral to the project. This philosophy guides the project's many technical aspects, including site selection, site characterization, technology selection and facility design, performance assessment modeling, and waste reduction policies. Each aspect presents its own unique problems

  16. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  17. Project report for the commercial disposal of mixed low-level waste debris

    International Nuclear Information System (INIS)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project

  18. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  19. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    International Nuclear Information System (INIS)

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was a result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release

  20. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  1. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    1992-01-01

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  2. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  3. Low-level radioactive wastes in subsurface soils

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-01-01

    Low-level radioactive wastes will continue to be buried in shallow-land waste disposal sites. Several of the burial sites have been closed because of the problems that developed as a result of poor site characteristics, types of waste buried, and a number of other environmental factors. Some of the problems encountered can be traced to the activities of microorganisms. These include microbial degradation of waste forms resulting in trench cover subsidence, production of radioactive gases, and production of microbial metabolites capable of complexation, solubilization, and bioaccumulation of radionuclides. Improvements in disposal technology are being developed to minimize these problems. These include waste segregation, waste pretreatment, incineration, and solidification. Microorganisms are also known to enhance and inhibit the movement of metals. Little is known about the role of autotrophic microbial transformations of radionuclides. Such microbial processes may be significant in light of improved disposal procedures, which may result in reductions in the organic content of the waste disposed of at shallow-land sites. 102 references, 5 figures, 19 tables

  4. Secondary Low-Level Waste Treatment Strategy Analysis

    International Nuclear Information System (INIS)

    D.M. LaRue

    1999-01-01

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements

  5. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  6. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    Energy Technology Data Exchange (ETDEWEB)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  7. Review process for low-level radioactive waste disposal license application under Low-Level Radioactive Waste Policy Amendments Act

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1987-08-01

    This document estimates the level of effort and expertise that is needed to review a license application within the required time. It is intended to be used by the NRC staff as well as States and interested parties to provide a better understanding of what the NRC envisions will be involved in licensing a low-level radioactive waste disposal facility. 5 refs., 3 figs., 1 tab

  8. Alternatives generation and analysis report for immobilized low-level waste interim storage architecture

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A., Westinghouse Hanford

    1996-09-01

    The Immobilized Low-Level Waste Interim Storage subproject will provide storage capacity for immobilized low-level waste product sold to the U.S. Department of Energy by the privatization contractor. This report describes alternative Immobilized Low-Level Waste storage system architectures, evaluation criteria, and evaluation results to support the Immobilized Low-Level Waste storage system architecture selection decision process.

  9. 1986 Annual report on Low-Level Radioactive Waste Management progress

    International Nuclear Information System (INIS)

    1987-06-01

    This report summarizes the progress of states and compact regions without low-level waste disposal sites (non-sited compact regions and nonmember states) in 1986 in siting new low-level waste disposal facilities. It also reports the volume of low-level waste received for disposal in 1986 by commercially operated low-level waste disposal facilities. 6 figs., 7 tabs

  10. Solidification of low-level radioactive wastes in masonry cement

    International Nuclear Information System (INIS)

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH 2 ) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na 2 SO 4 can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs

  11. Oak Ridge Low Level Waste Management Task Force summary

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.

    1985-01-01

    New facilities are required in the next five years to manage low level radioactive wastes (LLW) produced on the Oak Ridge Reservation (ORR). The Central Waste Disposal Facility (CWDF) was planned to provide the needed additional facilities beginning in late 1985. The CWDF was planned as a shallow land burial facility to dispose of non-stabilized LLW. However, comments on the CWDF Draft Environmental Impact Statement (DEIS) received from the State of Tennessee, the Environmental Protection Agency, and the Nuclear Regulatory Commission identified major issues related to the treatment of alternatives as required by the National Environmental Policy Act, and the potential for unacceptable groundwater contamination resulting from shallow land burial of non-stabilized waste. A series of initial and detailed evaluations are being conducted to develop the basic environmental performance and cost information needed to compare several LLW management approaches and arrive at a proposed system for development. The evaluations are targeted for completion by October

  12. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  13. EPRI'S low-level waste management R ampersand D program

    International Nuclear Information System (INIS)

    Hornibrook, C.

    1997-01-01

    The immediate challenges facing every organization today are to improve its productivity and increase customer satisfaction. The Electric Power Research Institute (EPRI) responded to this challenge by broadening the scope of its low-level waste (LLW) management program. EPRI offered utilities on-site assistance in evaluating and optimizing their liquid- and solid-waste management programs. The goal is to identify open-quotes cheaper, better, and easierclose quotes solutions, which are documented in a series of reports. These provide step-by-step evaluation processes and straightforward implementation methods. Utility professionals are provided with the necessary technical information and justification for informed waste management decisions. The resulting average annual savings is consistently in excess of $700,000 per facility. The program continues to grow and serves as a model for a number of existing and emerging EPRI programs

  14. Nuclear Regulatory Commission low-level radioactive waste management program

    International Nuclear Information System (INIS)

    1977-09-01

    It is believed that the priorities of NRC work in low-level waste management as described in this action plan are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demand will increase. The plan makes use of expertise within NRC to achieve early results and is coordinated with other Federal agencies having related responsibilities. Since NRC decisions will affect industry, other governmental jurisdictions, private interest groups, and the public at large, procedures were developed to involve them in planning the program

  15. Status of low-level radioactive waste management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  16. Recovery of uranium (VI) from low level aqueous radioactive waste

    International Nuclear Information System (INIS)

    Kulshrestha, Mukul

    1996-01-01

    Investigation was undertaken to evaluate the uranium (VI) removal and recovery potential of a naturally occurring, nonviable macrofungus, Ganoderma Lucidum from the simulated low level aqueous nuclear waste. These low level waste waters discharged from nuclear mine tailings and nuclear power reactors have a typical U(VI) concentration of 10-100 mg/L. It is possible to recover this uranium economically with the advent of biosorption as a viable technology. Extensive laboratory studies have revealed Ganoderma Lucidum to be a potential biosorbent with a specific uptake of 2.75 mg/g at an equilibrium U(VI) concentration of 10 mg/L at pH 4.5. To recover the sorbed U(VI), the studies indicated 0.2N Na 2 CO 3 to be an effective elutant. The kinetics of U(VI) desorption from loaded Ganoderma Lucidum with 0.2N Na 2 CO 3 as elutant, was found to be rapid with more than 75% recovery occurring in the first five minutes, the specific metal release rate being 0.102 mg/g/min. The equilibrium data fitted to a linearised Freundlich plot and exhibited a near 100% recovery of sorbed U(VI), clearly revealing a cost-effective method of recovery of precious uranium from low level wastewater. (author). 7 refs., 3 figs., 1 tab

  17. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  18. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  19. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Daniel, D.E.

    1983-01-01

    Low-level radioactive waste has been produced since the early 1940's. Most of it has been buried in shallow pits at 11 existing sites. Several of the existing sites have performed poorly. Inability to control flow of surface and ground water into and out of disposal pits has been the most important problem. Lack of attention to design of earthen covers over the waste and improper emplacement of the waste in the pits have also contributed to poor performance. Several steps are recommended for improving disposal practices: (1) Waste settlement can be minimized by stacking wastes neatly into pits rather than dumping them randomly; (2) the earthen cover can be made to perform better by making it thicker and by maintaining it properly; and (3) groundwater contamination can be minimized by siting disposal facilities at locations with favorable geohydrologic characteristics. In addition, improved designs are needed for earthen covers, and technology for predicting ground water contamination in the saturated/unsaturated soils that underlie the waste also needs improvement

  20. Low-level radioactive wastes. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them. 18 references

  1. Low-level radioactive wastes. AMA Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them

  2. Segregation of low-level dry active waste

    International Nuclear Information System (INIS)

    Kornblith, L. Jr.; Naughton, M.D.; Welsh, L.

    1984-01-01

    A program has been carried out to characterize the Dry Active Waste (DAW) stream from a typical PWR power plant in order to determine the usefulness of large-volume DAW monitors for segregating such waste in order to dispose of it in appropriate facilities. A waste monitor using plastic scintillation counters was used for measuring the waste. The monitor had a volume of about 300 liters and an overall efficiency of about 12% for a typical fission product mixture. It provides automatic compensation for background radioactivity and can measure a bag of waste in less than a minute, including background measurements. Six hundred consecutively generated bags of DAW were measured. These had a total activity of about one millicurie and an average specific activity of about 540 nanocuries per kilogram. About half of the bags contained less than 1000 nanocuries and had specific activities of less than 100 nanocuries per kilogram. Based on simplified preliminary calculations, it appears that an evaluation of the risks of disposal of bags such as these in a landfill other than a low-level waste disposal facility could be carried out that would demonstrate that such disposal of half or more of these bags would not result in any substantial hazard, either short or long term

  3. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  4. Low-level waste minimization at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Koger, J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    The Y-12 Development Waste Minimization Program is used as a basis for defining new technologies and processes that produce minimum low-level wastes (hazardous, mixed, radioactive, and industrial) for the Y-12 Plant in the future and for Complex-21 and that aid in decontamination and decommissioning (D and D) efforts throughout the complex. In the past, the strategy at the Y-12 Plant was to treat the residues from the production processes using chemical treatment, incineration, compaction, and other technologies, which often generated copious quantities of additional wastes and, with the exception of highly valuable materials such as enriched uranium, incorporated very little recycle in the process. Recycle, in this context, is defined as material that is put back into the process before it enters a waste stream. Additionally, there are several new technology drivers that have recently emerged with the changing climate in the Nuclear Weapons Complex such as Complex 21 and D and D technologies and an increasing number of disassemblies. The hierarchies of concern in the waste minimization effort are source reduction, recycle capability, treatment simplicity, and final disposal difficulty with regard to Complex 21, disassembly efforts, D and D, and, to a lesser extent, weapons production. Source reduction can be achieved through substitution of hazardous substances for nonhazardous materials, and process changes that result in less generated waste.

  5. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  6. Performance objectives of the tank waste remediation system low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-01-01

    Before low-level waste may be disposed of, a performance assessment must be written and then approved by the U.S. Department of Energy. The performance assessment is to determine whether open-quotes reasonable assuranceclose quotes exists that the performance objectives of the disposal facility will be met. The DOE requirements for waste disposal require: the protection of public health and safety; and the protection of the environment. Although quantitative limits are sometimes stated (for example, the all exposure pathways exposure limit is 25 mrem/year), usually the requirements are stated in a general nature. Quantitative limits were established by: investigating all potentially applicable regulations as well as interpretations of the Peer Review Panel which DOE has established to review performance assessments, interacting with program management to establish their needs, and interacting with the public (i.e., the Hanford Advisory Board members; as well as affected Indian tribes) to understand the values of residents in the Pacific Northwest

  7. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  8. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  9. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  10. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  11. Demonstration tests for low level radioactive waste packaging safety

    International Nuclear Information System (INIS)

    Nagano, I.; Shimura, S.; Miki, T.; Tamamura, T.; Kunitomi, K.

    1993-01-01

    The transport packaging for low level radioactive waste (so-called the LLW packaging) has been developed to be utilized for transportation of LLW in 200 liter-drums from Japanese nuclear power stations to the LLW Disposal Center at Rokkashomura in Aomori Prefecture. Transportation is expected to start from December in 1992. We will explain the brief history of the development, technical features and specifications as well as two kinds of safety demonstration tests, namely one is '1.2 meter free drop test' and the other is 'ISO container standard test'. (J.P.N.)

  12. Mathematical modeling in low-level radioactive waste management

    International Nuclear Information System (INIS)

    Ward, D.S.; Yeh, G.T.

    1978-01-01

    Mathematical modeling of moisture transport through near-surface infiltration reduction seals above low-level waste trenches may be used to aid in the evaluation of engineering design alternatives. The infiltration of rainwater must be reduced for successful radionuclide containment within a typical shallow trench. Clay admixtures offer not only long-term integrity, but the necessary durability. The use of models is exemplified in the calculation of spatial moisture content and velocity distributions in the vicinity of a near-surface seal

  13. Computerized low-level waste assay system operation manual

    International Nuclear Information System (INIS)

    Jones, D.F.; Cowder, L.R.; Martin, E.R.

    1976-01-01

    An operation and maintenance manual for the computerized low-level waste box counter is presented, which describes routine assay techniques as well as theory of operation treated in sufficient depth so that an experienced assayist can make nonroutine assays. In addition, complete system schematics are included, along with a complete circuit description to facilitate not only maintenance and troubleshooting, but also reproduction of the instrument if desired. Complete software system descriptions are included so far as calculational algorithms are concerned, although detailed instruction listings would have to be obtained from Group R-1 at LASL in order to make machine-language code changes

  14. Integrated software system for low level waste management

    International Nuclear Information System (INIS)

    Worku, G.

    1995-01-01

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal under the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications

  15. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  16. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  17. Characterization of radionuclude behavior in low-level waste sites

    International Nuclear Information System (INIS)

    Toste, A.P.; Kirby, L.J.; Robertson, D.E.; Abel, K.H.; Perkins, R.W.

    1982-10-01

    Our laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land-burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only 3 H and 60 Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with 137 Cs and 90 Sr. At the aqueous waste disposal site, 3 H and mainly anionic species of certain radionuclides, including 60 Co, 106 Ru, 99 Tc, 131 I, and traces of 238 239 240 Pu, appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites

  18. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  19. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  20. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  1. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  2. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  3. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  4. Description of the Seibersdorf incineration plant for low level waste

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput amounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, cooling column and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, Iodine- and Tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. (Author)

  5. Defining mixed low-level radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Weber, M.F.

    1987-01-01

    During the last several months, staffs of the US Nuclear Regulatory Commission (NRC) and the US Environmental Protection Agency (EPA) have been developing a working definition of Mixed Low-Level Radioactive and Hazardous Waste (Mixed LLW). Such wastes are currently being regulated by NRC under authority of the Atomic Energy Act (AEA), as amended, and by EPA under the Resource Conservation and Recovery Act (RCRA), as amended. Development of the definition is one component of a comprehensive program to resolve differences between the regulatory programs of the two agencies pertaining to the regulation of the management and disposal of Mixed LLW. Although the definition is still undergoing legal and policy reviews in both agencies, this paper presents the current working definition, discusses a methodology that may be used by NRC licensees to identify Mixed LLW, and provides responses to anticipated questions from licensees about the definition. 3 references, 1 figure

  6. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  7. Licensing the California low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; Junkert, R.

    1992-01-01

    California has made significant progress toward the issuance of a license to construct and operate the Southwestern Compact's low-level radioactive waste disposal facility. However, obstacles to completing construction and preparing to receive waste still exist. This paper will describe the technical licensing issues, EIR/S process, political events, and public interactions that have impacted on California regulators' ability to complete the license application review and reach a decision on issuing a license. Issues associated with safely and liability evaluations, finalization of the environmental impact report, and land transfer processes involving multiple state, federal, and local agencies will be identified. Major issues upon which public and political opposition is focusing will also be described. (author)

  8. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  9. A perspective on the management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Champ, D.R.; Charlesworth, D.H.

    1994-01-01

    In Canada, low-level radioactive waste (LLRW) is defined as all radioactive waste except spent fuel waste and tailings. At the time of the conference, the current practice was storage, but programs are underway to dispose of LLRW. AECL has applied for licensing of an intrusion-resistant underground structure. A comprehensive approach to LLRW management calls for: waste stream identification, waste characterization, waste segregation and characterization, waste processing, waste emplacement (storage or disposal); general principles are discussed under these headings. Performance assessment of disposal involves mathematical modelling. Progress has been slow, so if the Canadian nuclear industry does not eventually decide on a joint strategy for LLRW disposal, the federal government may have to impose a solution. 10 refs., 2 figs

  10. Low-level radioactive-waste compacts. Status report as of July 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

  11. Low-level radioactive-waste compacts. Status report as of July 1982

    International Nuclear Information System (INIS)

    1982-07-01

    The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this

  12. Issues in performance assessments for disposal of US Department of Energy low-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Wilhite, E.L.; Duggan, G.J.

    1994-12-01

    The US Department of Energy (DOE) and its contractors have long been pioneers in the field of radiological performance assessment (PA). Much effort has been expended in developing technology and acquiring data to facilitate the assessment process. This is reflected in DOE Order 5820.2A, Radioactive Waste Management Chapter III of the Order lists policy and requirements to manage the DOEs low-level waste; performance objectives for low-level waste management are stated to ensure the protection of public health and the environment. A radiological PA is also required to demonstrate compliance with the performance objectives. DOE Order 5820.2A further requires that an Oversight and Peer Review Panel be established to ensure consistency and technical quality around the DOE complex in the development and application of PA models that include site-specific geohydrology and waste composition. The DOE has also established a Performance Assessment Task Team (PATT) to integrate the activities of sites that are preparing PAs. The PATT's purpose is to recommend policy and guidance to DOE on issues that impact PAs so that the approaches taken are as consistent as possible across the DOE complex

  13. Licensing procedures for Low-Level Waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs

  14. Long-lived radionuclides in low-level waste

    International Nuclear Information System (INIS)

    Cline, J.E.; Coe, L.J.

    1983-01-01

    In July 1982, the Low-Level Waste Licensing Branch of the NRC, anticipating the impact of the proposed Part 61 to 10 CFR, funded a two-year project by SAI to study the radionuclide contents of LWR generated in low-level waste. The objectives of the study are: (1) to analyze, using verified techniques, 150 archived samples for specified beta- and x-ray-emitting nuclides that had not previously been analyzed; (2) to analyze twenty new samples obtained from operating plants for all relevant nuclides and compare them to previous data to ascertain trends; (3) to develop empirical scaling factors through the use of which concentrations of hard-to-analyze nuclides can be estimated from analyses of the gamma-ray emitting nuclides. The new samples are analyzed and the results are summarized and interpreted. Over fifty archived samples have also been analyzed. We discuss scaling factor development. Factors are presented that relate 63 Ni and 59 Ni to 60 Co for PWRs and to 58 Co for BWRs, 90 Sr to 137 Cs for BWRs and 241 Pu, 239 Pu, 241 Am, and 244 Cm to 144 Ce for all LWRs. 8 figures, 3 tables

  15. Properties of slag concrete for low-level waste containment

    International Nuclear Information System (INIS)

    Langton, C.A.; Wong, P.B.

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 x 100 x 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10 -7 cm/sec; and effective nitrate, chromium and technetium diffusivities of 10 -8 , 10 -12 and 10 -12 cm 2 /sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr +6 to Cr +3 and Tc +7 to Tc +4 and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site

  16. Low-level radioactive waste: the Pennsylvania situation

    International Nuclear Information System (INIS)

    Krett, R.E.; Dornsife, W.P.

    1987-01-01

    In December 1985, the Pennsylvania legislature adopted and Governor Thornburgh signed into law the Appalachian States Low-Level Radioactive Waste Compact. The Appalachian Compact provides for the establishment and operation of facilities for regional disposal of low-level radioactive waste (LLRW) to eligible states. Pennsylvania is designated as the initial host state to develop a regional LLRW disposal facility. The Compact legislation did not grant Pennsylvania the authority to license, permit, regulate, inspect or otherwise initiate the processes necessary to establish a LLRW disposal facility. The burden for implementing the Compact is placed on the state of Pennsylvania. The implementing legislation needed to proceed is currently in Pennsylvania's legislative process. Area Screening and Technology Performance/Design Criteria are currently being developed by D.E.R. staff in conjunction with a sixteen member public advisory committee. Upon enactment of the implementing legislation, Pennsylvania will proceed with all processes necessary to develop a regional LLRW disposal facility for the Appalachian Compact. 1 figure, 1 table

  17. Licensing procedures for Low-Level Waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs.

  18. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  19. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    International Nuclear Information System (INIS)

    Shuck, D.L.; Wade, J.F.

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams

  20. Macroencapsulation of low-level debris waste with the phosphate ceramic process

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

    1997-03-01

    Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy's Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes

  1. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  2. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  3. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  4. Microbial degradation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1994-04-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion

  5. Steam reforming of low-level mixed waste. Final report

    International Nuclear Information System (INIS)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies

  6. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  7. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Waste Burial Grounds

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    2000-01-01

    As directed by the U.S. Department of Energy (DOE), Richland Operations Office (DOE-RL), Fluor Hanford, Inc. will implement the requirements of DOE Order 435.1, Radioactive Waste Management, as the requirements relate to the continued operation of the low-level waste disposal facilities on the Hanford Site. DOE Order 435.1 requires a disposal authorization statement authorizing operation (or continued operation) of a low-level waste disposal facility. The objective of this Order is to ensure that all DOE radioactive waste is managed in a manner that protects the environment and personnel and public health and safety. The manual (DOE Order 435.1 Manual) implementing the Order states that a disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980 documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility. Failure to obtain a disposal authorization statement shall result in shutdown of an operational disposal facility. In fulfillment of the requirements of DOE Order 435.1, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area and the 200 West Area Low-Level Burial Grounds. The disposal authorization statement constitutes approval of the performance assessment and composite analysis, authorizes operation of the facility, and includes conditions that the disposal facility must meet. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area Low-Level Burial Grounds be written and approved by the DOE-RL. The monitoring plan is to be updated and implemented within 1 year following issuance of the disposal authorization statement to

  8. Microbial degradation of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented

  9. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  10. Success in siting low-level radioactive waste management facilities

    International Nuclear Information System (INIS)

    Brown, P.; McCauley, D.

    2001-01-01

    Full text: The Government of Canada is about to conclude a legal agreement with three municipalities that will result in a $260-million 10-year multi-phase project to cleanup low-level radioactive wastes and contaminated soils and establish long-term low-level radioactive waste management facilities. Over the last two decades, numerous efforts were undertaken to resolve this long-standing environmental issue. Finally, the communities where the wastes are located came forward with resolutions that they were willing to develop local solutions to the problem. All three municipalities, facilitated by Government funding and assistance, put forward their own local solution to their own waste problem. Government accepted the municipalities' proposals as the basis of a comprehensive approach for dealing with the local problem. Negotiations ensued on Principles of Understanding under which the cleanup would proceed and new long-term waste management facilities would be established. Government's acceptance of the negotiated Principles led to the preparation of a legal agreement that was subsequently signed by each of the municipalities and is now about to be ratified by the Government of Canada. Resolution of the issue will be a major milestone in the Government's environmental agenda. The project will result in an environmentally-responsible, safe, and publicly-accepted approach to the long-term management of the wastes and remove one of the largest contaminated sites issues from the Government's agenda. It also advances the Government's nuclear waste policy and indicates to waste producers that the Government is developing and implementing solutions for wastes for which it is responsible. A key lesson for the Government of Canada in this process has been the advantages of a locally-generated solution. Through the process, the Government empowered the local municipalities to develop their own solution to the local waste problem. It facilitated and supported that effort

  11. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  12. Greater-than-Class C Low-Level Radioactive Waste Program 1992 baseline strategy

    International Nuclear Information System (INIS)

    1993-02-01

    This baseline strategy document describes Department of Energy (DOE) goals, objectives, and strategy for fulfilling its responsibility to dispose of greater-than-Class C low-level radioactive waste (GTCC LLW) according to the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. This document describes the baseline strategy being employed at the end of FY 1992. The strategy for fulfilling the above responsibility consists of three tasks: interim storage of limited quantities of GTCC LLW at a currently operating DOE facility to eliminate a potential public health and safety threcceptance of GTCC LLW for storage in a DOE dedicated facility on an as-needed basis pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission. The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  13. Managing Greater-Than-Class C low-level radioactive waste: A strategic plan

    International Nuclear Information System (INIS)

    1990-04-01

    This strategic plan describes the DOE goals, objectives, and strategy for fulfilling its responsibility to dispose of Greater-Than-Class C low-level radioactive waste (GTCC LLW), in accordance with the requirements of Section 3(b) of the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The strategy for fulfilling this responsibility consists of three sequential tasks: interim storage of limited quantities of GTCC LLW at currently operating DOE facilities on an as-needed basis; general acceptance of GTCC LLW for storage in a DOE dedicated facility pending disposal; and disposal in a facility licensed by the Nuclear Regulatory Commission (NRC). The objectives, assumptions, and strategies for each of these tasks are presented in this plan

  14. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  15. Solid low level waste management guidelines: Final report

    International Nuclear Information System (INIS)

    Castagnacci, A.; Dalton, D.; Genoa, P.

    1994-11-01

    Since 1989, the nuclear industry has been moving in the direction of greater minimization of low level radioactive waste (LLW). This has been driven in part by increasing regulatory attention, but it also is in response to the desire on the part of nuclear utilities to be more cost efficient and to be environmentally responsive. Over the past half-dozen years, LLW disposal costs have increased dramatically. In addition, improvements in LLW volume reduction technologies have substantially reduced the volume of LLW that is disposed. At the same time, utilities are implementing aggressive source reduction programs and programs to reuse materials so as to extend the useful life of many materials. Thus, there has been a dramatic change in LLW economics and LLW management practices in just the past few years. This report was developed by utility nuclear experts to provide guidance to all utilities on mechanisms for integrating the program economics, advanced volume reduction techniques, and approaches to source reduction. Thus, utilizes will be able to use this report as a guide to optimizing their LLW program economics and minimizing LLW disposal volumes to the smallest reasonable fraction. This report discusses the implementation of these guidelines, management support, waste materials and waste inventory, radioactive tool and equipment management, protective clothing management, processing and volume reduction, solid LLW tracking, outage LLW management, and interim storage of LLW

  16. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  17. Performance of engineered barriers for low-level waste

    International Nuclear Information System (INIS)

    Taplin, D.; Claridge, F.B.

    1987-09-01

    Geotechnical Resources Ltd., in association with Komex Consultants Ltd., was retained to collect, synthesize and evaluate the available information on the long term performance of engineered barriers for low-level radioactive wastes disposed in Canada. Literature was researched from Canadian, United States and European sources. A variety of barrier materials were assessed in the study and included natural clays, concrete and cement, metals, bentonite-sand admixes, bitumen and bituminous admixes, soil cement and polymeric membranes. The generalized geological and geotechnical conditions encountered within the soil and rock host media currently under consideration for disposal sites in southern Ontario were also summarized. Both internal barriers, or buffers, to immobilize the waste material and reduce radionuclide mobility, as well as external barriers to limit the migration of contaminants were examined. Microbial activities within the waste forms were analyzed, including cellulose degradation, methanogenesis and bicarbonate and organic reactions. Microbial interactions with the various engineered barrier materials under consideration were also assessed. Finally, the anticipated long term performances of the respective barrier materials under consideration were evaluated, along with the general suitability of the geological host media being proposed for disposal sites

  18. Qualifying concrete for a low-level waste repository

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1990-06-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. Durability of concrete depends on its resistance of deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of ions, especially chlorides, sulphate and carbonate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on twelve months of diffusion testing on laboratory specimens

  19. Low-level nuclear waste tested for fertilizer value

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The nuclear power industry keeps coming up with proposals for getting rid of radioactive waste - burying it deep in the ground, sinking it at sea and even sending it into space reports Common Cause magazine under a headline, The Latest in Recycling. At its Sequoyah Fuels facility in Oklahoma, Kerr-McGee manufactures fuel for nuclear power plants, generating a low-level radioactive liquid waste product called raphinate. After processing to remove radioactive substances, Kerr-McGee has gotten approval from the Nuclear Regulatory Commission to use the nitrogen-rich residue as a fertilizer - but not to market it. As a result, Kerr-McGee is reported to be buying up thousands of acres of land on which to spread raphinate. The acreage is used to grow hay, which the company has gotten an okay to sell. The recycling effort hasn't exactly won neighborhood friends for the company, noted Common Cause. According to Kerr-McGee's corporate communications direct, When you say to somebody, Sequoyah Fuels is putting nuclear waste (on farmland), people jump up a wall

  20. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  1. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  2. Low level waste disposal regulatory issues in the US - 59311

    International Nuclear Information System (INIS)

    James, David; Kalinowski, Thomas; Edwards, Lisa

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The United States led the international efforts to define disposal requirements for low level radioactive wastes with the publication of US Regulations governing the disposal of such wastes. The requirements were based on a system of waste classification based on the concentrations of certain radionuclides considered problematic for the protection of future generations from radiation exposure. The regulation, itself, was based on a process for the development of new disposal sites defined by the US congress to provide an equitable distribution of burden to various regions of the US. This process has met with little success in the almost 30 years since its initiation leaving only an incomplete patchwork of disposal options which are primarily dependant on the same options that existed before the act and regulations were initiated. There is currently a new focus on the basis for some of the regulatory requirements derived from advances in the understanding of dose impacts from certain radionuclides, improvements in performance assessment methodologies, the increased use of engineered barriers, the reality of current disposal economies, along with the failure of the act to conform to expectations. This paper will provide an update on the discussion taking place with a focus on the technical considerations. (authors)

  3. Discussion on the methods for calculation release limits for low-level radioactive waste

    International Nuclear Information System (INIS)

    Cao Fengbo; Liu Xiaochao

    2012-01-01

    The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)

  4. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-01-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results

  5. A performance assessment methodology for low-level waste facilities

    International Nuclear Information System (INIS)

    Kozak, M.W.; Chu, M.S.Y.; Mattingly, P.A.

    1990-07-01

    A performance assessment methodology has been developed for use by the US Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. This report provides a summary of background reports on the development of the methodology and an overview of the models and codes selected for the methodology. The overview includes discussions of the philosophy and structure of the methodology and a sequential procedure for applying the methodology. Discussions are provided of models and associated assumptions that are appropriate for each phase of the methodology, the goals of each phase, data required to implement the models, significant sources of uncertainty associated with each phase, and the computer codes used to implement the appropriate models. In addition, a sample demonstration of the methodology is presented for a simple conceptual model. 64 refs., 12 figs., 15 tabs

  6. Creating interstate compacts for low level waste management

    International Nuclear Information System (INIS)

    Marcus, A.A.

    1986-01-01

    The implementation of the 1980 Low-level Radioactive Waste Policy Act (LLRWPA) depends on the creation of interstate compacts. Compact formation is a public goods problem. Formation may be impeded by opposition from elements in the federal government, the inability of state governments to resolve problems of conflicting political interests, and the possiblity of extensive and unfruitful negotiations. These obstacles my be overcome if fortuitous circumstances exist and entrepreneurial behavior is applied. Guidelines that entrepreneurs may use to facilitate compact formation are relying on the exclusive character of incentives, forming compacts with a small number of members, taking advantage of inequality of interests among prospective members, using solidary incentives to promote cooperation, relying on existing regional organizations to build support, employing a game metaphor to understand the stakes of the participants, and making each party subject to an agreement feel as if it were a winner. (author)

  7. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Using bench scale apparatus, asbestos floats and diatomaceous earth were evaluated as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80% to less than 1%. To collect the same quantity of fly ash, less diatomaceous earth was needed than asbestos floats. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co, counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1% at moderate pressure drop

  8. Low-level stored waste inspection using mobile robots

    International Nuclear Information System (INIS)

    Byrd, J.S.; Pettus, R.O.

    1996-01-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system

  9. The development of gate monitor for low level radioactive waste

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Watanabe, Michito; Kato, Tatsuo

    1994-01-01

    Low-level radioactive waste (LLW) generated from nuclear power plants in Japan, have been deposited in the yard of each power plant. At present, it is stored in about 500,000 drum cans (200l each). These drum cans are carried to Mutsu-ogawara Port by special transport ships and then transferred to Rokkasho LLW transport trucks (special vehicles) for storage. The gate monitor is used to automatically measure the dose rate on the vehicles loaded with transport vessels from a remote location, to ensure the safe transportation from Mutsu-ogawara Port the Burying Center. It is a new system which has been developed for effective measurement of dose rate on a number of transport vessels in a short time. This system is the first in the world for measuring dose rate on vehicles. Such a system cannot be found in any country of the world. (author)

  10. Update on the national low level radioactive waste repository study

    International Nuclear Information System (INIS)

    Veitch, S.M.

    1997-01-01

    Activity to establish a national repository for low-level and short-lived intermediate-level radioactive waste in Australia began in the early 1980's. From the early 1990's computer-based geographic information systems had developed sufficiently so that all of Australia could be quickly reviewed using digital data relevant to site selection criteria. A three-phased approach to site selection was commenced which included an iterative process of data collection, interpretation, and public involvement through discussion papers. All of Australia was reviewed using national-scale data, and eight broad regions were identified and reviewed using regional-scale data. A third phase report will be released shortly which includes details on the process for identifying the preferred region of the eight. This region will be the focus for public involvement and for detailed study to identify a site for the national repository

  11. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  12. Colloids related to low level and intermediate level waste

    International Nuclear Information System (INIS)

    Ramsay, J.D.F.; Russell, P.J.; Avery, R.G.

    1991-01-01

    A comprehensive research investigation has been undertaken to improve the understanding of the potential role of colloids in the context of disposal and storage of low level and intermediate level waste immobilized in cement. Several topics have been investigated which include: (a) the study of the formation and characteristics of colloids in cement leachates; (b) the effects of the near-field aqueous chemistry on the characteristics of colloids in repository environments; (c) colloid sorption behaviour; (d) interactions of near-field materials with leachates; (e) characteristics of near-field materials in EC repository simulation tests; and (f) colloid migration behaviour. These experimental investigations should provide data and a basis for the development of transport models and leaching mechanisms, and thus relate directly to the part of the Task 3 programme concerned with migration and retention of radionuclides in the near field. 114 Figs.; 39 Tabs.; 12 Refs

  13. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  14. Legislator's guide to low-level radioactive waste management

    International Nuclear Information System (INIS)

    Jordan, J.M.; Melson, L.G.

    1981-05-01

    The purpose of the guide is to provide state legislators and their staff with information on low-level radioactive waste management, issues of special concern to the states, and policy options. During 1979, producers of low-level radioactive wastes (LLW) faced a crisis. Two of the three commercial disposal sites were temporarily closed and some LLW producers were running short on storage space. For hospitals, clinics, research organizations, and some industries, this meant potential curtailment of activities that produced these materials. Commercial nuclear reactors were not as hard hit during the crisis because they have larger storage areas. The two sites at Beatty, Nevada, and Hanford, Washington, reopened and the immediate crisis was averted. However, the longer term problem of shortage of disposal capacity was just beginning to be recognized. States should be concerned with this problem for several reasons. First, all states produce LLW although the volumes differ among states. Second, states have the responsibility to protect the public health and welfare of their citizens. Third, states may be given the authority to regulate LLW disposal if they enter into agreements with the federal government (Agreement States Program), and 26 states have that authority. Fourth, because of the long-term monitoring and surveillance necessary at a disposal site, states rather than private industry will be held responsible for ensuring that the disposal site is performing safely. Finally, Congress established a policy in 1980 that each state is responsible for the safe disposal of LLW generated within its borders. This policy also includes provisions that could lead to excluding states from using disposal facilities unless they have entered into regional agreements with other states. Two primary options exist for a state: developing its own disposal facility for LLW generated within its borders or joining with other states to develop a regional disposal facility

  15. Low-level waste research and development activities of the Department of Energy

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1986-01-01

    This paper presents an overview of the technical activities of the Department of Energy's Defense and Nuclear Energy Low-Level Radioactive Waste Management Programs (LLWPs). Although each Program was established with a different purpose, the technologies developed and demonstrated by each are transferable for use in both the commercial and DOE sectors. This paper presents an overview of the technical activities being pursued through both the Defense and Nuclear Energy LLWP's. These technologies have been placed in the following categories; Criteria and Standards, Systems Analysis, Information and Technology Transfer, Waste Treatment and Wast Form, Improved Near Surface Disposal, Greater Confinement Disposal, Corrective Measures, and Monitoring

  16. Low-level radioactive waste performance assessments: Source term modeling

    International Nuclear Information System (INIS)

    Icenhour, A.S.; Godbee, H.W.; Miller, L.F.

    1995-01-01

    Low-level radioactive wastes (LLW) generated by government and commercial operations need to be isolated from the environment for at least 300 to 500 yr. Most existing sites for the storage or disposal of LLW employ the shallow-land burial approach. However, the U.S. Department of Energy currently emphasizes the use of engineered systems (e.g., packaging, concrete and metal barriers, and water collection systems). Future commercial LLW disposal sites may include such systems to mitigate radionuclide transport through the biosphere. Performance assessments must be conducted for LUW disposal facilities. These studies include comprehensive evaluations of radionuclide migration from the waste package, through the vadose zone, and within the water table. Atmospheric transport mechanisms are also studied. Figure I illustrates the performance assessment process. Estimates of the release of radionuclides from the waste packages (i.e., source terms) are used for subsequent hydrogeologic calculations required by a performance assessment. Computer models are typically used to describe the complex interactions of water with LLW and to determine the transport of radionuclides. Several commonly used computer programs for evaluating source terms include GWSCREEN, BLT (Breach-Leach-Transport), DUST (Disposal Unit Source Term), BARRIER (Ref. 5), as well as SOURCE1 and SOURCE2 (which are used in this study). The SOURCE1 and SOURCE2 codes were prepared by Rogers and Associates Engineering Corporation for the Oak Ridge National Laboratory (ORNL). SOURCE1 is designed for tumulus-type facilities, and SOURCE2 is tailored for silo, well-in-silo, and trench-type disposal facilities. This paper focuses on the source term for ORNL disposal facilities, and it describes improved computational methods for determining radionuclide transport from waste packages

  17. International perspective on repositories for low level waste

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva

    2011-12-01

    represent a common type of locality for a repository, given that siting criteria are fulfilled. There is also a site that was selected without any association to existing nuclear sites or mines. This is the case for the French L'Aube repository. National repositories for disposal of all waste arising in that country are common, e.g. El Cabril in Spain and Low Level Repository close to Drigg in United Kingdom. The depth of the repositories varies from being on the surface to down to 650 metres below ground. The geological conditions of the different repositories are described as well as engineered barriers, geographical location and, if available, information on safety analysis. It can be noted that in the safety analysis of repositories located close to the coast (such as in Sweden, Finland and the United Kingdom), the effect of post-glacial land rise or coastal erosion is taken into special consideration. In general, the size of the repository reflects the size of the nuclear programmes in the respective country. The activity content of the facility, both the total and normalised figures against the volume capacities, are compared for groups of radionuclides

  18. International perspective on repositories for low level waste

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Pers, Karin; Almen, Ylva (SKB International AB (Sweden))

    2011-12-15

    represent a common type of locality for a repository, given that siting criteria are fulfilled. There is also a site that was selected without any association to existing nuclear sites or mines. This is the case for the French L'Aube repository. National repositories for disposal of all waste arising in that country are common, e.g. El Cabril in Spain and Low Level Repository close to Drigg in United Kingdom. The depth of the repositories varies from being on the surface to down to 650 metres below ground. The geological conditions of the different repositories are described as well as engineered barriers, geographical location and, if available, information on safety analysis. It can be noted that in the safety analysis of repositories located close to the coast (such as in Sweden, Finland and the United Kingdom), the effect of post-glacial land rise or coastal erosion is taken into special consideration. In general, the size of the repository reflects the size of the nuclear programmes in the respective country. The activity content of the facility, both the total and normalised figures against the volume capacities, are compared for groups of radionuclides

  19. Overview of the performance objectives and scenarios of TWRS Low-Level Waste Disposal Program. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. Assuming the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If the disposal system is not acceptable, then the waste will be subject to possible retrieval followed by some other disposal solution. Westinghouse Hanford Company is also planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing

  20. Management of defense beta-gamma contaminated solid low-level wastes

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    In DOE defense operations, approx. 70,000 m 3 of beta-gamma low-level radioactive waste are disposed of annually by shallow land burial operations at six primary sites. Waste generated at other DOE sites are transported on public roads to the primary sites for disposal. In the practice of low-level waste (LLW) disposal in the US, the site hydrology and geology are the primary barriers to radioactive migration. To date, little emphasis has been placed on waste form improvements or engineered site modifications to reduce migration potential. Compaction is the most common treatment step employed. The performance of ground disposal of radioactive waste in this country, in spite of many practices that we would consider unacceptable in today's light, has resulted in very little migration of radioactivity outside site boundaries. Most problems with previously used burial grounds have been from subsidence at the arid sites and subsidence and groundwater contact at the humid sites. The radionuclides that have shown the most significant migration are tritium, 90 Sr, and 99 Tc. The unit cost for disposal operations at a given DOE site is dependent on many variables, but the annual volume to be disposed is probably the major factor. The average cost for current DOE burial operation is approximately $170/m 3 . 23 figures

  1. Selected radionuclides important to low-level radioactive waste management

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237

  2. Selected radionuclides important to low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  3. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  4. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  5. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  6. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  7. New York State's low-level radioactive waste storage study

    International Nuclear Information System (INIS)

    Spath, John P.

    1992-01-01

    Like their counterparts in other states, low-level radioactive waste (LLRW) generators in New York State face the prospect of being unable to transfer their LLRW off site beginning January 1, 1993. How long will those generators be able to accumulate and store LLRW on site before activities producing the waste are seriously interrupted? Would a centralized storage facility be a more economically viable solution for medical and academic institutions? The New York State Energy Research and Development Authority is conducting a study that seeks to answer these and a variety of related questions over the coming year. This paper describes the origin and design of the study. It reviews the plans for generator-specific data collection, the method for assessing generator storage capability, and the approach to evaluating economic viability. In pursuing this study, the Energy Authority has attempted to incorporate the views of the broad spectrum of LLRW interests. The formation and role of the Study Review Panel, established specifically for that purpose, is discussed. Finally, the paper reviews some of the more interesting questions and issues raised in the development of the study and relates the study to the State's other LLRW management activities, particularly its Interim LLRW Management Plan. (author)

  8. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  9. Equilibrium leach testing of low level waste. Pt. 1

    International Nuclear Information System (INIS)

    Biddle, P.; Gale, M.D.; Godfrey, J.G.; Woodwark, D.R.

    1989-02-01

    The equilibrium leach test was developed to simulate the chemical conditions in a repository after water has penetrated the near field barriers. The principal components of the repository (the waste, backfill and canister simulant) are equilibrated with water under static conditions to simulate the very low water flows likely to be encountered in the repository. The water is sampled at various times over a 1-2 year period and analysed for radionuclides. Equilibrium leach testing has now been extended to low level wastes and this report describes the effects of different backfill compositions. Later reports will deal with the effects of other variables. A series of experiments have been conducted using four different backfills with ferric floc sludge wastes in both oxidising and reducing environments. The water was sampled at 1, 3, 6 and 12 months and analysed for actinides, fission and activation products and inactive components. It was demonstrated that the activities released depended on the nature of the backfill but not very much on the redox potential of the system. Whereas fission and activation products generally reached steady state values by three months, this was not so for the actinides which had not reached a steady value even after twelve months. Initial experiments using membrane filters indicated this was partly due to the presence of colloidal material in the leachates. Similar tests for the inactive components of the leachates did not show any significant colloidal contribution from these elements except for iron and this only in a few cases. The role of these materials cannot be precluded however, since the amounts required to interact with actinides would be very small and might be difficult to detect. (author)

  10. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  11. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  12. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  13. 1989 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs

  14. A review of low-level radioactive waste compacts on a national level

    International Nuclear Information System (INIS)

    Brenneman, F.N.

    1985-01-01

    Since the 1950s, increased quantities of low-level radioactive waste (LLW) have been produced in the United States as a result of the use of radioactive materials in medical diagnoses and treatment, research, industrial processes, and electrical power generation by nuclear plants. With increasing volumes of commercially generated waste, the private sector was encouraged to develop LLW disposal facilities, to be licensed by the AEC or by AEC Agreement states. In 1962, the commercially operated Beaty, Nevada low-level waste facility was opened. During the ensuing nine years, five additional low-level waste disposal facilities opened, resulting, although not planned, in a regional distribution of such facilities. A number of technical and regulatory issues were raised over a period of two years by states and federal agencies, and, for the most part, were resolved. The NRC, DOE, and DOT reviewed and commented on the compacts throughout the drafting of compact language. Comments addressed the scope of the compacts (''management'' vs. ''disposal''), inspection of NRC licensees, regulatory roles of compact commissions, and regulatory requirements inconsistent with federal regulations, to name a few. Among those unresolved issues in some compacts is the definition of LLW, which varies among the compacts. Those in PL96-573 and the Nuclear Waste Policy Act of 1982 were both used, with and without variations. The definition of transuranic waste and those concentrations allowable at the disposal facilities are not uniform in the compacts

  15. Greater-than-Class C low-level waste characterization technical review process

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, D.; Magleby, M.

    1990-01-01

    Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs.

  16. Greater-than-Class C low-level waste characterization technical review process

    International Nuclear Information System (INIS)

    Hutchison, D.; Magleby, M.

    1990-01-01

    Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs

  17. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  18. Evaluating public involvement in the National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1982-09-01

    The Department of Energy contracted with the Keystone Center to evaluate the effectiveness of the National Low-Level Radioactive Waste Management Program's public-involvement efforts. The Center chose six evaluators with diverse training and experience related to low-level waste management and public-participation programs. Keystone's evaluation was based on (a) observations by the evaluators who attended the National Program-sponsored strategy review meetings and fairs; (b) interviews with low-level waste generators, local government officials, state legislators, public-interest groups, and members of the general public; and (c) observations of the final National Program strategy task force meeting. The evaluators concluded that, overall, the public-participation processes yielded some very positive results - for policy development and for DOE and the EG and G staff. They judged the strategy document to be complete, concise, and helpful to public dialogue on low-level waste issues. They also made specific recommendations for improvements to the public-participation program

  19. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  20. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  1. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  2. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997

    International Nuclear Information System (INIS)

    Rittenberg, R.B.

    1998-03-01

    The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP's activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states' and compacts' siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997

  3. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  4. Inventory and characteristics of current and projected low-level radioactive materials and waste in the United States

    International Nuclear Information System (INIS)

    Bisaria, A.; Bugos, R.G.; Pope, R.B.; Salmon, R.; Storch, S.N.; Lester, P.B.

    1994-01-01

    The Integrated Data Base (IDB), under US Department of Energy (DOE) funding and guidance, provides an annual update of compiled data on current and projected inventories and characteristics of DOE and commercially owned radioactive wastes. The data base addresses also the inventories of DOE and commercial spent fuel. These data are derived from reliable information from government sources, open literature, technical reports, and direct contacts. The radioactive materials considered are spent nuclear fuel, high-level waste (HLW), transuranic (TRU) waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, and mixed-LLW. This paper primarily focuses on LLW inventory and characterization

  5. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Bench-scale apparatus was used to evaluate asbestos floats and diatomaceous earth as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80 percent to less than 1 percent. Less diatomaceous earth was needed than asbestos floats, to collect the same quantity of fly ash. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co - , counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1 percent at moderate pressure drop. The filter cake which forms on the pellet surfaces decreases penetration greatly

  6. Innovative designs for low-level nuclear waste disposal trenches

    International Nuclear Information System (INIS)

    Nowatzki, E.A.; Armstrong, G.; McCray, J.

    1985-01-01

    Shallow land burial of low-level nuclear wastes presents many problems that are within the scope of civil engineering analysis and design. These include groundwater seepage, surface water runoff and collection, and the subsidence of trench backfills. Unfortunately, at the time the first disposal sites were being developed, major emphasis was placed on the health-physics aspects of the problem with the result that many of the civil engineering aspects were overlooked and severe problems relating to site integrity exist today. This paper presents the results of a U.S. Nuclear Regulatory Commission (USNRC) sponsored research project conducted at the University of Arizona, Tucson, Arizona, to assess trench cap design from the viewpoint of stability, water infiltration, and economy. Full-scale trenches were constructed that incorporated four different designs. These designs range from a relatively simple cap consisting of engineered backfill with a sloping, compacted soil crown to a more complex cap-crown system that incorporates compacted backfill and a steel reinforced soil-cement cap with an overlaying ''wick'' drain. The results of structural and hydrological monitoring over a period of approximately 15 months are presented. Recommendations are made regarding standard design criteria for future sites based on the results of this research

  7. A Low Level Radioactivity Monitor for Aqueous Waste

    International Nuclear Information System (INIS)

    Quirk, E.J.M.

    1968-04-01

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For β radioactivity the minimum values of specific activity measurable extend from 1 x 10 -6 Ci/m 3 to 6 x 10 -8 Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10 -8 Ci/m 3

  8. Risk assessment and reliability for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Gregory, P.O.; Jones, G.A.

    1986-01-01

    The reliability of critical design features at low-level radioactive waste disposal facilities is a major concern in the licensing of these structures. To date, no systematic methodology has been adopted to evaluate the geotechnical reliability of Uranium Mill Tailings Remedial Action (UMTRA) disposal facilities currently being designed and/or constructed. This paper discusses and critiques the deterministic methods currently used to evaluate UMTRA reliability. Because deterministic methods may not be applicable in some cases because of the unusually long design life of UMTRA facilities, it is proposed that a probabilistic risk assessment-based methodology be used as a secondary method to aid in the evaluating of geotechnical reliability of critical items. Similar methodologies have proven successful in evaluating the reliability of a variety of conventional earth structures. In this paper, an ''acceptable'' level of risk for UMTRA facilities is developed, an evaluation method is presented, and two example applications of the proposed methodology are provided for a generic UMTRA disposal facility. The proposed technique is shown to be a simple method which might be used to aid in reliability evaluations on a selective basis. Finally, other possible applications and the limitations of the proposed methodology are discussed

  9. A Low Level Radioactivity Monitor for Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, E J.M.

    1968-04-15

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For {beta} radioactivity the minimum values of specific activity measurable extend from 1 x 10{sup -6} Ci/m{sup 3} to 6 x 10{sup -8} Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10{sup -8} Ci/m{sup 3}.

  10. Technical issues in licensing low-level radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Junkert, R. [California Dept. of Health Services, CA (United States)

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  11. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control

  12. Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D.G.; Epler, J.S.; Rose, R.R.

    1980-03-01

    A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

  13. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1995

    International Nuclear Information System (INIS)

    Forman, S.

    1995-12-01

    To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities that the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during fiscal year 1995

  14. National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1996

    International Nuclear Information System (INIS)

    Garcia, R.S.

    1996-12-01

    To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities tat the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during Fiscal Year 1996

  15. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes

  16. Extended storage of low-level radioactive waste: potential problem areas

    International Nuclear Information System (INIS)

    Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

    1985-01-01

    If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references

  17. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  18. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms

    International Nuclear Information System (INIS)

    Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

    1998-01-01

    The technology of room-temperature-setting phosphate ceramics or Ceramicretetrademark technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicretetrademark technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR number s ign AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicretetrademark process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicretetrademark technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility

  19. Extended storage of low-level radioactive waste: potential problem areas

    International Nuclear Information System (INIS)

    Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

    1985-12-01

    If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. In this report, extended storage of LLRW is considered in order to determine for the Nuclear Regulatory Commission areas of concern and actions recommended to resolve these concerns. The focus is on the properties and performance of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: (1) Performance of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. (2) Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion). A discussion is given of additional information and actions required to address these concerns

  20. Alternatives To The Burial Of Low-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Price, J. Mark

    2008-01-01

    have been fully dismantled. Proven techniques and equipment are available to dismantle nuclear facilities safely. Most parts of a nuclear power plants do not become radioactive or are contaminated at very low levels and most metal can be recycled. There are obvious environmental benefits to the decontamination, recycle and reuse of materials. The benefits come primarily from the reduction of waste and eliminating the need to obtain fresh materials for the new product. The benefits of recycling in other industries are well recognized. Not having a waste management option can sometimes delay decommissioning of nuclear facilities. Therefore, the availability of a recycling route for the waste may accelerate decommissioning progress. With improving prospects for building new nuclear power plants, the industry would likely use the option if significant amounts of waste materials could be recycled economically. There is little consistency in national approaches to recycling radioactive waste. Many options for recycling allow for the release of materials into the public domain (after decontamination to allowable levels). There is not uniform endorsement of this practice from country to country and some stakeholders do not agree with this type of material release (often reduced to as unconditional release). There is a large amount of material that can have conditional release within the industry that assures consistent endorsement by stakeholders. This material includes: concrete, lead, carbon and stainless steel, and graphite. More work needs to be done to ensure consistency in regulation from country to country. The IAEA is working to this end

  1. National procurement of private-sector treatment for U.S. Department of Energy mixed low-level wastes

    International Nuclear Information System (INIS)

    Berry, J.B.; Jones, D.W.; Seeker, W.R.; Alex, L.J.

    1995-01-01

    The cost of bringing DOE into compliance with the Federal Facilities Compliance Act may be dramatically reduced if the private sector treats DOE mixed low level waste. If the DOE clearly defines this market by using national procurement contracts, the private sector will be able to decide if investing in DOE waste treatment contracts is good business. DOE can structure the mixed waste treatment market to influence the profitability of the contracts and to influence the quality of private sector responses. National procurement contracts will incorporate advice from the private sector so that issues of concern to industry are adequately incorporated

  2. National procurement of private-sector treatment for U.S. Department of Energy mixed low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Seeker, W.R. [Energy and Environmental Research Corp., Irvine, CA (United States); Alex, L.J. [Committee for Environmental Management, Washington (United States)

    1995-12-31

    The cost of bringing DOE into compliance with the Federal Facilities Compliance Act may be dramatically reduced if the private sector treats DOE mixed low level waste. If the DOE clearly defines this market by using national procurement contracts, the private sector will be able to decide if investing in DOE waste treatment contracts is good business. DOE can structure the mixed waste treatment market to influence the profitability of the contracts and to influence the quality of private sector responses. National procurement contracts will incorporate advice from the private sector so that issues of concern to industry are adequately incorporated.

  3. 76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management

    Science.gov (United States)

    2011-09-21

    ...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste...-based approaches to managing waste are also needed to safely manage Low-Level Radioactive Waste. The...

  4. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  5. Low level mixed waste thermal treatment technical basis report

    International Nuclear Information System (INIS)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated

  6. Environmental monitoring of low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Young, M.H.

    1989-12-01

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance

  7. Considerations for evaluating proposed low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    1985-02-01

    Thirty-nine States have enacted legislation related to this Act, and five compacts have been submitted to Congress for consent. Other compacts are being negotiated, one in the West and several in the Midwest and Northeast. The Department of Energy has identified a number of items, which if included in the congressional review of each compact, would be likely to increase the possibility that new disposal sites will be developed and properly supported. The Department is providing additional perspectives that have not been previously included in testimony or reports. By suggesting examination of several general elements of a compact proposal, the Department hopes to provide a common focus that may be useful to the Congress in integrating all available information. The Department believes that the Congress should consider the following key items when reviewing the compacts: Commitments that assure the provision of new disposal capacity in the form of a host-State and site selection process with schedules and a target date for new sites to be opened; Commitments that provide short-term measures for storage, treatment, or disposal during an interim period when such new capacity may not be available; Consistency of definitions with 10 CFR Part 61 to assure the compact plan presents a total solution for all low-level waste generated within the region; Periodic review of the compacts by the Congress to examine concerns that are more easily assessed after a compact becomes operational, e.g., economic viability and long-term institutional control; and Economic viability of a compact, when reviewed in the future, in terms of the benefits and the costs specific to that region

  8. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    International Nuclear Information System (INIS)

    Bell, J.; Drimmer, D.; Giovannini, A.; Manfroy, P.; Maquet, F.; Schittekat, J.; Van Cotthem, A.; Van Echelpoel, E.

    2002-01-01

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which are rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  9. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  10. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  11. Segregation practices in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1981-10-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. For improved processing and disposal of LLW, it is recommended that waste segregation be practiced wherever it is technically feasible and cost-effective to do so. It is noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day

  12. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present

  13. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  14. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  15. Development of a computerized data base for low-level waste leaching data

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Colombo, P.

    1987-01-01

    A computerized data base (db) of low-level waste (LLW) leaching data is being compiled by Brookhaven National Laboratory under contract to the DOE Low-Level Waste Management Program. Although this db is being compiled as part of an effort to develop accelerated leach test procedures for LLW forms, other involved in LLW management may find it useful. The db is implemented on an IBM PC XT and is self-contained in that its data manipulation and analysis programs are not proprietary (i.e., need not be purchased). The db includes data from the Accelerated Leach Test(s) Program plus selected literature data, which have been selected based on criteria that include completeness of the experimental description and elucidation of leaching mechanisms. 6 references, 5 figures, 3 tables

  16. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    International Nuclear Information System (INIS)

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs

  17. Fourteenth annual U.S. Department of Energy low-level radioactive waste management conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This document contains 69 papers that were presented at the Fourteenth Annual U.S. Department of Energy Low-Level Radioactive Waste Management Conference, November 18--20, 1992, in Phoenix, Arizona. The papers address the following general topics: (a) Performance Management Track: risk assessment; waste characterization; site characterization; facility design; groundwater modeling; monitoring and modeling; and regulatory requirements; (b) Technical Track: waste minimization; new technologies; international perspectives; licensing issues; hot topics; commercial storage; DOE storage; treatment technologies; and mixed waste; and (c) Institutional Track: status report; changes in orders, regulations, and guidance; regulatory compliance issues; communicating risk; hot topics; and storage impacts. Papers have been processed separately for inclusion on the data base.

  18. Development of chemical profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.

    1995-01-01

    Chemical and radiological profiles of waste streams from US Department of Energy (DOE) low-level mixed wastes (LLMWs) have been developed by Argonne National Laboratory (ANL) to provide technical support information for evaluating waste management alternatives in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The chemical profiles were developed for LLMW generated from both Waste Management (WM) operations and from Environmental Restoration (ER) activities at DOE facilities. Information summarized in the 1994 DOE Mixed Waste Inventory Report (MWIR-2), the Pacific Northwest Laboratory (PNL) Automated Remedial Assessment Methodology (ARAM), and associated PNL supporting data on ER secondary waste streams that will be treated in WM treatment facilities were used as the sources for developing chemical profiles. The methodology for developing the LLMW chemical profiles is discussed, and the chemical profiles developed from data for contact-handled (CH) non-alpha LLMW are presented in this paper. The hazardous chemical composition of remote-handled (RH) LLMW and alpha LLMW follow the chemical profiles developed for CH non-alpha LLMW

  19. DISPOSALSITE, Low-Level Radioactive Waste Storage Cost Analysis

    International Nuclear Information System (INIS)

    Smith, P.R.

    1990-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associated Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operating life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem - Maxima of: 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  20. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility