WorldWideScience

Sample records for dodecyl sulfate solutions

  1. Interfacial properties of chitosan/sodium dodecyl sulfate complexes

    Directory of Open Access Journals (Sweden)

    Milinković Jelena R.

    2017-01-01

    Full Text Available Contemporary formulations of cosmetic and pharmaceutical emulsions may be achieved by using combined polymer/surfactant system, which can form complexes with different structure and physicochemical properties. Such complexation can lead to additional stabilization of the emulsion products. For these reasons, the main goal of this study was to investigate the interfacial properties of chitosan/sodium dodecyl sulfate complexes. In order to understand the stabilization mechanism, the interface of the oil/water systems that contained mixtures of chitosan and sodium dodecyl sulfate, was studied by measuring the interfacial tension. Considering the fact that the properties of the oil phase has influence on the adsorption process, three different types of oil were investigated: medium-chain triglycerides (semi-synthetic oil, paraffin oil (mineral oil and natural oil obtained from the grape seed. The surface tension measurements at the oil/water interface, for chitosan water solutions, indicate a poor surface activity of this biopolymer. Addition of sodium dodecyl sulfate to chitosan solution causes a significant decrease in the interfacial tension for all investigated oils. The results of this study are important for understanding the influence of polymer-surfactant interactions on the properties of the solution and stability of dispersed systems. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46010

  2. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    Science.gov (United States)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  3. Intercalation and Exfoliation of Kaolinite with Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Xiaochao Zuo

    2018-03-01

    Full Text Available Kaolinite (Kaol was intercalated with dimethyl sulfoxide (DMSO and subsequently methanol (MeOH to prepare intercalation compounds Kaol-DMSO and Kaol-MeOH. Kaol-MeOH was used as an intermediate to synthesize Kaol-sodium dodecyl sulfate (SDS intercalation compound (Kaol-SDS via displacement reaction. The ultrasonic exfoliation of Kaol-SDS produced a resultant Kaol-SDS-U. The samples were characterized by X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FTIR, thermal analysis, scanning electronic microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. The results revealed that the intercalation of sodium dodecyl sulfate into kaolinite layers caused an obvious increase of the basal spacing from 0.72–4.21 nm. The dehydroxylation temperature of Kaol-SDS was obviously lower than that of original kaolinite. During the intercalation process of sodium dodecyl sulfate, a few kaolinite layers were exfoliated and curled up from the edges of the kaolinite sheets. After sonication treatment, the kaolinite layers were further transformed into nanoscrolls, and the exfoliated resultant Kaol-SDS-U possessed a smaller particle size close to nanoscale.

  4. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  7. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Shahabi, Somayyeh

    2011-01-01

    Graphical abstract: Apparent molar volume against molality: o, ·, and Δ, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, Δ, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research highlights: → C 12 H 25 SO 3 Na(SDSn) was seen to interact with PEG more weakly than C 12 H 25 SO 4 Na(SDS). → The constraints on molecular mobility of SDS micelles are larger than those of SDSn. → Entropy change on micellization for SDSn is larger than those for SDS. → Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. → Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C 12 H 25 SO 4 Na) or sodium dodecyl sulfonate (C 12 H 25 SO 3 Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C 12 H 25 SO 4 Na and C 12 H 25 SO 3 Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C 12 H 25 SO 4 Na/C 12 H 25 SO 3 Na and PEG were studied and it was found that sodium alkyl sulfonates were seen to interact more weakly than their sulfate analogues.

  8. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    International Nuclear Information System (INIS)

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-01-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility

  9. The removal of Tartrazine dye by modified Alumina with sodium dodecyl sulfate from aqueous solutions: equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    A. Parchebaf Jadid

    2017-11-01

    Full Text Available Edible colors are materials which in the case of adding to food and drinks cause transferring color to them. Most of these colors are not acceptable in terms of applying in human food and underlies various diseases like gastrointestinal disorders, renal, liver and blood toxicity. The goal of this study was investigating the efficiency of improved alumina by sodium dodecyl sulfate (SDS in eliminating Tartrazine from aqueous environments. In this research, the impact of effective parameters such as initial concentration of Tartrazine, time, pH, alumina dose and SDS value were studied in order to approach an optimal condition for eliminating the color. Also, absorption behavior was evaluated by Freundlich and Langmuir isotherms. The highest efficiency of Tartrazine elimination in the solution resulted in optimal pH of 2, the amount of adsorbent 1.5 g/L, 16 min duration and value 0.04 SDS g/l which was obtained for dye concentration 5 mg/L about 94.13%. Also, results suggested that Tartrazine absorption follows Langmuir isotherm (R2 = 0.9867. Obtained results from thermodynamic studies such as Gibbs free energy (-5.728 Kj/mol and enthalpy (-85.86 Kj/mol and entropy (-271.102 J/mol.K also suggested that the absorption process was exothermic. The results of this research suggested that improved alumina by sodium dodecyl sulfate had a relative good capability in Tartrazine elimination from aqueous environments. Thus

  10. A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.ir [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shahabi, Somayyeh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Apparent molar volume against molality: o, {center_dot}, and {Delta}, respectively in water, (1 and 4) wt% PEG solution at 293.15 K; x, {Delta}, and lozenge, respectively in water, (1 and 4) wt% PEG solution at 313.15 K. Research Highlights: > C{sub 12}H{sub 25}SO{sub 3}Na(SDSn) was seen to interact with PEG more weakly than C{sub 12}H{sub 25}SO{sub 4}Na(SDS). > The constraints on molecular mobility of SDS micelles are larger than those of SDSn. > Entropy change on micellization for SDSn is larger than those for SDS. > Micelle formation of SDS is less endothermic and more spontaneous than that of SDSn. > Micelles of SDS have smaller aggregation number than that of SDSn. - Abstract: The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C{sub 12}H{sub 25}SO{sub 4}Na) or sodium dodecyl sulfonate (C{sub 12}H{sub 25}SO{sub 3}Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C{sub 12}H{sub 25}SO{sub 4}Na and C{sub 12}H{sub 25}SO{sub 3}Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C{sub 12}H{sub 25}SO{sub 4}Na/C{sub 12}H{sub 25}SO{sub 3}Na and PEG were studied and it was found that sodium alkyl sulfonates were seen

  11. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  12. Immobilization of surface active compounds on polymer supports using glow discharge processess. 1. Sodium dodecyl sulfate on poly(propylene)

    NARCIS (Netherlands)

    Terlingen, J.G.A.; Terlingen, Johannes G.A.; Feijen, Jan; Hoffman, Allan S.

    1993-01-01

    A new method has been developed in which a reversibly adsorbed layer of a surfactant (sodium dodecyl sulfate, SDS) is covalently immobilized in one step onto a hydrophobic substrate (poly(propylene), PP) by applying an argon plasma treatment. The adsorption of SDS from aqueous solutions onto PP

  13. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-01-01

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals

  14. Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application

    International Nuclear Information System (INIS)

    Bhardwaj, Tarun; Bhardwaj, Varun; Sharma, Kundan; Gupta, Abhishek; Cameotra, Swaranjit Singh; Sharma, Poonam

    2014-01-01

    Highlights: • The mixed micellar system was analyzed for sodium dodecyl sulfate and fluconazole. • Early micellization was found with CMC shift towards lower surfactant concentration. • Negative ΔG m o values suggested that the micelle formation is spontaneous and feasible. • Thermo-acoustical parameters revealed the existence of intermolecular interactions within the molecules. - Abstract: Micellar systems hold excellent drug delivery applications due to their capability to solubilize a large number of hydrophobic and hydrophilic molecules. In this present work, the mixed micelle formation between the anionic surfactant sodium dodecyl sulfate (SDS) and the ‘Azole’ derivative antifungal drug fluconazole (FLZ) have been studied at four temperatures in different hydro-ethanolic solutions. The critical micelle concentration (CMC) was determined by specific conductance techniques and the experimental data was used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Early micellization was found with critical micelle concentration shifting towards lower concentration (CMC) than the standard concentration of SDS in water at 25 °C suggesting that drug and the solvent system facilitates the micellization process. In addition, the transport properties were examined by employing controlled approaches likely, apparent molar volume (ϕ v ), apparent molar adiabatic compression (ϕ k ), and isentropic compression (κ s ) of SDS in presence of FLZ. These parameters revealed the existence of intermolecular interactions within the molecules. Therefore, this study would cast light on utilizing surfactant immobilized FLZ system for better topical biological action

  15. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  16. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-01-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  17. CLONING AND SEQUENCING OF PSEUDOMONAS GENES DETERMINING SODIUM DODECYL-SULFATE BIODEGRADATION

    NARCIS (Netherlands)

    DAVISON, J; BRUNEL, F; PHANOPOULOS, A; PROZZI, D; TERPSTRA, P

    1992-01-01

    The nucleotide sequences of two genes involved in sodium dodecyl sulfate (SDS) degradation, by Pseudomonas, have been determined. One of these, sdsA, codes for an alkyl sulfatase (58 957 Da) and has similarity (31.8% identity over a 201-amino acid stretch) to the N terminus of a predicted protein of

  18. Thermochemistry of the Dissolution of Dipeptides Containing DL-α-Alanine in Aqueous Solutions of Sodium Dodecyl Sulfate at 298.15 K

    Science.gov (United States)

    Smirnov, V. I.; Badelin, V. G.

    2018-05-01

    Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0-0.07 mol kg-1 and temperature T = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (Δsol H m ) and the transfer of dipeptides (Δtr H m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of Δsol H m and Δtr H m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion-ion, ion-polar, and hydrophobic-hydrophobic interactions between SDS and dipeptide molecules.

  19. A thermodynamic investigation on the binding of lysozme with sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Behbeheni, G.R.; Ramazani, S.; Gonbadi, K.

    2013-01-01

    The interaction of Sodium Dodecyl Sulfate (SDS) with hen egg lysozyme have been investigated at 298, 303 and 308 K in phosphate buffer at two different pH values (5 and 7), by isothermal titration calorimetry. The calorimetric data analysis allows the measurement of the complete set of thermodynamic parameters. The negative SDS ion binds to positive residues, neutralizes the protein surface charges and leads to precipitation and turbidity of the solution. At low concentrations of SDS, the binding is mainly electrostatic, with some simultaneous interaction of the hydrophobic tail with nearby hydrophobic patches on the lysozyme. The enthalpies of denaturation at pH 7 are 180.47, 198.51 and 216.56 for 298, 303 and 308 K respectively. (author)

  20. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  1. Interactions of glutamine dipeptides with sodium dodecyl sulfate in aqueous solution measured by volume, conductivity, and fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenning, E-mail: yanzzn@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Sun Ximeng; Li Weiwei; Li Yu [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001 (China); Wang Jianji [Department of Chemistry, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-10-15

    Highlights: > Ion-ion and ion-polar group interactions are dominant interactions. > The SDS addition and temperature increase cause a dehydration effect on dipeptides. > The addition of dipeptide in water decreases the c{sub cmc} of SDS. > Enthalpy-entropy compensation takes place during micellization. > Micelle aggregation number was decreased by addition of glutamine dipeptides. - Abstract: Densities, conductivities, and fluorescence spectra of {l_brace}sodium dodecyl sulfate (SDS) + glutamine dipeptide + water{r_brace} mixtures were measured as a function of temperature. The density data have been utilized to calculate apparent molar volumes, standard partial molar volumes (V{sub 2,{phi}}{sup o}), standard partial molar volumes of transfer from water to aqueous SDS solutions ({Delta}{sub t}V{sup o}), the hydration number, partial molar expansibility (E{sub {phi}}{sup o}), and Hepler's constant of glutamine dipeptides. The critical micellar concentration (c{sub cmc}) and the degree of counterion dissociation of SDS micelles obtained from electrical conductivity data have been estimated at various concentrations of glutamine dipeptide. Thermodynamic parameters of micellization of SDS in aqueous dipeptide solutions have been determined from c{sub cmc} values and an enthalpy-entropy compensation effect was observed for the ternary systems. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of SDS with glutamine dipeptide, and the aggregation behavior of SDS. The results have been interpreted in terms of solute-solvent interactions and structural changes in the mixed solutions.

  2. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  3. Effects of sodium dodecyl sulfate of polyphenoloxidase

    International Nuclear Information System (INIS)

    Moore, B.M.; Flurkey, W.H.

    1989-01-01

    The effects of sodium dodecyl sulfate (SDS) on the enzymatic and physical characteristics of purified broad bean polyphenoloxidase (PPO) were examined. A sigmoidal increase in PPO activation was observed with increasing SDS concentrations. Half maximal activation occurred at .9 mM SDS well below the CMC of 3.5 mM. No apparent changes in the Km for catechol, pH optimum, of I 50 for tropolone were observed in the presence vs absence of SDS. Thermal inactivation and binding of 14 C dopa increased in the presence of SDS. Analytical ultracentrifugation and HPLC-SEC indicated that SDS did not change the apparent size of the PPO under nondenaturing conditions. Scanning fluorescence spectroscopy showed an increase in intrinsic trp/tyr fluorescence at approximately the same concentration in which SDS activation began. Further addition of SDS caused a large increase in intrinsic fluorescence. These results suggest the SDS causes an apparent conformational change induced by SDS binding which leads to enzyme activation

  4. Polyelectrolyte-surfactant complexes formed by poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]-block-poly(ethylene oxide) and sodium dodecyl sulfate in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, M.; Matějíček, P.; Procházka, K.; Filippov, Sergey K.; Angelov, Borislav; Šlouf, Miroslav; Mountrichas, G.; Pispas, S.

    2011-01-01

    Roč. 27, č. 9 (2011), s. 5275-5281 ISSN 0743-7463 R&D Projects: GA MŠk ME09059; GA ČR GCP205/11/J043; GA ČR GAP208/10/0353 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte-surfactant complexes * sodium dodecyl sulfate * small-angle X-ray scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.186, year: 2011

  5. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  6. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  7. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    Full Text Available Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated. Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004. The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height. Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1 and pore velocity (pressure head of 2 and 10 cm on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column

  8. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Science.gov (United States)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  9. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    Science.gov (United States)

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process

  10. Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer

    International Nuclear Information System (INIS)

    Xu Bin; Lin Wen-Qiang; Wang Xiao-Gang; Zhou Guo-Quan; Chen Jun-Lang; Zeng Song-wei

    2017-01-01

    Molecular dynamics simulations have been performed on the fully hydrated lipid bilayer with different concentrations of sodium dodecyl sulfate (SDS). SDS can readily penetrate into the membrane. The insertion of SDS causes a decrease in the bilayer area and increases in the bilayer thickness and lipid tail order, when the fraction of SDS is less than 28%. Through calculating the binding energy, we confirm that the presence of SDS strengthens the interactions among the DPPC lipids, while SDS molecules act as intermedia. Both the strong hydrophilic interactions between sulfate and phosphocholine groups and the hydrophobic interactions between SDS and DPPC hydrocarbon chains contribute to the tight packing and ordered alignment of the lipids. These results are in good agreement with the experimental observations and provide atomic level information that complements the experiments. (paper)

  11. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  12. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com [Department of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246 (Yemen); Talib, Zainal Abidin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia); Hussein, Mohd Zobir [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM, Serdang, Selangor 43400 (Malaysia)

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  13. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mortazavi, Shirin R. [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); Cheung-Lau, Jasmina C.; Dmochowski, Ivan J. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Loll, Patrick J., E-mail: renyu.liu@uphs.upenn.edu [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  14. Dispersive admicelle solid-phase extraction based on sodium dodecyl sulfate coated Fe3 O4 nanoparticles for the selective adsorption of three alkaloids in Gegen-Qinlian oral liquid before high-performance liquid chromatography.

    Science.gov (United States)

    Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi

    2017-12-01

    A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of Barley Storage Protein, Hordein, for Analytical Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    DEFF Research Database (Denmark)

    Doll, Hans; Andersen, Bente

    1981-01-01

    The extraction, reduction, and alkylation of barley hordein for routine electrophoresis in sodium dodecyl sulfate-polyacrylamide gels were studied to set up a simple preparation procedure giving well-resolved bands in the electrophoresis gel. Hordein was extracted from single crushed seeds or flour...... by aqueous 50% propan-2-ol containing a Tris-borate buffer, pH 8.6. The presence of the buffer facilitates the consecutive complete reduction of the extracted protein in the alcohol. Reduction and alkylation in the buffer containing propan-2-ol give sharper bands in the electrophoresis than reduction...

  16. Sodium dodecyl sulfate-capillary gel electrophoresis of polyethylene glycolylated interferon alpha.

    Science.gov (United States)

    Na, Dong H; Park, Eun J; Youn, Yu S; Moon, Byung W; Jo, Yeong W; Lee, Sung H; Kim, Won-Bae; Sohn, Yeowon; Lee, Kang C

    2004-02-01

    Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using a hydrophilic replaceable polymer network matrix was applied to characterize the polyethylene glycol(PEG)ylated interferon alpha (PEG-IFN). The SDS-CGE method resulted in a clearer resolution in both the PEG-IFN species and the native IFN species. The distribution profile of PEGylation determined by SDS-CGE was consistent with that obtained by SDS-polyacrylamide gel electrophoresis (PAGE) with Coomassie blue or barium iodide staining. The result was also compared using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. SDS-CGE was also useful for monitoring the PEGylation reaction to optimize the reaction conditions, such as reaction molar ratio. This study shows the potential of SDS-CGE as a new method for characterizing the PEGylated proteins with advantages of speed, minimal sample consumption and high resolution.

  17. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation.

    Science.gov (United States)

    Pang, Yuxia; Wang, Shengwen; Qiu, Xueqing; Luo, Yanling; Lou, Hongming; Huang, Jinhao

    2017-12-20

    Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.

  18. Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Vararattanavech, Ardcharaporn; Plasencia, Inés

    2011-01-01

    This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of ...

  19. SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces

    Science.gov (United States)

    Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David

    2012-02-01

    This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.

  20. Studies of the effect of ethanol and sodium chloride on the micellization of sodium dodecyl sulfate by gel filtration

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.

    1976-06-01

    The effects of the addition of ethanol and sodium chloride to aqueous solutions of sodium dodecyl sulfate (SDS) were studied by the gel-filtration method. With an increase in the concentration of ethanol, the CMC decreased and then increased after passing a minimum, while the micellar weight increased and then decreased, showing a corresponding maximum. Above about 40 vol percent ethanol, no micelle formation was observed. The micellar weight and aggregation number in the presence of ethanol were measured in the SDS concentration range of a constant elution rate of micelles. A decrease in the CMC and an increase in the micellar weight of SDS were observed with an increase in the concentration of NaCl from 0 to 10 mmol/l. The gel-filtration study enabled us to make a direct experimental confirmation of the effects of ethanol and NaCl on the micelle formation of SDS.

  1. Pretreatment of clinical specimens with sodium dodecyl (lauryl) sulfate is not suitable for the mycobacteria growth indicator tube cultivation method.

    OpenAIRE

    Pfyffer, G E; Welscher, H M; Kissling, P

    1997-01-01

    When using the Mycobacteria Growth Indicator Tube (MGIT), pretreatment of clinical specimens with N-acetyl-L-cysteine-NaOH is recommended by the manufacturer. Processing of clinical specimens (n = 1,000) with sodium dodecyl (lauryl) sulfate-NaOH resulted in both poor recovery and delayed mean time to detection of acid-fast bacilli. Values were comparable to those obtained on solid media.

  2. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    Science.gov (United States)

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  3. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    Science.gov (United States)

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction.

  4. Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II ions from an aqueous solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-09-01

    Full Text Available Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II ions from an aqueous solution. Methods: A selective adsorbent for Hg(II was synthesized by coating Fe3O4 nanoparticles with sodium dodecyl sulfate which was further functionalized with 2,4-dinitrophenylhydrazine (2,4-DNPH. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR, x-ray diffraction (XRD, scanning electron microscopy (SEM and SEM–EDXSt. The effects of pH, dose of adsorbent and shaking time on adsorption capacity were investigated. The kinetics and equilibrium of adsorption of the metal ions were thoroughly studied. Results: SEM showed that the size of the nanoparticles was 20 to 35 nm. The maximum adsorption capacity for Hg(II was 164.0 mg g-1 for an adsorbent dose of 0.04 g at pH 7.0, 25°C and the initial metal concentration was 25 mg L-1,which was greater than for most adsorbents previously examined for Hg(II adsorption. Adsorption experimental data showed good correlation with the pseudo-secondorder model and Langmuir isotherm model. Conclusion: The results indicated that the DNPH@SDS@Fe3O4 nanoparticles are an efficient adsorbent for removal of heavy metal from wastewater.

  5. Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS- PAGE) of Irradiated Wheat Flour Proteins

    International Nuclear Information System (INIS)

    Souzan, R.M.

    1999-01-01

    Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) of wheat (Triticum aestivum L) flour have revealed 23 polypeptides of molecular weights between 170 and 11.57 KDa, High molecular weight glutenin subunits (LMW-GS) were distinguished. Densitometric analysis of the gel showed the effect of radiation on polypeptide constitution at radiation energy up to 7.5 kGy. Irradiation of wheat flour with 2.5 kGy have resulted in a slight increase in the molecular weight of wheat flour protein subunits. The increase of irradiation dose to 5.0 kGy has also induced an additional increase of molecular weight of protein subunits. The continuity in application of more radiation energy to a level of 7.5 kGy have resulted in the prevalence of degradation processes of all protein subunits more than the aggregation

  6. An investigation of chitosan and sodium dodecyl sulfate interactions in acetic media

    Directory of Open Access Journals (Sweden)

    Petrović Lidija B.

    2016-01-01

    Full Text Available Polymer/surfactant association is a cooperative phenomenon where surfactant binds to the polymer in the form of aggregates, usually through electrostatic or hydrophobic forces. As already known, polyelectrolytes may interact with oppositely charged surfactants through electrostatic attraction that results in polymer/surfactant complex formation. This behavior could be desirable in wide range of application of polymer/surfactant mixtures, such as improving colloid stability, gelling, emulsification and microencapsulation. In the present study surface tension, turbidity, viscosity and electrophoretic mobility measurements were used to investigate interactions of cationic polyelectrolyte chitosan (Ch and oppositely charged anionic surfactant, sodium dodecyl sulfate (SDS, in buffered water. Obtained results show the presence of interactions that lead to Ch/SDS complexes formation at all investigated pH and for all investigated polymer concentrations. Mechanisms of interaction, as well as characteristics of formed Ch/SDS complexes, are highly dependent on their mass ratio in the mixtures, while pH has no significant influence. [Projekat Ministarstva nauke Republike Srbije, br. II46010

  7. NMR studies of the influence of dodecyl sulfate on the amide hydrogen exchange kinetics of a micelle-solubilized hydrophobic tripeptide

    International Nuclear Information System (INIS)

    O'Neil, J.D.J.; Sykes, B.D.

    1989-01-01

    Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, the authors have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. Proton NMR spectroscopy was used to measure exchange using the direct exchange-out into D 2 O technique at 5 degree C and using an indirect steady-state saturation-transfer technique at 25 degree C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylsterate) on the 1 H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. These experiments help to explain the elevated pH min observed for backbone amides in the sodium dodecyl sulfate solubilized M13 coat protein

  8. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 mixed micelles in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M.

    2012-01-01

    Full Text Available The present study is concerned with the determination of the critical micelle concentration (cmc of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails makes it sterically rigid.

  9. Influence of sodium dodecyl sulfate on the reaction between Nile Blue A and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    IVANA A. JANKOVIC

    1999-05-01

    Full Text Available The influence of the anionic surfactant sodium dodecyl sulfate on the rate of the reaction between the cationic form of Nile Blue A and hydrogen peroxide was investigated in the pH range from 5 to 8.5. A retardation of the oxidation of Nile Blue A with hydrogen peroxide of three orders of magnitude was observed at pH 8.5 in the presence of anionic micelles compared to the kinetic data in water. The retardation effect was less pronounced at lower pH values. These effects were explained by the electrostatic interaction of the species involved in the reaction with the negatively charged micellar surface and their effective separation in the vicinity of the micellar surface.

  10. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles.

    Science.gov (United States)

    Schibli, D J; Hwang, P M; Vogel, H J

    1999-03-12

    Lactoferricin B (LfcinB) is a 25-residue antimicrobial peptide released from bovine lactoferrin upon pepsin digestion. The antimicrobial center of LfcinB consists of six residues (RRWQWR-NH2), and it possesses similar bactericidal activity to LfcinB. The structure of the six-residue peptide bound to sodium dodecyl sulfate (SDS) micelles has been determined by NMR spectroscopy and molecular dynamics refinement. The peptide adopts a well defined amphipathic structure when bound to SDS micelles with the Trp sidechains separated from the Arg residues. Additional evidence demonstrates that the peptide is oriented in the micelle such that the Trp residues are more deeply buried in the micelle than the Arg and Gln residues.

  11. Sodium dodecyl sulfate coated alumina modified with a new Schiff's base as a uranyl ion selective adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Science, Shiraz University, 71454 Shiraz (Iran, Islamic Republic of); Moradi Abdoluosofi, L.; Pakniat, M. [Department of Chemistry, Faculty of Science, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Montazerozohori, M. [Department of Chemistry, Faculty of Science, Yasouj University, Yasouj (Iran, Islamic Republic of)

    2011-03-15

    A simple and selective method was used for the preconcentration and determination of uranium(VI) by solid-phase extraction (SPE). In this method, a column of alumina modified with sodium dodecyl sulfate (SDS) and a new Schiff's base ligand was prepared for the preconcentration of trace uranyl(VI) from water samples. The uranium(VI) was completely eluted with HCl 2 M and determined by a spectrophotometeric method with Arsenazo(III). The preconcentration steps were studied with regard to experimental parameters such as amount of extractant, type, volume and concentration of eluent, pH, flow rate of sample source and tolerance limit of diverse ions on the recovery of uranyl ion. A preconcentration factor more than 200 was achieved and the average recovery of uranyl(VI) was 99.5%. The relative standard deviation was 1.1% for 10 replicate determinations of uranyl(VI) ion in a solution with a concentration of 5 {mu}g mL{sup -1}. This method was successfully used for the determination of spiked uranium in natural water samples.

  12. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    Science.gov (United States)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  13. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate

    International Nuclear Information System (INIS)

    Usman, Muhammad; Rashid, Muhammad Abid; Mansha, Asim; Siddiq, Mohammad

    2013-01-01

    Graphical abstract: - Highlights: • Free energy of adsorption is more negative than free energy of micellization. • Micellization becomes more spontaneous at high temperature. • There is strong interaction between PFM and SDS. - Abstract: This manuscript reports the physicochemical behavior of antibiotic amphiphilic drug pefloxacin mesylate (PFM) and its interaction with anionic surfactant, sodium dodecyl sulfate (SDS). The data of surface tension and electrical conductivity are helpful to detect the CMC as well as to calculate surface parameters, i.e. surface pressure, π, surface excess concentration, Γ, area per molecule of drug and standard Gibbs free energy of adsorption, ΔG ads and thermodynamic parameters like standard free energy of micellization, ΔG m , standard enthalpy of micellization, ΔH m and standard entropy of micellization, ΔS m . The interaction of this drug with anionic surfactant, sodium dodecyl sulfate (SDS) was studied by electrical conductivity and UV/visible spectroscopy. This enabled us to compute the values of partition coefficient (K x ), free energy of partition, ΔG p , binding constant, K b , free energy of binding, ΔG b , number of drug molecules per micelle, n, and thermodynamic parameters of drug–surfactant interaction

  14. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values.

    Science.gov (United States)

    Wang, Hao; Wang, Yilin; Yan, Haike; Zhang, Jin; Thomas, Robert K

    2006-02-14

    Isothermal titration microcalorimetry (ITC), conductivity, and turbidity measurements have been carried out to study the interaction of sodium dodecyl sulfate (SDS) with polyethyleneimines (PEI) including linear PEI and branched PEI at different pH values of 3, 7, and 10. In all cases, the polymers show a remarkable affinity toward SDS. At pH 3, the polymer PEI is a strong polycation, and the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At pH 7, the electrostatic attraction between SDS and PEI is weak, and the hydrophobic interaction becomes stronger. At the natural pH of 10, PEI is essentially nonionic and binds SDS in the form of polymer-bound surfactant aggregates. The charge neutralization concentration (C1) of SDS for the PEI-SDS complex can be derived from the curves of variation of the enthalpy, conductivity, and turbidity with SDS concentration. There is good agreement between the results from the three methods and all show a decrease with increasing pH. The total interaction enthalpies (deltaH(total)) of PEI with SDS are obtained from the observed enthalpy curves and the difference enthalpy (deltaH*) between the total enthalpy of branched PEI with SDS, and the total enthalpy of linear PEI with SDS can be derived from the obtained deltaH(total). The difference deltaH* increases dramatically as pH increases, which indicates that the interactions are different for linear PEI and branched PEI at high pH values. A schematic map of the different states of aggregation is presented.

  15. Temporal and geographical distributions of epilithic sodium dodecyl sulfate-degrading bacteria in a polluted South Wales river

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Day, M.J.; Russell, N.J.; White, G.F.

    1988-02-01

    Epilithic bacteria were isolated nonselectively from riverbed stones and examined by gel zymography for their ability to produce alkylsulfatase (AS) enzymes and thus to metabolize alkyl sulfate surfactants such as sodium dodecyl sulfate. The percentages of AS+ isolates from stone epilithon at five sites from the source to the river mouth were measured on five sampling days spread over 1 year. The results showed that (i) the prevalence of epilithic AS+ strains (as a percentage of all isolates) was much higher at polluted sites than at the source; (ii) when averaged over the whole river, percentages of AS+ strains were significantly higher at the end of summer compared with either the preceding or the following winter; (iii) analysis of site-sampling time interactions indicated that water quality factors (e.g., biochemical oxygen demand and dissolved oxygen concentration) rather than climatic factors determined the distributions of epilithic AS+ isolates; (iv) constitutive strains were the most prevalent (7.2% of all isolates), with smaller numbers of isolates with inducible (4.5%) and repressible (1.7%) enzymes.

  16. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Attia, Ali Kamal; Abo-Talib, Nisreen Farouk; Tammam, Marwa Hosny

    2017-04-01

    Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH) based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0) using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10 -6 -3.475 x 10 -5 mol L -1 . The limits of detection and quantification were found to be 5.160 x 10 -7 and 1.720 x 10-6 mol L -1 , respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  17. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    Science.gov (United States)

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  18. Flour sodium dodecyl sulfate (SDS)-extractable protein level as a cookie flour quality indicator.

    Science.gov (United States)

    Pareyt, Bram; Bruneel, Charlotte; Brijs, Kristof; Goesaert, Hans; Delcour, Jan A

    2010-01-13

    Flour characteristics of laboratory-milled flour fractions of two wheat cultivars were related to their cookie-baking performance. Cultivar (cv.) Albatros wheat milling yielded fractions with lower damaged starch (DS) and arabinoxylan levels and higher sodium dodecyl sulfate-extractable protein (SDSEP) levels than did cv. Meunier wheat milling. During baking, cv. Albatros flour doughs spread faster and set later than their cv. Meunier counterparts and, hence, resulted in larger cookie diameters. DS levels negatively affected spread rate during both cv. Albatros (R2=0.68) and cv. Meunier (R2=0.51) cookie baking. SDSEP levels also influenced cookie quality. The use of flour heat-treated to reduce its SDSEP levels to different degrees led to reduction of the set time (R2=0.90). It was deduced that larger gluten polymer sizes limit dough spread time during baking and that, apart from DS level, the SDSEP level is an indicator for cookie flour quality.

  19. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ali Kamal Attia

    2017-04-01

    Full Text Available Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0 using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10-6-3.475 x 10-5 mol L-1. The limits of detection and quantification were found to be 5.160 x 10-7 and 1.720 x 10-6 mol L-1, respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  20. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    Science.gov (United States)

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Katharina Hahn

    2017-12-01

    Full Text Available l-Amino acid oxidases (l-AAO catalyze the oxidative deamination of l-amino acids to the corresponding α-keto acids. The non-covalently bound cofactor FAD is reoxidized by oxygen under formation of hydrogen peroxide. We expressed an active l-AAO from the fungus Rhizoctonia solani as a fusion protein in E. coli. Treatment with small amounts of the detergent sodium dodecyl sulfate (SDS stimulated the activity of the enzyme strongly. Here, we investigated whether other detergents and amphiphilic molecules activate 9His-rsLAAO1. We found that 9His-rsLAAO1 was also activated by sodium tetradecyl sulfate. Other detergents and fatty acids were not effective. Moreover, effects of SDS on the oligomerization state and the protein structure were analyzed. Native and SDS-activated 9His-rsLAAO1 behaved as dimers by size-exclusion chromatography. SDS treatment induced an increase in hydrodynamic radius as observed by size-exclusion chromatography and dynamic light scattering. The activated enzyme showed accelerated thermal inactivation and an exposure of additional protease sites. Changes in tryptophan fluorescence point to a more hydrophilic environment. Moreover, FAD fluorescence increased and a lower concentration of sulfites was sufficient to form adducts with FAD. Taken together, these data point towards a more open conformation of SDS-activated l-amino acid oxidase facilitating access to the active site.

  2. Development of a sodium dodecyl sulfate-polyacrylamide gel electrophoresis reference method for the analysis and identification of fish species in raw and heat-processed samples : A collaborative study

    DEFF Research Database (Denmark)

    Pineiro, C.; Barros-Velazquez, J.; Perez-Martin, R.I.

    1999-01-01

    A collaborative study was carried out in seven European labs with the aim of achieving a sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) standard operation procedure to identify fish species in raw and cooked samples. Urea and SDS-containing solutions were evaluated...... silver stained, yielded good results and afforded higher reproducibility, thus allowing a better matching of results among the laboratories participating in this collaborative study. Under the optimized technical conditions described above, all the fish species tested, either raw and cooked, yielded...... seemed not to be influenced so much by the state of the sample (raw, cooked at 60 degrees C, cooked at 85 degrees C). Desalting, ultrafiltration or treatment with RNase/DNase did not improve the discriminatory power of the protein patterns. Commercial homogeneous 15% ExcelGels, especially when they were...

  3. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  4. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  5. Biodegradation of the anionic surfactant sodium dodecyl sulfate by local bacterial isolate

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; NoorEl-Din, M.R.

    2011-01-01

    Anionic surfactants, e.g., sodium dodecyl sulfate (SDS), as a main components in the detergent and cosmetic industries, contribute significantly to the pollution profile of sewage and wastewaters of all kinds. The purpose of this study was to isolate local SDS degrading bacteria. Screening was carried out by the conventional enrichment culture technique. One bacterial isolate was obtained; this isolate was primarily defined as gram-negative rods . It was capable of degrading 100% of 1000 and 2000 mg/l of SDS after 6 days of incubation. The isolate exhibited maximum growth at SDS concentration 4000 mg/I, but it was significantly decreased at higher concentration (16000 mg/I).All the carbon sources being tested repressed the degradation ability. Sodium nitrate at concentration of 2.0 g/I was the best nitrogen source for growth and SDS biodegradation, it enhanced the degradation of 3000 mg/I SDS by 95%,i.e., by 32% upon the control (broth medium containing NH 4 Cl). SDS degradation by the bacterium was optimum at initial ph 8.5, incubation temperature 35 degree C, and inoculum size 2% (v/v). Under the optimized conditions, almost 98% of initial SDS concentration (4000 mg/l) was degraded after 120 h of incubation. Gamma irradiation did not improve the biodegradation ability of this bacterial isolate.

  6. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    Science.gov (United States)

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  7. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS in Phosphate Beneficiation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-02-01

    Full Text Available Phosphate ore is a valuable strategic resource. Most phosphate ore in China is collophane. Utilization of mid-low grade collophane is necessary to maintain social sustainable development. The gravity-flotation combination separation process can be utilized to separate mid-low grade collophane, but the process consumes a large quantity of acid in the reverse stage. Sodium dodecyl sulfate (SDS was used as a dolomite collector in this study to reduce the acid consumption of collophane flotation. SDS effectively removed dolomite from the gravity concentrate when no other reagents were present. Flotation test results showed that, compared to the conventional gravity-flotation process, the proposed SDS-based process reduced phosphoric acid dosage from 6.1 kg/t to 3.9 kg/t with similar separation results. The SDS action mechanisms on dolomite were further investigated by zeta potential analysis, single mineral flotation tests, infrared spectrum detection, and theoretical analysis. The results indicate that the SDS adsorption on dolomite is mainly physical adsorption, and that favorable separation effects between collophane and dolomite may be attributed to physical adsorption and entrainment. In addition, it also indicates that the physical adsorption can be utilized to remove dolomite from phosphate on account of zeta potential differences when the separate feed is coarse.

  8. Enhanced removal of detergent and recovery of enzymatic activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis: UUse of casein in gel wash buffer

    International Nuclear Information System (INIS)

    McGrew, B.R.; Green, D.M.

    1990-01-01

    The inclusion of 1% casein or bovine serum albumin in buffer used to reactivate enzymes subjected to sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis resulted in accelerated removal of SDS and restoration of nuclease and beta-galactosidase enzyme activities. Nuclease and beta-galactosidase activities which are absent from gels after longer wash procedures are detectable with this technique. Enzyme activity in gels prepared with SDS which contained inhibitory contaminants was partially restored by the casein wash procedure. The threshold of detection of two-dimensionally separated deoxyribonuclease I using the casein wash procedure was 1 picogram

  9. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II)

    International Nuclear Information System (INIS)

    Li Shuzhen; Wu Pingxiao

    2010-01-01

    Anionic surfactant modified Fe-pillared montmorillonites were prepared by Fe-hydrate solution and sodium dodecyl sulfate (SDS) solution. These organo-inorgano complex montmorillonites were divided into three types (CM1, CM2 and CM3) depending on different intercalation processes. X-ray diffraction spectra, the Fourier transform infrared (FTIR) spectra were used to analyze the structure of the raw and modified montmorillonites. X-ray photoelectron spectra of the simples have been studied to determine spectral characteristics to allow the identification of Fe(III) hydroxide. The specific surface area of the host montmorillonite (M0) is 73.2 m 2 /g, while for the modified montmorillonites it is 114.0 m 2 /g, 117.2 m 2 /g, and 115.8 m 2 /g, respectively. The mesopore volumes of the montmorillonites decrease after modification. Ions of copper and cobalt were selected as adsorbates to evaluate the adsorption performance of each montmorillonite. The adsorption data was analyzed by both Freundlich and Langmuir isotherm models and the data was well fit by the Langmuir isotherm model. The adsorption was efficient and significantly influenced by metal speciation, metal concentration, contact time, and pH. Higher adsorption capacity of the modified montmorillonites were obtained at pH 5-6. The results of desorption indicated that the metal ions were covalently bound to the modified montmorillonites.

  10. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Ling; Wang, Jian [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai [Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China); Shih, Kaimin; Zhou, Zhengyuan [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR (China); Lee, Po-Heng, E-mail: poheng76@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR (China)

    2016-11-15

    Highlights: • A thermodynamic approach to select a functional agent for adsorbent is proposed. • ITC and QCS were used to interpret the interaction between adsorbate and agent. • The interaction identifies the adsorption mechanism and performance. • This approach enables the manipulation of adsorption capacity optimization. - Abstract: This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C{sub 14}HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C{sub 14}TAB and C{sub 14}HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  12. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  13. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  14. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  15. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  16. Ecotoxicological assessment of the pharmaceutical fluoxetine hydrochloride and the surfactant dodecyl sodium sulfate after their submission to ionizing radiation treatment

    International Nuclear Information System (INIS)

    Santos, Dymes Rafael Alves dos

    2011-01-01

    The use of pharmaceuticals and personal care products and the consequent and continuous input of this substances in the environment generates an increasing need to investigate the presence, behavior and the effects on aquatic biota, as well as new ways to treat effluents containing such substances. Fluoxetine hydrochloride is an active ingredient used in the treatment of depressive disorders and anxiety. As the surfactant sodium dodecyl sulfate is present in many cleaning and personal care products. The present study aimed on assessing the acute toxicity of fluoxetine hydrochloride, sodium dodecyl sulfate and the mixture of both to the aquatic organisms Hyalella azteca, Daphnia similis and Vibrio ficheri. Reducing the toxicity of fluoxetine and the mixture after treatment with ionizing radiation from industrial electron beam accelerator has also been the focus of this study. For Daphnia similis the average values of CE50-4 8h found for the non-irradiated drug, surfactant and mixture were 14.4 %, 9.62 % and 13.8 %, respectively. After irradiation of the substances, the dose 5 kGy proved itself to be the most effective dose for the treatment of the drug and the mixture as it was obtained the mean values for CE50 48h 84.60 % and > 90 %, respectively. For Hyalella azteca the acute toxicity tests were performed for water column with duration of 96 hours, the mean values for CE50 96h found for the drug, the surfactant and the mixture non-irradiated were 5.63 %, 19.29 %, 6.27 %, respectively. For the drug fluoxetine and the mixture irradiated with 5 kGy, it was obtained 69.57 % and 77.7 %, respectively. For Vibrio ficheri the acute toxicity tests for the untreated drug and the drug irradiated with 5 kGy it was obtained CE50 15min of 6.9 % and 32.88 % respectively. These results presented a reduction of the acute toxicity of the test-substances after irradiation. (author)

  17. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An electrochemical sensor for sodium dodecyl sulfate detection based on anion exchange using eosin Y/polyethyleneimine modified electrode.

    Science.gov (United States)

    Hao, Xia; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2014-12-10

    A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL(-1), and a detection limit of 0.9 μg mL(-1) for SDS was obtained. Furthermore, the method has been successfully applied to the detection of SDS in real samples. The developed approach provided a simple and reliable detection for SDS and might have potential applications in electrochemical methods for inactive molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...

  20. Conformational studies of human [15-2-aminohexanoic acid]little gastrin in sodium dodecyl sulfate micelles by 1H NMR

    International Nuclear Information System (INIS)

    Mammi, S.; Peggion, E.

    1990-01-01

    Human little gastrin is a 17 amino acid peptide that adopts a random conformation in water and an ordered structure in sodium dodecyl sulfate (SDS) micelles as well as in trifluoroethanol (TFE). The circular dichroism spectra in these two media have the same shape, indicative of a similar preferred conformation. The authors describe here the assignment of the proton NMR resonances and the conformational analysis of [Ahx 15 ] little gastrin in SDS micelles. Two-dimensional correlation techniques form the basis for the assignment. The conformational analysis utilizes NOE's, NH to C α H coupling constants, and the temperature coefficients of the amide chemical shifts. The NMR data indicate a helical structure in the N-terminal portion of the peptide. These results are compared with the conformation that the authors recently proposed for a minigastrin analogue (fragment 5-17 of [Ahx 15 ] little gastrin) in TFE

  1. pH-dependent differential interacting mechanisms of sodium dodecyl sulfate with bovine serum fetuin: a biophysical insight.

    Science.gov (United States)

    Zaidi, Nida; Nusrat, Saima; Zaidi, Fatima Kamal; Khan, Rizwan H

    2014-11-20

    Sodium dodecyl sulfate (SDS)-glycoprotein interaction serves as a model for a biological membrane. To get mechanistic insight into the interaction of SDS and glycoprotein, the effect of SDS on bovine serum fetuin (BSF) was studied in subcritical micellar concentrations at pH 7.4 and pH 2 using multiple approaches. SDS interacts electrostatically with BSF through its negatively charged head groups at pH 2 and hydrophobically via its alkyl chains at pH 7.4 up to a 1:20 molar ratio of BSF to SDS. However, at higher concentrations of SDS, BSF undergoes amyloid fibril formation at pH 2, as confirmed by enhanced ThT fluorescence, β-sheet formation, and TEM microscopy, whereas BSF undergoes induction of an α-helical structure in the presence of higher SDS concentration at pH 7.4. The increase in α-helical content with increasing SDS concentrations constrains the environment around tryptophan. As a consequence, the interconversion of tryptophan conformers decreases, resulting in a decrement of the fluorescence lifetime for BSF in the presence of SDS at pH 7.4.

  2. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2014-02-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  3. Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Khoeini Sharifabadi

    2013-04-01

    Full Text Available A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD % of the method at two concentrations (5 and 50µg.mL-1 was in the range of (3.14–3.75 % (n = 8. The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99.

  4. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode.

    Science.gov (United States)

    Attia, Ali K

    2010-04-15

    Herein, an electrochemical differential pulse voltammetric method was developed for the determination of moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate. The oxidation process has been carried out in Britton-Robinson buffer. Moexipril hydrochloride exhibits a well-defined irreversible oxidation peak over the entire pH range (2-11). The peak current varied linearly over the range from 4.0 x 10(-7) to 5.2 x 10(-6) mol L(-1). The limits of detection and quantification were 6.87 x 10(-8) mol L(-1) and 2.29 x 10(-7) mol L(-1), respectively. The recovery was found in the range from 99.65% to 100.76%. The relative standard deviation was found in the range from 0.429% to 0.845%. The proposed method possesses high sensitivity, accuracy and rapid response. Finally, this method was successfully used to determine moexipril hydrochloride in tablets. (c) 2009 Elsevier B.V. All rights reserved.

  5. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    Science.gov (United States)

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of BacT/Alert 3D Liquid Culture System for Recovery of Mycobacteria from Clinical Specimens Using Sodium Dodecyl (Lauryl) Sulfate-NaOH Decontamination

    Science.gov (United States)

    Carricajo, A.; Fonsale, N.; Vautrin, A. C.; Aubert, G.

    2001-01-01

    A total of 52 mycobacterial isolates were recovered from 1,197 clinical specimens decontaminated by a sodium dodecyl (lauryl) sulfate (SDS)-NaOH protocol. Of these, 94% were recovered with the BacT/Alert 3D system (Organon Teknika, Durham, N.C.) and 79% were recovered on Löwenstein-Jensen (LJ) medium. Mean times to detection of organisms of the Mycobacterium tuberculosis complex (n = 47) were 22.8 days with LJ medium and 16.2 days with the system. The BacT/Alert 3D system is a rapid and efficient detection system which can be used with an SDS-NaOH decontamination procedure. PMID:11574623

  7. Sodium dodecyl sulfate coated γ-alumina support modified by a new Schiff base for solid phase extraction and flame-AAS determination of lead and copper ions

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2013-01-01

    Full Text Available A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS-coated γ-alumina modified with bis(2-hydroxy acetophenone-1,6-hexanediimine (BHAH ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS. The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

  8. The Effect of Sodium Dodecyl Sulfate (SDS and Cetyltrimethylammonium Bromide (CTAB on the Properties of ZnO Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Yun Hin Taufiq-Yap

    2012-10-01

    Full Text Available ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB and Sodium dodecyl sulfate (SDS as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD, thermogravimetric and differential thermogravimetric analysis (TGA-DTG, FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed.

  9. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  10. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  11. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  12. Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Blumentals, I.I.; Robinson, A.S.; Kelly, R.M. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-07-01

    Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98{degree}C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons (kDa)) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98{degree}C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% {beta}-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis({beta}-aminoethyl ether)-N,N,N{prime},N{prime}-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester.

  13. Bottom-up and Top-down Approaches to Explore Sodium Dodecyl Sulfate and Soluplus on the Crystallization Inhibition and Dissolution of Felodipine Extrudates.

    Science.gov (United States)

    Chen, Jiali; Chen, Yuqi; Huang, Wencong; Wang, Hanning; Du, Yang; Xiong, Subin

    2018-05-05

    The objectives of this study were to explore sodium dodecyl sulfate (SDS) and Soluplus on the crystallization inhibition and dissolution of felodipine (FLDP) extrudates by bottom-up and top-down approaches. FLDP extrudates with Soluplus and/or SDS were prepared by hot melt extrusion (HME), and characterized by PLM, DSC and FT-IR. Results indicated that Soluplus inhibited FLDP crystallization and the whole amorphous solid dispersions (ASDs) were binary FLDP-Soluplus (1:3) and ternary FLDP-Soluplus-SDS(1:2:0.15∼0.3 and 1:3:0.2∼0.4) extrudates. Internal SDS (5%-10%) decreased Tgs of FLDP-Soluplus-SDS ternary ASDs without presenting molecular interactions with FLDP or Soluplus. The enhanced dissolution rate of binary or ternary Soluplus-rich ASDs in the non-sink condition of 0.05%SDS was achieved. Bottom-up approach indicated that Soluplus was a much stronger crystal inhibitor to the supersaturated FLDP in solutions than SDS. Top-down approach demonstrated that SDS enhanced the dissolution of Soluplus-rich ASDs via wettability and complexation with Soluplus to accelerate the medium uptake and erosion kinetics of extrudates, but induced FLDP recrystallization and resulted in incomplete dissolution of FLDP-rich extrudates. In conclusion, top-down approach is a promising strategy to explore the mechanisms of ASDs' dissolution, and small amount of SDS enhances the dissolution rate of polymer-rich ASDs in the non-sink condition. Copyright © 2018. Published by Elsevier Inc.

  14. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  15. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    Science.gov (United States)

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  17. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. (Louisiana State Univ. Medical Center, New Orleans (USA))

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  18. Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Li, Jianling, E-mail: lijianling@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Yan, Gang; Xu, Guofeng; Xue, Qingrui [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, No. 30 College Road, Beijing 100083 (China); Kang, Feiyu [Lab of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-05

    Highlights: • The cactus-like porous MnO{sub 2} was synthesized by hydrothermal method assisted with SDS. • The MnO{sub 2} exhibits a max specific capacitance of 187.8 F g{sup −1} (0.2 A g{sup −1}, 1 M Na{sub 2}SO{sub 4}). • Excellent cycling stability: 92.9% capacitance retention after 1000 cycles. - Abstract: The cactus-like porous manganese dioxide (MnO{sub 2}) was synthesized by a simple hydrothermal method assisted with the surfactant sodium dodecyl sulfate (SDS). The morphology, composition, property of the prepared materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) measurements. It was found that the sample without surfactant was composed of nanoflakes which piling up together, whereas in the presence of the surfactant, the MnO{sub 2} samples with the max specific surface of 321.9 m{sup 2} g{sup −1} showed a porous cactus-like microstructure, consisted of uniform nanowires and porous nanoflakes. The electrochemical performances of the MnO{sub 2} with and without surfactant were analyzed using Cyclic Voltammetry (CV), Electrochemical Impedance Spectrometry (EIS) and Galvanostatic Charge–Discharge (GCD) tests. The results showed that the MnO{sub 2} assisted with 1 wt.% SDS displayed a higher specific capacitance of 187.8 F g{sup −1} at the current density of 0.2 A g{sup −1} compared with the MnO{sub 2} without surfactant (134.8 F g{sup −1}). And such MnO{sub 2} samples with higher specific capacitance also afford an excellent cyclic stability with the capacity retention of approximately 92.9% after 1000 cycles in 1 M Na{sub 2}SO{sub 4} solution at a current density of 1 A g{sup −1}. The superior capacitive performance of the as-prepared materials could be attributed to its unique cactus-like porous structure, which provided good electronic conductivity, large specific surface area as

  19. Selective entrapment of the cationic form of norfloxacin within anionic sodium dodecyl sulfate micelles at physiological pH and its effect on the drug photodecomposition.

    Science.gov (United States)

    Sortino, Salvatore

    2006-01-01

    The binding of the photosensitizing fluoroquinolone (FQ) antibiotic norfloxacin (NX) to sodium dodecyl sulfate (SDS) micelles and the photoreactivity of the NX/SDS complex under physiological pH conditions are investigated by means of absorption and emission spectroscopy, steady-state and laser flash photolysis. It is shown that the photolabile zwitterionic form of NX, which is dominant at physiological pH, is not the most abundant species in the presence of SDS micelles. This medium exhibits a high preference for the cationic form of the drug, which is selectively and successfully entrapped within the micellar cage (K(ass) = 6 x 10(4) M(-1) +/- 3000), becoming the largely dominant species at neutral pH. The effect of this trapping is drastically reflected on both efficiency and nature of the drug photodecomposition. It is observed that the photostability of NX incorporated in the micellar pseudophase increases of more than one order of magnitude if compared to that of the "free" drug. Furthermore, the radical photodecomposition mechanism occurring in phosphate buffered solution is suppressed by the micellar medium and the low photodegradation observed seems to take place preferentially through an ionic pathway. Hopefully, the results presented herein may contribute to a better understanding of the bio-distribution of NX in biological systems and provide helpful and stimulating information in order to get the control of FQ photoreactivity under physiological pH conditions.

  20. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    Science.gov (United States)

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  2. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  3. Interaction of sodium dodecyl sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts.

    Science.gov (United States)

    Fish, Wayne W

    2006-10-18

    The properties of plant-derived precipitates of watermelon lycopene were examined in aqueous sodium dodecyl sulfate (SDS) as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% were found to increase the water solubility of lycopene in the state in which it was isolated from watermelon. Electron microscopy and chemical analyses suggested that the watermelon lycopene as isolated is packaged inside a membrane to form a chromoplast. Spectral peaks in the visible region of the watermelon chromoplasts in SDS exhibited a bathochromic shift from those in organic solvent. Watermelon chromoplasts in SDS exhibited pronounced circular dichroic activity in the visible region. Binding measurements indicated that about 120 molecules of SDS were bound per molecule of lycopene inside the chromoplast; likely, the detergent molecules are bound to the chromoplast membrane. Around 80% of the chromoplast-SDS complexes were retained on a 0.45 mum membrane filter. Together, these observations are consistent with lycopene in a J-type chiral arrangement inside a membrane to form a chromoplast. The binding of SDS molecules to the chromoplast membrane form a complex that is extensively more water-soluble than the chromoplast alone.

  4. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2013-01-01

    Full Text Available Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS- degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v, between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  5. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Directory of Open Access Journals (Sweden)

    Xu Jide

    2009-06-01

    Full Text Available Abstract Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS on the adsorption of the siderophores DFOB (cationic and DFOD (neutral and the ligand EDTA (anionic onto goethite (α-FeOOH at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition.

  6. SODIUM DI-N-DODECYL PHOSPHATE VESICLES IN AQUEOUS-SOLUTION - EFFECTS OF ETHANOL, PROPANOL, AND TETRAHYDROFURAN ON THE GEL TO LIQUID-PHASE TRANSITION

    NARCIS (Netherlands)

    BLANDAMER, MJ; BRIGGS, B; BUTT, MD; WATERS, M; CULLIS, PM; ENGBERTS, JBFN; HOEKSTRA, D; MOHANTY, RK

    1994-01-01

    For aqueous solutions containing vesicles formed by sodium di-n-dodecyl phosphate, the gel to liquid-crystal transition occurs near 35 degrees C, the temperature T-m. When ethanol is added, T-m decreases, but the scan shows evidence of several transitions as more alcohol is added. The effect of

  7. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    Science.gov (United States)

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  8. Restraining Na-Montmorillonite Delamination in Water by Adsorption of Sodium Dodecyl Sulfate or Octadecyl Trimethyl Ammonium Chloride on the Edges

    Directory of Open Access Journals (Sweden)

    Hongliang Li

    2016-08-01

    Full Text Available The delamination of montmorillonite in water leads to sliming in ore slurry, which is detrimental to mineral flotation and solid/water separation. In this work, the delamination of Na-montmorillonite (Na-MMT has been restrained by sodium dodecyl sulfate (SDS or octadecyl trimethyl ammonium chloride (1831 through the adsorption on the edge of the mineral. The experimental results have shown that the pretreatment by adding SDS and 1831 could greatly reduce the Stokes size percentage of −1.1 µm particles in the aqueous Na-MMT suspension. From the X-ray diffractometer (XRD results, the interlayer spacing of the MMT pre-treated by SDS and 1831 is smaller than that of original MMT particles. Adsorption position of SDS and 1831 on MMT surfaces was analyzed by the measurements of adsorption capacity of SDS and 1831, inductively-coupled plasma spectra, and zeta potential before and after the plane surface of MMT was covered with tetraethylenepentaminecopper ([Cu(tetren]2+. The results indicated that SDS and 1831 are adsorbed on the edge and the whole surface of Na-MMT, respectively. Delamination of MMT could be well restrained by the adsorption of SDS and 1831 on the edges of MMT.

  9. Behavior of copper in acidic sulfate solution: Comparison with acidic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Tromans, D.; Silva, J.C. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering

    1997-03-01

    The anodic polarization behavior of copper in a 0.1 M sulfuric acid (H{sub 2}SO{sub 4}) + 1 M sodium sulfate (Na{sub 2}SO{sub 4}) solution (pH = 2.0) was studied at room temperature under quiescent and stirred conditions. The behavior was compared with aqueous equilibria via construction of a potential-vs-pH (E-pH) diagram for the copper-sulfate-water (Cu-SO{sub 4}{sup 2}-H{sub 2}O) system. Interpretation of the behavior was aided by comparison with aqueous equilibria and polarization studies of copper in a 0.2 M hydrochloric acid (HCl) + 1 M sodium chloride (NaCl) solution(pH = 0.8). The initial anodic dissolution region in the acidic sulfate solution exhibited Tafel behavior with a slope consistent with formation of cupric ions (Cu{sup 2+}) whose rate of formation was charge-transfer controlled. At higher potentials, limiting current density (i{sub L}) behavior was observed under E-pH conditions that were consistent with formation of a film of copper sulfate pentahydrate (CuSO{sub 4} {degree} 5H{sub 2}O). Comparison of experimental i{sub L} values with those predicted by mass transport-controlled processes, using estimates of the diffusion layer thickness obtained from the mass transfer-influenced region of apparent Tafel behavior in the acidic chloride solution, were in sufficient agreement to indicate i{sub L} was controlled by the rate of dissolution of the CuSO{sub 4} {degree} 5H{sub 2}O film via transport of Cu{sup 2+} from the film-electrolyte interface into the bulk solution.

  10. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  11. Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes.

    Science.gov (United States)

    Wang, Jing; Wang, Jiaxi; Xu, Chi; Liu, Rutao; Chen, Yadong

    2016-04-15

    Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12h SDS (0.1μM to 0.2mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    Science.gov (United States)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  13. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A., E-mail: sarabi@aut.ac.ir [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  14. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    International Nuclear Information System (INIS)

    Amini, R.; Sarabi, A.A.

    2011-01-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  15. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L{sup -1} nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples.

  16. Cocrystal solubility-pH and drug solubilization capacity of sodium dodecyl sulfate – mass action model for data analysis and simulation to improve design of experiments

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2018-06-01

    Full Text Available This review discusses the disposition of the anionic surfactant, sodium dodecyl sulfate (SDS; i.e., sodium lauryl sulfate, to solubilize sparingly-soluble drugs above the surfactant critical micelle concentration (CMC, as quantitated by the solubilization capacity (k. A compilation of 101 published SDS k values of mostly poorly-soluble drug molecules was used to develop a prediction model as a function of the drug’s intrinsic solubility, S0, and its calculated H-bond acceptor/donor potential. In almost all cases, the surfactant was found to solubilize the neutral form of the drug. Using the mass action model, the k values were converted to drug-micelle stoichiometric binding constants, Kn, corresponding to drug-micelle equilibria in drug-saturated solutions. An in-depth case study (data from published sources considered the micellization reactions as a function of pH of a weak base, B, (pKa 3.58, S0 52 μg/mL, where at pH 1 the BH.SDS salt was predicted to precipitate both below and above the CMC. At low SDS concentrations, two drug salts were predicted to co-precipitate: BH.Cl and BH.SDS. Solubility products of both were determined from the analysis of the reported solubility-surfactant data. Above the CMC, in a rare example, the charged form of the drug (BH+ appeared to be strongly solubilized by the surfactant. The constant for that reaction was also determined. At pH 7, the reactions were simpler, as only the neutral form of the drug was solubilized, to a significantly lesser extent than at pH 1. Case studies also featured examples of solubilization of solids in the form of cocrystals. For many cocrystal systems studied in aqueous solution, the anticipated supersaturated state is not long-lasting, as the drug component precipitates to a thermodynamically stable form, thus lowering the amount of the active ingredient available for intestinal absorption. Use of surfactant can prevent this. A recently-described method for predicting the

  17. Effect of Glu-B3 Allelic Variation on Sodium Dodecyl Sulfate Sedimentation Volume in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2013-01-01

    Full Text Available Sodium dodecyl sulfate (SDS sedimentation volume has long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. In order to survey the influence of low-molecular-weight glutenin subunits (LMW-GSs at Glu-B3 locus on wheat SDS sedimentation volume, a total of 283 wheat (Triticum aestivum L. varieties including landraces and improved and introduced cultivars were analyzed using 10 allele-specific PCR markers at the Glu-B3 locus. The highest allele frequency observed in the tested varieties was Glu-B3i with 21.9% in all varieties, 21.1% in landraces, 25.5% in improved cultivars, and 12% in introduced cultivars. Glu-B3 locus represented 8.6% of the variance in wheat SDS sedimentation volume, and Glu-B3b, Glu-B3g, and Glu-B3h significantly heightened the SDS sedimentation volume, but Glu-B3a, Glu-B3c, and Glu-B3j significantly lowered the SDS sedimentation volume. For the bread-making quality, the most desirable alleles Glu-B3b and Glu-B3g become more and more popular and the least desirable alleles Glu-B3a and Glu-B3c got less and less in modern improved cultivars, suggesting that wheat grain quality in China has been significantly improved through breeding effort.

  18. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    Science.gov (United States)

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  19. Role of protein sulfation in vasodilation induced by minoxidil sulfate, a K+ channel opener

    International Nuclear Information System (INIS)

    Meisheri, K.D.; Oleynek, J.J.; Puddington, L.

    1991-01-01

    Evidence from contractile, radioisotope ion flux and electrophysiological studies suggest that minoxidil sulfate (MNXS) acts as a K+ channel opener in vascular smooth muscle. This study was designed to examine possible biochemical mechanisms by which MNXS exerts such an effect. Experiments performed in the isolated rabbit mesenteric artery (RMA) showed that MNXS, 5 microM, but not the parent compound minoxidil, was a potent vasodilator. Whereas the relaxant effects of an another K+ channel opener vasodilator, BRL-34915 (cromakalim), were removed by washing with physiological saline solution, the effects of MNXS persisted after repeated washout attempts. Furthermore, after an initial exposure of segments of intact RMA to [35S] MNXS, greater than 30% of the radiolabel was retained 2 hr after removal of the drug. In contrast, retention of radiolabel was not detected with either [3H]MNXS (label on the piperidine ring of MNXS) or [3H]minoxidil (each less than 3% after a 2-hr washout). These data suggested that the sulfate moiety from MNXS was closely associated with the vascular tissue. To determine if proteins were the acceptors of sulfate from MNXS, intact RMAs were incubated with [35S]MNXS, and then 35S-labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by fluorography. Preferential labeling of a 116 kD protein was detected by 2 and 5 min of treatment. A 43 kD protein (resembling actin) also showed significant labeling. A similar profile of 35S-labeled proteins was observed in [35S] MNXS-treated A7r5 rat aortic smooth muscle cells, suggesting that the majority of proteins labeled by [35S]MNXS in intact RMA were components of smooth muscle cells

  20. Regularities of radium coprecipitation with barium sulfate from salt solutions

    International Nuclear Information System (INIS)

    Kudryavskij, Yu.P.; Rakhimova, O.V.

    2007-01-01

    Coprecipitation of radium with barium sulfate from highly concentrated NaCl solutions is studied, including the effects of the initial solution composition, alkaline reagent (CaO, NaOH), supporting electrolyte (NaCl) concentration, and pH. The process is promoted by high NaCl concentration in the initial solution, which is due to structural transformation and change in the sorption activity of the BaSO 4 precipitate in salt solutions. The results obtained were applied to recovery of radium from process solutions during the development and introduction of improved procedure for disinfection and decontamination of waste yielded by chlorination of loparite concentrates [ru

  1. Obtaining of barium sulfate from solution formed after desulfation of the active mass of scrap lead-acid batteries

    Directory of Open Access Journals (Sweden)

    O. A. Kalko

    2014-03-01

    Full Text Available Analyses of literature data about processes for solution utilization formed after desulfation of the active mass of scrap lead-acid batteries is performed. Optimal conditions for obtaining of barium sulfate sediment from ammonium sulfate solute and chemically pure Ba(OH2×8H2O и BaCl2×2H2O were found experimentally. In laboratory the commercial barium sulfate from sulfate solutions, that are waste of recycling process of battery scrap, with application of chloride and barium hydroxide was production. The possibility of using this product were discussed.

  2. Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanbo; Luo, Dongmei, E-mail: dmluo@scu.edu.cn; Zhang, Zhao; Liang, Bin; Yuan, Xizhi; Fu, Li

    2016-06-15

    The existing forms of sulfur in hydrolysis process of titanyl sulfate solution were studied. Also the effects of sulfur on crystal structure, crystallite size and crystal phase transition of the hydrated titanium dioxide(TiO{sub 2}·H{sub 2}O) and titanium dioxide (TiO{sub 2}) were conducted. The analysis and methods of thermogravimetric-differential scanning calorimet (TG-DSC), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectra and Raman spectroscopy were employed to characterize. The results indicated that the sulfur was present in the form of SO{sub 4}{sup 2−} ions in the hydrolysate of titanyl sulfate solution, and a portion of SO{sub 4}{sup 2−} ions were combined on the surface of hydrated titanium dioxide by chemical adsorption in the forms of inorganic chelating bidentate coordination and covalent sulfate coordination, the residual SO{sub 4}{sup 2−} ions were adsorbed on the surface of hydrated titanium dioxide by physical adsorption. The chemical adsorption of SO{sub 4}{sup 2−} ions were conducive to the formation and stabilization of anatase, which changed the crystal structure, and hindered the transformation of the anatase into rutile. The results of Raman spectroscopy showed that the sulfur was dissociated in the forms of SO{sub 4}{sup 2−} and HSO{sub 4}{sup −} ions during the hydrolysis of titanyl sulfate solution. The characteristic peak at 1004 cm{sup −1} corresponding to a new complex has been observed, which was composed of SO{sub 4}{sup 2−} and hydrated titanium complex ions through the bonding on the surface. In basis of the above experimental results, the hydrolysis process of titanyl sulfate solution was illustrated from the microstructure with 3D atlas. - Highlights: • The SO{sub 4}{sup 2−} ions exist in TiO{sub 2}·H{sub 2}O by chemical and physical adsorption. • The SO{sub 4}{sup 2−} ions are conducive to the formation and

  3. Functional Assessment of Skeletal Muscle Regeneration Utilizing Homologous Extracellular Matrix as Scaffolding

    Science.gov (United States)

    2010-01-01

    Friedberg, T., and Oesch, F. Colorimetric quan- titation of trace amounts of sodium lauryl sulfate in the presence of nucleic acids and proteins. Anal Biochem...size. The muscle was rinsed with water and submerged in 2% sodium dodecyl sulfate (SDS) and agitated continuously. The SDS solution was changed twice...1. (A) Coomassie staining of sodium dodecyl sulfate –polyacrylamide gel electrophoresis gel. (B) Visual appearance of decellularized ECM. (C) Scanning

  4. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition

    International Nuclear Information System (INIS)

    Henglein, A.

    1979-01-01

    Organic free radicals of high negative redox potential such as α-alcohol radicals were found to transfer electrons to colloidal silver particles stabilized by sodium dodecyl sulfate in aqueous solution. The colloidal particles thus became a pool of stored electrons that could reduce water to form hydrogen or react with suitable acceptors in solution. The organic radicals were produced by irradiation, using suitable scavengers for the primary radicals from the radiolysis of the aqueous solvent. The solutions initially contained silver ions at 1 x 10 -4 - 2 x 10 -3 M. At doses below 10 5 rd, the silver ions were completely reduced to form the colloidal catalyst. In this dose range, the corresponding hydrogen yield amounted to 1 molecule per 100 eV. It increased steeply at higher doses up to 3 molecules per 100 eV. The H 2 yield decreased with increasing dose rate and with increasing pH in alkaline solutions. It was highest at a concentration of sodium dodecyl sulfate of 1 x 10 -3 M, i.e., far below the critical micelle concentration of this surfactant. Changes in the absorption spectrum of the colloid are attributed to changes in the size of the silver particles upon charging up with electrons. The competition of radical-colloid reactions with radical-radical deactivation in the bulk of solution or at the surface of the colloidal particles is also discussed. 11 figures

  5. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  6. Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite

    Energy Technology Data Exchange (ETDEWEB)

    Bouraada, Mohamed; Lafjah, Mama [Laboratoire de valorisation des materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria); Ouali, Mohand Said [Laboratoire de valorisation des materiaux, University of Mostaganem, B.P. 227, Mostaganem R.P. (Algeria)], E-mail: ouali@univ-mosta.dz; Menorval, Louis Charles de [LAMMI (CNRS-UMR5072), Universite Montpellier II, 2 Place Eugene Bataillon, Case Courrier 015, 34095 Montpellier cedex 5 (France)

    2008-05-30

    Dodecylsulfate- and dodecyl benzene sulfonate-hydrotalcites were prepared by calcination-rehydratation method. The surfactants intercalation in the interlayer space of hydrotalcite were checked by PXRD and FTIR spectroscopy where the resulting materials were found to be similar to those reported in the literature and were used to remove a basic dye (safranine) from aqueous solutions. The sorption kinetics data fitted the pseudo second order model. The isotherms were established and the parameters calculated. The sorption data fitted the Langmuir model with good values of the determination coefficient. The thermodynamic parameters calculated from Van't Hoff plots gave a low value of {delta}G{sup o} (<-20 kJ mol{sup -1}) indicating a spontaneous physisorption process. Two regeneration cycles were processed by acetone extraction leading to the same removal capacity of the obtained materials as the original surfactant-intercalated hydrotalcites. The UV-vis spectra of the recovered extracts were similar to the spectrum of safranine, which means that the dye was recovered without any modification.

  7. Pitting corrosion of Inconel 600 in chloride and sulfate solutions at low temperature

    International Nuclear Information System (INIS)

    Chang Mingyu; Yu Geping

    1993-01-01

    Pitting corrosion of Inconel 600 was examined in chloride and sulfate solutions through usage of potentiodynamic polarization techniques. The effects of chloride and sulfate concentration were investigated in the range of 0.0001 to 0.1 M. Increasing chloride concentrations resulted in active shifts of the pit nucleation potential. Immunity to pitting corrosion was evident at a chloride level below 0.005 M. Increasing sulfate concentrations resulted in improved pitting resistance of Inconel 600 in chloride solutions. Detrimental effects associated with pitting were evident with low-level sulfate being added to dilute chloride media. The density of pits increased with increasing chloride concentrations or temperature between room temperature and 70 C. Systematic trends for the depth of pits were not evident. The observations of pitting corrosion in open immersion were consistent with those in polarization methods. Corrosion products contained in the pits were enriched in nickel, chromium and iron with a small amount of titanium and silicon. The enrichment of chlorine or sulfur was still, however, not found. (orig.)

  8. Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ewa M. Furmanczyk

    2017-11-01

    Full Text Available Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS. We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher, and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band

  9. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: Agrowaste-modified kaolinite vs surfactant modified bentonite

    Directory of Open Access Journals (Sweden)

    E. I. Unuabonah

    2017-01-01

    Full Text Available The adsorption efficiency of a new hybrid clay adsorbent for polynuclear aromatic hydrocarbons (PAHs is compared with known modified clay adsorbents. The new hybrid clay adsorbent (HYCA showed far higher adsorption capacities for the adsorption of various PAH molecules compared with sodium dodecyl sulfate modified and humic acid modified Bentonite clay adsorbents. With the new hybrid clay adsorbent (HYCA, the adsorption of some of the larger PAH molecules was complete in the first 1 h as compared with ≈ 62% and ≈ 76% observed for both humic acid modified and sodium dodecyl sulfate modified Bentonite clay adsorbents respectively. In 24 h adsorption of the PAHs was complete for all adsorbents with HYCA adsorbent showing better efficiency in the removal of the PAH molecules from aqueous solutions. No significant change was observed with increase in time up to 48 h. The adsorption was observed to be more spontaneous with HYCA adsorbent than with either modified Bentonite adsorbents. The enthalpy of adsorption did not follow any specific order and were not consistent for all PAH molecules considered.

  10. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    Science.gov (United States)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  11. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Reza Arjmand

    2015-01-01

    Full Text Available Background: Leishmania is a parasitic protozoan of trypanosomatidae family which causes a wide spectrum of diseases ranging from self-healing cutaneous lesions to deadly visceral forms. In endemic areas, field trials of different preparations of Leishmania total antigen were tested as leishmaniasis vaccine. Two preparations of killed Leishmania major were produced In Iran, which were heat-killed vaccine called autoclaved L. major (ALM and thimerosal-treated freeze-thawed vaccine called killed L. major (KLM. In this study, the protein content of both ALM and KLM were compared with that of freshly harvested intact L. major promastigotes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Materials and Methods: L. major (MRHO/IR/75/ER from pre-infected Balb/c mice was isolated with modified Novy-MacNeal-Nicolle (NNN medium and then subcultured in liquid RPMI 1640 medium supplemented with fetal calf serum (FCS 20% for mass production. Two preparations of KLM and ALM were produced by Razi Vaccine and Serum Research Institute, Iran, under WHO/TDR supervision. Electrophoresis was performed by SDS-PAGE method and the gel was stained by Coomassie brilliant blue dye. The resultant unit bands were compared using standard molecular proteins. Results: Electrophoresis of the two preparations produced many bands from 10 kDa to 100 kDa. KLM bands were much like those of freshly harvested intact L. major. Conclusion: It is concluded that although there are similar bands in the three forms of Leishmania antigens, there are some variations which might be considered for identification and purification of protective immunogens in a total crude antigen, and detection of their stability is essential for the production and marketing of a putative vaccine.

  12. Calorimetric investigation of solution heat of rare earth sulfates in acid solutions

    International Nuclear Information System (INIS)

    Vasin, S.K.; Babkin, A.G.; Kessler, Yu.M.

    1978-01-01

    To determine the thermodynamic characteristics of sulfates of rare elements an adiabatic airtight calorimeter has been developed, enabling measurement of minor heat effects of processes in aggressive media with an absolute error of about 5x10 -3 cal, the temperature sensitivity being no less than 2x10 -5 C 0 . The calorimeter is schematically represented. Measured with the aid of the calorimeter was the heat of dissolution of TiOSO 4 x2H 2 O in chloric acid solutions

  13. Surface Corrosion and Microstructure Degradation of Calcium Sulfoaluminate Cement Subjected to Wet-Dry Cycles in Sulfate Solution

    Directory of Open Access Journals (Sweden)

    Wuman Zhang

    2017-01-01

    Full Text Available The hydration products of calcium sulfoaluminate (CSA cement are different from those of Portland cement. The degradation of CSA cement subjected to wet-dry cycles in sulfate solution was studied in this paper. The surface corrosion was recorded and the microstructures were examined by scanning electron microscopy (SEM. The results show that SO42-, Na+, Mg2+, and Cl− have an effect on the stability of ettringite. In the initial period of sulfate attack, salt crystallization is the main factor leading to the degradation of CSA cement specimens. The decomposition and the carbonation of ettringite will cause long-term degradation of CSA cement specimens under wet-dry cycles in sulfate solution. The surface spalling and microstructure degradation increase significantly with the increase of wet-dry cycles, sulfate concentration, and water to cement ratio. Magnesium sulfate and sodium chloride reduce the degradation when the concentration of sulfate ions is a constant value.

  14. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  15. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    Science.gov (United States)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  16. Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions

    International Nuclear Information System (INIS)

    Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.

    1996-01-01

    The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)

  17. Study of dosimetric systems-ferrous sulfate-ferric sulfate, glass slides and dyed aqueous solutions

    International Nuclear Information System (INIS)

    Fernandes, L.

    1979-01-01

    The effect of some variables which can effect the preparation of the ferrous sulfate used as dosimetric solution has been studied. Among these variables the purity of the water used for the preparation of the solution and the presence (or absence) of oxygen in the dosimetric solution were considered. The dose rate distribution according to the transverse and longitudinal sections of the Co 60 irradiator was studied experimentally, using the dosimetric solution, and theoretically, using a computer program (KIFE). The results obtained with the ferrous sulface dosimetric solution were used as reference for the study of the application of EM and MSG glass slide as a dosimetric system. For this purpose the effects of the weakening of the coloration induced in the glass by gamma rays (Co 60 ) and the relationship between the absorbed dose of radiation and the ratio between the variation in absorbation value and the thickness of the glass irradiated, were studied. A study was also made of the use of the dye indicators bromothymol-blue, methyl-orange, Congo-red, neutral-red and p-nitrophenol, in aqueous solution, for radiation dose measurements. The bleaching of each indicator solution, under gamma-radiation (Co 60 ) was studied in oxygen and nitrogen atmospheres.(Author) [pt

  18. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions.

    Science.gov (United States)

    Granero, Gladys E; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2005-10-01

    The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.

  19. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    Science.gov (United States)

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  20. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  1. The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method

    Science.gov (United States)

    Liu, Chaohong; Wang, Xin

    2012-11-01

    In this paper, we prepared TiO2 nanostructures by a hydrothermal method and investigated the influence of the SO4^{2-} ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO4 fragment on rutile (110) is more stable than that of the 2H+SO4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors.

  2. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    Science.gov (United States)

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  3. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  4. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates

    International Nuclear Information System (INIS)

    Ghaedi, M.; Tavallali, H.; Shokrollahi, A.; Zahedi, M.; Montazerozohori, M.; Soylak, M.

    2009-01-01

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L -1 HNO 3 . The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran.

  5. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    International Nuclear Information System (INIS)

    Akbar, F.; Shinwari, Z.K.

    2012-01-01

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  6. Study of total seed proteins pattern of sesame (sesamum indicum l.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (sds-page)

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, F; Shinwari, Z K [Quaid-e-Azam University, Islamabad (Pakistan). Dept. of Biotechnology; Yousif, N; Masood, M S [Institute of Agri-Biotechnology and Genetic Resources, Islamabad (Pakistan)

    2012-11-15

    The sesame (Sesamum indicum L.) germplasm, comprising of 105 accessions was characterized for total seed storage proteins using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The germplasm was collected from diverse agro-ecological regions of Pakistan. To our information, no studies have yet been carried out in Pakistan on the genetic evaluation of sesame genotypes based on total seed protein. Total seed proteins were electrophoretically separated on 12% polyacrylamide gels by standard protocols. A total of 20 polypeptide bands were observed, of which 14 (70%) were polymorphic and 6 (30%) were monomorphic, with molecular weight ranging from 13.5 to 100 kDa. Six bands i.e., 7, 11, 12, 15, 16 and 18 were common in all genotypes. Similarity coefficients varied fro m 0.50 to 1.00. The dendrogram based on dissimilarity matrix using unweighted pair group method with arithmetic averages (UPGMA) separated all sesame accessions into three main groups i.e., A, B, C, comprising 89, 14 and 2 genotypes, respectively. Overall a low to medium level of genetic variability was observed for SDS-PAGE (single dimension). As SDS-PAGE alone did not reveal high level of genetic variability, hence 2-D gel electrophoresis along with other advanced type DNA markers and more number of sesame accessions from all over the country are recommended for the future genetic evaluation. Our investigation will significantly support the classification, development, genetic evaluation and conservation of sesame germplasm in Pakistan. (author)

  7. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kunther, W., E-mail: Wolfgang.Kunther@empa.ch [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Scrivener, K. [EPFL, Laboratory of Construction Materials, CH-1015 Lausanne (Switzerland)

    2013-02-15

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  8. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    International Nuclear Information System (INIS)

    Kunther, W.; Lothenbach, B.; Scrivener, K.

    2013-01-01

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  9. Corrosion of Alloys 600 ampersand 900 in acidified sulfate and chloride solutions

    International Nuclear Information System (INIS)

    Cullen, W.H.; Partridge, M.J.; Paine, J.P.N.

    1993-01-01

    A program is being performed currently: (1) to better quantify the susceptibility of Alloy 600 and 690 steam generator (SG) tubing materials to intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) in acid solutions of the types that could concentrate in steam generator crevices, and (2) to establish the effectiveness of various remedial measures achieved through chemical additions to the secondary side coolant. The main test method is the exposure of stressed C-rings and expanded capsules of SG tubing to acid chloride and sulfate environments of various pH levels, temperatures, and applied potentials. Following these exposures, crack lengths are measured on metallographic cross-sections of the C-rings, and wastage rates calculated from weight loss, surface area and time. Test solutions are based on varying concentrations of sulfate and chloride species, with other contaminants added to some tests. The temperature dependence of the pH of the acidified solutions is calculated using the EPRI-developed MULTEQ computer program. High-temperature pH levels range from values of 2.5 to 7.6 at 315 degrees C, which is the nominal test temperature. Various accelerating and inhibiting factors (pH, temperature, solution composition and concentration, and applied electrochemical potential) are being evaluated

  10. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  11. Structural analysis of protein complexes with sodium alkyl sulfates by small-angle scattering and polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Ospinal-Jiménez, Mónica; Pozzo, Danilo C

    2011-02-01

    Small-angle X-ray (SAXS) and neutron (SANS) scattering is used to probe the structure of protein-surfactant complexes in solution and to correlate this information with their performance in gel electrophoresis. Proteins with sizes between 6.5 to 116 kDa are denatured with sodium alkyl sulfates (SC(x)S) of variable tail lengths. Several combinations of proteins and surfactants are analyzed to measure micelle radii, the distance between micelles, the extension of the complex, the radius of gyration, and the electrophoretic mobility. The structural characterization shows that most protein-surfactant complexes can be accurately described as pearl-necklace structures with spherical micelles. However, protein complexes with short surfactants (SC(8)S) bind with micelles that deviate significantly from spherical shape. Sodium decyl (SC(10)S) and dodecyl (SC(12)S, more commonly abbreviated as SDS) sulfates result in the best protein separations in standard gel electrophoresis. Particularly, SC(10)S shows higher resolutions for complexes of low molecular weight. The systematic characterization of alkyl sulfate surfactants demonstrates that changes in the chain architecture can significantly affect electrophoretic migration so that protein-surfactant structures could be optimized for high resolution protein separations.

  12. Electrochemical Deposition and Dissolution of Thallium from Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Ye. Zh. Ussipbekova

    2015-01-01

    Full Text Available The electrochemical behavior of thallium was studied on glassy carbon electrodes in sulfate solutions. Cyclic voltammetry was used to study the kinetics of the electrode processes and to determine the nature of the limiting step of the cathodic reduction of thallium ions. According to the dependence of current on stirring rate and scan rate, this process is diffusion limited. Chronocoulometry showed that the electrodeposition can be performed with a current efficiency of up to 96% in the absence of oxygen.

  13. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    Science.gov (United States)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  14. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    OpenAIRE

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić Trošić, Jasna; Gvozdenović, Milica M.

    2012-01-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipit...

  15. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis.

    Science.gov (United States)

    Kubota, Kei; Kobayashi, Naoki; Yabuta, Masayuki; Ohara, Motomu; Naito, Toyohiro; Kubo, Takuya; Otsuka, Koji

    2017-06-05

    This report describes a novel, comprehensive approach to identifying a fragment peak of monoclonal antibody-A (mAb-A), detected by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-cGE). The fragment migrated close to the internal standard (10kDa marker) of SDS-cGE and increased about 0.5% under a 25°C condition for 6 months. Generally, identification of fragments observed in SDS-cGE is challenging to carry out due to the difficulty of collecting analytical amounts of fractionations from the capillary. In this study, in-gel digestion peptide mapping and reversed phase liquid chromatography-mass spectrometry (RPLC-MS) were employed to elucidate the structure of the fragment. In addition, a Gelfree 8100 fractionation system was newly introduced to collect the fragment and the fraction was applied to the structural analysis of a mAb for the first time. These three analytical methods showed comparable results, proving that the fragment was a fraction of heavy chain HC1-104. The fragment contained complementarity determining regions (CDRs), which are significant to antigen binding, and thus would affect the efficacy of mAb-A. In addition, SDS-cGE without the 10kDa marker was demonstrated to clarify the increased amount of the fragment, and the experiment revealed that the fragment increases 0.2% per year in storage at 5°C. The combination of the three analytical methodologies successfully identified the impurity peak detected by SDS-cGE, providing information critical to assuring the quality and stability of the biotherapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genotoxic effects of 2-dodecyl cyclobutanone

    International Nuclear Information System (INIS)

    Delincee, H.; Pool-Zobel, B.L.; Rechkemmer, G.

    1999-01-01

    The paper reports in vivo experiments with rats who received two different doses of 2-dodecyl cyclobutane administered orally. 16 hours after administration, colon cells were isolated and examined for DNA damage by means of the comet assay. No cytotoxic effects were found with the trypan blue exclusion test. When the '% tail intensity' or the 'tail moment' were used for quantitative analysis with the comet assay, it was found that similar results are obtained for the test group which received a lower dose of 2-dodecyl cyclobutane (1.12 mg/kg of body weight) and the control group which received 2% dimethyl sulfoxide. Administration of higher concentrations of the 2-dodecyl cyclobutane (14.9 mg/kg of body weight) was found to induce minor, but significant DNA damage in the test group. Further experiments will be needed in order to assess the relevance of these results for assessment of health risks due to consumption of irradiated food. (orig./CB) [de

  17. Cation modulation of hemoglobin interaction with sodium n-dodecyl sulphate (SDS) iv: magnesium modulation at pH 7.20

    OpenAIRE

    Ali Akbar Moosavi-Movahedi; Ferdinand C. Chilaka; Charles O. Nwamba

    2016-01-01

    We investigate the interaction of Mg2+ (0–2.30 mM) and sodium n-dodecyl sulfate (SDS) with hemoglobins (Hbs) A and S at pH 7.20. SDS was used to model both membranes (0.60 mM SDS) and proteases (5.0 mM SDS). Via UV-visible spectroscopy, second derivative and difference second derivative spectroscopy, we interrogated for difference(s) in the interaction of these ligands with the proteins that can account for the HbS resistance to malaria parasite while been prone to sickling. Our results show ...

  18. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  19. Influence of Valsartan on the thermodynamics of micellization of anionic surfactant Sodium Dodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Stopková L.

    2016-12-01

    Full Text Available In this manuscript was investigated behaviour of drug valsartan by micellar media of anionic surfactant sodium dodecyl sulphate. As the method was used electrical conductivity for the determination of critical micelle concentration at different temperatures (T = 293.15 - 313.15 K, as well as calculated thermodynamic parameters like standard Gibbs free energy, enthalpy and entropy of micellization. According to contribution of Gibbs free energy is the process of micellization primarily controlled by entropy. Solubilization of valsartan was studied in surfactant system at 298.15 K and physiological conditions pH 7.4 using UV-spectrophotometry at different concentration range (0.001 - 0.07 mol/l of sodium dodecyl sulphate. The solubilization of drug was observed with increasing concentration of surfactant in aqueous solution.

  20. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  1. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E S [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  2. Colloidal titration of aqueous zirconium solutions with poly(vinyl sulfate) by potentiometric endpoint detection using a toluidine blue selective electrode.

    Science.gov (United States)

    Sakurada, Osamu; Kato, Yasutake; Kito, Noriyoshi; Kameyama, Keiichi; Hattori, Toshiaki; Hashiba, Minoru

    2004-02-01

    Zirconium oxy-salts were hydrolyzed to form positively charged polymer or cluster species in acidic solutions. The zirconium hydrolyzed polymer was found to react with a negatively charged polyelectrolyte, such as poly(vinyl sulfate), and to form a stoichiometric polyion complex. Thus, colloidal titration with poly(vinyl sulfate) was applied to measure the zirconium concentration in an acidic solution by using a Toluidine Blue selective plasticized poly(vinyl chloride) membrane electrode as a potentiometric end-point detecting device. The determination could be performed with 1% of the relative standard deviation. The colloidal titration stoichiometry at pH < or = 2 was one mol of zirconium per equivalent mol of poly(vinyl sulfate).

  3. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis

    Directory of Open Access Journals (Sweden)

    Hye Sun Hyun

    2013-04-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Indoxyl sulfate and p- cresyl sulfate are important protein-bound uremic retention solutes whose levels can be partially reduced by renal replacement therapy. These solutes originate from intestinal bacterial protein fermentation and are associated with cardiovascular outcomes and chronic kidney disease progression. The aims of this study were to investigate the levels of indoxyl sulfate and p- cresyl sulfate as well as the effect of probiotics on reducing the levels of uremic toxins in pediatric patients on dialysis. &lt;b&gt;Methods:&lt;/b&gt; We enrolled 20 pediatric patients undergoing chronic dialysis; 16 patients completed the study. The patients underwent a 12-week regimen of VSL#3, a high-concentration probiotic preparation, and the serum levels of indoxyl sulfate and p- cresyl sulfate were measured before treatment and at 4, 8, and 12 weeks after the regimen by using fluorescence liquid chromatography. To assess the normal range of indoxyl sulfate and p- cresyl sulfate we enrolled the 16 children with normal glomerular filtration rate who had visited an outpatient clinic for asymptomatic microscopic hematuria that had been detected by a school screening in August 2011. &lt;b&gt;Results:&lt;/b&gt; The baseline serum levels of indoxyl sulfate and p- cresyl sulfate in the patients on chronic dialysis were significantly higher than those in the children with microscopic hematuria. The baseline serum levels of p- cresyl sulfate in the peritoneal dialysis group were significantly higher than those in the hemodialysis group. There were no significant changes in the levels of these uremic solutes after 12-week VSL#3 treatment in the patients on chronic dialysis. &lt;b&gt;Conclusion:&lt;/b&gt; The levels of the uremic toxins p- cresyl sulfate and indoxyl sulfate are highly elevated in pediatric patients on dialysis, but there was no significant effect by

  4. Effect of Hydroxylamine Sulfate on Volumetric Behavior of Glycine, L-Alanine, and L-Arginine in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-01-01

    Full Text Available The apparent molar volumes of glycine, L-alanine, and L-arginine in aqueous hydroxylamine sulfate solutions have been determined at T=298.15 K and atmospheric pressure. The standard partial molar volumes, V20, corresponding partial molar volumes of transfer, ΔtrV20, and hydration numbers, NH, have been calculated for these α-amino acids from the experimental data. The ΔtrV20 values are positive for glycine, L-alanine, and L-arginine and are all increased with the increase in the concentration of hydroxylamine ions. These parameters obtained from the volumetric data are interpreted in terms of various mixing effects between amino acids and hydroxylamine sulfate in aqueous solutions.

  5. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Indian Academy of Sciences (India)

    micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and .... software, a procedure based on Marquardt's algorithm. The reduced χ2 .... change in the environment due to the addition of. HCl.

  6. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor

    NARCIS (Netherlands)

    Bijmans, M.F.M.; Helvoort, van P.J.; Dar, S.; Dopson, M.; Lens, P.N.L.; Buisman, C.J.N.

    2009-01-01

    Process streams with high concentrations of metals and sulfate are characteristic for the mining and metallurgical industries. This study aims to selectively recover nickel from a nickel-iron-containing solution at pH 5.0 using a single stage bioreactor that simultaneously combines low pH sulfate

  7. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  8. Colloidal silver solutions with antimicrobial properties

    International Nuclear Information System (INIS)

    Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C.

    2008-01-01

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties

  9. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  10. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Majid Jafari

    Full Text Available Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD simulations of human lysozyme in sodium dodecyl sulfate (SDS at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures.

  11. Ecotoxicological assessment of the pharmaceutical fluoxetine hydrochloride and the surfactant dodecyl sodium sulfate after their submission to ionizing radiation treatment; Avaliacao ecotoxicologica do farmaco cloridrato de fluoxetina e do surfactante dodecil sulfato de sodio quando submetidos a tratamento por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes Rafael Alves dos

    2011-07-01

    The use of pharmaceuticals and personal care products and the consequent and continuous input of this substances in the environment generates an increasing need to investigate the presence, behavior and the effects on aquatic biota, as well as new ways to treat effluents containing such substances. Fluoxetine hydrochloride is an active ingredient used in the treatment of depressive disorders and anxiety. As the surfactant sodium dodecyl sulfate is present in many cleaning and personal care products. The present study aimed on assessing the acute toxicity of fluoxetine hydrochloride, sodium dodecyl sulfate and the mixture of both to the aquatic organisms Hyalella azteca, Daphnia similis and Vibrio ficheri. Reducing the toxicity of fluoxetine and the mixture after treatment with ionizing radiation from industrial electron beam accelerator has also been the focus of this study. For Daphnia similis the average values of CE50-4{sub 8h} found for the non-irradiated drug, surfactant and mixture were 14.4 %, 9.62 % and 13.8 %, respectively. After irradiation of the substances, the dose 5 kGy proved itself to be the most effective dose for the treatment of the drug and the mixture as it was obtained the mean values for CE50{sub 48h} 84.60 % and > 90 %, respectively. For Hyalella azteca the acute toxicity tests were performed for water column with duration of 96 hours, the mean values for CE50{sub 96h} found for the drug, the surfactant and the mixture non-irradiated were 5.63 %, 19.29 %, 6.27 %, respectively. For the drug fluoxetine and the mixture irradiated with 5 kGy, it was obtained 69.57 % and 77.7 %, respectively. For Vibrio ficheri the acute toxicity tests for the untreated drug and the drug irradiated with 5 kGy it was obtained CE50{sub 15min} of 6.9 % and 32.88 % respectively. These results presented a reduction of the acute toxicity of the test-substances after irradiation. (author)

  12. Solution-mediated phase transformation of haloperidol mesylate in the presence of sodium lauryl sulfate.

    Science.gov (United States)

    Greco, Kristyn; Bogner, Robin

    2011-09-01

    Forming a salt is a common way to increase the solubility of a poorly soluble compound. However, the solubility enhancement gained by salt formation may be lost due to solution-mediated phase transformation (SMPT) during dissolution. The SMPT of a salt can occur due to a supersaturated solution near the dissolving surface caused by pH or other solution conditions. In addition to changes in pH, surfactants are also known to affect SMPT. In this study, SMPT of a highly soluble salt, haloperidol mesylate, at pH 7 in the presence of a commonly used surfactant, sodium lauryl sulfate (SLS), was investigated. Dissolution experiments were performed using a flow-through dissolution apparatus with solutions containing various concentrations of SLS. Compacts of haloperidol mesylate were observed during dissolution in the flow-through apparatus using a stereomicroscope. Raman microscopy was used to characterize solids. The dissolution of haloperidol mesylate was significantly influenced by the addition of sodium lauryl sulfate. In conditions where SMPT was expected, the addition of SLS at low concentrations (0.1-0.2 mM) reduced the dissolution of haloperidol mesylate. In solutions containing concentrations of SLS above the critical micelle concentration (CMC) (10-15 mM), the dissolution of haloperidol mesylate increased compared to below the CMC. The solids recovered from solubility experiments of haloperidol mesylate indicated that haloperidol free base precipitated at all concentrations of SLS. Above 5 mM of SLS, Raman microscopy suggested a new form, perhaps the estolate salt. The addition of surfactant in solids that undergo solution-mediated phase transformation can add complexity to the dissolution profiles and conversion.

  13. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    Science.gov (United States)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  14. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  15. Quantification of Whey Protein Content in Infant Formulas by Sodium Dodecyl Sulfate-Capillary Gel Electrophoresis (SDS-CGE): Single-Laboratory Validation, First Action 2016.15.

    Science.gov (United States)

    Feng, Ping; Fuerer, Christophe; McMahon, Adrienne

    2017-03-01

    Protein separation by sodium dodecyl sulfate-capillary gel electrophoresis, followed by UV absorption at 220 nm, allows for the quantification of major proteins in raw milk. In processed dairy samples such as skim milk powder (SMP) and infant formulas, signals from individual proteins are less resolved, but caseins still migrate as one family between two groups of whey proteins. In the first group, α-lactalbumin and β-lactoglobulin migrate as two distinct peaks. Lactosylated adducts show delayed migration times and interfere with peak separation, but both native and modified forms as well as other low-MW whey proteins still elute before the caseins. The second group contains high-MW whey proteins (including bovine serum albumin, lactoferrin, and immunoglobulins) and elutes after the caseins. Caseins and whey proteins can thus be considered two distinct nonoverlapping families whose ratio can be established based on integrated areas without the need for a calibration curve. Because mass-to-area response factors for whey proteins and caseins are different, an area correction factor was determined from experimental measurement using SMP. Method performance assessed on five infant formulas showed RSDs of 0.2-1.2% (within day) and 0.5-1.1% (multiple days), with average recoveries between 97.4 and 106.4% of added whey protein. Forty-three different infant formulas and milk powders were analyzed. Of the 41 samples with manufacturer claims, the measured whey protein content was in close agreement with declared values, falling within 5% of the declared value in 76% of samples and within 10% in 95% of samples.

  16. Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    José Maria Pires

    2012-01-01

    Full Text Available A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

  17. The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 2. Influence of alkyl structure on hydrolytic reactivity in concentrated aqueous mixtures of sodium primary alkyl sulfates : 1-benzoyl-3-phenyl-1,2,4-triazole as a probe o

    NARCIS (Netherlands)

    Bethell, Donald; Fessey, Roger E.; Engberts, Jan B.F.N.; Roberts, David W.

    2001-01-01

    The kinetics of the hydrolysis of aqueous solutions of three sodium C12-alkyl sulfates (SXS), sodium 2-methylundecyl sulfate (SMS), sodium cycloundecylmethyl sulfate (SCS) and sodium 2-pentylheptyl sulfate (SPS), has been investigated at concentrations up to 70% and compared with the behaviour of

  18. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  19. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  20. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  1. Effect of Sodium Dodecyl Sulfate (SDS) and Tween 80 on Cell Viability in an Air-Cathode Microbial Fuel Cell

    KAUST Repository

    Fregoso, Luisa

    2011-07-01

    Microbial fuel cells (MFCs) generate current via electrochemical reactions produced by bacteria attached to the anode that oxidize organic matter. Due to their high volume use in household products, some concentration of surfactant will reach wastewater treatment plants. The average surfactant concentration in wastewater ranges from 10 to 20 mg L-1, and up to 300 mg L-1, for domestic and industrial wastewaters, respectively. This study aimed to demonstrate the feasibility of enhancing power production by adding Tween 80 and SDS surfactants to air-cathode MFCs, and their effect in cell viability at the anodic biofilm. In order to analyze the effect of anionic and nonionic surfactants in MFCs performance, eight MFCs were spiked with two types of surfactants, the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant Tween® 80 at two different concentrations 10 and 100 mg L-1. Cell viability at the anodic biofilms was examined using the LIVE/DEAD BacLight viability assay and images were visualized with a confocal laser scanning microscope. The electrochemical results demonstrate that, for an air-cathode MFC operating on 1 g L-1 acetate in a fed-batch mode, reactors where SDS was added show a lower overall performance, maximum PD of 544 mW m-2, CE of 12.3%, Rint of 322 Ω (10 mg L-1) and maximum PD of 265 mW m-2, CE of 9.4%, Rint of 758 Ω (100 mg L-1). Reactors where Tween 80 was added show quite stable performance, maximum PD of 623 mW m-2, CE of 15.4%, Rint of 216 Ω (10 mg L-1) and maximum PD of 591 mW m-2, CE of 10.8%, Rint of 279 Ω (100 mg L-1), compared with reactors operating at only acetate as a substrate, maximum PD of 574 mW m-2. Confocal microscopy images confirm this observation and biofilm viability appeared severely compromised in SDS reactors, especially at high concentrations. This study has opened up a whole new research area in determining which types of surfactants are toxic to the anodic biofilm and to further investigate the

  2. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  3. [Effect of 60Co gamma-irradiation on dilute aqueous solutions of surfactants].

    Science.gov (United States)

    Sawai, T; Shimokowa, T; Miki, Y; Oseko, K; Sawai, T

    1978-01-01

    Present work deals with the effects of gamma irradiation from 60Co gamma-ray source upon aqueous solutions of three kinds of surfactants. When dilute aqueous solutions of sodium dodecyl sulfate (SDS, anionic), cethyl trimethyl ammonium chloride (CTAC, cationic), and polyoxyethylene lauryl ether (POE, non-ionic) were irradiated with gamma-rays at a room remperature, the residual concentration, products, surface tension, and forming power were examined by colorimetric method, IR spectrophotometric method, gaschromatography, Ross-Miles method, and Traube's stalagnometer etc.. These surfactants were decomposed by the irradiation and thus the surface tension increased and the forming power, on the contrary, decreased with dose. Radiation chemical yields (G-value) of the degradation were about 1 for the solutions of SDS and CTAC, and about 0.3 for the POE solution. From the experimental results, it was found that following chemical reactions seem to occur followed by the radiolysis of water; a) bond cleavage of ester for SDS, of CN for CTAC, and of oxyethylene for POE, b) hydrogen abstraction from the surfactants, c) production of CO bond in the presence of dissolved oxygen.

  4. Physical Compatibility of Magnesium Sulfate and Sodium Bicarbonate in a Pharmacy-compounded Bicarbonate-buffered Hemofiltration Solution

    Science.gov (United States)

    Moriyama, Brad; Henning, Stacey A.; Jin, Haksong; Kolf, Mike; Rehak, Nadja N.; Danner, Robert L.; Walsh, Thomas J.; Grimes, George J.

    2011-01-01

    PURPOSE To assess the physical compatibility of magnesium sulfate and sodium bicarbonate in a pharmacy-compounded bicarbonate-buffered hemofiltration solution used at the National Institutes of Health Clinical Center (http://www.cc.nih.gov). METHODS Two hemofiltration fluid formulations with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L or 15 mEq/L were prepared in triplicate with an automated compounding device. The hemofiltration solution with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L contains the maximum concentration of additives that we use in clinical practice. The hemofiltration solution of 15 mEq/L of magnesium and 50 mEq/L of bicarbonate was used to study the physicochemical properties of this interaction. The solutions were stored without light protection at 22 to 25 °C for 48 hours. Physical compatibility was assessed by visual inspection and microscopy. The pH of the solutions was assayed at 3 to 4 hours and 52 to 53 hours after compounding. In addition, electrolyte and glucose concentrations in the solutions were assayed at two time points after preparation: 3 to 4 hours and 50 to 51 hours. RESULTS No particulate matter was observed by visual and microscopic inspection in the compounded hemofiltration solutions at 48 hours. Electrolyte and glucose concentrations and pH were similar at both time points after solution preparation. CONCLUSION Magnesium sulfate (1.5 mEq/L) and sodium bicarbonate (50 mEq/L) were physically compatible in a pharmacy-compounded bicarbonate-buffered hemofiltration solution at room temperature without light protection at 48 hours. PMID:20237384

  5. Extraction of beryllium sulfate by a long chain amine

    International Nuclear Information System (INIS)

    Etaix, E.S.

    1968-01-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [fr

  6. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Erah

    purified protease was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-. PAGE). ... by ammonium sulphate (40 - 60% w/v). The solution was kept .... chloride (88.1 %), silver nitrate (92.9 %), mercuric chloride ...

  7. 高职精细化工实验--十二烷基硫酸钠的制备1例%Recommendation of a fine chemical experiment-the synthesis of sodium dodecyl sulfate

    Institute of Scientific and Technical Information of China (English)

    张桂锋

    2014-01-01

    在教学实践的基础上,推荐一个适合高职院校精细化工专业学生的实验---十二烷基硫酸钠的制备。以浓硫酸和尿素为催化剂,用月桂醇(正十二醇)和氨基磺酸反应,然后加入氢氧化钠放尽氨气,所得粗产物,经提纯、干燥精制得白色或淡黄色固体。通过实验可以让学生掌握硫酸化制备阴离子表面活性剂的基本原理和方法,并掌握尾气吸收、提纯等精细化工实验操作技能。%Based on the teaching practice, a fine chemical experiments was recommend, it's suitable for advanced vocational students———the synthesis of sodium dodecyl sulfate. Using sulfuric acid and urea as catalyst, lauryl alcohol ( lauryl alcohol) and amino sulfonic acid were reacted, and sodium hydroxide was put ammonia, so the coarse product was gotten, and then, the white or light yellow solid were obtained by purification and drying. Through the experiment can make the students master the basic principle of sulfating preparation of anionic surfactant and methods, and grasp the experimental operation skills of fine chemical industry, such as the tail gas absorption and purification .

  8. Effect of 60Co gamma-ray irradiation on dilute aqueous solutions of surfactants

    International Nuclear Information System (INIS)

    Sawai, Teruko; Shimokawa, Toshinari; Miki, Yasushi; Oseko, Koichi; Sawai, Takeshi

    1978-01-01

    Present work deals with the effects of gamma irradiation from 60 Co γ-ray source upon aqueous solutions of three kinds of surfactants. When dilute aqueous solutions of sodium dodecyl sulfate (SDS, anionic), cethyl trimethyl ammonium chloride (CTAC, cationic), and polyoxyethylene lauryl ether (POE, non-ionic) were irradiated with γ-rays at a room temperature, the residual concentration, products, surface tension, and forming power were examined by colorimetric method, IR spectrophotometric method, gaschromatography, Ross-Miles method, and Traube's stalagmometer etc. These surfactants were decomposed by the irradiation and thus the surface tension increased and the forming power, on the contrary, decreased with dose. Radiation chemical yields (G-value) of the degradation were about 1 for the solutions of SDS and CTAC, and about 0.3 for the POE solution. From the experimental results, it was found that following chemical reactions seem to occur followed by the radiolysis of water: a) bond cleavage of ester for SDS, of CN for CTAC, and of oxyethylene for POE, b) hydrogen abstraction from the surfactants, c) production of CO bond in the presence of dissolved oxygen. (auth.)

  9. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  10. Influence of Microheterogeneous Environments of Sodium Dodecyl Sulfate on the Kinetics of Oxidation of l-Serine by Chloro and Chlorohydroxo Complexes of Gold(III).

    Science.gov (United States)

    Maiti, Krishnendu; Sen, Pratik K; Barik, Anil K; Pal, Biswajit

    2018-06-21

    The oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III) was spectrophotometrically investigated in acidic buffer media in the absence and presence of the anionic surfactant sodium dodecyl sulfate (SDS). The oxidation rate decreases with increase in either [H + ] or [Cl - ]. Gold(III) complex species react with the zwitterionic form of serine to yield acetaldehyde (principal reaction product) through oxidative decarboxylation and subsequent deamination processes. A reaction pathway involving one electron transfer from serine to Au(III) followed by homolytic cleavage of α-C-C bond with the concomitant formation of iminic cation intermediate has been proposed where Au(III) is initially reduced to Au(II). The surfactant in the submicellar region exhibits a catalytic effect on the reaction rate at [SDS] ≤ 4 mM; however, in the postmicellar region an inhibitory effect was prominent at [SDS] ≥ 4 mM. The catalytic effect below the critical micelle concentration (cmc) may be attributable to the electrostatic attraction between serine and SDS that, in turn, enhances the nucleophilicity of the carboxylate ion of the amino acid. The inhibition effect beyond cmc has been explained by considering the distribution of the reactant species between the aqueous and the micellar pseudophases that restricts the close association of the reactant species. The thermodynamic parameters Δ H 0 and Δ S 0 associated with the binding between serine and SDS micelle were calculated to be -14.4 ± 2 kJ mol -1 and -6.3 ± 0.5 J K -1 mol -1 , respectively. Water structure rearrangement and micelle-substrate binding play instrumental roles during the transfer of the reactant species from aqueous to micellar pseudophase.

  11. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  12. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Meng [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tu, Chen [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Hu, Xuefeng; Zhang, Haibo [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Lijuan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wei, Jing [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li, Yuan [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0–4 weeks), 6.7–74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4–8 weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of

  13. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing...

  14. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2016-01-01

    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  15. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  16. Tuning the optical properties of carbon nanotube solutions using amphiphilic self-assembly

    Science.gov (United States)

    Arnold, Michael S.; Stupp, Samuel I.; Hersam, Mark C.

    2003-07-01

    Recently it has been shown that aqueous solutions of sodium dodecyl sulfate (SDS) encapsulated and polymer wrapped single-walled carbon nanotubes (SWNTs) fluoresce in the near infrared (NIR) in the regime of the E11 van Hove transitions for semiconducting SWNTs. For bundled SWNTs, fluorescence is observed to be quenched along with a shift and broadening of the absorbance spectrum. Here, we study two other commercially available surfactants, BRIJ-97 and Triton-X-100, by analysis of carbon nanotube fluorescence and absorptivity in the NIR. It is found that changing the surfactant alters the corresponding optical properties of the solubilized carbon nanotubes. The NIR absorbance spectra of BRIJ-97 and Triton-X-100 carbon nanotube solutions are also compared with the absorbance spectrum of NaCl destabilized SDS-SWNT solutions. By controlling the amount of NaCl added to an aqueous solution of SDS-SWNTs, the optical absorbance spectrum can be made to match that of BRIJ-97 and Triton-X-100 solutions. Lastly, a correlation is drawn between the amount of shift in the absorbance spectrum and the fluorescence intensity, independent of surfactant used. This shift and decrease in fluorescence intensity may be due to carbon nanotube bundling.

  17. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  18. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  19. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India); Patil, S.R. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India)], E-mail: srp_fsl@rediffmail.com

    2008-03-15

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R{sub 0}) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B{sub 2} directly from pharmaceutical tablets.

  20. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  1. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  2. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full...

  3. Anhydrate to hydrate solid-state transformations of carbamazepine and nitrofurantoin in biorelevant media studied in situ using time-resolved synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Bøtker, Johan Peter; Rantanen, Jukka; Arnfast, Lærke

    2016-01-01

    with different biorelevant media, simulated fasted and fed state intestinal fluids containing bile salt and dioleoylphosphatidylcholine (DOPC) micelles, DOPC/sodium dodecyl sulfate (SDS) mixture, bile salt solution and water. Two anhydrate compounds (carbamazepine, CBZ and nitrofurantoin, NF) with different...

  4. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  5. A thermodynamic and kinetic study of trace iron removal from aqueous cobalt sulfate solutions using Monophos resin.

    Science.gov (United States)

    Wang, Guangxin; Zhao, Yunchao; Yang, Bin; Song, Yongfa

    2018-01-01

    High purity cobalt has many important applications, such as magnetic recording media, magnetic recording heads, optoelectronic devices, magnetic sensors, and integrated circuits, etc. To produce 5N or higher purity cobalt in an electro-refining process, one of the challenges is to effectively reduce the Fe content of aqueous cobalt salt solution before electrolysis. This paper describes thermodynamic and kinetic investigations of the Fe adsorption process of a new sulfonated monophosphonic resin with the trade mark Monophos. Five cobalt sulfate solutions of different Co concentrations were prepared. Fe ions were removed from the solutions by ion exchange method using Monophos resin. Chemical analysis was carried out using a Perkin Elmer ICP-OES. The initial Fe concentrations of about 0.9-2.0 mg/L can be reduced to about 0.3-0.8 mg/L, which is equivalent to an Fe removal rate of 60-67%. The Langmuir isothermal adsorption model applies well to the Fe removal process. A second-order type based on McKay equation fits better with experimental data than other kinetic models. The kinetic curve can be divided into two sections. For t 30 min. Monophos resin is effective for the removal of trace Fe from cobalt sulfate solution. This ion exchange process obeys the Langmuir isothermal adsorption model and the McKay equation of second-order kinetics.

  6. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  7. New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H253. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decomposition of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3 and zero-valent antimony (Sb phase. X-ray Powder Diffraction (XRD and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocomposite material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-VIS spectroscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15–30 nm in size inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, probably related to the presence of Sb2S3 nanoclusters.

  8. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    Science.gov (United States)

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  9. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  10. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  11. Study of particles in solution by small angle x-ray scattering

    International Nuclear Information System (INIS)

    Itri, R.

    1986-01-01

    The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H 2 O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.) [pt

  12. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    Science.gov (United States)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  13. Investigation of structure and magnetic properties of cobalt-nickel and manganese ferrites nanoparticles synthesized in direct micelles of sodium dodecyl sulphate system

    International Nuclear Information System (INIS)

    Fedosyuk, V.M.; Mirgorod, Yu.A.

    2016-01-01

    Results of investigation of the crystal structure and magnetic properties of the nanoparticles of transition metals ferrites (cobalt, nickel, manganese) synthesized by unified methods using direct sodium dodecyl sulfate micelles are presented. Crystal structure of the samples was investigated by X-ray diffraction on DRON-3M (in the CuKa-radiation). Particle size was investigated by transmission electron microscopy on microscope JEOL JEM-1011 (accelerating voltage 100 kV). All powders contain nanoparticles of the same size in the range 2-6 nm. Magnetic properties of the samples were estimated from temperature and field dependences of the magnetization. All samples exhibit properties of superparamagnets with different blocking temperatures below 45 K. (authors).

  14. The distribution of n-caprylic acid between organic solvents and aqueous sodium sulfate solution

    International Nuclear Information System (INIS)

    Gloe, K.; Muehl, P.; Kholkin, A.I.; Gindin, L.M.

    1981-01-01

    The distribution of 14 C-labelled n-caprylic acid between n-decane, benzene, isoamyl acetate, diisopropyl ketone, isoamyl alcohol and an aqueous 0.6 molar sodium sulfate solution was studied. The distribution constants and the dimerisation constants were determined for the reactions HRsub((w)) reversible HRsub((org)) and 2 HRsub((org)) reversible (HR)sub(2(org)), respectively. Both the effect of the solvent on the acid distribution and the importance of such studies for the interpretation of liquid-liquid extraction equilibria are discussed. (author)

  15. Structural study of concentrated micellar solutions

    International Nuclear Information System (INIS)

    Zemb, Thomas

    1985-01-01

    This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr

  16. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  17. Studies on sulfate attack: Mechanisms, test methods, and modeling

    Science.gov (United States)

    Santhanam, Manu

    The objective of this research study was to investigate various issues pertaining to the mechanism, testing methods, and modeling of sulfate attack in concrete. The study was divided into the following segments: (1) effect of gypsum formation on the expansion of mortars, (2) attack by the magnesium ion, (3) sulfate attack in the presence of chloride ions---differentiating seawater and groundwater attack, (4) use of admixtures to mitigate sulfate attack---entrained air, sodium citrate, silica fume, and metakaolin, (5) effects of temperature and concentration of the attack solution, (6) development of new test methods using concrete specimens, and (7) modeling of the sulfate attack phenomenon. Mortar specimens using portland cement (PC) and tricalcium silicate (C 3S), with or without mineral admixtures, were prepared and immersed in different sulfate solutions. In addition to this, portland cement concrete specimens were also prepared and subjected to complete and partial immersion in sulfate solutions. Physical measurements, chemical analyses and microstructural studies were performed periodically on the specimens. Gypsum formation was seen to cause expansion of the C3S mortar specimens. Statistical analyses of the data also indicated that the quantity of gypsum was the most significant factor controlling the expansion of mortar bars. The attack by magnesium ion was found to drive the reaction towards the formation of brucite. Decalcification of the C-S-H and its subsequent conversion to the non-cementitious M-S-H was identified as the mechanism of destruction in magnesium sulfate attack. Mineral admixtures were beneficial in combating sodium sulfate attack, while reducing the resistance to magnesium sulfate attack. Air entrainment did not change the measured physical properties, but reduced the visible distress of the mortars. Sodium citrate caused a substantial reduction in the rate of damage of the mortars due to its retarding effect. Temperature and

  18. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enhanced spectrofluorimetric determination of the multitargeted ...

    African Journals Online (AJOL)

    FDA) has approved CRZ in ... binary combination may involve pharmacokinetic .... Figure 5: Effect of pH on the FI of 100 ng/mL CRZ in 0.2 mL 1 %, w/v Sodium dodecyl sulfate (SDS) solution in ... Table 1: Analytical performance data for the.

  20. Three-dimensional barium-sulfate-impregnated reduced graphene oxide aerogel for removal of strontium from aqueous solutions

    Science.gov (United States)

    Jang, Jiseon; Lee, Dae Sung

    2018-06-01

    A three-dimensional barium-sulfate-impregnated reduced graphene oxide (BaSO4-rGO) aerogel was successfully synthesized by a facile one-step hydrothermal method and was used as an adsorbent to remove strontium from aqueous solutions. The characterized elemental composition, crystal structure, and morphology of the prepared aerogel confirmed that barium sulfate particles were firmly anchored on the surface of the rGO sheets and exhibited a porous 3D structure with a high surface area of 129.37 m2/g. The mass ratio of BaSO4 in the BaSO4-rGO aerogel substantially affected strontium adsorption, and the optimal BaSO4/rGO ratio was found to be 1:1. The synthesized BaSO4-rGO aerogel not only reached adsorption equilibrium within 1 h, but also showed much higher adsorption capacity than an rGO aerogel. The experimental data were well fitted to a pseudo-second-order kinetic model and the adsorption behavior followed the Langmuir isotherm. The adsorption capacity of strontium on BaSO4-rGO aerogels remained relatively high even under ionic competition in simulated seawater. These results showed that the BaSO4-rGO aerogel is an efficient and promising adsorbent for the treatment of strontium in aqueous solutions.

  1. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Directory of Open Access Journals (Sweden)

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  2. Understanding the kinetics of sulfate reduction in brines by hydrogen: Progress report

    International Nuclear Information System (INIS)

    Strachan, D.M.

    1988-07-01

    Experiments were conducted with mixtures of hydrogen gas and each of PBB1 and PBB3 brines to examine the reduction kinetics of sulfate in high ionic strength solutions. Results from the experiments with brines showed that the kinetics of sulfate reduction is slower in high ionic strength solutions than the kinetics in low ionic strength solutions. However, the kinetic mechanism does not seem to alter the slow kinetics, but the addition of much larger quantities of sulfide, about 40 mM, does accelerate the reduction of sulfate. Since the proposed reaction mechanism for the reduction of sulfate by hydrogen gas involves the reaction of sulfide with sulfate, slow initial kinetics in the absence of sulfide is understandable, but also implies an unknown rate-limiting reaction. Precipitation of calcium sulfate(s) and calcium sulfide may limit the sulfide and sulfate concentrations to low values. The coexistence of anhydrite and oldhamite may indicate a part of the Ca-S-H 2 O that has not yet been investigated. 6 refs., 4 figs., 3 tabs

  3. Effects of enteral and intravenous fluid therapy, magnesium sulfate, and sodium sulfate on colonic contents and feces in horses.

    Science.gov (United States)

    Lopes, Marco A F; White, Nathaniel A; Donaldson, Lydia; Crisman, Mark V; Ward, Daniel L

    2004-05-01

    To assess changes in systemic hydration, concentrations of electrolytes in plasma, hydration of colonic contents and feces, and gastrointestinal transit in horses treated with IV fluid therapy or enteral administration of magnesium sulfate (MgSO4), sodium sulfate (NaSO4), water, or a balanced electrolyte solution. 7 horses with fistulas in the right dorsal colon (RDC). In a crossover design, horses alternately received 1 of 6 treatments: no treatment (control); IV fluid therapy with lactated Ringer's solution; or enteral administration of MgSO4, Na2SO4, water, or a balanced electrolyte solution via nasogastric intubation. Physical examinations were performed and samples of blood, RDC contents, and feces were collected every 6 hours during the 48 hour-observation period. Horses were muzzled for the initial 24 hours but had access to water ad libitum. Horses had access to hay, salt, and water ad libitum for the last 24 hours. Enteral administration of a balanced electrolyte solution and Na2SO4 were the best treatments for promoting hydration of RDC contents, followed by water. Sodium sulfate was the best treatment for promoting fecal hydration, followed by MgSO4 and the balanced electrolyte solution. Sodium sulfate caused hypocalcemia and hypernatremia, and water caused hyponatremia. Enteral administration of a balanced electrolyte solution promoted hydration of RDC contents and may be useful in horses with large colon impactions. Enteral administration of either Na2SO4 or water may promote hydration of RDC contents but can cause severe electrolyte imbalances.

  4. Evidence of the protein content of bovine and human dental pulps by the action of endodontic irrigation solutions through electrophoretic patterns

    Directory of Open Access Journals (Sweden)

    María E López

    2013-01-01

    Full Text Available Background: Sodium dodecyl sulfate polyacrylamide gel electrophoresis let to show the protein content of different tissues. Dental pulp contains connective tissue which is removed during the endodontic treatment. Many studies consider bovine rather than human pulp tissue because of its size. Aim: To evidence the protein content of bovine and human dental pulps and the action of endodontic irrigation solutions through electrophoretic patterns. Materials and Methods: Extracts of human and bovine dental pulps were prepared. Sodium hypochlorite, calcium hydroxide, chlorhexidine and ethylenediamine tetraacetic acid were used as irrigating solutions. Results: Bovine and human pulps have a small difference in two bands of proteins present between 74 kDa and 80 kDa. The denaturizing capacity of sodium hypochlorite and the washing action of calcium hydroxide and chlorhexidine were evidenced. Ethylenediamine tetraacetic acid solution was shown to contain proteins continuously during the endodontic root canal washing. Conclusions: Differences in pulp tissues and the action of irrigating solutions on their protein content would help on the understanding of the biological process of the endodontic treatment.

  5. NMR study of the dynamics of cationic gemini surfactant 14-2-14 in mixed solutions with conventional surfactants.

    Science.gov (United States)

    Jiang, Yan; Lu, Xing-Yu; Chen, Hong; Mao, Shi-Zhen; Liu, Mai-Li; Luo, Ping-Ya; Du, You-Ru

    2009-06-18

    Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.

  6. Development and validation of an alternative titration method for the determination of sulfate ion in indinavir sulfate

    Directory of Open Access Journals (Sweden)

    Breno de Carvalho e Silva

    2005-02-01

    Full Text Available A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.

  7. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  8. Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Amir; Saad, Ebtissam A. [Ain Shams Univ., Cairo (Egypt). Chemistry Dept.; Mahmoud, Mamdoh R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.; Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor; Kandil, Abdelhakim [Helwan Univ., Cairo (Egypt). Chemistry Dept.

    2017-06-01

    The present study aims at the removal of Eu(III) from aqueous solutions by sorptive flotation process. This process involves adsorption of Eu(III) onto bentonite and kaolinite clays followed by floatation using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) collectors. The effect of adsorption parameters (pH, contact time, clay weight, Eu(III) concentration, ionic strength) as well as flotation parameters (collector and frother concentrations, bubbling time, concentrations of foreign cations and anions) on the removal efficiency of Eu(III) were studied. The obtained results show that Eu(III) ions are removed efficiently (R% ∝ 95%) at pH=4 after 1 h shaking with clay and 15 min floatation. The adsorption kinetics of Eu(III) onto the employed clays followed the pseudo-second-order model and the equilibrium data fitted well to the Freundlich isotherm model.

  9. Transformation of thorium sulfate in thorium nitrate by ion exchange resin

    International Nuclear Information System (INIS)

    Pereira, W.

    1991-01-01

    A procedure for transforming thorium sulfate into thorium nitrate by means of a strong cationic ion exchanger is presented. The thorium sulfate solution (approximately 15 g/L Th (SO 4 ) 2 ) is percolate through the resin and the column is washed first with water, with a 0,2 M N H 4 OH solution and then with a 0.2 M N H 4 NO 3 solution in order to eliminate sulfate ion. Thorium is eluted with a 2 M solution of (N H 4 ) 2 CO 3 . This eluate is treated with a solution of nitric acid in order to obtain the complete transformation into Th (NO 3 ) 4 . The proposed procedure leads to good quality thorium nitrate with high uranium decontamination. (author)

  10. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  11. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    International Nuclear Information System (INIS)

    Chemerisov, Sergey; Gromov, R.; Makarashvili, Vakhtang; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Stepinski, Dominique; Jerden, James; Vandegrift, George F.

    2015-01-01

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  12. Contrast variation SANS experiments to the study of detergent ...

    Indian Academy of Sciences (India)

    PEO-PPO-PEO triblock copolymer P85 [(EO)26 (PO)39 (EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering ...

  13. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  14. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  15. Two components of Na emission in sonoluminescence spectrum from surfactant aqueous solutions.

    Science.gov (United States)

    Hayashi, Yuichi; Choi, Pak-Kon

    2015-03-01

    Sonoluminescence from sodium dodecyl sulfate (SDS) aqueous solutions exhibits Na emission. The spectrum of Na emission was measured as a function of sonication time for a total of 30 min at an ultrasonic frequency of 148 kHz. The spectral line profiles changed with the sonication time, suggesting that the Na emission consists of two components: broadened lines, which are shifted from the original D lines, and unshifted narrow lines. The intensity of the unshifted narrow lines decreased at a greater rate than that of the broadened lines with increasing sonication time. This effect was enhanced at a higher acoustic power. The shifted broadened lines remained after sonication for 30 min. We propose that these quenching effects are caused by the accumulation of gases decomposed from SDS molecules inside bubbles. The CO₂ gas dependence of Na emission in NaCl aqueous solutions showed a similar change in the line profiles to that in SDS aqueous solutions, which supported this proposition. The unshifted narrow lines are easily affected by foreign gases. The results suggest that the two components originate from different environments around the emitting species, although both of them originate from the gas phase inside bubbles. The generation mechanisms of the two components are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of ...

  17. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    Ambroise, J.; Pera, J.

    2008-01-01

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  18. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  19. Coupling Sodium Dodecyl Sulfate–Capillary Polyacrylamide Gel Electrophoresis with MALDI-TOF-MS via a PTFE Membrane

    Science.gov (United States)

    Lu, Joann J.; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-01-01

    Sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS–capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI–TOF–MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  20. Composite templates synthesis of mesoporous titania from industrial titanyl sulfate solution under external outfields

    International Nuclear Information System (INIS)

    Tian Congxue

    2008-01-01

    The precursors of mesoporous titania were synthesized via supra-molecular self-assembly route induced by composite templates (CTAB/P-123) from industrial titanyl sulfate solution under ultrasonic irradiation, microwave and hydrothermal condition. The hydrolysis and polycondensation rates of TiOSO 4 solution were controlled by adjusting the pH value at about 1.0. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by X-ray diffraction (XRD), N 2 isothermal adsorption-desorption, HRTEM and SAD. External outfields with enhancing polar action and soft hydrothermal condition were beneficial to prepare better mesoporous TiO 2 . Ultrasonic vibration promoted the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO 2 was synthesized with BET specific surface area of 190.6 m 2 g -1 , average pore diameter of 2.57 nm and crystal size of 13.65 nm. And ultrasonic irradiation, microwave and hydrothermal conditions were making for forming and stabilizing the mesoporous structure

  1. 21 CFR 178.1010 - Sanitizing solutions.

    Science.gov (United States)

    2010-04-01

    ... aqueous solution containing potassium iodide, sodium p-toluenesulfonchloroamide, and sodium lauryl sulfate...), trisodium phosphate (CAS Reg. No. 7601-54-9), sodium lauryl sulfate (CAS Reg. No. 151-21-3), and potassium...) An aqueous solution of citric acid, disodium ethylenediaminetetraacetate, sodium lauryl sulfate, and...

  2. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  3. Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres

    Science.gov (United States)

    Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui

    2017-05-01

    Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.

  4. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  5. Inactivation of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 on tomatoes using sodium dodecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ademola Ijabadeniyi

    2017-04-01

    Full Text Available The effectiveness of sodium dodecyl sulphate (SDS, sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05 among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  6. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  7. Effect of metakaolin on external sulfate attack

    Energy Technology Data Exchange (ETDEWEB)

    Ramlochan, T.; Thomas, M. [Toronto Univ., Dept. of Civil Engineering, ON (Canada)

    2000-07-01

    The effect of high reactivity metakaolin (HRM) on the sulfate resistance of mortars was studied. Mortar bars with three cements of varying C{sub 3}A content were used for the experiment. After a six month exposure to a 5 per cent solution of sodium sulfate, mortar bars incorporating any level of HRM as a partial replacement for a high-C{sub 3}A was considered 'moderately sulfate resistant'; mortar bars with HRM and a moderate or low C{sub 3}A content as 'high sulfate resistant'. It was also determined that for long term sulfate resistance 15 per cent HRM or more may be required, depending on the C{sub 3}A content. The performance of HRM was found to be significantly influenced by the water-cementitious material ratio, and in turn, by permeability, suggesting that HRM might increase sulfate resistance more by lowering the permeability of the concrete than by any chemical action. 7 refs., 4 tabs., 7 figs.

  8. Polarization behavior of new and used lead alloys in acid sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P.; O' Keefe, T.J. [Univ. of Missouri-Rolla, Materials Research Center and Dept. of Metallurgical Engineering, Rolla, Missouri (United States)

    2001-07-01

    Polarization and Electrochemical impedance were used to study various lead alloys commercially used to electrowin zinc and copper from acidic sulfate solutions. Anode specimens that had been in service at several electrowinning operations were tested and their electrochemical performance was compared to that obtained from new anode samples. Tests were conducted in sulfuric acid. Cyclic voltammetry was used in a potential range in which both Pb{sup +2} and Pb{sup +4} formed stable phases. Selected polarization tests were also made to study a number of variables, including changes in the concentration of cobalt and manganese in the electrolyte. Results showed that the phases formed on the surface of the anode were critical in defining the electrochemical behavior of the anodes. In particular, certain active phases, which were depolarizing were identified on some of the used anodes. It was possible to duplicate some of these phases in the laboratory. (author)

  9. Effects of the addition of micro silica on the durability of mortars exposed to the sodium sulfate attack

    International Nuclear Information System (INIS)

    Nasser, C.; Meriam, M.

    2012-01-01

    This article presents a detailed experimental study on the sulfate attack of mortars of self compacting concrete, and the effectiveness of employs micro silica and limestone fillers in the minimization of the damage resulting from such an attack. The test solution used to supply the sulfate ions and the cations was the sodium sulfate solution 4.5%. The solution saturated with lime was employed as the reference solution. The main variables investigated in the study were the type of cement and mineral addition. The expansion measured on p rims of mortar of (40x40x160) millimeters was employed to estimate their durability after exposure to the sodium sulfate solution attack during 91 days-Specimens of mortars were visually examined to assess the extent of deterioration due to the sulfate attack. The x-ray diffraction was used to evaluate the microstructural nature of the sulfate attack. The test results proved that the use of micro silica had a beneficial effect on the expansion due to the sodium sulfate attack. While mortars with limestone filler have undergoes degradation even with the use of cement resistant to sulfates. (authors).

  10. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    Science.gov (United States)

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  11. Modeling of Sulfate Double-Salt in Nuclear Wastes

    International Nuclear Information System (INIS)

    Toghiani, B.; Lindner, J.S.; Weber, C.F.; Hunt, R.D.

    2000-01-01

    The Environmental Simulation Program (ESP) continues to adequately predict the solubility of most key chemical systems in the Hanford tank waste. For example, the ESP predictions were in fair agreement with the solubility experiments for the fluoride-phosphate system, although ESP probably underestimates the aqueous amounts. Due to the importance of this system in the formation of pipeline plugs, additional experiments have been made at elevated temperatures, and improvements to the ESP database will be made. ESP encountered problems with sulfate systems because the Public database for ESP does not include anhydrous sodium sulfate in mixed solutions below 32.4 C. This limitation leads to convergence problems and to spurious predictions of solubility near the transition point with sodium sulfate decahydrate when other salts such as sodium nitrate are present. However, ESP was able to make reasonable solubility predictions with a corrected database, demonstrating the need to validate and document the various databases that can be used by ESP. Even though ESP does not include the sulfate-nitrate double salt, this omission does not appear to be a major problem. The solubility predictions with and without the sulfate-nitrate double salt are comparable. In sharp contrast, the sulfate-fluoride double salt is included, but ESP still underestimates solubility in some cases. This problem can misrepresent the ionic strength of the solution, which is an important factor in the formation of pipeline plugs. Solubility tests on the sulfate-fluoride system are planned to provide additional data at higher temperatures and in caustic solutions. These results will be used to improve the range and accuracy of ESP predictions. ESP will continue to provide important predictions for waste processing operations while being evaluated and improved. For example, ESP will be used to determine the amount of water for the saltcake dissolution efforts at Hanford. When ESP underestimates the

  12. Effect of Ammonium Chloride on the Efficiency with Which Copper Sulfate Activates Marmatite: Change in Solution Composition and Regulation of Surface Composition

    Directory of Open Access Journals (Sweden)

    Shengdong Zhang

    2018-06-01

    Full Text Available Zinc sulfide minerals are the primary choice for zinc extraction and marmatite is one of the two most common zinc sulphide minerals (sphalerite and marmatite, therefore it is of great significance to study and optimize the flotation of marmatite. To improve the activation of copper sulfate on marmatite, a method involving the addition of ammonium chloride is devised. The method has been proven to be an effective way of improving the activation efficiency of copper sulfate towards marmatite under alkaline conditions. The strengthening mechanism was studied using micro-flotation, adsorption test, X-ray photoelectron spectroscopy, and by analyzing changes in solution composition. Flotation test results show that the activation effect of the copper sulfate towards marmatite is enhanced with the addition of ammonium chloride. According to the results of the adsorption measurements and X-ray photoelectron spectroscopy analysis, when the marmatite surface is activated using copper sulfate with added ammonia chloride, it adsorbs more copper sulfide and less copper hydroxide and zinc hydroxide. These changes in surface composition are believed to occur via the following process: NH3(aq promotes the dissolution of zinc hydroxide and then facilitates the conversion of surface copper hydroxide to copper sulfide. In addition, the occurrence of Cu(NH3n2+ can promote the adsorption of copper ions (Cu2+ can be stored as Cu(NH3n2+ via complexation, and then, when the concentration of copper ions decreases, Cu2+ can be released through the decompositionof Cu(NH3n2+. Hence, the copper ion concentration can be maintained and this can facilitate the adsorption of Cu2+ on marmatite. Based on a comprehensive analysis of all our results, we propose that adding ammonium chloride to the copper sulfate changes the solution components (i.e., the presence of NH3(aq and Cu(NH3n2+ and then regulates the surface composition of marmatite. The change in surface composition

  13. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  14. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    OpenAIRE

    Justel, F. J.; Claros, M.; Taboada, M. E.

    2015-01-01

    Abstract In Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different...

  15. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-01-01

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  16. Noncovalent binding of 4-nitroquinoline-N-oxide to proteins

    International Nuclear Information System (INIS)

    Yamamoto, Osamu

    1979-01-01

    Binding of 4NQO to various kinds of enzymes or proteins was studied. Each one of proteins was mixed with 4NQO in 0.4 mM NaHCO 3 solution and eluted through Ultrogel AcA 22 column. Radioactivity of 14 C-labeled 4NQO found in protein fraction was measured. 4NQO bound hardly to polyglutamic acid and polyaspertic acid, somewhat to serum albumin, insulin, trypsin, RNA polymerase and DNA polymerase, and markedly to ureas which is an SH enzyme. Lactate dehydrogenase, one of SH enzymes, aggregated with 4NQO. The binding of SH enzyme with the N-oxide would be attributable to a noncovalent binding such as >N-O---H-S-, because 4NQO-urease binding yield markedly decreased in the presence of sodium dodecyl sulfate or cysteine, and also 4NQO-bound urease released 4NQO by the addition of sodium dodecyl sulfate. (author)

  17. Noncovalent binding of 4-nitroquinoline-N-oxide to proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, O [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1979-12-01

    Binding of 4NQO to various kinds of enzymes or proteins was studied. Each one of proteins was mixed with 4NQO in 0.4 mM NaHCO/sub 3/ solution and eluted through Ultrogel AcA 22 column. Radioactivity of /sup 14/C-labeled 4NQO found in protein fraction was measured. 4NQO bound hardly to polyglutamic acid and polyaspertic acid, somewhat to serum albumin, insulin, trypsin, RNA polymerase and DNA polymerase, and markedly to ureas which is an SH enzyme. Lactate dehydrogenase, one of SH enzymes, aggregated with 4NQO. The binding of SH enzyme with the N-oxide would be attributable to a noncovalent binding such as >N-O---H-S-, because 4NQO-urease binding yield markedly decreased in the presence of sodium dodecyl sulfate or cysteine, and also 4NQO-bound urease released 4NQO by the addition of sodium dodecyl sulfate.

  18. Fluorescence of berberine in microheterogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Colina, Ariel N.; Díaz, Marta S.; Gutiérrez, María Isela, E-mail: isela@unpata.edu.ar

    2013-12-15

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 3{sup 2} full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φ{sub f}) reveal that the highest values (Φ{sub f}≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems.

  19. Fluorescence of berberine in microheterogeneous systems

    International Nuclear Information System (INIS)

    Colina, Ariel N.; Díaz, Marta S.; Gutiérrez, María Isela

    2013-01-01

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 3 2 full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φ f ) reveal that the highest values (Φ f ≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems

  20. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H2SO4 solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    International Nuclear Information System (INIS)

    Abd El Rehim, Sayed S.; Amin, Mohammed A.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H 2 SO 4 solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined

  1. Standardization of a sulfur quantitative analysis method by X ray fluorescence in a leaching solution for bio-available sulfates in soil

    International Nuclear Information System (INIS)

    Morales S, E.; Aguilar S, E.

    1989-11-01

    A method for bio-available sulfate analysis in soils is described. A Ca(H2PO4) leaching solution was used for soil samples treatment. A standard NaSO4 solution was used for preparing a calibration curve and also the fundamental parameters method approach was employed. An Am-241 (100 mCi) source and a Si-Li detector were employed. Analysis could be done in 5 minutes; good reproducibility, 5 and accuracy, 5 were obtained. The method is very competitive with conventional nephelometry where good and reproducible suspensions are difficult to obtain. (author)

  2. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: Impacts of acidity, halide concentration, and organic surfactants.

    Science.gov (United States)

    Frinak, Elizabeth K; Abbatt, Jonathan P D

    2006-09-07

    This study reports the first laboratory measurement of gas-phase Br2 production from the reaction between gas-phase hydroxyl radicals and aqueous salt solutions. Experiments were conducted at 269 K in a rotating wetted-wall flow tube coupled to a chemical-ionization mass spectrometer for analysis of gas-phase components. From both pure NaBr solutions and mixed NaCl/NaBr solutions, the amount of Br2 released was found to increase with increasing acidity, whereas it was found to vary little with increasing concentration of bromide ions in the sample. For mixed NaCl/NaBr solutions, Br2 was formed preferentially over Cl2 unless the Br- levels in the solution were significantly depleted by OH oxidation, at which point Cl2 formation was observed. Presence of a surfactant in solution, sodium dodecyl sulfate, significantly suppressed the formation of Br2; this is the first indication that an organic surfactant can affect the rate of interfacial mass transfer of OH to an aqueous surface. The OH-mediated oxidation of bromide may serve as a source of active bromine in the troposphere and contribute to the subsequent destruction of ozone that proceeds in marine-influenced regions of the troposphere.

  3. Synthesis of DNPH/SDS/Fe3O4 Nanoparticles for Removal of Cr (VI Ions From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2016-06-01

    Full Text Available In this study, sodium dodecyl sulfate (SDS coated magnetite modified with 2, 4-Dinitrophenylhydrazine was used to remove Cr (VI ions from aqueous solution. The modified magnetite nanoparticles were characterized by X-ray diffraction (XRD analysis, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, and SEM–EDXS measurement. The synthesized nanoparticles exhibited a high surface area of 75.5 m2 g−1 and were of 20 - 35 nm in particle size. The effects of parameters, including pH, dose of adsorbent, temperature and contact time were investigated to find the optimum adsorption conditions. Adsorption data fits well with the Langmuir isotherm model with a maximum adsorption capacity (qm and a Langmuir adsorption equilibrium constant (b of 169.5 mg g-1 and 0.168 L mg-1, respectively. The adsorption kinetic agrees well with pseudo-second-order model.

  4. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  5. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  6. Reductive and sorptive properties of sulfate green rust (GRSO4)

    DEFF Research Database (Denmark)

    Nedel, Sorin

    The Fe(II), Fe(III) hydroxide containing sulfate in its structure, called sulfate green rust (GRSO4), can effectively reduce and convert contaminants to less mobile and less toxic forms. However, the ability of GRSO4 to remove positively charged species from solution, via sorption, is very limited...

  7. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    International Nuclear Information System (INIS)

    Wang Feng; Huang Wei; Wang Yanwei

    2008-01-01

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y 3+ ) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10 -4 -0.18, 0.18-2.95 μg mL -1 and the detection limit is 0.1583 ng mL -1 . The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied

  8. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  9. [The study of antimicrobial properties of silver nanoparticles in the form of a colloidal solution in the matrix of finely dispersed silica].

    Science.gov (United States)

    Korchak, G I; Surmasheva, E V; Mikhienkova, A I; Nikonova, N A; Romanenko, L I; Oliĭnyk, Z A; Gorval', A K; Rosada, M A

    2012-01-01

    In the experimental study obtained with chemical method colloid solution of nanoparticles (NPs) of silver (Ag) and a composite on his base in the matrix of finely dispersed silica with particle size of 8-12 nm and NPs concentration in basic solution of 0,0016% (0,016 mg/cm3) were established to exhibit high antimicrobial activity against the test organisms: E. coli, P. aeruginosa, S. Aureus and C. Albicans, which depended on a set of factors. Antibacterial properties of tissue impregnated with Ag-NPs were studied. As stabilizing substances a mixture of surface-active substance sodium dodecyl sulfate and polymer polyvinylpyrrolidone was used Before the beginning of the study effective neutralizer was tailored. Times of preservation of antimicrobial activity of test samples have been established, and also their stability throughout long term of supervision (24 months) has been shown. Effect of organic pollution on antimicrobal activity of the samples has been studied. Based on obtained results the algorithm of the study of antimicrobial properties of nanopreparations has been elaborated.

  10. Properties of aqueous dispersion of chitosan and chondroitin sulfate complex derived from aquatic organisms

    Directory of Open Access Journals (Sweden)

    Novikov V. Yu.

    2016-09-01

    Full Text Available Investigation of production of chondroitin sulfate, chitosan and polyelectrolyte complexes based on them received from the local marine raw materials is relevant from the point of view of developing a comprehensive waste-free technology for natural raw materials processing. The objects of study are chitosan derived from the shell of the Kamchatka crab Paralithodes camtschaticus and chondroitin sulfate derived from cartilage of salmon Salmon salar. To determine the surface tension of polyelectrolyte complex solutions and dispersions the Wilhelmy method has been used, the effective radius of particle dispersion has been calculated by light scattering, measurements of effective viscosity have been carried out under shear deformation. The conditions of formation, surface and rheological properties of the chitosan and chondroitin sulfate complex extracted from aquatic organisms in the Barents Sea have been studied. Obtaining conditions and molar ratios of these polyelectrolytes in which the aqueous dispersion of the complex remains stable for a long time have been established. It has been found that by addition of chondroitin sulfate solution to chitosan solution in molar ratios of 1 : 3; 1 : 6 the dispersion of the polyelectrolyte complex stable for 2 to 3 days has been formed. The polyelectrolyte complex dispersions behave as non-Newtonian pseudoplastic liquid. When the molar ratio of the mixed solution is 1 : 1 (regardless of the sequence of mixing suspension of the polyelectrolyte complex has been formed, then there is precipitation. Equilibrium surface tension of the aqueous dispersion of the polyelectrolyte complex is higher than that of solutions of chondroitin sulfate and chitosan. The effective radius of particles in the complex dispersion has been determined. The effective radius of the particles in the complex dispersion depends on the molar ratio of chondroitin sulfate : chitosan. A qualitative scheme of formation of polyelectrolyte

  11. Langmuir film of regioregular poly(4-dodecyl-2,2'-bithiophene)

    NARCIS (Netherlands)

    Greve, D.R.; Dynarowicz-Latka, P.; Dhanabalan, A.; Janssen, R.A.J.

    2002-01-01

    Regioregular poly(4-dodecyl-2,2'-bithiophene) (P4DBT) is synthesized via the McCullough polymerization route using Ni(dppp)Cl2 as a catalyst and characterized by UV–visible and nuclear magnetic resonance spectroscopy. The film-forming properties of P4DBT at the air–water interface are investigated

  12. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V.

    2016-01-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  13. Damage modelling in concrete subject to sulfate attack

    Directory of Open Access Journals (Sweden)

    N. Cefis

    2014-07-01

    Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.

  14. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    Science.gov (United States)

    Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  16. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Martinson, Liisa; Alveteg, Mattias; Warfvinge, Per

    2003-01-01

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l -1 ) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m 2 in the late 1980s, well in line with experimental data

  17. Uranyl Sulfate Nanotubules Templated by N-phenylglycine

    Directory of Open Access Journals (Sweden)

    Oleg I. Siidra

    2018-04-01

    Full Text Available The synthesis, structure, and infrared spectroscopy properties of the new organically templated uranyl sulfate Na(phgH+7[(UO26(SO410](H2O3.5 (1, obtained at room temperature by evaporation from aqueous solution, are reported. Its structure contains unique uranyl sulfate [(UO26(SO410]8− nanotubules templated by protonated N-phenylglycine (C6H5NH2CH2COOH+. Their internal diameter is 1.4 nm. Each of the nanotubules is built from uranyl sulfate rings sharing common SO4 tetrahedra. The template plays an important role in the formation of the complex structure of 1. The aromatic rings are stacked parallel to each other due to the effect of π–π interaction with their side chains extending into the gaps between the nanotubules.

  18. The reduction of sulfate ions in Musashino woody lignite and in acetone-furfural resin

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T.

    1986-01-01

    By adding a barium chloride solution to sulfur-containing woody lignite kept in water for two years, it has been confirmed that large quantities of sulfate ions are adsorbed by the lignite. Furthermore, spectroscopic measurements have confirmed the reduction of sulfate ions in an acetone-furfural resin prepared with residual sulfuric acid. These experimental results suggest the possibility of reducing sulfate ions in coal in the absence of sulfate bacteria. 2 refs.

  19. Preparation and characterization of a chemically sulfated cashew gum polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Moura Neto, Erico de; Maciel, Jeanny da S.; Cunha, Pablyana L. R.; Paula, Regina Celia M. de; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, Fortaleza (Brazil)

    2011-09-15

    Cashew gum (CG) was sulfated in pyridine:formamide using chlorosulfonic acid as the reagent. Confirmation of sulfation was obtained by Fourier transform infrared (FTIR) spectroscopy through the presence of an asymmetrical S=O stretching vibration at 1259 cm{sup -1}. The degrees of substitution were 0.02, 0.24 and 0.88 determined from the sulfur percentage. 1D and 2D nuclear magnetic resonance (NMR) data showed that the sulfation occurred at primary carbons. An increase of at least 4% of the solution viscosity was observed due to sulfation. The thermal gravimetric curves (TGA) indicate that the derivatives are stable up to ca. 200 deg C. The sulfated CG is compared to carboxymethylated CG in order to verify the possibility of the use of the former in the preparation of polyelectrolyte complexes; the latter is already being used for this application. (author)

  20. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  1. Hydrophobicity study of kaolinite from La Unión, Antioquia

    Directory of Open Access Journals (Sweden)

    Liliana M. Usuga-Manco

    2015-07-01

    Full Text Available In this research three methodologies to convert the hydrophilic surface of kaolinite into a hydrophobic surface are proposed, this condition is required to recover this mineral by means of froth flotation. Taking into account the anisotropy, zeta potential and complex surface electrical properties of the kaolinite, three surface chemical treatments based on the interacting and absorption of anionic collectors onto the mineral surface, causing an increase in the contact angle and thus increased hydrophobicity of kaolinite were applied. The methodologies proposed were interactions of kaolinite particles with: sodium dodecyl sulfate solutions with concentration 1x10-3M, 1x10-4M, 1x10-5M; sodium dodecyl sulfate solutions 1x10-3M, 1x10-4M, 1x10-5M with further interaction with kerosene solutions 127000 ppm; and oleic acid solutions 1x10-3M, 1x10-4M, 1x10-5M, each one with a five minutes of interaction. The experimental results obtained by zeta potential and contact angle of the kaolinite before and after applying chemical treatments indicate that larger the chain length of the collector and its concentration, bigger the contact angle and so, more hydrophobic the surface (edge or face. In order to optimize, control and understand this solid-liquid interaction phenomenon is suggested to find out about the hydrophobization mechanism of kaolinite with oleic acid and its percentage of hydrophobization.

  2. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  3. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  4. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  5. Computational study of the effect of glyoxal-sulfate clustering on the Henry's Law coefficient of glyoxal

    DEFF Research Database (Denmark)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L.

    2015-01-01

    . Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate...... coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement....

  6. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  7. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  8. Origin of increased sulfate in groundwater at the ETF disposal site

    International Nuclear Information System (INIS)

    Thornton, E.C.

    1997-09-01

    Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value of about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions

  9. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution

    Science.gov (United States)

    Li, Shengyi; Church, Benjamin C.

    2018-05-01

    The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.

  10. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  11. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  12. Reduction of sulfate by hydrogen in natural systems: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    Mahoney, J.J.; Strachan, D.M.

    1988-01-01

    The results of this literature search indicate that the reduction of sulfate by hydrogen gas can occur in nature, but that temperature appears to be a key factor in the rate of this reaction. At temperatures below 200/degree/C, the key factor in the rate of reaction appears to be extremely slow. At low pH the rate of reaction is faster than at high pH. The solution composition also influences the reaction rate; the most recent research available (Yanisagawa 1983) suggests that the concentration of sulfide in solution influences the rate of this reaction. The reduction reaction appears to proceed through a thiosulfate intermediate, so the presence and distribution of other sulfur species will influence the reaction rate. If the reaction mechanism proposed by Yanisagawa is correct, then higher concentrations of sulfide will result in faster rates of sulfate reduction. In conclusion, the reduction of sulfate by hydrogen to form significant amounts of sulfide is a function of temperature, sulfate and sulfide concentrations, pH, and solution composition. The rate of this reaction appears to be very slow under the conditions anticipated in this repository, but given the length of time required to maintain the integrity of the containers (300 to 1000 years) and the unusual solution compositions present, a better understanding of the reaction mechanism is needed. 16 refs., 1 tab

  13. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    Science.gov (United States)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  14. Effect of n-octanol on -uranyl extraction by tri-n-octylammonium sulfate

    International Nuclear Information System (INIS)

    Ochkin, A.V.; Kudrov, A.N.

    1984-01-01

    The effect of n-octanol on the extraction of uranyl sulfate by solutions of tri-n-octylamine sulfate in benzene has been studied. With the increase of alcohol concentration the coefficient of uranium distribution passes through the maximum. At low alcohol concentrations a decrease in water content in the organic phase is observed. It is shown that the increase in ammonium salt activity in replacement of part of hydrate At high alcohol concentration the decrease in uranium distribution coefficients is observed, which is related to TOA sulfate solvation by alcohol

  15. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    Science.gov (United States)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  16. OPC Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The study presented in this report focused on a low-activity wasteform containing a high-pH pore solution with a significant level of sulfate. The purpose of the study was to improve understanding of the complex concrete/wasteform reactive transport problem, in particular, the role of pH in sulfate attack. Paste samples prepared at three different water-to-cement ratios were tested. The mixtures were prepared with ASTM Type I cement, without additional admixtures. The samples were exposed to two different sodium sulfate contact solutions. The first solution was prepared at 0.15M Na2SO4. The second solution also incorporated 0.5M NaOH, to mimic the high pH conditions found in Saltstone. The data collected indicated that, in Na2SO4 solution, damage occurs to the pastes. In the case of the high-pH sulfate solution (Na2SO4 + NaOH), no signs of damage were observed on any of the paste mixtures. These results indicate that the high sulfate content found in the wasteform pore solution will not necessarily lead to severe damage to concrete. Good-quality mixtures could thus prove durable over the long term, and act as an effective barrier to prevent radionuclides from reaching the environment.

  17. The confused world of sulfate attack on concrete

    International Nuclear Information System (INIS)

    Neville, Adam

    2004-01-01

    External sulfate attack is not completely understood. Part I identifies the issues involved, pointing out disagreements, and distinguishes between the mere occurrence of chemical reactions of sulfates with hydrated cement paste and the damage or deterioration of concrete; only the latter are taken to represent sulfate attack. Furthermore, sulfate attack is defined as deleterious action involving sulfate ions; if the reaction is physical, then, it is physical sulfate attack that takes place. The discussion of the two forms of sulfate attack leads to a recommendation for distinct nomenclature. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems to be disproportionately large. The mechanisms of attack by different sulfates--sodium, calcium, and magnesium--are discussed, including the issue of topochemical and through-solution reactions. The specific aspects of the action of magnesium sulfate are discussed, and the differences between laboratory conditions and field exposure are pointed out. Part II discusses the progress of sulfate attack and its manifestations. This is followed by a discussion of making sulfate-resisting concrete. One of the measures is to use Type V cement, and this topic is extensively discussed. Likewise, the influence of w/c on sulfate resistance is considered. The two parameters are not independent of one another. Moreover, the cation in the sulfate salt has a strong bearing on the efficiency of the Type V cement. Recent interpretations of the Bureau of Reclamation tests, both long term and accelerated, are evaluated, and it appears that they need reworking. Part III reviews the standards and guides for the classification of the severity of exposure of structures to sulfates and points out the lack of calibration of the various classes of exposure. A particular problem is the classification of soils because much depends on the extraction ratio of sulfate in the soil: there is a

  18. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    Science.gov (United States)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-02-01

    A set of model skeletal isomerization catalysts — sulfated zirconia nanoparticles of controlled thickness anchored on different supports — was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where xlayers as zirconium hydroxide undergoes sulfation followed by thermal treatment.

  19. AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution

    International Nuclear Information System (INIS)

    Chen, Jian; Wang, Jianqiu; Han, Enhou; Dong, Junhua; Ke, Wei

    2007-01-01

    The corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution at the corrosion potential (E corr ) was investigated using electrochemical impedance spectroscopy (EIS), environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results showed that when the immersion time was less than 18th, general corrosion occurred on the surface and the main corrosion products were hydroxides and sulfates. The film coverage effect was the main mechanism for the corrosion process of AZ91 alloy. At this stage, the matrix had a better corrosion resistance. With the increasing immersion time, pitting occurred on the surface. At this stage, the corrosion process was controlled by three surface state variables: the area fraction θ 1 of the region controlled by the formation of Mg(OH) 2 , the area fraction θ 2 of the region controlled by the precipitation of MgAl 2 (SO 4 ) 4 .2H 2 O, and the metastable Mg + concentration C m

  20. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  1. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    International Nuclear Information System (INIS)

    Han, J.

    2013-01-01

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  2. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. [Jiangsu Univ., Zhenjiang (China). Dept. of Food and Biological Engineering

    2013-02-15

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  3. Amperometric Determination of Sulfite by Gas Diffusion- Sequential Injection with Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Orawon Chailapakul

    2008-03-01

    Full Text Available A gas diffusion sequential injection system with amperometric detection using aboron-doped diamond electrode was developed for the determination of sulfite. A gasdiffusion unit (GDU was used to prevent interference from sample matrices for theelectrochemical measurement. The sample was mixed with an acid solution to generategaseous sulfur dioxide prior to its passage through the donor channel of the GDU. Thesulfur dioxide diffused through the PTFE hydrophobic membrane into a carrier solution of 0.1 M phosphate buffer (pH 8/0.1% sodium dodecyl sulfate in the acceptor channel of theGDU and turned to sulfite. Then the sulfite was carried to the electrochemical flow cell anddetected directly by amperometry using the boron-doped diamond electrode at 0.95 V(versus Ag/AgCl. Sodium dodecyl sulfate was added to the carrier solution to preventelectrode fouling. This method was applicable in the concentration range of 0.2-20 mgSO32−/L and a detection limit (S/N = 3 of 0.05 mg SO32−/L was achieved. This method wassuccessfully applied to the determination of sulfite in wines and the analytical resultsagreed well with those obtained by iodimetric titration. The relative standard deviations forthe analysis of sulfite in wines were in the range of 1.0-4.1 %. The sampling frequency was65 h−1.

  4. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    Science.gov (United States)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  5. 流動電位検出/イオン会合滴定法による陽イオン界面活性剤の迅速定量

    OpenAIRE

    脇阪, 達司; 大藤, 和幸; 石原, 進介; 本水, 昌二

    1997-01-01

    An ion-association titration method coupled with a streaming potential detector was developed for the determination of cationic surfactants in a one-phase aqueous system. Dodecyl sulfate ion (LS-) was used as a titrant for cationic surfactants in a direct titration method. LS- was added to a cationic surfactant solution, and a potential change from positive to negative was observed. The end point was read from an inflection point of a differential curve. Direct and indirect titration methods ...

  6. Optimizing Perfusion-Decellularization Methods of Porcine Livers for Clinical-Scale Whole-Organ Bioengineering

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2015-01-01

    Full Text Available Aim. To refine the decellularization protocol of whole porcine liver, which holds great promise for liver tissue engineering. Methods. Three decellularization methods for porcine livers (1% sodium dodecyl sulfate (SDS, 1% Triton X-100 + 1% sodium dodecyl sulfate, and 1% sodium deoxycholate + 1% sodium dodecyl sulfate were studied. The obtained liver scaffolds were processed for histology, residual cellular content analysis, and extracellular matrix (ECM components evaluation to investigate decellularization efficiency and ECM preservation. Rat primary hepatocytes were seeded into three kinds of scaffold to detect the biocompatibility. Results. The whole liver decellularization was successfully achieved following all three kinds of treatment. SDS combined with Triton had a high efficacy of cellular removal and caused minimal disruption of essential ECM components; it was also the most biocompatible procedure for primary hepatocytes. Conclusion. We have refined a novel, standardized, time-efficient, and reproducible protocol for the decellularization of whole liver which can be further adapted to liver tissue engineering.

  7. Potentiometric determination of sulfate with EDTA and the cupric-selective electrode

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1976-11-01

    Sulfate was indirectly determined by precipitating sulfate as BaSO 4 and then dissolving BaSO 4 in excess ammoniacal EDTA. The excess EDTA was titrated potentiometrically with La 3+ . A cupric-selective electrode was used to detect the end point. About 10 -3 M SO 4 2- was determined in 3M HCl solutions of metal oxides with a relative standard deviation of 3.5 percent and a bias of +4 percent

  8. Experiment Analysis of Concrete’s Mechanical Property Deterioration Suffered Sulfate Attack and Drying-Wetting Cycles

    Directory of Open Access Journals (Sweden)

    Wei Tian

    2017-01-01

    Full Text Available The mechanism of concrete deterioration in sodium sulfate solution is investigated. The macroperformance was characterized via its apparent properties, mass loss, and compressive strength. Changes in ions in the solution at different sulfate attack periods were tested by inductively coupled plasma (ICP. The damage evolution law, as well as analysis of the concrete’s meso- and microstructure, was revealed by scanning electron microscope (SEM and computed tomography (CT scanning equipment. The results show that the characteristics of concrete differed at each sulfate attack period; the drying-wetting cycles generally accelerated the deterioration process of concrete. In the early sulfate attack period, the pore structure of the concrete was filled with sulfate attack products (e.g., ettringite and gypsum, and its mass and strength increased. The pore size and porosity decreased while the CT number increased. As deterioration progressed, the swelling/expansion force of products and the salt crystallization pressure of sulfate crystals acted on the inner wall of the concrete to accumulate damage and accelerate deterioration. The mass and strength of concrete sharply decreased. The number and volume of pores increased, and the pore grew more quickly resulting in initiation and expansion of microcracks while the CT number decreased.

  9. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  10. Rapid Dispersion of Polymicrobial Wound Biofilms with Depolymerase Enzymes

    Science.gov (United States)

    2013-11-01

    caudal right = test, caudal left = control. For the positive control evaluation, the "test" sites consist of Sodium Dodecyl ( Lauryl ) Sulfate (SLS) and...control score average. ’Total PIS is PIS added for all three animals. 5Primary Irritation Index (PII):. Total PIS+ 3 animals Sodium Dodecyl (Laury... Sulfate (SLS), Mfr./Lot No./Exp: Sigma 028K0108 06/14 Sterile Water, Mfr./Lot No./Exp: B/Braun J2K159 08/15 Pos~ive Control Prepped By/Date: JD 2/12113

  11. Study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20 deg C

    International Nuclear Information System (INIS)

    Lokshin, Eh.P.; Tareeva, O.A.; Kashulina, T.G.

    2007-01-01

    The solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium ions and the composition of solid phases were studied at 20 deg C in relation to the concentration of acids in sulfuric acid, phosphoric acid, and sulfuric-phosphoric acid solutions containing up to 36 wt % H 2 SO 4 and 33.12 g 1 -1 H 3 PO 4 . The formation of double sulfates of praseodymium and neodymium with sodium and potassium ions, as well as of gadolinium sulfate with sodium ions of the composition 1 : 1 was revealed. In water at 20 deg C, the solubility products of PrNa(SO 4 ) 2 ·H 2 O, NdNa(SO 4 ) 2 ·H 2 O, GdNa(SO 4 ) 2 ·H 2 O, PrK(SO 4 ) 2 ·H 2 O, and NdK(SO 4 ) 2 ·H 2 O are found to be 7.28x10 -8 , 7.84x10 -8 , 3.09x10 -6 , 3.02x10 -6 , and 1.70x10 -6 , respectively [ru

  12. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  13. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    cement. Testing the effects of mixing methodology and nS dispersion (mechanical blending vs. ultrasonic dispersion vs. aqueous solution) on sulfate resistance became a separate focus of the study. Use of the aqueous form of nS resulted in a more sulfate resistant and impermeable mortar than all other tested methods of mixing and dispersing dry form nS. At 6% replacement, aqueous nS contained mortars were more resistant to expansion than those with mS. Excessive ultrasonic dispersion of dry nS in the mixing water was shown to likely cause further agglomeration that harmed permeability and sulfate resistance. Overall, nS proved effective at improving sulfate resistance of mortars provided good dispersion could be achieved, otherwise mS remained the more effective, reliable, and economic choice. Parts of this study, a testing phase exploring the effectiveness of aqueous form nS on mortar resistance to physical sulfate attack via partial submersion, is still ongoing.

  14. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    International Nuclear Information System (INIS)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-01-01

    A set of model skeletal isomerization catalysts - sulfated zirconia nanoparticles of controlled thickness anchored on different supports - was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where x<0.5, are formed on the support surface. Its structure looks like half-period shifted counterdirected chains built-up by zirconium atoms linked by triangle pyramids of sulfate groups. Considering catalytic data of skeletal n-butane isomerisation at 150 deg. C, one can suggest that these species behave as the active component of sulfated zirconia. They are formed in subsurface layers as zirconium hydroxide undergoes sulfation followed by thermal treatment

  15. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin

    International Nuclear Information System (INIS)

    Bordbar, A.K.; Moosavi-Movahedi, A.A.; Amini, M.K.

    2003-01-01

    The thermodynamic parameters for the binding of dodecyl trimethylammonium bromide (DTAB) with wigeon hemoglobin (Hb) in aqueous solution at various pH and 27 deg. C have been measured by equilibrium dialysis and titration microcalorimetry techniques. The Scatchard plots represent unusual features at neutral and alkaline pH and specific binding at acidic pH. This leads us to analyze the binding data by fitting the data to the Hill equation for multiclasses of binding sites. The best fit was obtained with the equation for one class at acidic pH and two classes at neutral and alkaline pH. The thermodynamic analysis of the binding process shows that the strength of binding at neutral pH is more than these at other pH values. This can be related to the more accessible hydrophobic surface area of wigeon hemoglobin at this pH. The endothermic enthalpy data which was measured by microcalorimetry confirms the binding data analysis and represents the more regular and stable structure of wigeon hemoglobin at neutral pH

  17. Poly(dodecyl methacrylate) as solvent of paraffins for phase change materials and thermally reversible light scattering films.

    Science.gov (United States)

    Puig, Julieta; Williams, Roberto J J; Hoppe, Cristina E

    2013-09-25

    Paraffins are typical organic phase change materials (PCM) used for latent heat storage. For practical applications they must be encapsulated to prevent leakage or agglomeration during fusion. In this study it is shown that eicosane (C20H42 = C20) in the melted state could be dissolved in the hydrophobic domains of poly(dodecyl methacrylate) (PDMA) up to concentrations of 30 wt %, avoiding the need of encapsulation. For a 30 wt % solution, the heat of phase change was close to 69 J/g, a reasonable value for its use as a PCM. The fully converted solution remained transparent at 80 °C with no evidence of phase separation but became opaque by cooling as a consequence of paraffin crystallization. Heating above the melting temperature regenerated a transparent material. A high contrast ratio and abrupt transition between opaque and transparent states was observed for the 30 wt % blends, with a transparent state at 35 °C and an opaque state at 23 °C. This behavior was completely reproducible during consecutive heating/cooling cycles, indicating the possible use of this material as a thermally reversible light scattering (TRLS) film.

  18. Potentiometric titration of polyhexamethylene biguanide hydrochloride with potassium poly(vinyl sulfate) solution using a cationic surfactant-selective electrode.

    Science.gov (United States)

    Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki

    2008-03-01

    A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.

  19. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  20. An Experimental and Molecular Dynamics Investigation into the Amphiphilic Nature of Sulforhodamine B

    OpenAIRE

    Polat, Baris E.; Lin, Shangchao; Mendenhall, Jonathan D.; VanVeller, Brett; Langer, Robert; Blankschtein, Daniel

    2011-01-01

    Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the...

  1. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  2. Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite.

    Science.gov (United States)

    Hokkanen, Sanna; Bhatnagar, Amit; Koistinen, Ari; Kangas, Teija; Lassi, Ulla; Sillanpää, Mika

    2018-04-01

    In the present study, the adsorption of sulfates of sodium sulfate (Na 2 SO 4 ) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na 2 SO 4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g -1 for sulfates of SLS and 7.35 mg g -1 for sulfates of Na 2 SO 4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich-Peterson isotherm models using five different error functions.

  3. Nickel recovery from electronic waste II Electrodeposition of Ni and Ni–Fe alloys from diluted sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Robotin, B. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Ispas, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Coman, V. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania); Bund, A. [Fachgebiet Elektrochemie und Galvanotechnik II, Technische Universität Ilmenau, D-98693 Ilmenau (Germany); Ilea, P., E-mail: pilea@chem.ubbcluj.ro [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, RO-400028 Cluj-Napoca (Romania)

    2013-11-15

    Highlights: • Ni can be recovered from EG wastes as pure Ni or as Ni–Fe alloys. • The control of the experimental conditions gives a certain alloy composition. • Unusual deposits morphology shows different nucleation mechanisms for Ni vs Fe. • The nucleation mechanism was progressive for Ni and instantaneous for Fe and Ni–Fe. - Abstract: This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni{sup 2+}/Fe{sup 2+} ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  4. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Calcium sulfate nanorods, nanowires, nanobelts and sheets had been synthesized via a facile solution reaction of CaCl2 and H2SO4 in mixed solvents of ethanol/, -dimethylformamide and deionized water at 35°C. The results indicated that well-crystallized CaSO4 nanomaterials with different morphology were obtained ...

  5. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  6. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  7. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  8. Ion Exchange Studies for Removal of Sulfate from Hanford Tank Waste Envelope C (241-AN-107) Using SuperLig 655 Resin

    International Nuclear Information System (INIS)

    Kurath, D.E.; Bontha, J.R.; Blanchard, D.L.; Fiskum, S.K.; Rapko, B.M.

    2000-01-01

    BNFL Inc. is evaluating various pretreatment technologies to mitigate the impacts of sulfate on the LAW vitrification system. One pretreatment technology for separating sulfate from LAW solutions involves the use of SuperLig(reg. sign) 655 (SL-655), a proprietary ion exchange material developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report describes testing of SL-655 with diluted ([Na] approximately 5 M) waste from Hanford Tank 241-AN-107 at Battelle, Pacific Northwest Division. Batch contact studies were conducted from 4 to 96 hours to determine the sulfate distribution coefficient and reaction kinetics. A small-scale ion exchange column test was conducted to evaluate sulfate removal, loading, breakthrough, and elution from the SL-655. In all of these tests, an archived 241-AN-107 tank waste sample (pretreated to remove Cs, Sr, and transuranics elements) was used. The experimental details and results are described in this report. Under the test conditions, SL-655 was found to have no significant ion exchange affinity for sulfate in this matrix. The batch contact study resulted in no measurable difference in the aqueous sulfate concentration following resin contact (K d ∼ 0). The column test also demonstrated SL-655 had no practical affinity for sulfate in the tested matrix. Within experimental error, the sulfate concentration in the column effluent was equal to the concentration in the feed after passing 3 bed volumes of sample through the columns. Furthermore, some, if not all, of the decreased sulfate concentration in these first three column volumes of effluent can be ascribed to mixing and dilution of the 241-AN-107 feed with the interstitial liquid present in the column at the start of the loading cycle. Finally, ICP-AES measurements on the eluate solutions showed the presence of barium as soon as contact with the feed solution is completed. Barium is a metal not detected in the feed solution. Should the loss of barium be

  9. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    Science.gov (United States)

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.

  10. Sodium dodecyl sulfate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    31

    Keywords: Nickel, SNNPs, stabilizer, SDS, electrochemical, nanoparticles. 18 ... exhibit interesting magnetic and electrochemical properties.6,7 In recent years, nickel. 5 ... paper, we report a stabilizer-assisted hydrothermal reduction method to ...

  11. Synthesis and surface properties of submicron barium sulfate particles

    International Nuclear Information System (INIS)

    Zhang Ming; Zhang Bao; Li Xinhai; Yin Zhoulan; Guo Xueyi

    2011-01-01

    Barium sulfate particles were synthesized in the presence of EDTA at room temperature. X-ray diffractometry (XRD), Fourier transform infrared resonance (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of BaSO 4 particles. The effect of the preparation parameters on the particle size distribution and morphology was investigated. The conditional formation constants of Ba-EDTA at different pH values were calculated. The results show that the size and morphology of BaSO 4 particles can be effectively controlled by adding EDTA in the precipitation process. Among all the operation conditions, the pH value has significant effect on the particle size. The obtained barium sulfate particles are spherical and well dispersed at pH = 9-10. Zeta potentials of BaSO 4 were measured at different pH. The isoelectric point (IEP) of barium sulfate colloid appears at pH 6.92. The model of the solid-solution interface at a particle of BaSO 4 was presented. The FTIR result indicates that the surface of the prepared BaSO 4 absorbs the functional groups of EDTA, which lower the IEP of the barium sulfate particles.

  12. Synthesis and surface properties of submicron barium sulfate particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming, E-mail: csu.light@yahoo.com.cn [College of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061 (China); School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Zhang Bao; Li Xinhai [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Yin Zhoulan [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Guo Xueyi [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2011-10-15

    Barium sulfate particles were synthesized in the presence of EDTA at room temperature. X-ray diffractometry (XRD), Fourier transform infrared resonance (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of BaSO{sub 4} particles. The effect of the preparation parameters on the particle size distribution and morphology was investigated. The conditional formation constants of Ba-EDTA at different pH values were calculated. The results show that the size and morphology of BaSO{sub 4} particles can be effectively controlled by adding EDTA in the precipitation process. Among all the operation conditions, the pH value has significant effect on the particle size. The obtained barium sulfate particles are spherical and well dispersed at pH = 9-10. Zeta potentials of BaSO{sub 4} were measured at different pH. The isoelectric point (IEP) of barium sulfate colloid appears at pH 6.92. The model of the solid-solution interface at a particle of BaSO{sub 4} was presented. The FTIR result indicates that the surface of the prepared BaSO{sub 4} absorbs the functional groups of EDTA, which lower the IEP of the barium sulfate particles.

  13. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    Science.gov (United States)

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  14. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  15. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  16. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  17. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-01-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the

  18. Accidental intrathecal injection of magnesium sulfate for cesarean section

    Directory of Open Access Journals (Sweden)

    Mehryar Taghavi Gilani

    2014-01-01

    Full Text Available Magnesium sulfate is used frequently in the operation room and risks of wrong injection should be considered. A woman with history of pseudocholinesterase enzyme deficiency in the previous surgery was referred for cesarean operation. Magnesium sulfate of 700 mg (3.5 ml of 20% solution was accidentally administered in the subarachnoid space. First, the patient had warm sensation and cutaneous anesthesia, but due to deep tissue pain, general anesthesia was induced by thiopental and atracurium. After the surgery, muscle relaxation and lethargy remained. At 8-10 h later, muscle strength improved and train of four (TOF reached over 0.85, and then the endotracheal tube was removed. The patient was evaluated during the hospital stay and on the anesthesia clinic. No neurological symptoms, headache or backache were reported. Due to availability of magnesium sulfate, we should be careful for inadvertent intravenous, spinal and epidural injection; therefore before injection must be double checked.

  19. Accidental intrathecal injection of magnesium sulfate for cesarean section.

    Science.gov (United States)

    Gilani, Mehryar Taghavi; Zirak, Nahid; Razavi, Majid

    2014-10-01

    Magnesium sulfate is used frequently in the operation room and risks of wrong injection should be considered. A woman with history of pseudocholinesterase enzyme deficiency in the previous surgery was referred for cesarean operation. Magnesium sulfate of 700 mg (3.5 ml of 20% solution) was accidentally administered in the subarachnoid space. First, the patient had warm sensation and cutaneous anesthesia, but due to deep tissue pain, general anesthesia was induced by thiopental and atracurium. After the surgery, muscle relaxation and lethargy remained. At 8-10 h later, muscle strength improved and train of four (TOF) reached over 0.85, and then the endotracheal tube was removed. The patient was evaluated during the hospital stay and on the anesthesia clinic. No neurological symptoms, headache or backache were reported. Due to availability of magnesium sulfate, we should be careful for inadvertent intravenous, spinal and epidural injection; therefore before injection must be double checked.

  20. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    Science.gov (United States)

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  2. Optimization of the conditions for producing zirconia by the precipitation of basic zirconium sulfate

    International Nuclear Information System (INIS)

    Ricci, D.R.; Paschoal, J.O.A.

    1988-01-01

    The process of precipitation of the basic sulfate from zirconium oxychlorides solutions has been optimized in order to obtain zirconia of high purity as well as suitable for ceramic processing. The main parameters of this study were obtained from the determination of the pH and of the concentration of the initial oxychloride solution, of the sulfate/zirconium molar ratio and of the reaction temperature. The following experimental procedure has been carried out: a) reaction of each precipitate with ammonium hydroxide followed by drying at 150 0 -C / 5 h and calcination at 1000 0 C / 1 h, yielding the final product (zirconia) b) product characterization by means of spectrographic, X - ray fluorescence and diffractometry analyses, determination of grain size distribution and of apparent density, and morphology study by scanning electron microscopy. The yielding of the overall reaction has been determined by chemical analysis and the composition of the basic zirconium sulfate by thermogravimetric analyses. (author) [pt

  3. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  4. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  5. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  6. Complexation of Plutonium (IV) With Sulfate At Variable Temperatures

    International Nuclear Information System (INIS)

    Y. Xia; J.I. Friese; D.A. Moore; P.P. Bachelor; L. Rao

    2006-01-01

    The complexation of plutonium(IV) with sulfate at variable temperatures has been investigated by solvent extraction method. A NaBrO 3 solution was used as holding oxidant to maintain the plutonium(IV) oxidation state throughout the experiments. The distribution ratio of Pu(IV) between the organic and aqueous phases was found to decrease as the concentrations of sulfate were increased. Stability constants of the 1:1 and 1:2 Pu(IV)-HSO 4 - complexes, dominant in the aqueous phase, were calculated from the effect of [HSO 4 - ] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures using the Van't Hoff equation

  7. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  8. Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Zhang Peiqun; Chai Zhifang; He Wei; Huang Yuying

    2003-01-01

    An improved method of analysis of metals in protein bands with synchrotron radiation X-ray fluorescence (SRXRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation is introduced and applied to human liver cytosol. Through a step of drying the gel before SRXRF determination, the continuous background resulting mainly from the Compton-scattering of X-rays by the gel matrix was substantially reduced, and the detection of biological trace elements, such as Cu, Fe, and Zn in protein bands was thereby made possible. With the new procedure, six Zn-containing proteins with molecular weights (MWs) of 17.5, 20.5, 27, 35, 55, and 63 kDa, respectively were found in human liver cytosol, among which the 63 kDa Zn-containing band was shown to be the dominant form of zinc. In addition, at least four Fe containing proteins with MWs of 20, 23, 43, and 83.5 kDa, respectively, were present in the samples. The metal contents in some metalloproteins, such as the 63 kDa Zn-containing protein, the 23 and 83.5 kDa Fe-containing proteins, and a 22 kDa Cu-containing protein were more closely related to the metal level in the sample. It is demonstrated that the procedure could be widely used to further investigate metal-binding proteins in biological samples

  9. Permeabilization and recovery of the stratum corneum in vivo: the synergy of photomechanical waves and sodium lauryl sulfate.

    Science.gov (United States)

    Lee, S; McAuliffe, D J; Kollias, N; Flotte, T J; Doukas, A G

    2001-01-01

    Photomechanical waves render the stratum corneum permeable and allow macromolecules to diffuse into the epidermis and dermis. The aim of this study was to investigate the combined action of photomechanical waves and sodium lauryl sulfate, an anionic surfactant, for transdermal delivery. A single photomechanical wave was applied to the skin of rats in the presence of sodium lauryl sulfate. The sodium lauryl sulfate solution was removed and aqueous solutions of rhodamine-B dextran (40 kDa molecular weight) were applied to the skin at time points 2, 30, and 60 minutes post-exposure. The presence of rhodamine-B dextran in the skin was measured by fluorescence emission spectroscopy in vivo and fluorescence microscopy of frozen biopsies. The use of sodium lauryl sulfate delayed the recovery of the stratum corneum barrier and extended the time available for the diffusion of dextran through it. The combination of photomechanical waves and surfactants can enhance transdermal drug delivery. Copyright 2001 Wiley-Liss, Inc.

  10. Correction: Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity

    Directory of Open Access Journals (Sweden)

    Sugahara Kazuyuki

    2011-07-01

    Full Text Available Abstract After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfateβ-1→3GalNAc(4-Sulfateβ-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.

  11. Induction of cytokine (interleukin-1alpha and tumor necrosis factor-alpha) and chemokine (CCL20, CCL27, and CXCL8) alarm signals after allergen and irritant exposure

    NARCIS (Netherlands)

    Spiekstra, S.W.; Toebak, M.J.; Sampat-Sardjoepersad, S.; van Beek, P.J; Boorsma, D.M.; Stoof, T.J.; von Blomberg, B.M.; Scheper, R.J.; Bruynzeel, D.P.; Rustemeyer, T.; Gibbs, S.

    2005-01-01

    The immune system is called into action by alarm signals generate from injured tissues. We examined the nature of these alarm signals after exposure of skin residential cells to contact allergens (nickel sulfate and potassium dichromate) and a contact irritant [sodium dodecyl sulfate (SDS)]. Nickel

  12. Sulfate influx on band 3 protein of equine erythrocyte membrane (Equus caballus) using different experimental temperatures and buffer solutions.

    Science.gov (United States)

    Casella, S; Piccione, D; Ielati, S; Bocchino, E G; Piccione, G

    2013-06-01

    The aim of this study was to assess the anion transport in equine erythrocytes through the measurement of the sulfate uptake operating from band 3 using different experimental temperatures and buffer solutions. Blood samples of six clinically healthy horses were collected via jugular vein puncture, and an emochrome-citometric examination was performed. The blood was divided into four aliquots and by centrifugation and aspiration the plasma and buffy coat were carefully discarded. The red blood cells were washed with an isosmotic medium and centrifuged. The obtained cell suspensions were incubated with two different experimental buffer solutions (buffer A: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM glucose; and buffer B: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM MgCl2) in a water bath for 1 h at 25 °C and 37 °C. Normal erythrocytes, suspended at 3% hematocrit, were used to measure the SO4= influx by absorption spectrophotometry at 425 nm wavelength. Unpaired Student's t-test showed a statistically significant decrease (P buffer solutions. Comparing the buffer A with buffer B unpaired Student's t-test showed statistically lower values (P < 0.0001) for A solution versus B solution both at 25 °C and at 37 °C. The greater inhibition of SO4 (=) influx measured in equine erythrocytes indicates the increased formation of the sulfydryl bonds in band 3 and the modulation of the sulfydryl groups, culminating in the conformational changes in band 3. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Angelov, Anatoliy; Bratkova, Svetlana; Loukanov, Alexandre

    2013-01-01

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H 2 S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m −2 with current density of 3.2 A m −2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  14. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  15. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  16. A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis.

    Science.gov (United States)

    Geng, Lei; Savarino, Joel; Savarino, Clara A; Caillon, Nicolas; Cartigny, Pierre; Hattori, Shohei; Ishino, Sakiko; Yoshida, Naohiro

    2018-02-28

    Precise analysis of four sulfur isotopes of sulfate in geological and environmental samples provides the means to extract unique information in wide geological contexts. Reduction of sulfate to sulfide is the first step to access such information. The conventional reduction method suffers from a cumbersome distillation system, long reaction time and large volume of the reducing solution. We present a new and simple method enabling the process of multiple samples at one time with a much reduced volume of reducing solution. One mL of reducing solution made of HI and NaH 2 PO 2 was added to a septum glass tube with dry sulfate. The tube was heated at 124°C and the produced H 2 S was purged with inert gas (He or N 2 ) through gas-washing tubes and then collected by NaOH solution. The collected H 2 S was converted into Ag 2 S by adding AgNO 3 solution and the co-precipitated Ag 2 O was removed by adding a few drops of concentrated HNO 3 . Within 2-3 h, a 100% yield was observed for samples with 0.2-2.5 μmol Na 2 SO 4 . The reduction rate was much slower for BaSO 4 and a complete reduction was not observed. International sulfur reference materials, NBS-127, SO-5 and SO-6, were processed with this method, and the measured against accepted δ 34 S values yielded a linear regression line which had a slope of 0.99 ± 0.01 and a R 2 value of 0.998. The new methodology is easy to handle and allows us to process multiple samples at a time. It has also demonstrated good reproducibility in terms of H 2 S yield and for further isotope analysis. It is thus a good alternative to the conventional manual method, especially when processing samples with limited amount of sulfate available. © 2017 The Authors. Rapid Communications in Mass Spectrometry Pubished by John Wiley & Sons Ltd.

  17. investigations on the use of surfactants for the separation of some organics and metal ions from aqueous media

    International Nuclear Information System (INIS)

    Mahmoud, M.R.

    2007-01-01

    the copreceipitate flotation of 137 Cs from dilute aqueous solutions and simulated radioactive wastes using nickel hexacyanoferrate(11) as a co precipitant and sodium lauryl sulfate, cetyltrimethylammonium bromide,or dodecyl amine as a collect or was extensively investigated to establish the best conditions for cesium removal. under the optimal conditions, removals exceeding 99% and decontamination factors higher than 110 could be achieved for the radioactive waste simulant. the results are compared with those obtained by conventional removal methods and are discussed in terms of the collector properties and the electrical state of the co precipitate

  18. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  19. Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Delfino, Alessio; Riva, Federica; Icaro Cornaglia, Antonia; Marrubini, Giorgio; Musitelli, Giorgio; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla; Ferrari, Franca

    2016-07-25

    Hemoderivative tear substitutes contain various ephiteliotrophic factors, such as growth factors (GF), involved in ocular surface homeostasis without immunogenic properties. The aim of the present work was the loading of platelet lysate into contact lenses to improve the precorneal permanence of platelet lysate growth factors on the ocular surface to enhance the treatment of corneal lesions. To this purpose, chondroitin sulfate, a sulfated glycosaminoglycan, which is normally present in the extracellular matrix, was associated with platelet lysate. In fact, chondroitin sulfate is capable of electrostatic interaction with positively charged growth factors, in particular, with bFGF, IGF, VEGF, PDGF and TGF-β, resulting in their stabilization and reduced degradation in solution. In the present work, various types of commercially available contact lenses have been loaded with chondroitin sulfate or chondroitin sulfate in association with platelet lysate to achieve a release of growth factors directly onto the corneal surface lesions. One type of contact lenses (PureVision(®)) showed in vitro good proliferation properties towards corneal cells and were able to enhance cut closure in cornea constructs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  1. Heparan sulfate proteoglycan from the extracellular matrix of human lung fibroblasts. Isolation, purification, and core protein characterization

    International Nuclear Information System (INIS)

    Heremans, A.; Cassiman, J.J.; Van den Berghe, H.; David, G.

    1988-01-01

    Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. (Abstract Truncated)

  2. Assessment of Mechanical Properties and Damage of High Performance Concrete Subjected to Magnesium Sulfate Environment

    Directory of Open Access Journals (Sweden)

    Sheng Cang

    2017-01-01

    Full Text Available Sulfate attack is one of the most important problems affecting concrete structures, especially magnesium sulfate attack. This paper presents an investigation on the mechanical properties and damage evolution of high performance concrete (HPC with different contents of fly ash exposure to magnesium sulfate environment. The microstructure, porosity, mass loss, dimensional variation, compressive strength, and splitting tensile strength of HPC were investigated at various erosion times up to 392 days. The ultrasonic pulse velocity (UPV propagation in HPC at different erosion time was determined by using ultrasonic testing technique. A relationship between damage and UPV of HPC was derived according to damage mechanics, and a correlation between the damage of HPC and erosion time was obtained eventually. The results indicated that (1 the average increasing amplitude of porosity for HPCs was 34.01% before and after exposure to magnesium sulfate solution; (2 the damage evolution of HPCs under sulfate attack could be described by an exponential fitting; (3 HPC containing 20% fly ash had the strongest resistance to magnesium sulfate attack.

  3. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  4. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    Science.gov (United States)

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    Science.gov (United States)

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  6. Cation modulation of hemoglobin interaction with sodium n-dodecyl sulphate (SDS iv: magnesium modulation at pH 7.20

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi-Movahedi

    2016-03-01

    Full Text Available We investigate the interaction of Mg2+ (0–2.30 mM and sodium n-dodecyl sulfate (SDS with hemoglobins (Hbs A and S at pH 7.20. SDS was used to model both membranes (0.60 mM SDS and proteases (5.0 mM SDS. Via UV-visible spectroscopy, second derivative and difference second derivative spectroscopy, we interrogated for difference(s in the interaction of these ligands with the proteins that can account for the HbS resistance to malaria parasite while been prone to sickling. Our results show that Mg2+ interaction with the proteins lowered the HbS oxygen affinity in comparison with the HbA. Additionally, [SDS]-protein interactions resulted in oxoferryl heme species formation that was prominent for the HbA and highly diminished for the HbS. [Mg2+] introduction to the [SDS]-protein mixture, however decreased the concentration of denatured protein species. The [Mg2+]-[SDS]-protein interactions suggest that while ionic or coulomb interactions for the HbA, in the presence of the surfactants, are [Mg2+] dependent, those of the HbS are not. Furthermore, hydrophobicity is a crucial force for the HbS interaction at neutral pH and is little-masked by ionic, electrostatic or coulombic interactions. In conclusion, at physiological pH, the Mg-SDS interaction decreased the HbS denaturation in comparison to the HbA.

  7. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  8. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    2017-06-01

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution) went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  9. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    Science.gov (United States)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  10. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  11. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  12. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    International Nuclear Information System (INIS)

    Mousa, Sahar; Hanna, Adly

    2013-01-01

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  13. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  14. Surfactant-enhanced electrokinetic remediation of soil contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.W.; Park, J.Y.; Lee, H.H.; Cho, H.J. [Dept. of Chemical Engineering, Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-07-01

    Removal of hydrophobic organic contaminants (HOCs) using electrokinetic method was studied in a model system. Kaolinite and phenanthrene were selected as the model clay soil and representative HOC. Three different types of surfactants, APG (alkyl polyglucoside), Brij30 (polyoxyethylene 4 lauryl ether), and SDS (sodium dodecyl sulfate), were used to enhance the solubility of HOCs. Electrokinetic (EK) column experiments were performed using water, surfactant solution, and acetate buffer solution under a constant current condition. Voltage and flow through the soil system were interpreted with time. Electrolyte pH at the anode and cathode compartments was observed for operation time. Removal efficiency of phenanthrene was examined after the end of EK operation during 2, 4, and 6 weeks. (orig.)

  15. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  16. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  17. Two fucosylated chondroitin sulfates from the sea cucumber Eupentacta fraudatrix.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Nifantiev, Nikolay E; Usov, Anatolii I

    2017-05-15

    Two fucosylated chondroitin sulfates EF1 and EF2 were isolated from the sea cucumber Eupentacta fraudatrix. Separation of the polysaccharides was performed using anion-exchange chromatography on DEAE-Sephacel by elution of 0.75M and 1.0M NaCl solutions. The structures of biopolymers were determined by chemical and NMR spectroscopic methods. The backbone of EF1 was found to be composed of chondroitin sulfate A and E units in a ratio of about 1:1. The core of EF2 along with chondroitin sulfate A and E fragments contained unusual disaccharide repeating units →4)-β-d-GlcpA2S3S-(1→3)-β-d-GalpNAc6S-(1→. The main type of branches in both polysaccharides was α-l-Fucp3S4S unit attached to O-3 of GlcA residues. Another type of branches was found to be the disaccharide fragment α-l-Fucp-(1→2)-α-l-Fucp3S4S-(1→ linked to O-3 of GlcA. The presence of structurally different fucosylated chondroitin sulfates in one species of sea cucumber is rather unusual and has not been described previously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  19. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  20. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  1. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  2. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  3. Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite

    International Nuclear Information System (INIS)

    Lopez M, B. E.; Rivera R, R.; Iturbe G, J. L.; Olguin G, M. T.

    2011-01-01

    The sorption behavior of the chemical species of Cr(III) from aqueous solutions by hydrotalcite calcined products was investigated considering the equilibrium ph (5.0 to 8.9) and the chromium concentration in aqueous solution (from 10.6 to 430.0 mmol/L) to obtain the corresponding isotherms. Each solution was prepared from basic Cr(III) sulphate which is a primary tanning agent used in the tannery industries. In this work no previous oxidation treatment was done to form Cr(vi) in order to remove the chromium from aqueous solutions by hydrotalcite. The amount of chromium in the remaining solutions after the sorption processes in a batch system by visible spectroscopy (Vis) was determined. The calcined hydrotalcite before and after the contact with the chromium(III) solutions by X-ray power diffraction, thermogravimetric analysis and Fourier transformed infrared spectroscopy, were characterized. The specific are by Brunauer, Emmett and Teller (Bet) method of each sample was also evaluated. It was found that under the experimental conditions of this work hydrolyzed species of Cr(III) are precipitated on the surface of the calcined hydrotalcite instead other adsorption mechanism, and the sulfate ions were the responsible to regenerated the crystalline structure of hydrotalcite, therefore the results are discussed in terms of both Cr(III) and sulfate chemical species. (Author)

  4. Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, B. E.; Rivera R, R.; Iturbe G, J. L.; Olguin G, M. T., E-mail: beatriz.lopez@inin.gob.mx [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-07-01

    The sorption behavior of the chemical species of Cr(III) from aqueous solutions by hydrotalcite calcined products was investigated considering the equilibrium ph (5.0 to 8.9) and the chromium concentration in aqueous solution (from 10.6 to 430.0 mmol/L) to obtain the corresponding isotherms. Each solution was prepared from basic Cr(III) sulphate which is a primary tanning agent used in the tannery industries. In this work no previous oxidation treatment was done to form Cr(vi) in order to remove the chromium from aqueous solutions by hydrotalcite. The amount of chromium in the remaining solutions after the sorption processes in a batch system by visible spectroscopy (Vis) was determined. The calcined hydrotalcite before and after the contact with the chromium(III) solutions by X-ray power diffraction, thermogravimetric analysis and Fourier transformed infrared spectroscopy, were characterized. The specific are by Brunauer, Emmett and Teller (Bet) method of each sample was also evaluated. It was found that under the experimental conditions of this work hydrolyzed species of Cr(III) are precipitated on the surface of the calcined hydrotalcite instead other adsorption mechanism, and the sulfate ions were the responsible to regenerated the crystalline structure of hydrotalcite, therefore the results are discussed in terms of both Cr(III) and sulfate chemical species. (Author)

  5. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  6. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  7. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    Science.gov (United States)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we

  8. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  9. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  10. [Optimization of benzalkonium chloride concentration in 0.0015% tafluprost ophthalmic solution from the points of ocular surface safety and preservative efficacy].

    Science.gov (United States)

    Asada, Hiroyuki; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu; Kimura, Akio

    2010-06-01

    Optimization of benzalkonium chloride (alkyl dimethylbenzylammonium chloride: BAK) concentration as preservative in 0.0015% tafluprost ophthalmic solution (Tapros 0.0015% ophthalmic solution), an anti-glaucoma medicine, was examined from the points of ocular surface safety and preservative efficacy. BAKC(12), which is dodecyl dimethylbenzylammonium chloride, and BAKmix, which is the mixture of dodecyl, tetradecyl and hexadecyl dimethylbenzylammonium chloride were used in this study. The effects of BAKC(12) concentrations and the BAK types, BAKC(12) and BAKmix, in tafluprost ophthalmic solution on ocular surface safety were evaluated using the in vitro SV 40-immobilized human corneal epithelium cell line (HCE-T). Following treatments of Tafluprost ophthalmic solutions with BAKC(12), its concentration dependency was observed on cell viability of HCE-T. The cell viability of HCE-T after treatment of these solutions with 0.001% to 0.003% BAKC(12) for 5 minutes were the same level as that after treatment of the solution without BAK. Tafluprost ophthalmic solution with 0.01% BAKC(12) was safer for the ocular surface than the same solution with 0.01% BAKmix. Preservatives-effectiveness tests of tafluprost ophthalmic solutions with various concentrations of BAKC(12) were performed according to the Japanese Pharmacopoeia (JP), and solutions with more than 0.0005% BAKC(12) conformed to JP criteria. It was concluded that 0.0005% to 0.003% of BAKC(12) in tafluprost ophthalmic solution was optimal, namely, well-balanced from the points of ocular surface safety and preservative efficacy.

  11. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets.

    Science.gov (United States)

    Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming

    2016-12-01

    To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.

  12. Sulfation of ceria-zirconia model automotive emissions control catalysts

    Science.gov (United States)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst

  13. Characterization and quantification of N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques.

    Science.gov (United States)

    Mondin, Andrea; Bogialli, Sara; Venzo, Alfonso; Favaro, Gabriella; Badocco, Denis; Pastore, Paolo

    2014-01-01

    The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate

    Science.gov (United States)

    Adane, Z. A.; Gates, J. B.

    2015-02-01

    Although impacts of land-use changes on groundwater recharge have been widely demonstrated across diverse environmental settings, most previous research has focused on the role of agriculture. This study investigates recharge impacts of tree plantations in a century-old experimental forest surrounded by mixed-grass prairie in the Northern High Plains (Nebraska National Forest), USA. Recharge was estimated using solute mass balance methods from unsaturated zone cores beneath 10 experimental plots with different vegetation and planting densities. Pine and cedar plantation plots had uniformly lower moisture contents and higher solute concentrations than grasslands. Cumulative solute concentrations were greatest beneath the plots with the highest planting densities (chloride concentrations 225-240 % and sulfate concentrations 175-230 % of the grassland plot). Estimated recharge rates beneath the dense plantations (4-10 mm yr-1) represent reductions of 86-94 % relative to the surrounding native grassland. Relationships between sulfate, chloride, and moisture content in the area's relatively homogenous sandy soils confirm that the unsaturated zone solute signals reflect partitioning between drainage and evapotranspiration in this setting. This study is among the first to explore afforestation impacts on recharge beneath sandy soils and sulfate as a tracer of deep drainage.

  15. Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design

    Science.gov (United States)

    Bagheban Shahri, Fatemeh; Niazi, Ali

    2015-12-01

    In this study, sodium dodecyl sulfate-coated maghemite nanoparticles (SDS-coated γ-Fe2O3 NPs), was used for removal of cationic dye Acridine Orange from water samples. The γ-Fe2O3 NPs were synthesized by co-precipitation method and were characterized by scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to examine their size and magnetic moment. The adsorption experiments were performed using the batch system. The prepared magnetic adsorbent was well dispersed in water and easily separated magnetically from the medium after loaded with adsorbate. Four most important operating variables including initial pH of the solution, dosage of adsorbent, concentration of dye and contact time was studied and optimized by response surface methodology (RSM), involving Box-Behnken design matrix. Twenty-seven experiments were performed to investigate the effect of these parameters on removal of the dye. The results showed that initial pH of the solution was the most effective parameter in comparison with others. Also, experimental parameters were optimized and chose the best conditions by determination of effective factors. The optimized conditions for dye removal were at initial pH 5.1 0.8 g L-1 of adsorbent, 30.0 mg L-1 dye and 43 min adsorption time. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. The maximum predicted adsorption capacities for Acridine Orange was 285.82 mg g-1.

  16. In Situ Demonstration and Characteristic Analysis of the Protease Using Substrate Immersing Zymography.

    Science.gov (United States)

    He, HaiLun; Li, Hao; Liu, Dan

    2017-01-01

    Zymography, the detection of proteolytic activities on the basis of protein substrate degradation, has been a technique described in the literature for at least in the past 50 years. In this study, we used substrate immersing zymography to analyze proteolysis of proteases. Instead of being directly added into a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel, the substrates were added into the immersing solution after electrophoresis. With substrate immersing zymography, some characters of proteases, such as enzyme forms, potential proteolytic activity, molecular weights, presence of complexes, and potentially active enzyme fragments in complex biological samples, can be determined.

  17. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels

    Science.gov (United States)

    Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin

    A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.

  19. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  20. Activation and transfer of sulfate in biological systems (1960); Activation biologique du sulfate et son transfert (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author) [French] On examine dans cette etude les stades successifs de la mise en evidence du sulfate actif, son role dans la formation des esters sulfuriques de natures diverses, ainsi que sa participation eventuelle comme intermediaire au cours de la reduction du sulfate. On decrit aussi un procede de preparation du systeme biologique, generateur du sulfate actif et une methode de synthese chimique. (auteur)

  1. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The influence of sodium salts (iodide, chloride and sulfate) on the formation efficiency of sulfamerazine nanocrystals.

    Science.gov (United States)

    Lou, Hao; Liu, Min; Qu, Wen; Johnson, James; Brunson, Ed; Almoazen, Hassan

    2014-08-01

    The purpose of this study is to evaluate the influence of sodium iodide, sodium chloride and sodium sulfate on the formation efficiency of sulfamerazine nanocrystals by wet ball milling. Sulfamerazine was milled using zirconium oxide beads in a solution containing polyvinylpyrrolidone (PVP) and a sodium salt (iodide, chloride or sulfate). Particle size distributions were evaluated by light diffraction before and after milling. High-performance liquid chromatography was utilized to determine the amount of PVP adsorbed onto sulfamerazine surface. Lyophilized nanocrystals were further characterized by differential scanning calorimetry and dissolution testing. Sulfate ion had more profound effect on reducing particle size via milling than iodide or chloride. We linked our findings to Hofmeister ion series, which indicates that sulfate ions tends to break the water structure, increases the surface tension and lowers the solubility of hydrocarbons in water. We hypothesized that the addition of sulfate ions dehydrated the PVP molecules and enhanced its adsorption onto the sulfamerazine particle surfaces. Consequently, the adsorbed PVP helped to stabilize of the nanosuspension. The nanocrystals that were obtained from the lyophilized milled suspensions exhibited a notable increase in dissolution rate. The addition of sodium sulfate enhanced the formation efficiency of sulfamerazine nanocrystals.

  3. Analysis of aqueous humour in uveitis by high performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis

    NARCIS (Netherlands)

    Murray, P. I.; Hoekzema, R.; Luyendijk, L.; Kijlstra, A.

    1992-01-01

    Aqueous humour from patients with Fuchs' heterochromic cyclitis (FHC) and other types of uveitis was analysed by high performance liquid chromatography (HPLC) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Using HPLC, the number of peaks and their respective elution times

  4. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  5. Improved anticoagulant effect of fucosylated chondroitin sulfate orally administered as gastro-resistant tablets.

    Science.gov (United States)

    Fonseca, Roberto J C; Sucupira, Isabela D; Oliveira, Stephan Nicollas M C G; Santos, Gustavo R C; Mourão, Paulo A S

    2017-04-03

    Fucosylated chondroitin sulfate (FucCS) is a potent anticoagulant polysaccharide extracted from sea cucumber. Its anticoagulant activity is attributed to the presence of unique branches of sulfated fucose. Although this glycosaminoglycan exerts an antithrombotic effect following oral administration, high doses are necessary to achieve the maximum effect. The diminished activity of FucCS following oral administration is likely due to its degradation in the gastrointestinal tract and its limited ability to cross the intestinal cell membranes. The latter aspect is particularly difficult to overcome. However, gastro-resistant tablet formulation may help limit the degradation of FucCS in the gastrointestinal tract. In the present work, we found that the oral administration of FucCS as gastro-resistant tablets produces a more potent and prolonged anticoagulant effect compared with its administration as an aqueous solution, with no significant changes in the bleeding tendency or arterial blood pressure. Experiments using animal models of arterial thrombosis initiated by endothelial injury demonstrated that FucCS delivered as gastro-protective tablets produced a potent antithrombotic effect, whereas its aqueous solution was ineffective. However, there was no significant difference between the effects of FucCS delivered as gastro-resistant tablets or as aqueous solution in a venous thrombosis model, likely due to the high dose of thromboplastin used. New oral anticoagulants tested in these experimental models for comparison showed significantly increased bleeding tendencies. Our study provides a framework for developing effective oral anticoagulants based on sulfated polysaccharides from marine organisms. The present results suggest that FucCS is a promising oral anticoagulant.

  6. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  7. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  8. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.

    Science.gov (United States)

    Egami, Kiichi; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-08-03

    The crystallization behavior of a pharmaceutical drug in nanoparticles was directly evaluated by atomic force microscopy (AFM) force curve measurements in aqueous solution. A ternary spray-dried sample (SPD) was prepared by spray drying the organic solvent containing probucol (PBC), hypromellose (HPMC), and sodium dodecyl sulfate (SDS). The amorphization of PBC in the ternary SPD was confirmed by powder X-ray diffraction (PXRD) and solid-state 13C NMR measurements. A nanosuspension containing quite small particles of 25 nm in size was successfully prepared immediately after dispersion of the ternary SPD into water. Furthermore, solution-state 1H NMR measurements revealed that a portion of HPMC coexisted with PBC as a mixed state in the freshly prepared nanosuspension particles. After storing the nanosuspension at 25 °C, a gradual increase in the size of the nanoparticles was observed, and the particle size changed to 93.9 nm after 7 days. AFM enabled the direct observation of the morphology and agglomeration behavior of the nanoparticles in water. Moreover, AFM force-distance curves were changed from (I) to (IV), depending on the storage period, as follows: (I) complete indentation within an applied force of 1 nN, (II) complete indentation with an applied force of 1-5 nN, (III) partial indentation with an applied force of 5 nN, and (IV) nearly no indentation with an applied force of 5 nN. This stiffness increase of the nanoparticles was attributed to gradual changes in the molecular state of PBC from the amorphous to the crystal state. Solid-state 13C NMR measurements of the freeze-dried samples demonstrated the presence of metastable PBC Form II crystals in the stored nanosuspension, strongly supporting the AFM results.

  9. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  10. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  11. Influence of sulfate ion concentration and pH on the corrosion of Mg-Al-Zn-Mn (GA9 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Sudarshana Shetty

    2015-09-01

    Full Text Available The corrosion behavior of Mg-Al-Zn-Mn (GA9 alloy in sodium sulfate solutions was studied over a range of concentrations and solution temperatures at different pH conditions by electrochemical techniques like Tafel extrapolation and electrochemical impedance spectroscopy (EIS. The studies were carried out in solutions with sodium sulfate concentrations 0.1M, 0.5M, 1M, 1.5M and 2M; and at five different temperatures of 30, 35, 40, 45 and 50 °C in a pH range of 3–12. As per the experimental data, the corrosion rate of the alloy increased with the increase in temperature, and also with the increase in concentration of sodium sulfate in the medium. It was observed that the rate of corrosion decreased with the increase in pH. The activation parameters like activation energy, enthalpy of activation and entropy of activation for the corrosion process were calculated. The surface morphology of the alloy was examined before and after corrosion using scanning electron microscopy (SEM.

  12. Adsorption of Radioactive Strontium and Caesium from Mixtures of Solutions

    International Nuclear Information System (INIS)

    Haznedaroglu, H.N.

    2002-07-01

    In this thesis, the adsorption of the radioactive Cs and Sr on two different types of cement, Sulfate Resistant Cement and Portland Composed Cement, was investigated. The gamma-active Cs-137 and Sr-85 were used as tracers. Four different mixtures of solutions of Cs and Sr were used in experiments; a) The solution containing trace amount of Sr-85 and Cs-137 b) 1.10 - 5 - 1.10 - 1 M *SrCl 2 solutions containing trace amount of Cs-137 c) 1.10 - 5 - 1.10 - 1 M *CsCl solutions containing trace amount of Sr-85 d) The equal amount of mixtures of 1.10 - 5 - 1.10 - 1 M SrCl 2 and 1.10 - 5 - 1.10 - 1 M CsCl solutions. It was shown that the convenient ph values for the comparison of Cs and Sr adsorption on both cement were 2.5 and 11.0. It was observed that the adsorption capacity of Sr on Sulfate Resistant Cement was twice that for the Portland Composed Cement in the solutions containing trace amount of Cs-137 and 1.10 - 5 - 1.10 - 1 *SrCl 2 . The in cease in adsorption capacity is related to the Ca to Sr ion exchange in Sulfate Resistant Cement containing appreciable amount of C 3 S. The adsorption of Cs and Sr on both types of cement in solutions containing equal amount of CsCl and SrCl 2 was greater than that of individual solutions of CsCl and SrCl 2 . This latter behavior is related to the ion charge, the hydration of ions and the interaction of the Cs with the Sr on the surface of adsorbent. It was observed that although Portland Composed Cement adsorbs Cs selectively, Sulfate Resistant Cement has a greater affinity for Sr. Cs adsorption is not affected by ph changes whilst Sr adsorption is highly dependent on ph

  13. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates.

    Science.gov (United States)

    Pant, Atul; Parsons, Matthew T; Bertram, Allan K

    2006-07-20

    Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is

  14. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve; Influencia do metodo de incorporacao da zirconia sulfatada na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V., E-mail: eduardopereira.eq@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencia e Tecnologia

    2016-07-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  15. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  16. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  17. The electrical and thermal properties of sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide

    International Nuclear Information System (INIS)

    Imanaka, N.; Yamaguchi, Y.; Adachi, G.; Shiokawa, J.

    1986-01-01

    Sodium sulfate mixed with lithium sulfate, yttrium sulfate, and silicon dioxide was prepared. The thermal and electrical properties of its phases were investigated. The Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 SiO 2 samples are similar to the Na 2 SO 4 -I phase (a high temperature phase), which is appreciably effective for Na + ionic conduction. Phase transformation was considerably suppressed by mixing. Electromotive force (EMF) was measured, using Na 2 SO 4 -Li 2 SO 4 -Y 2 (SO 4 ) 3 -SiO 2 as a solid electrolyte, by constructing an SO 2 gas concentration cell. The measured EMF's at 823 and 773 K were in fairly good accordance with the calculated EMF's for inlet SO 2 gas concentration between 30 ppm and 1%, and 500 ppm and 0.5% respectively

  18. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  19. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  20. Sulfates removal by the GYP-CIX process following lime treatment

    International Nuclear Information System (INIS)

    Robertson, A.M.; Everett, D.J.; Plessis, N.J. Du

    1994-01-01

    The treatment of acid mine drainage by limiting results in the discharge of water saturated in gypsum and containing residual metal concentrations. These waters may exceed drinking and irrigation water standards for TDS, sulfates and some metals. The scaling nature of the saturated gypsum solution makes it unsuitable for industrial use and makes further processing difficult and costly. This paper discusses a novel ion exchange process that is suitable to desalinate large volumes of mine and industrial waters with a TDS of up to 6,500 mg/l which is also high in calcium and sulfates, to meet effluent discharge specifications. The GYP-CIX process is a continuous fluidized bed ion-exchange process that effectively removes calcium sulfate from gypsum saturated waters. It uses low cost chemicals such as lime and sulfuric acid for resin regeneration. The only waste product is gypsum and the treated water produced meets standards for reuse or discharge. This process consists of a two stage operation. The first is the removal of cations in a multistage continuous loading train, using cation exchange resin. The second operation is the removal of anions, again in a multistage continuous loading train using anion exchange resin

  1. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  2. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  3. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.

    Science.gov (United States)

    Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J

    2015-05-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  5. Volumetric properties for glycine and L-serine in aqueous solutions of 1-Ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) at T = (293.15–313.15) K and ambient pressure

    International Nuclear Information System (INIS)

    Rafiee, Hamid Reza; Frouzesh, Farshid

    2016-01-01

    Highlights: • Ternary systems (amino acid + ionic liquid + H 2 O) are considered. • Volumetric properties including density, V φ , ΔV φ 0 and E φ 0 are determined. • Glycine and L-serine were amino acids and [Emim][HSO 4 ] was IL studied. • V φ values for amino acids increased with both concentration of amino acids and temperature. • Both studied amino acids act as structure maker in ternary systems. - Abstract: By using the volumetric properties, the solute–solvent interactions are studied in the ternary (glycine + 1-Ethyl-3-methylimidazolium hydrogen sulfate [Emim][HSO 4 ] + water) and (L-serine + 1-Ethyl-3-methylimidazolium hydrogen sulfate [Emim][HSO 4 ] + water) systems. For this purpose, the apparent molar volumes, V φ , are calculated from the experimental density data. To obtain limiting apparent molar volumes V φ 0 , the apparent molar volume values are fitted to the Redlich-Mayer type equation. Then the limiting apparent molar volumes of transfer, ΔV φ 0 , for studied amino acids from water to aqueous solutions of ionic liquid (IL) are calculated. The results showed that the ΔV φ 0 values are negative for both ternary systems at all temperatures. The limiting apparent molar expansibility E φ 0 values have been obtained from the first derivative of limiting apparent molar volumes with respect to temperature. The values of second derivative of limiting apparent molar volumes respect to temperature show the structure making or breaking ability of glycine and L-serine in studied IL aqueous solutions. The results indicated that glycine and L-serine act as structure maker in studied solutions. McMillan–Mayer theory is used for evaluating the interaction parameters. Also the hydration number, n H , for both amino acids in ternary solutions has been reported.

  6. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  7. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  8. Structural, optical and magnetic properties of cobalt-doped CdSe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The ... Keywords. Nanoparticles; dilute magnetic semiconductor; ferromagnetism. ... dium dodecyl sulfate (SDS) was used as a surfactant in.

  9. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  10. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  11. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  12. Evolutions and equilibrium parameters of foam films from individual solutions of Bovine serum albumin, n-dodecyl-β-D-maltoside and from their mixed solutions

    Science.gov (United States)

    Gerasimova, Anelia Tsvetanova; Angarska, Jana Krumova; Tachev, Krasimir Dimov

    2017-03-01

    The evolutions of thinning of films from individual solutions of BSA, C12G2 and from their mixed solutions with molar ratios 1:1, 1:7.5, 1:50 and 1:100 with pH = 4.9 were recorded by modified (with video camera) interferometric method. Based on them the stages through which the film goes from its formation to the equilibrium state were distinguished. It was shown that: (i) the difference between the kinetic of drainage of films stabilized by high and low molecular surfactants is drastic; (ii) only the change of the pH solution under or above isoelectric point strongly retards the film drainage; (iii) the transition of the kinetic of thinning of films from mixed solutions from a kinetic typical for high molecular substances towards a kinetic for low substances depends on the molar ratio between the components in the solution. From the picture of film corresponding to its equilibrium state the type of film was determined. From the analysis of this picture the equilibrium thickness and contact angle were calculated. It was found that the criterion for Newtonium black films (based on the values of film thickness and contact angle) is not directly applicable for films from protein solutions or mixed solutions with the participation of proteins.

  13. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  14. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  15. Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 2. Influence of Coating Solution Viscosity, Stickiness, pH, and Droplet Diameter on Agglomeration

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2009-01-01

    In the first part of this study [Hede, P. D.; Bach, P.; Jensen, A. D. Ind. Eng. Chem. Res. 2009, 49, 1914], agglomeration regime maps were developed for two types of coatings: sodium sulfate and PVA-TiO2. It was observed here how the agglomeration tendency is always lower for the salt coating...... the PVA-TiO2 coating formulation and process to achieve a low tendency of agglomeration, similar to that of the salt coating process. The best results for the PVA-TiO2 solution are obtained by substituting the PVA-TiO2 in equal amounts with Neodol 23-6.5 and further reducing the pH value in the coating...

  16. Redetermination of dicerium(III tris(sulfate tetrahydrate

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2008-01-01

    Full Text Available Ce2(SO43(H2O4 was obtained hydrothermally from an aqueous solution of cerium(III oxide, trimethylamine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972. Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  17. Dry deposition of sulfate to Quercus rubra and Liriodendron tulipifera foliage

    International Nuclear Information System (INIS)

    Vandenberg, J.J.

    1987-01-01

    Estimates were made of the rate of dry deposition to red oak (Quercus rubra) and tulip poplar (Liriodendron tulipifera) foliage. In the laboratory, radioactive ammonium sulfate aerosols were generated in an exposure chamber. These aerosols were dry deposited onto leaves that were sequentially washed to examine the efficacy of washing procedures in removal of surface deposits. Over 90% of dry deposited sulfate was removed after a 30 second wash duration. Laboratory procedures also estimated the magnitude of foliar sulfur that leached into leaf wash solutions. The majority of laboratory leaves demonstrated no leaching of sulfur from the internal pool. However, some leaves showed significant sulfur leaching. It was concluded that leaching of internal sulfur was highly leaf specific. This indicated that each leaf used in field experiments needed to be individually examined for leaching

  18. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  19. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    Science.gov (United States)

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  20. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  1. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    Science.gov (United States)

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Thermodynamic properties of Sodium Dodecyl Sulfate aqueous solutions with Methanol, Ethanol, n-Propanol and iso-Propanol at different temperatures

    Directory of Open Access Journals (Sweden)

    Md. Abdul Motin

    2015-03-01

    The ΔH# values that are positive for all the studied systems indicate that positive work has to be done to overcome the energy barrier for the flow process. The variation of ΔS# is reversing the variation of the ΔH#. The excess parameters (ΔG#E, ΔH#E data have been fitted by the least square method to the four parameter Redlich–Kister equation and the values of the parameter aj have been reported. The observed increase of thermodynamic values in the aqueous SDS region are thought to be mainly due to the combined effect of hydrophobic hydration and hydrophilic effect.

  3. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  4. Polyaniline/silver nanocomposites synthesized via UV-Vis-Assisted aniline polymerization with a reversed micellar microemulsion system

    NARCIS (Netherlands)

    Li, Z.; Li, Y.; Lin, W.; Zheng, F.; Laven, J.

    Polyaniline (PANI)/silver (Ag) nanocomposites were successfully synthesized within a sodium dodecyl sulfate reverse micro-emulsion system and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet spectrometry, thermogravimetric analysis, scanning electron

  5. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. On composition and thermal degradation of basic zirconium sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Grizik, A A; Nekhamkin, L G; Kondrashova, I A; Serebrennikov, E L; Kerina, V P

    1988-02-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO/sub 4//sup 2-/:Zr, being 0.60+-0.03; 0.37+-0.04 and 0.176+-0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed.

  7. On composition and thermal degradation of basic zirconium sulfates

    International Nuclear Information System (INIS)

    Grizik, A.A.; Nekhamkin, L.G.; Kondrashova, I.A.; Serebrennikov, E.L.; Kerina, V.P.

    1988-01-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO 4 2- :Zr, being 0.60±0.03; 0.37±0.04 and 0.176±0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed

  8. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  9. Sulfate reduction at low pH to remediate acid mine drainage

    International Nuclear Information System (INIS)

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F.M.; Stams, Alfons J.M.

    2014-01-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed

  10. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  11. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  15. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  16. Flotation separation of hafnium(IV) from aqueous solutions

    International Nuclear Information System (INIS)

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-01-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175+181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author)

  17. Effect of Low-Dose (Single-Dose Magnesium Sulfate on Postoperative Analgesia in Hysterectomy Patients Receiving Balanced General Anesthesia

    Directory of Open Access Journals (Sweden)

    Arman Taheri

    2015-01-01

    Full Text Available Background and Aim. Aparallel, randomized, double blinded, placebo-controlled trial study was designed to assess the efficacy of single low dose of intravenous magnesium sulfate on post-total abdominal hysterectomy (TAH pain relief under balanced general anesthesia. Subject and Methods. Forty women undergoing TAH surgery were assigned to two magnesium sulfate (N=20 and normal saline (N=20 groups randomly. The magnesium group received magnesium sulfate 50 mg·kg−1 in 100 mL of normal saline solution i.v as single-dose, just 15 minutes before induction of anesthesia whereas patients in control group received 100 mL of 0.9% sodium chloride solution at the same time. The same balanced general anesthesia was induced for two groups. Pethidine consumption was recorded over 24 hours precisely as postoperative analgesic. Pain score was evaluated with Numeric Rating Scale (NRS at 0, 6, 12, and 24 hours after the surgeries. Results. Postoperative pain score was lower in magnesium group at 6, 12, and 24 hours after the operations significantly (P<0.05. Pethidine requirement was significantly lower in magnesium group throughout 24 hours after the surgeries (P=0.0001. Conclusion. Single dose of magnesium sulfate during balanced general anesthesia could be considered as effective and safe method to reduce postoperative pain and opioid consumption after TAH.

  18. Synthesis of Akaganeite in the Presence of Sulfate: Implications for Akaganeite Formation in Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Fox, A.; Sutter, B.; Niles, P. B.; Adams, M.; Morris, R. V.; Ming, D. W.

    2016-01-01

    Akaganeite (beta-FeOOH) is an Fe(III) (hydr)oxide with a tunnel structure usually occupied by chloride. Akaganeite has been recently discovered in a mudstone on the surface of Mars by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Mars Science Laboratory (MSL) Curiosity Rover in Gale crater [1, 2]. Akaganeite was detected together with sulfate minerals [anhydrite (CaSO4) and basanite (2CaSO4·2H2O)] in the drilled Cumberland and John Clein mudstone samples at Yellowknife Bay [2]. Discovery of akaganeite and sulfates in the same samples suggests that sulfate ions could be present in aqueous solution during akaganeite formation. However, mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and range of sulfate concentration) in Yellowknife Bay remain unknown. The objective of our work was to perform synthesis of akaganeite without or with sulfate addition at variable pHs in order to constrain formation conditions of akaganeite in Yellowknife Bay, Gale crater on Mars.

  19. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  20. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  1. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, M.R.; Someda, H.H.

    2012-01-01

    In the present study, Mg-Al layered double hydroxide intercalated with nitrate anions (LDH-NO 3 ) was synthesized, modified with the anionic surfactant, sodium lauryl sulfate, and applied for the removal of 152+154 Eu from aqueous solutions. Modification of the as-synthesized Mg-Al layered double hydroxide was carried out at surfactant concentration of 0.01 M (the organo-LDH produced denoted LDH-NaLS). The as-synthesized and surfactant-intercalated LDHs were characterized by FT-IR and energy-dispersive X-ray spectroscopy techniques. The effect of some variables such as solution pH, contact time and sorbate concentration on removal of 152+154 Eu was investigated. The kinetic data obtained were well fitted by the pseudo-second-order kinetic model rather than the pseudo-first-order model. Intraparticle diffusion model showed that sorption of 152+154 Eu proceed by intraparticle diffusion together with boundary layer diffusion. Experimental isotherm data were well described by Langmuir model. Organo-LDH was found to have higher capacity (156.45 mg g -1 ) for europium than the as-synthesized LDH-NO 3 (119.56 mg g -1 ). Comparing LDHs capacities obtained for Eu(III) in the present work with other sorbents reported in literature indicated that LDHs have the highest capacities. Application of the developed process for removal of 152+154 Eu(III) from radioactive process wastewaters was also studied and the obtained results revealed that these LDHs are promising materials for treatment of radioactive wastewaters. (author)

  2. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    International Nuclear Information System (INIS)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H.

    1982-01-01

    The authors have prepared a new substrate, o-β-D-sulfo-galactosyl-(1-4)-β-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-[1- 3 H]galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides. (Auth.)

  3. Galactose 6-sulfate sulfatase activity in Morquio syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, T.; Okada, S.; Kato, T.; Inui, K.; Yabuuhi, H. (Osaka Univ. (Japan). Faculty of Medicine)

    1982-07-01

    The authors have prepared a new substrate, o-..beta..-D-sulfo-galactosyl-(1-4)-..beta..-D-6-sulfo-2-acetamido-2-deoxyglucosyl-(1-4)-D-(1-/sup 3/H)galactitol, from shark cartilage keratan sulfate, for the assay of galactose 6-sulfate sulfatase activity. Using this substrate, they found there was a striking deficiency of galactose 6-sulfate sulfatase activity, in addition to the known deficiency of N-acetylgalactosamine 6-sulfate sulfatase, in the cultured skin fibroblasts of patients with Morquio syndrome. Their results could be explained by the hypothesis that accumulation of keratan sulfate and chondroitin 6-sulfate in Morquio syndrome is due to a deficiency of galactose 6-sulfate sulfatase and N-acetylgalactosamine 6-sulfate sulfatase activity, which are necessary for the degradation of these two mucopolysaccharides.

  4. Performing Isoelectric Focusing and Simultaneous Fractionation of Proteins on A Rotary Valve Followed by Sodium Dodecyl – Polyacrylamide Gel Electrophoresis

    Science.gov (United States)

    Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-01-01

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755

  5. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  6. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    Science.gov (United States)

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  7. A simple and reliable anion-exchange resin method for sulfate extraction and purification suitable for multiple O- and S-isotope measurements.

    Science.gov (United States)

    Le Gendre, Erwann; Martin, Erwan; Villemant, Benoit; Cartigny, Pierre; Assayag, Nelly

    2017-01-15

    The O- and S-isotope compositions of sulfates can be used as key tracers of the fate and sink of sulfate in both terrestrial and extra-terrestrial environments. However, their application remains limited in those geological systems where sulfate occurs in low concentrations. Here we present a simple and reliable method to extract, purify and concentrate sulfate from natural samples. The method allows us to take into account the separation of nitrate, which is known to be an issue in O-isotope analysis. The separation and concentration of sulfate from other anions in any aqueous solution are performed within a few hours via anion-exchange resin. The possible O- (δ 18 O and Δ 17 O) and S- (δ 34 S, Δ 33 S and Δ 36 S) isotope exchanges, fractionations and/or contaminations are for the first time monitored during the whole procedure using initial O- and S-mass-dependent and mass-independent sulfate solutions. After elution in HCl, pure sulfate is fully retrieved and precipitated into BaSO 4 , which is suitable for O- and S-isotopic measurements using established techniques. The analysis of retrieved barite presents no variation within 2σ uncertainties: ±0.5‰ and ±0.1‰ in O- (δ 18 O, Δ 17 O) and ±0.2‰, ±0.02‰ and ±0.09‰ in S- (δ 34 S, Δ 33 S and Δ 36 S) isotope ratios, respectively. This study shows that the resin method for sulfate extraction and purification, in addition to being cheap, simple and quick, is applicable for the measurements of all O- and S-isotopic ratios in sulfates (including the Δ 17 O, Δ 33 S and Δ 36 S values). Therefore, this method can be easily used for a high range of natural samples in which sulfate occurs in low concentration including aerosols, ice cores, sediments, volcanic deposits, (paleo)soils and rainwater, and thus it can be a key to our understanding of the sulfur cycle on Earth. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jong, T.; Parry, D.L. [Charles Darwin University, Darwin, NT (Australia). Faculty for Educational Health & Science

    2006-07-15

    The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l{sup -1} lactate. Sulfate reduction rates of 553-1052 mmol m{sup -3} d{sup -1} were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min{sup -1}. When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m{sup -3} d{sup -1} after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters.

  9. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry

    NARCIS (Netherlands)

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-01-01

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

  10. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    Science.gov (United States)

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  11. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  12. Evaporation — a key mechanism for the thaumasite form of sulfate attack

    International Nuclear Information System (INIS)

    Mittermayr, Florian; Baldermann, Andre; Kurta, Christoph; Rinder, Thomas; Klammer, Dietmar; Leis, Albrecht; Tritthart, Josef; Dietzel, Martin

    2013-01-01

    Understanding the mechanisms leading to chemical attack on concrete is crucial in order to prevent damage of concrete structures. To date, most studies on sulfate attack and thaumasite formation are based on empirical approaches, as the identification of associated reaction mechanisms and paths is known to be highly complex. In this study, sulfate damaged concrete from Austrian tunnels was investigated by mineralogical, chemical and isotope methods to identify the reactions which caused intense concrete alteration. Major, minor and trace elemental contents as well as isotope ratios of local ground water (GW), drainage water (DW) and interstitial solutions (IS), extracted from damaged concrete material, were analyzed. Locally occurring GW contained 3 to 545 mg L −1 of SO 4 and is thus regarded as slightly aggressive to concrete in accordance to standard specifications (e.g. DIN EN 206-1). The concrete linings and drainage systems of the studied tunnels, however, have partly suffered from intensive sulfate attack. Heavily damaged concrete consisted mainly of thaumasite, secondary calcite, gypsum, and relicts of aggregates. Surprisingly, the concentrations of dissolved ions were extremely enriched in the IS with up to 30,000 and 12,000 mg L −1 of SO 4 and Cl, respectively. Analyses of aqueous ions with a highly conservative behavior, e.g. K, Rb and Li, as well as 2 H/H and 18 O/ 16 O isotope ratios of H 2 O of the IS showed an intensive accumulation of ions and discrimination of the light isotopes vs. the GW. These isotope signals of the IS clearly revealed evaporation at distinct relative humidities. From ion accumulation and isotope fractionation individual total and current evaporation degrees were estimated. Our combined elemental and isotopic approach verified wetting–drying cycles within a highly dynamic concrete-solution-atmosphere system. Based on these boundary conditions, key factors controlling thaumasite formation are discussed regarding the

  13. SULFATE PRODUCTION IN CLOUDS IN EASTERN CHINA: OBSERVATIONS FROM MT. TAI

    Science.gov (United States)

    Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Wang, W.; Wang, T.

    2009-12-01

    The fate of China’s sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation of these emissions to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and exert a radiative forcing impact over a broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the importance of various aqueous phase sulfur oxidation pathways in the region. Single and two-stage cloudwater collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon, formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Despite its fast aqueous reaction with sulfur dioxide, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial capacity for additional sulfate production. Ozone was found to be an important S(IV) oxidant in some periods when cloud pH was high. This presentation will examine the importance of different oxidants (H2O2, O3, and O2 catalyzed by trace metals) for sulfur oxidation and the overall capacity of regional clouds to support rapid aqueous phase sulfate production.

  14. Confirmation of Soluble Sulfate at the Phoenix Landing Site: Implications for Martian Geochemistry and Habitability

    Science.gov (United States)

    Kounaves, S. P.; Hecht, M. H.; Kapit, J.; Quinn, R. C.; Catling, D. C.; Clark, B. C.; Ming, D. W.; Gospodinova, K.; Hredzak, P.; McElhoney, K.; hide

    2010-01-01

    Over the past several decades, elemental sulfur in martian soils and rocks has been detected by a number of missions using X-ray spectroscopy [1-3]. Optical spectroscopy has also provided evidence for widespread sulfates on Mars [4,5]. The ubiquitous presence of sulfur in soils has been interpreted as a widely distributed sulfate mineralogy [6]. However, direct confirmation as to the identity and solubility of the sulfur species in martian soil has never been obtained. One goal of the Wet Chemistry Laboratory (WCL) [7] on board the 2007 Phoenix Mars Lander [8] was to determine soluble sulfate in the martian soil. The WCL received three primary samples. Each sample was added to 25 mL of leaching solution and analysed for solvated ionic species, pH, and conductivity [9,10]. The analysis also showed a discrepancy between charge balance, ionic strength, and conductivity, suggesting unidentified anionic species.

  15. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    Science.gov (United States)

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of sodium dodecyl sulfate on flow and electrokinetic properties ...

    Indian Academy of Sciences (India)

    Unknown

    clay having a variety of uses because of its colloidal pro- perty when it is mixed ... city and surface area is used as an industrial raw material in sorptive, catalytic ... critical concentration of the organic salts (surfactant) was determined by visual ...

  17. Flotation separation of hafnium(IV) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-09-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175 + 181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author). 21 refs.; 5 figs.

  18. FIA-FAAS method for tannin determination based on a precipitation reaction with hemoglobin

    Directory of Open Access Journals (Sweden)

    Ferreira Edilene C.

    2003-01-01

    Full Text Available A flow system, coupled with flame atomic absorption spectrometry (FIA-FAAS, was developed for tannin determination in pigeon pea samples, exploring the precipitation reaction between tannins and proteins. Sample extracts obtained by sonication with a 50% (v/v methanol solution were introduced into the system and induced to react with a hemoglobin solution. The precipitate produced was retained on a filter located in the analytical flow. A reversed flow of 1% (w/v sodium dodecyl sulfate solution was used for solubilization of the precipitate from the filter and to conduct the tannin-hemoglobin complex to the FAAS, to quantify the iron ions present in the hemoglobin structure. A tannic acid solution was used to prepare the analytical curve. The proposed method allowed determination of 30 samples per hour, a standard deviation of 9.7% (n=10, and a quantification limit of 0.27 mg L-1 for tannic acid.

  19. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  20. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    OpenAIRE

    Jaerger,Silvia; Zimmermann,Ademir; Zawadzki,Sonia Faria; Wypych,Fernando; Amico,Sandro Campos

    2014-01-01

    In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, th...

  1. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Detergent-induced aggregation of an amyloidogenic intrinsically ...

    Indian Academy of Sciences (India)

    Shruti Arya

    2017-11-02

    Nov 2, 2017 ... the effect of a well-known anionic lipid mimetic, sodium dodecyl sulfate (SDS), on the aggregation ... for the fabrication of nano-structures for a wide variety ...... M 2014 Classification of intrinsically disordered regions.

  3. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  4. Sulfate and dissolved sulfide variation under low COD/Sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB treating domestic wastewater

    Directory of Open Access Journals (Sweden)

    Sérvio Túlio Alves Cassini

    2012-04-01

    Full Text Available In this study, the dynamics of sulfate reduction and dissolved sulfide generation (S2-, HS-, H2Saq in liquid phase was evaluated in an UASB reactor treating domestic wastewater with low COD/Sulfate content. The evaluation in the UASB reactor was performed at three sludge heights (0.25, 1.25, 2.25 taps and effluent of the reactor. Sulfate reduction was verified in the reactor, with an average reduction of 24 % throughout the experiment period. However, the dissolved sulfide concentration in the reactor was not higher than 5.0 mg Sdiss/L. The kinetic model of first order showed good fit to describe the sulfate reduction under different COD/sulfate ratio, with K1app between 2.94x10-5 s-1 and 1.17x10-5 s-1 with correlation coefficients for data over 91%. The maximum rate to sulfate reduction was 18.0 mg SO42-/L.h-1 and small variation in COD/sulfate ratio promotes a significant change both in sulfate and sulfide concentrations.

  5. Micellar effects on positronium lifetime in aqueous SDS solutions

    International Nuclear Information System (INIS)

    Vass, Sz.; Kajcsos, Zs.; Molnar, B.; Stergiopoulos, Ch.

    1981-09-01

    Positron lifetime measurements have been performed in aqueous SDS (Sodium Dodecyl Sulphate) solutions. The lifetime distributions measured by fast-slow coincidence technique have been found to be influenced by surfactant concentration, which varied in the range of 1.25x10 -3 - 3.2x10 -1 mol/dm 3 (i.e. 2.27x10 -5 - 5.82x10 -3 mole fractions). The lifetime of the long living component connected to positronium formation and decay increases with increasing surfactant concentration. Lifetime data suggest that a direct positronium-micelle electron-exchange reaction leading to pick-off annihilation is contraindicated. (author)

  6. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    International Nuclear Information System (INIS)

    Tari, Nesa Esmaeilian; Kashani Motlagh, Mohammad M.; Sohrabi, Beheshteh

    2011-01-01

    Highlights: ►The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. ► The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. ► In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. ► The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca 10 (PO 4 ) 6 (OH) 2 (HAP) are prepared by precipitation method using CaCl 2 and H 3 PO 4 (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  7. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    Energy Technology Data Exchange (ETDEWEB)

    Tari, Nesa Esmaeilian [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Kashani Motlagh, Mohammad M., E-mail: M.Kashani@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Sohrabi, Beheshteh [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. Black-Right-Pointing-Pointer The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. Black-Right-Pointing-Pointer In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. Black-Right-Pointing-Pointer The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} (HAP) are prepared by precipitation method using CaCl{sub 2} and H{sub 3}PO{sub 4} (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  8. Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO{sub 2} to enhance sorbent/photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2015-09-15

    We investigated the synthesis, characterization, and application of surfactant-interceded Fe nanoparticle-doped TiO{sub 2} (TiO{sub 2}/Fe-S1 and TiO{sub 2}/Fe-S2) that were used as adsorbents and photo-catalysts for the removal of As(V) ions from aqueous media. Two types of surfactant (anionic (sodium dodecyl sulfate), S1 and non-ionic (Triton X-100), S2) were used to obtain the separation and mono-dispersion of Fe(III) ions in the reaction solution. The nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV–vis, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and elemental mapping analysis before and after As(V) removal. The Langmuir capacities (q{sub e}, mg/g) of the sodium dodecyl sulfate (SDS) and Triton X-100 interceded nanocomposites (TiO{sub 2}/Fe-S1 and TiO{sub 2}/Fe-S2, respectively) for arsenic removal were determined to be 65.79 and 50.76 mg/g, respectively, in aqueous media with As(V) concentration ranges of 0–10 mg/L at pH 6.5. - Highlights: • Fe(III) doped TiO{sub 2} nanocomposite was prepared with surfactant. • Anionic surfactant SDS enhanced the transfer of Fe(III) ions to TiO{sub 2}. • Surfactant-interceded nanocomposite enhanced As(V) removal. • Arsenic removal efficiency was as follows: dark phase>visible phase>UV region.

  9. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    Science.gov (United States)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  10. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    Science.gov (United States)

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  11. Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: Monohydrated and polyhydrated sulfates

    Science.gov (United States)

    Wang, Alian; Jolliff, Bradley L.; Liu, Yang; Connor, Kathryn

    2016-04-01

    Monohydrated Mg sulfate (MgSO4·H2O) and polyhydrated sulfate are the most common and abundant hydrous sulfates observed thus far on Mars. They are widely distributed and coexist in many locations. On the basis of results from two new sets of experiments, in combination with past experimental studies and the subsurface salt mineralogy observed at a saline playa (Dalangtan, DLT) in a terrestrial analogue hyperarid region on the Tibet Plateau, we can now set new constraints on the nature and origin of these two major Martian sulfates. Starkeyite (MgSO4·4H2O) is the best candidate for polyhydrated sulfate. MgSO4·H2O in the form of "LH-1w," generated from dehydration of Mg sulfates with high degrees of hydration, is the most likely mineral form for the majority of Martian monohydrated Mg sulfate. Two critical properties of Mg sulfates are responsible for the coexistence of these two phases that have very different degrees of hydration: (1) the metastability of a substructural unit in starkeyite at relatively low temperatures, and (2) catalytic effects attributed to coprecipitated species (sulfates, chlorides, oxides, and hydroxides) from chemically complex brines that help overcome the metastability of starkeyite. The combination of these two properties controls the coexistence of the LH-1w layer and starkeyite layers at many locations on Mars, which sometimes occur in an interbedded stratigraphy. The structural H2O held by these two broadly distributed sulfates represents a large H2O reservoir at the surface and in the shallow subsurface on current Mars.

  12. Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack

    International Nuclear Information System (INIS)

    Lee, Seung-Tae

    2009-01-01

    The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.

  13. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  14. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  15. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  16. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  17. Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives

    NARCIS (Netherlands)

    Hamarneh, A. I.; Heeres, H. J.; Broekhuis, A. A.; Picchioni, F.

    2010-01-01

    Jatropha proteins were successfully extracted from the corresponding seeds using the principle of isoelectric precipitation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), elemental analysis and Fourier transform infrared spectroscopy (FTIR) were used to analyze the obtained

  18. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  19. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    Science.gov (United States)

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  20. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    OpenAIRE

    Xu, Xin

    2007-01-01

    Ce2(SO4)3(H2O)4 was obtained hydrothermally from an aqueous solution of cerium(III) oxide, trimethylamine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. Th...