WorldWideScience

Sample records for document preliminary design

  1. Preliminary Design Requirements Document for Project W-314

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    2000-04-27

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1.

  2. Preliminary Design Requirements Document for Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This document sets forth functional requirements, performance requirements, and design constraints for the tank farm systems elements identified in Section 3.1 of this document. These requirements shall be used to develop the Design Requirements Baseline for those system elements. System Overview--The tank farm system at Hanford Site currently consists of 149 single shell tanks and 28 double shell tanks with associated facilities and equipment, located in 18 separate groupings. Each grouping is known as a tank farm. They are located in the areas designated as 200 West and 200 East. Table 1-1 shows the number of tanks in each farm. The farms are connected together through a transfer system consisting of piping, diversion boxes, Double Contained Receiver Tanks (DCRT) and other miscellaneous facilities and elements. The tank farm system also connects to a series of processing plants which generate radioactive and hazardous wastes. The primary functions of the tank farm system are to store, transfer, concentrate, and characterize radioactive and hazardous waste generated at Hanford, until the waste can be safely retrieved, processed and dispositioned. The systems provided by Project W-314 support the store and transfer waste functions. The system elements to be upgraded by Project W-314 are identified in Section 3.1

  3. Preliminary design requirements document (DRD) for Project W-236B, ''Initial Pretreatment Module''

    International Nuclear Information System (INIS)

    Swanson, L.M.

    1995-01-01

    The scope of this Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to separate Hanford Site tank waste supernatants into low-level and high-level fractions. This documents sets forth function requirements, performance requirements, and design constraints necessary to begin conceptual design for the Initial Pretreatment Module (IPM). System and physical interfaces between the IPM project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. Supplemental DRDs will be prepared to provide more detailed requirements specific to systems described in the DRD

  4. MICE - Absorber and focus coil safety working group design document: Preliminary design and assessments

    International Nuclear Information System (INIS)

    Barr, Giles; Baynham, Elwyn; Black, Edgar; Bradshaw, Tom; Cummings, Mary Anne; Green, Michael A.; Ishimoto, Shigeru; Ivanyushenkov, Yury; Lau, Wing; Zisman, Michael

    2003-01-01

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 (micro)s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before and after the

  5. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  6. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  7. OMEGA Upgrade preliminary design

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1989-10-01

    The OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester is the only major facility in the United States capable of conducting fully diagnosed, direct-drive, spherical implosion experiments. As such, it serves as the national Laser Users Facility, benefiting scientists throughout the country. The University's participation in the National Inertial Confinement Fusion (ICF) program underwent review by a group of experts under the auspices of the National Academy of Sciences (the Happer Committee) in 1985. The Happer Committee recommended that the OMEGA laser be upgraded in energy to 30 kJ. To this end, Congress appropriated $4,000,000 for the preliminary design of the OMEGA Upgrade, spread across FY88 and FY89. This document describes the preliminary design of the OMEGA Upgrade. The proposed enhancements to the existing OMEGA facility will result in a 30-kHJ, 351-nm, 60-beam direct-drive system, with a versatile pulse-shaping facility and a 1%--2% uniformity of target drive. The Upgrade will allow scientists to explore the ignition-scaling regime, and to study target behavior that is hydrodynamically equivalent to that of targets appropriate for a laboratory microfusion facility (LMF). In addition, it will be possible to perform critical interaction experiments with large-scale-length uniformly irradiated plasmas

  8. Analysis of Design Documentation

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp

    1998-01-01

    In design practice a process where a satisfactory solution is created within limited resources is required. However, since the design process is not well understood, research into how engineering designers actually solve design problems is needed. As a contribution to that end a research project...

  9. SANSMIC design document.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Paula D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [GRAM, Inc., Albuquerque, NM (United States)

    2015-07-01

    The United States Strategic Petroleum Reserve (SPR) maintains an underground storage system consisting of caverns that were leached or solution mined in four salt domes located near the Gulf of Mexico in Texas and Louisiana. The SPR comprises more than 60 active caverns containing approximately 700 million barrels of crude oil. Sandia National Labo- ratories (SNL) is the geotechnical advisor to the SPR. As the most pressing need at the inception of the SPR was to create and fill storage volume with oil, the decision was made to leach the caverns and fill them simultaneously (leach-fill). Therefore, A.J. Russo developed SANSMIC in the early 1980s which allows for a transient oil-brine interface (OBI) making it possible to model leach-fill and withdrawal operations. As the majority of caverns are currently filled to storage capacity, the primary uses of SANSMIC at this time are related to the effects of small and large withdrawals, expansion of existing caverns, and projecting future pillar to diameter ratios. SANSMIC was identified by SNL as a priority candidate for qualification. This report continues the quality assurance (QA) process by documenting the "as built" mathematical and numerical models that comprise this document. The pro- gram flow is outlined and the models are discussed in detail. Code features that were added later or were not documented previously have been expounded. No changes in the code's physics have occurred since the original documentation (Russo, 1981, 1983) although recent experiments may yield improvements to the temperature and plume methods in the future.

  10. Documenting the Engineering Design Process

    Science.gov (United States)

    Hollers, Brent

    2017-01-01

    Documentation of ideas and the engineering design process is a critical, daily component of a professional engineer's job. While patent protection is often cited as the primary rationale for documentation, it can also benefit the engineer, the team, company, and stakeholders through creating a more rigorously designed and purposeful solution.…

  11. Virtual Library Design Document; TOPICAL

    International Nuclear Information System (INIS)

    M. A. deLamare

    2001-01-01

    The objective of this document is to establish a design for the virtual library user and administrative layers that complies with the requirements of the virtual library software specification and subordinate module specification

  12. Exploratory shaft facility preliminary designs - Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Gulf Interior Region, is to provide a description of the preliminary design for an Exploratory Shaft Facility on the Richton Dome, Mississippi. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description and Construction Cost Estimate

  13. Exploratory shaft facility preliminary designs - Paradox Basin. Technical report

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Paradox Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Paradox Basin, Utah. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling Method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers is included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references

  14. Preliminary I&C Design for LORELEI

    International Nuclear Information System (INIS)

    Korotkin, S.; Kaufman, Y.; Guttmann, E. B.; Levy, S.; Amidan, D.; Gdalyho, B.; Cahana, T.; Ellenbogen, A.; Arad, M.; Weiss, Y.; Sasson, A.; Ferry, L.; Bourrelly, F.; Cohen, Y.

    2014-01-01

    This document summarizes the preliminary I&C design for LORELEI experiment The preliminary design deals with considerations regarding appropriate safety and service instrumentation. The determined closed loop control rules for temperature and position will be implemented in the detailed design. The Computer Aided Operator Decisions System (CAODS) will be used for prediction of hot spot temperature and thickness of oxidation layer using Baker-Just correlation. The proposed hybrid simulation system comprising of both virtual and real hardware will be in-cooperated for LORELEI verification. It will perform both integration cold tests for a partial hardware loop and virtual tests for the final I&C design

  15. Mechanical flexible joint design document

    Science.gov (United States)

    Daily, Vic

    1993-01-01

    The purpose of this report is to document the status of the Mechanical Flexible Joint (MFJ) Design Subtask with the intent of halting work on the design. Recommendations for future work is included in the case that the task is to be resumed. The MFJ is designed to eliminate two failure points from the current flex joint configuration, the inner 'tripod configuration' and the outer containment jacket. The MFJ will also be designed to flex 13.5 degrees and have three degrees of freedom. By having three degrees of freedom, the MFJ will allow the Low Pressure Fuel Duct to twist and remove the necessity to angulate the full 11 degrees currently required. The current flex joints are very labor intensive and very costly and a simple alternative is being sought. The MFJ is designed with a greater angular displacement, with three degrees of freedom, to reside in the same overall envelope, to meet weight constraints of the current bellows, to be compatible with cryogenic fuel and oxidizers, and also to be man-rated.

  16. GAUDI-Architecture design document

    CERN Document Server

    Mato, P

    1998-01-01

    98-064 This document is the result of the architecture design phase for the LHCb event data processing applications project. The architecture of the LHCb software system includes its logical and physical structure which has been forged by all the strategic and tactical decisions applied during development. The strategic decisions should be made explicitly with the considerations for the trade-off of each alternative. The other purpose of this document is that it serves as the main material for the scheduled architecture review that will take place in the next weeks. The architecture review will allow us to identify what are the weaknesses or strengths of the proposed architecture as well as we hope to obtain a list of suggested changes to improve it. All that well before the system is being realized in code. It is in our interest to identify the possible problems at the architecture design phase of the software project before much of the software is implemented. Strategic decisions must be cross checked caref...

  17. Documentation design for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Parkinson, W.J.; von Herrmann, J.L.

    1985-01-01

    This paper describes a framework for documentation design of probabilistic risk assessment (PRA) and is based on the EPRI document NP-3470 ''Documentation Design for Probabilistic Risk Assessment''. The goals for PRA documentation are stated. Four audiences are identified which PRA documentation must satisfy, and the documentation consistent with the needs of the various audiences are discussed, i.e., the Summary Report, the Executive Summary, the Main Report, and Appendices. The authors recommend the documentation specifications discussed herein as guides rather than rigid definitions

  18. Preliminary design county plan Zeeland

    International Nuclear Information System (INIS)

    1987-01-01

    The preliminary design 'Streekplan Zeeland' (Country plan Zeeland, with regard to the location of additional nuclear power plants in Zeeland, the Netherlands) has passed through a consultation and participation round. Thereupon 132 reactions have been received. These have been incorporated and answered in two notes. This proposal deals with the principal points of the preliminary design and treats also the remarks of the committees Environmental (town and country) Planning (RO), Provincial (town and country) Planning Committee (PPC) and Association of Communities of Zeeland (VZG), on the reply notes. The preliminary design with the modifications, collected in appendix 3, is proposed to be the starting point in the drawing-up of the design-country-plan. This design subsequently will pass the formal country-plan procedure. (author). 1 fig

  19. KALIMER fuel system preliminary design description

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B.O.; Nam, C.; Paek, S.K.

    1998-10-01

    This document provides general design concepts, design basis, preliminary design specification and design technologies which are needed for designing the fuel/non-fuel rods and assembly ducts of the KALIMER fuel system. The core of LMFBR consists of driver fuel assembly, blanket assembly, reflector assembly, shielding assembly, control assembly and GEM (Gas Expansion Module) as well as USS, dummy assembly, detector assembly. These core components must be designed to withstand the high temperature, high flux for a long irradiation exposure time. Due to the high temperature and high flux, irradiation creep and swelling as well as thermal-mechanical deformation are occurred at the fuel/non-fuel system and cause the deformations of materials and the geometric deflections at fuel/non-fuel rods, assembly ducts and components. In order to overcome these intricate phenomena through the engineering design, the design basis including theoretical analysis methodologies and design considerations, material characteristics of fuel system, and the specifications and drawings of fuel/non-fuel rods and assembly ducts, respectively, are presented. This document is preliminary design description which is produced in the conceptual design stage, and does not present the detailed and finalized design data which can be for the manufacturing. (author). 22 refs

  20. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  1. System design document for the INFLO prototype.

    Science.gov (United States)

    2014-03-01

    This report documents the high level System Design Document (SDD) for the prototype development and : demonstration of the Intelligent Network Flow Optimization (INFLO) application bundle, with a focus on the Speed : Harmonization (SPD-HARM) and Queu...

  2. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    1980-01-01

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  3. BWR NSSS design basis documentation

    International Nuclear Information System (INIS)

    Vij, R.S.; Bates, R.E.

    2004-01-01

    In 1985 an incident at Toledo Edison's Davis Besse plant caused the U.S. Nuclear Regulatory Commission (NRC) to re-evaluate the technical information that the utilities had readily available to support the design of their plants. The Design Basis programs, currently on going in most U.S. utilities, have been the nuclear industry's response to the needs identified by this re-evaluation. In order to understand the Design Basis programs which have been implemented by the U.S. nuclear utilities, it is necessary to understand the problem as it was perceived by the nuclear industry (the utilities, the original NSSS designers and the regulators) after the Davis-Besse incident, the subsequent programs undertaken by the industry under the leadership of INPO and NUMARC, the NRC's actions, and the overall evolution of the industry's vision in relation to this problem. This paper presents the history of the design basis efforts from the first recognition of the problem by the NRC after the Davis-Besse incident, describes the actions taken by the NRC, INPO, NUMARC, the U.S. utilities and the NSSS designers, and brings the problem statement up-to-date in relation to the vision presently held by the U.S. nuclear industry. It then presents a technical discussion to develop a detailed definition of design basis information to support the problem statement. The information originally supplied by the NSSS designers during the plant design and construction is discussed as well as its relationship to the previously defined design basis information. This section of the paper concludes by defining the additional information needed by nuclear utilities to satisfy the requirements developed from the problem statement. Having developed a definition of the additional information (i.e., information not originally supplied during design and construction) required to solve the design basis problem as it is presently perceived by the U.S. nuclear industry, the paper then discusses design basis

  4. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of this document includes the LWT cask with fuel baskets, impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. The results of the tradeoff studies and evaluations that were performed during the preliminary design are presented in Appendix A to this report. 51 figs., 17 tabs

  5. Preliminary PBFA II design

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1980-01-01

    The upgrade of Sandia National Laboratories particle beam fusion accelerator, PBFA I, to PBFA II presents several interesting and challenging pulsed power design problems. PBFA II requires increasing the PBFA I output parameters from 2 MV, 30 TW, 1 MJ to 4 MV, 100 TW, 3.5 MJ with the constraint of using much of the same PBFA I hardware. The increased PBFA II output will be obtained by doubling the number of modules (from 36 to 72), increasing the primary energy storage (from 4 MJ to 15 MJ), lowering the pulse forming line (PFL) output impedance, and adding a voltage doubling network

  6. ForTrilinos Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Young, Mitchell T. [ORNL; Johnson, Seth R. [ORNL; Prokopenko, Andrey V. [ORNL; Evans, Katherine J. [ORNL; Heroux, Michael A. [Sandia National Laboratories (SNL)

    2017-08-01

    With the development of a Fortran Interface to Trilinos, ForTrilinos, modelers using modern Fortran will beable to provide their codes the capability to use solvers and other capabilities on exascale machines via astraightforward infrastructure that accesses Trilinos. This document outlines what Fortrilinos does andexplains briefly how it works. We show it provides a general access to packages via an entry point and usesan xml file from fortran code. With the first release, ForTrilinos will enable Teuchos to take xml parameterlists from Fortran code and set up data structures. It will provide access to linear solvers and eigensolvers.Several examples are provided to illustrate the capabilities in practice. We explain what the user shouldhave already with their code and what Trilinos provides and returns to the Fortran code. We provideinformation about the build process for ForTrilinos, with a practical example. In future releases, nonlinearsolvers, time iteration, advanced preconditioning techniques, and inversion of control (IoC), to enablecallbacks to Fortran routines, will be available.

  7. Design review report for the hydrogen interlock preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-01-01

    This report documents the completion of a preliminary design review for the hydrogen interlock. The hydrogen interlock, a proposed addition to the Rotary Mode Core Sampling (RMCS) system portable exhauster, is intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  8. Designing Documents for People to Use

    Directory of Open Access Journals (Sweden)

    David Sless

    Full Text Available This article reports on the work of Communication Research Institute (CRI, an international research center specializing in communication and information design. With the support of government, regulators, industry bodies, and business—and with the participation of people and their advocates—CRI has worked on over 200 public document design projects since it began as a small unit in 1985. CRI investigates practical methods and achievable standards for designing digital and paper public documents, including forms; workplace procedural notices; bills, letters, and emails sent by organizations; labels and instructions that accompany products and services; and legal and financial documents and contracts. CRI has written model grammars for the document types it designs, and the cumulative data from CRI projects has led to a set of systematic methods for designing public-use documents to a high standard. Through research, design, publishing, and advocacy, CRI works to measurably improve the ordinary documents we all have to use. Keywords: Information design, Design methods, Design standards, Communication design, Design diagnostic testing, Design research

  9. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  10. KALIMER preliminary conceptual design report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report

  11. Versator divertor experiment: preliminary designs

    International Nuclear Information System (INIS)

    Wan, A.S.; Yang, T.F.

    1984-08-01

    The emergence of magnetic divertors as an impurity control and ash removal mechanism for future tokamak reactors bring on the need for further experimental verification of the divertor merits and their ability to operate at reactor relevant conditions, such as with auxiliary heating. This paper presents preliminary designs of a bundle and a poloidal divertor for Versator II, which can operate in conjunction with the existing 150 kW of LHRF heating or LH current drive. The bundle divertor option also features a new divertor configuration which should improve the engineering and physics results of the DITE experiment. Further design optimization in both physics and engineering designs are currently under way

  12. BIPS-FS preliminary design, miscellaneous notes

    International Nuclear Information System (INIS)

    1976-01-01

    A compendium of flight system preliminary design internal memos and progress report extracts for the Brayton Isotope Power System Preliminary Design Review to be held July 20, 21, and 22, 1975 is presented. The purpose is to bring together those published items which relate only to the preliminary design of the Flight System, Task 2 of Phase I. This preliminary design effort was required to ensure that the Ground Demonstration System will represent the Flight System as closely as possible

  13. Statically checked documentation with design patterns

    DEFF Research Database (Denmark)

    Cornils, Aino; Hedin, Görel

    2000-01-01

    Over the past years, along with the increase in popularity of design patterns, some problems with the use of design patterns have been identified. The so-called tracing problem describes the difficulty in documenting software systems using design patterns. Initial approaches to solving the tracin...

  14. Instructions for submittal and control of FFTF design documents and design related documentation

    International Nuclear Information System (INIS)

    Grush, R.E.

    1976-10-01

    This document provides the system and requirements for management of FFTF technical data prepared by Westinghouse Hanford (HEDL), and design contractors, the construction contractor and lower tier equipment suppliers. Included in this document are provisions for the review, approval, release, change control, and accounting of FFTF design disclosure and base documentation. Also included are provisions for submittal of other design related documents for review and approval consistent with applicable requirements of RDT-Standard F 2-2, ''Quality Assurance Program Requirements.''

  15. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of the document includes the LWT cask with fuel baskets; impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. 75 figs., 48 tabs

  16. Supplemental design requirements document, Project W026

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1993-01-01

    This document supplements and extends the Functional Design Criteria, SP-W026-FDC-001, for the Waste Receiving and Processing Facility (WRAP), Module 1. It provides additional detailed requirements, summarizes key Westinghouse Hanford Company design guidance, and establishes baseline technical agreements to be used in definitive design of the WRAP-1 facility. Revision 3 of the Supplemental Design Requirements Document has been assigned an Impact Level of 3ESQ based on the content of the entire revision. The actual changes made from Revision 2 have an Impact Level of 3S and the basis for these changes was previously reviewed and approved per WHC correspondence No. 9355770

  17. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  18. Design documentation: Krypton encapsulation preconceptual design

    International Nuclear Information System (INIS)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy

  19. Design documentation: Krypton encapsulation preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  20. Preliminary design review report for K Basin Dose Reduction Project

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design

  1. Bechtel automated control of design document data

    International Nuclear Information System (INIS)

    Hollingshaus, H.

    1986-01-01

    Concern for nuclear power plant safety has resulted in many design features that complicate the licensing, operation, and maintenance of nuclear plants. To manage and control the design effectively, Bechtel has developed an integrated design document data base that provides efficient support of the plant during all phases of its life. The program runs on the IBM System 38, but can also be downloaded to an IBM PC to save storage and connect time. It is interactive and can accommodate multiple users at various locations. Although primarily developed to manage design changes resulting from the regulatory process and use of a fast track construction schedule, the data base will provide operations and maintenance personnel with qualifications status and pertinent data for each piece of equipment, including all electrical devices and a list of all associated design documents

  2. Ship design methodologies of preliminary design

    CERN Document Server

    Papanikolaou, Apostolos

    2014-01-01

    This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form  from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E).  The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of rel...

  3. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  4. Preliminary design of smart fuel

    International Nuclear Information System (INIS)

    Kim, Y.; Ha, D.; Park, S.; Nahm, K.; Lee, K.; Kim, J.

    2007-01-01

    SMART (System-integrated Modular Advanced Reactor) is a novel light water rector with a modular, integral primary system configuration. This concept has been developing a 660 MWt by Korean Nuclear Power Industry Group with KAERI. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as enhanced safety, and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment -friendly. In this paper described the preliminary design of the nuclear Fuel for this SMART, the design concept and the characteristics of SMART Fuel. In specially this paper describe the optimization of grid span adjustment to improve the thermal performance of the SMART Fuel as well as to improve the seismic resistance performance of the SMART Fuel, it is not easy to improve the both performance simultaneously because of design parameter of each performance inversely proportional. SMART Fuel enable to extra-long extended fuel cycle length and resistance of proliferation, enhanced safety, improved economics and reduced nuclear waste

  5. Preliminary System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  6. Plant aging and design bases documentation

    International Nuclear Information System (INIS)

    Kelly, J.

    1985-01-01

    As interest in plant aging and lifetime extension continues to grow, the need to identify and capture the original design bases for the plant becomes more urgent. Decisions on lifetime extension and availability must be based on a rational understanding of design input, assumptions, and objectives. As operating plant time accumulates, the history of the early design begins to fade. The longer the utility waits, the harder it will be to re-establish the original design bases. Therefore, the time to develop this foundation is now. This paper demonstrates the impact that collecting and maintaining the original design bases of the plant can have on a utility's lifetime extension program. This impact becomes apparent when considering the technical, regulatory and financial aspects of lifetime extension. It is not good enough to know that the design information is buried somewhere in the corporate archives, and that given enough time, it could be retrieved. To be useful to the lifetime extension program, plant design information must be concise, readily available (i.e., retrievable), and easy to use. These objectives can only be met through a systematic program for collecting and presenting plant design documentation. To get the maximum benefit from a lifetime extension program, usable design bases documentation should be available as early in the plant life as possible. It will help identify areas that require monitoring today so that data is available to make rational decisions in the future

  7. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  8. Detailed Design Documentation, without the Pain

    Science.gov (United States)

    Ramsay, C. D.; Parkes, S.

    2004-06-01

    Producing detailed forms of design documentation, such as pseudocode and structured flowcharts, to describe the procedures of a software system:(1) allows software developers to model and discuss their understanding of a problem and the design of a solution free from the syntax of a programming language,(2) facilitates deeper involvement of non-technical stakeholders, such as the customer or project managers, whose influence ensures the quality, correctness and timeliness of the resulting system,(3) forms comprehensive documentation of the system for its future maintenance, reuse and/or redeployment.However, such forms of documentation require effort to create and maintain.This paper describes a software tool which is currently being developed within the Space Systems Research Group at the University of Dundee which aims to improve the utility of, and the incentive for, creating detailed design documentation for the procedures of a software system. The rationale for creating such a tool is briefly discussed, followed by a description of the tool itself, a summary of its perceived benefits, and plans for future work.

  9. Preliminary design data package. Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-25

    The design requirements, design philosophy, method and assumptions, and preliminary computer-aided design of the Near-Term Hybrid Vehicle including its electric and heat power units, control equipment, transmission system, body, and overall vehicle characteristics are presented. (LCL)

  10. COG Software Architecture Design Description Document

    International Nuclear Information System (INIS)

    Buck, R.M.; Lent, E.M.

    2009-01-01

    This COG Software Architecture Design Description Document describes the organization and functionality of the COG Multiparticle Monte Carlo Transport Code for radiation shielding and criticality calculations, at a level of detail suitable for guiding a new code developer in the maintenance and enhancement of COG. The intended audience also includes managers and scientists and engineers who wish to have a general knowledge of how the code works. This Document is not intended for end-users. This document covers the software implemented in the standard COG Version 10, as released through RSICC and IAEA. Software resources provided by other institutions will not be covered. This document presents the routines grouped by modules and in the order of the three processing phases. Some routines are used in multiple phases. The routine description is presented once - the first time the routine is referenced. Since this is presented at the level of detail for guiding a new code developer, only the routines invoked by another routine that are significant for the processing phase that is being detailed are presented. An index to all routines detailed is included. Tables for the primary data structures are also presented.

  11. GENII Version 2 Software Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Strenge, Dennis L.; Ramsdell, James V.; Eslinger, Paul W.; Fosmire, Christian J.

    2004-03-08

    This document describes the architectural design for the GENII-V2 software package. This document defines details of the overall structure of the software, the major software components, their data file interfaces, and specific mathematical models to be used. The design represents a translation of the requirements into a description of the software structure, software components, interfaces, and necessary data. The design focuses on the major components and data communication links that are key to the implementation of the software within the operating framework. The purpose of the GENII-V2 software package is to provide the capability to perform dose and risk assessments of environmental releases of radionuclides. The software also has the capability of calculating environmental accumulation and radiation doses from surface water, groundwater, and soil (buried waste) media when an input concentration of radionuclide in these media is provided. This report represents a detailed description of the capabilities of the software product with exact specifications of mathematical models that form the basis for the software implementation and testing efforts. This report also presents a detailed description of the overall structure of the software package, details of main components (implemented in the current phase of work), details of data communication files, and content of basic output reports. The GENII system includes the capabilities for calculating radiation doses following chronic and acute releases. Radionuclide transport via air, water, or biological activity may be considered. Air transport options include both puff and plume models, each allow use of an effective stack height or calculation of plume rise from buoyant or momentum effects (or both). Building wake effects can be included in acute atmospheric release scenarios. The code provides risk estimates for health effects to individuals or populations; these can be obtained using the code by applying

  12. NSLS-II Preliminary Design Report

    International Nuclear Information System (INIS)

    Dierker, S.

    2007-01-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES and H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  13. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  14. Preliminary design studies for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement

  15. Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-01-01

    With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

  16. Sewage Solids Irradiator Transportation System (SSITS) cask: preliminary design description

    International Nuclear Information System (INIS)

    Eakes, R.G.; Kempka, S.N.; Lamoreaux, G.H.; Sutherland, S.H.

    1983-02-01

    The preliminary design of the Sewage Solids Irradiator Transportation System (SSITS) Cask is presented in this document. The SSITS cask is to be used for the transport of radioactive cesium chloride and strontium fluoride capsules which are of use in irradiators or as heat sources. The SSITS cask is approximately 1.4 m in diameter, 1.3 m high, weighs roughly 9 t, provides 33 cm of steel shielding, and can dissipate up to 5.2 kW of decay heat. The cask design criteria are identified and a description of the cask design and operation is provided. Detailed analyses of the design were performed to demonstrate licensability of the cask by the Nuclear Regulatory Commission (NRC). Results of the analyses indicate that the preliminary design is in compliance with the pertinent regulatory requirements for licensing of a radioactive material transportation container

  17. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  18. Preliminary Design of Alborz Tokamak

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.; Saramad, S.

    2012-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. The most important part of the tokamak design is the design of TF coils. In this paper a refined design of the TF coil system for the Alborz tokamak is presented. This design is based on cooper cable conductor with 5 cm width and 6 mm thickness. The TF coil system is consist of 16 rectangular shape coils, that makes the magnetic field of 0.7 T at the plasma center. The stored energy in total is 160 kJ, and the power supply used in this system is a capacitor bank with capacity of C = 1.32 mF and V max = 14 kV.

  19. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  20. Preliminary design report for the prototypical fuel rod consolidation system

    International Nuclear Information System (INIS)

    Rosa, J.M.

    1986-01-01

    This report documents NUTECH's preliminary design of a dry, spent fuel rod consolidation system. This preliminary design is the result of Phase I of a planned four phase project. The present report on this project provides a considerable amount of detail for a preliminary design effort. The design and all of its details are described in this Preliminary Design Report (PDR). The NUTECH dry rod consolidation system described herein is remotely operated. It provides for automatic operation, but with operator hold points between key steps in the process. The operator has the ability to switch to a manual operation mode at any point in the process. The system is directed by the operator using an executive computer which controls and coordinates the operation of the in-cell equipment. The operator monitors the process using an in-cell closed circuit television (CCTV) system with audio output and equipment status displays on the computer monitor. The in-cell mechanical equipment consists of the following: (1) two overhead cranes with manipulators; (2) a multi-degree of freedom fuel handling table and its clamping equipment; (3) a fuel assembly end fitting removal station and its tools; (4) a consolidator (which pulls rods, assembles the consolidated bundle and loads the canister); (5) a canister end cap welder and weld inspection system; (6) decontamination systems; and (7) the CCTV and microphone systems

  1. A preliminary report on OCR problems in LSS document conversion

    International Nuclear Information System (INIS)

    Nartker, T.A.; Kanal, J.; Rice, S.V.

    1992-01-01

    In this paper, the authors present the results of a study to identify the predominant problems which contemporary OCR devices have in converting LSS document images into computer readable text. The results indicate that the majority of residual OCR errors are caused by either broken or touching characters. The relationship between the cost of constructing the LSS system and the number of OCR errors made during LSS data capture is analyzed. if 100% of the conversion problems caused by broken characters alone could be eliminated, the potential LSS cost savings is approximately $31,000,000

  2. 225-B ion exchange piping design documentation

    International Nuclear Information System (INIS)

    Prather, M.C.

    1996-02-01

    This document describes the interface between the planned permanent ion exchange piping system and the planned portable ion exchange system. This is part of the Waste Encapsulation and Storage Facility (WESF). In order to decouple this WESF from B-Plant and to improve recovery from a capsule leak, contaminated pool cell water will be recirculated through a portable ion exchange resin system

  3. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  4. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  5. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  6. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    Energy Technology Data Exchange (ETDEWEB)

    GLASSCOCK, J.A.

    2000-01-27

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions.

  7. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    2000-01-01

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions

  8. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  9. JEM-X ISSW architectural design document

    DEFF Research Database (Denmark)

    Maisala, S.; Huovelin, J.; Westergaard, Niels Jørgen Stenfeldt

    Detailed description of the architectural design of the JEM-X instrument specific software, to be delivered by SDAST to ISDC.......Detailed description of the architectural design of the JEM-X instrument specific software, to be delivered by SDAST to ISDC....

  10. ITER interim design report package documents

    International Nuclear Information System (INIS)

    1996-01-01

    This publication contains the Excerpt from the ITER Council (IC-8), the ITER Interim Design Report, Cost Review and Safety Analysis, ITER Site Requirements and ITER Site Design Assumptions and the Excerpt from the ITER Council (IC-9). 8 figs, 2 tabs

  11. [Efficiency of computer-based documentation in long-term care--preliminary project].

    Science.gov (United States)

    Lüngen, Markus; Gerber, Andreas; Rupprecht, Christoph; Lauterbach, Karl W

    2008-06-01

    In Germany the documentation of processes in long-term care is mainly paper-based. Planning, realization and evaluation are not supported in an optimal way. In a preliminary study we evaluated the consequences of the introduction of a computer-based documentation system using handheld devices. We interviewed 16 persons before and after introducing the computer-based documentation and assessed costs for the documentation process and administration. The results show that reducing costs is likely. The job satisfaction of the personnel increased, more time could be spent for caring for the residents. We suggest further research to reach conclusive results.

  12. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  13. Severe Accident Test Station Design Document

    International Nuclear Information System (INIS)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-01-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  14. PROJECT ENGINEERING DATA MANAGEMENT AT AUTOMATED PREPARATION OF DESIGN DOCUMENTATION

    Directory of Open Access Journals (Sweden)

    A. V. Guryanov

    2017-01-01

    Full Text Available We have developed and realized instrumental means for automated support of end-to-end design process for design documentation on a product at the programming level. The proposed decision is based on processing of the engineering project data that are contained in interdependent design documents: tactical technical characteristics of products, data on the valuable metals contained in them, the list of components applied in a product and others. Processing of engineering data is based on their conversion to the form provided by requirements of industry standards for design documentation preparation. The general graph of the design documentation developed on a product is provided. The description of the developed software product is given. Automated preparation process of interdependent design documents is shown on the example of preparation of purchased products list. Results of work can be used in case of research and development activities on creation of perspective samples of ADP equipment.

  15. Central Equatorial Pacific Experiment (CEPEX). Design document

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  16. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  17. Achieving IT-supported standardized nursing documentation through participatory design

    DEFF Research Database (Denmark)

    Rasmussen, Stine Loft; Lyng, Karen Marie; Jensen, Sanne

    2012-01-01

    that support guideline-based highly structured standard documentation in a large organization with many stakeholders. Applying a participatory design (PD) approach at many organizational levels has involved the stakeholders actively in the design process. Developing a set of design principles has concurrently......In the Capital Region of Denmark a full-scale pilot project on IT-supported nursing documentation is - after running for two months at one full university hospital - showing promising results. In this paper we discuss participatory design as a method to design clinical documentation templates...

  18. Preliminary designs: passive solar manufactured housing. Technical status report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-12

    The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)

  19. Preliminary design of a coffee harvester

    Directory of Open Access Journals (Sweden)

    Raphael Magalhães Gomes Moreira

    2016-10-01

    Full Text Available Design of an agricultural machine is a highly complex process due to interactions between the operator, machine, and environment. Mountain coffee plantations constitute an economic sector that requires huge investments for the development of agricultural machinery to improve the harvesting and post-harvesting processes and to overcome the scarcity of work forces in the fields. The aim of this study was to develop a preliminary design for a virtual prototype of a coffee fruit harvester. In this study, a project methodology was applied and adapted for the development of the following steps: project planning, informational design, conceptual design, and preliminary design. The construction of a morphological matrix made it possible to obtain a list of different mechanisms with specific functions. The union between these mechanisms resulted in variants, which were weighed to attribute scores for each selected criterion. From each designated proposal, two variants with the best scores were selected and this permitted the preparation of the preliminary design of both variants. The archetype was divided in two parts, namely the hydraulically articulated arms and the harvesting system that consisted of the vibration mechanism and the detachment mechanism. The proposed innovation involves the use of parallel rods, which were fixed in a plane and rectangular metal sheet. In this step, dimensions including a maximum length of 4.7 m, a minimum length of 3.3 m, and a total height of 2.15 m were identified based on the functioning of the harvester in relation to the coupling point of the tractor.

  20. Preparation of plant and system design description documents

    International Nuclear Information System (INIS)

    1989-01-01

    This standard prescribes the purpose, scope, organization, and content of plant design requirements (PDR) documents and system design descriptions (SDDs), to provide a unified approach to their preparation and use by a project as the principal means to establish the plant design requirements and to establish, describe, and control the individual system designs from conception and throughout the lifetime of the plant. The Electric Power Research Institute's Advanced Light Water Reactor (LWR) Requirements Document should be considered for LWR plants

  1. Spectrum analysis on quality requirements consideration in software design documents.

    Science.gov (United States)

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  2. Guide for the realization of Design Base Documents (DBD)

    International Nuclear Information System (INIS)

    Roca Mallofre, G. la

    2010-01-01

    Guide for improving the consistency and quality content of the Design Base Documents. It's a short description of how to carry out and complete these Documents but focusing on those aspects that can be more confusing and harder to interpret. This guide aims to clarify the term Design Base distinguishing between production and safety, and it focuses on safety Design Base Documents and their values and references. It also emphasizes the difference between the support system and the interface system when there is a functional connection between different systems.

  3. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  4. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  5. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    KOPELIC, S.D.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  6. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  7. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  8. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    1999-01-01

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  9. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  10. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.; PIEPHO, M.G.

    2000-01-01

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  11. The System 80+ Standard Plant design control document. Volume 20

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains 2 technical specifications bases as part of Appendix 16 A Tech Spec Bases. They are TS B3.8 Electrical Power Technical Systems Bases and TS B3.9 Refueling Operations Bases. All 3 parts of section 17 (QA) and all 10 parts of section 18 (Human Factors) of the ADM Design and Analysis are contained in this volume. Topics covered in section 17 are: design phase QA; operations phase QA; and design phase reliability assurance. Topics covered by section 18 are: design team organization; design goals; design process; functional task analysis; control room configuration; information presentation; control and monitoring; verification and validation; and review documents

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  13. Design and Construction Documents Associated with N232, Sustainability Base

    Science.gov (United States)

    Zornetzer, Steven F.; Schuler, Raymond F.; Grymes, Rosalind A.

    2014-01-01

    This request comprehensively covers documents associated with the design and construction of Sustainability Base, N232. The intent of this project specifically envisioned broad dissemination of these materials to others undertaking the design and construction of high-performing energy- and resource-efficient buildings in comparable climate zones.

  14. Design basis document open-item resolution and reportability

    International Nuclear Information System (INIS)

    Gambhir, S.K.; Livingston, B.R.; Purcell, J.J.; Erickson, E.A.

    1989-01-01

    In the process of reconstituting the design bases for older nuclear power plants, information or references may not be available to fully define the design requirements or to document and verify the adequacy of the design. Also, information that is in conflict with other data is identified. The missing and conflicting information must be reconstituted in order to adequately document the design bases of the plant. For these operating facilities, the identification, tracking, and resolution of missing or conflicting information is very important when the reporting requirements stipulated by 10CFR21, 10CFR50.72, and 10CFR50.73 are considered. Additionally, controlled documentation (calculations, drawings, etc.) used to develop the design basis documents may contain conflicting data. In some cases, conflicts between the as-built design and licensing or design basis requirements established in specific commitments to the U.S. Nuclear Regulatory Commission may be identified. Furthermore, concerns regarding the adequacy of safety-related systems or components to perform their required function may be identified that would warrant prompt action by the licensee. The approach discussed in this paper was used by Omaha Public Power District for the ongoing design basis reconstitution effort at the Fort Calhoun nuclear plant

  15. Preliminary design of RDE feedwater pump impeller

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2018-01-01

    Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Experimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MW th , and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm. (author)

  16. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  17. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  18. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  19. Preliminary Tritium Management Design Activities at ORNL

    International Nuclear Information System (INIS)

    Harrison, Thomas J.; Felde, David K.; Logsdon, Randall J.; McFarlane, Joanna; Qualls, A. L.

    2016-01-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year's efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  20. Preliminary Tritium Management Design Activities at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Logsdon, Randall J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFarlane, Joanna [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Interest in salt-cooled and salt-fueled reactors has increased over the last decade (Forsberg et al. 2016). Several private companies and universities in the United States, as well as governments in other countries, are developing salt reactor designs and/or technology. Two primary issues for the development and deployment of many salt reactor concepts are (1) the prevention of tritium generation and (2) the management of tritium to prevent release to the environment. In 2016, the US Department of Energy (DOE) initiated a research project under the Advanced Reactor Technology Program to (1) experimentally assess the feasibility of proposed methods for tritium mitigation and (2) to perform an engineering demonstration of the most promising methods. This document describes results from the first year’s efforts to define, design, and build an experimental apparatus to test potential methods for tritium management. These efforts are focused on producing a final design document as the basis for the apparatus and its scheduled completion consistent with available budget and approvals for facility use.

  1. IRIS: Proceeding Towards the Preliminary Design

    International Nuclear Information System (INIS)

    Carelli, M.; Miller, K.; Lombardi, C.; Todreas, N.; Greenspan, E.; Ninokata, H.; Lopez, F.; Cinotti, L.; Collado, J.; Oriolo, F.; Alonso, G.; Morales, M.; Boroughs, R.; Barroso, A.; Ingersoll, D.; Cavlina, N.

    2002-01-01

    The IRIS (International Reactor Innovative and Secure) project has completed the conceptual design phase and is moving towards completion of the preliminary design, scheduled for the end of 2002. Several other papers presented in this conference provide details on major aspects of the IRIS design. The three most innovative features which uniquely characterize IRIS are, in descending order of impact: 1. Safety-by-design, which takes maximum advantage of the integral configuration to eliminate from consideration some accidents, greatly lessen the consequence of other accident scenarios and decrease their probability of occurring; 2. Optimized maintenance, where the interval between maintenance shutdowns is extended to 48 months; and 3. Long core life, of at least four years without shuffling or partial refueling. Regarding feature 1, design and analyses will be supplemented by an extensive testing campaign to verify and demonstrate the performance of the integral components, individually as well as interactive systems. Test planning is being initiated. Test results will be factored into PRA analyses under an overall risk informed regulation approach, which is planned to be used in the IRIS licensing. Pre-application activities with NRC are also scheduled to start in mid 2002. Regarding feature 2, effort is being focused on advanced online diagnostics for the integral components, first of all the steam generators, which are the most critical component; several techniques are being investigated. Finally, a four year long life core design is well underway and some of the IRIS team members are examining higher enrichment, eight to ten year life cores which could be considered for reloads. (authors)

  2. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    Science.gov (United States)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  3. Supplemental design requirements document solid waste operations complex

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Broz, D.R.; Eaton, H.E.; Greager, T.M.; Huckfeldt, R.A.; Kooiker, S.L.; Lamberd, D.L.; Lang, L.L.; Myers, J.B.

    1994-11-01

    This document provides additional and supplemental information to the WHC-SD-W112-FDC-001, WHC-SD-W113-FDC-001, and WHC-SD-W100-FDC-001. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design common to the Solid Waste Operations Complex (SWOC) Facilities (Project W-112, Project W-113, and WRAP 2A)

  4. ITER interim design report package and relevant documents

    International Nuclear Information System (INIS)

    1996-01-01

    This publication documents the technical basis which underlay the Interim Design Report, Cost Review and Safety Analysis submitted to the ITER Councils (IC-8 and IC-9) Records of decisions and the ''ITER Interim Design Report Package''. This publication contains ITER Site Requirements and ITER Site Design Assumptions, TAC-8 Report, SRG Report, CP's Report on Tentative Sequence of Events and Parties' Views on the IDR Package and Parties' Technical Comments on the IDR Package. Figs, tabs

  5. Preliminary safety evaluation, based on initial site investigation data. Planning document

    International Nuclear Information System (INIS)

    Hedin, Allan

    2002-12-01

    This report is a planning document for the preliminary safety evaluations (PSE) to be carried out at the end of the initial stage of SKBs ongoing site investigations for a deep repository for spent nuclear fuel. The main purposes of the evaluations are to determine whether earlier judgements of the suitability of the candidate area for a deep repository with respect to long-term safety holds up in the light of borehole data and to provide feed-back to continued site investigations and site specific repository design. The preliminary safety evaluations will be carried out by a safety assessment group, based on a site model, being part of a site description, provided by a site modelling group and a repository layout within that model suggested by a repository engineering group. The site model contains the geometric features of the site as well as properties of the host rock. Several alternative interpretations of the site data will likely be suggested. Also the biosphere is included in the site model. A first task for the PSE will be to compare the rock properties described in the site model to previously established criteria for a suitable host rock. This report gives an example of such a comparison. In order to provide more detailed feedback, a number of thermal, hydrological, mechanical and chemical analyses of the site will also be included in the evaluation. The selection of analyses is derived from the set of geosphere and biosphere analyses preliminarily planned for the comprehensive safety assessment named SR-SITE, which will be based on a complete site investigation. The selection is dictated primarily by the expected feedback to continued site investigations and by the availability of data after the PSE. The repository engineering group will consider several safety related factors in suggesting a repository layout: Thermal calculations will be made to determine a minimum distance between canisters avoiding canister surface temperatures above 100 deg C

  6. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  7. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Strohmayer, J.N.

    1984-04-01

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D 0 and He 2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  8. The System 80+ Standard Plant design control document. Volume 23

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains part 16 References and Appendix 19 A Design Alternatives for section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Also covered is section 20 Unresolved Safety Issues of the ADM Design and Analysis. Finally sections 1--6 of the ADM Emergency Operations Guidelines are contained in this volume. Information covered in these sections include: standard post-trip actions; diagnostic actions; reactor trip recovery guideline; LOCA recovery; SG tube rupture recovery

  9. The System 80+ Standard Plant design control document. Volume 10

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains Appendices 6A, 6B, and 6C for section 6 (Engineered Safety Features) of the ADM Design and Analysis. Also, parts 1--5 of section 7 (Instrumentation and Control) of the ADM Design and Analysis are covered. The following information is covered in these parts: introduction; reactor protection system; ESF actuation system; system required for safe shutdown; and safety-related display instrumentation

  10. The System 80+ Standard Plant design control document. Volume 17

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 2-7 and appendix 15A for section 15 (Accident Analysis) of the ADM Design and Analysis. Topics covered in these parts are: decrease in heat removal; decrease in RCS flow rate; power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; release of radioactive materials. The appendix covers radiological release models. Also contained here are five technical specifications for section 16 (Technical Specifications) of the ADM Design and Analysis. They are: TS 1.0 Use and Applications; TS 2.0 Safety Limits; TS 3.0 LCO Availability; TS 3.1 Reactivity Control; and TS 3.2 Power Distribution

  11. The System 80+ Standard Plant design control document. Volume 15

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains all five parts of section 12 (Radiation Protection) of the ADM Design and Analysis. Topics covered are: ALARA exposures; radiation sources; radiation protection; dose assessment; and health physics program. All six parts and appendices A and B for section 13 (Conduct of Operations) of the ADM Design and Analysis are also contained in this volume. Topics covered are: organizational structure; training program; emergency planning; review and audit; plant procedures; industrial security; sabotage protection (App 13A); and vital equipment list (App 13B)

  12. The System 80+ Standard Plant design control document. Volume 18

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains the following technical specifications of section 16 (Technical Specifications) of the ADM Design and Analysis: TS 3.3 Instrumentation; TS 3.4 Reactor Coolant System; TS 3.5 Emergency Core Cooling System; TS 3.6 Containment Systems; TS 3.7 Plant Systems; TS 3.8 Electrical Power Systems; TS 3.9 Refueling Operations; TS 4.0 Design Features; TS 5.0 Administrative Controls. Appendix 16 A Tech Spec Bases is also included. It contains the following: TS B2.0 Safety Limits Bases; TS B3.0 LCO Applicability Bases; TS B3.1 Reactivity Control Bases; TS B3.2 Power Distribution Bases

  13. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  14. The System 80+ Standard Plant design control document. Volume 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the DCD introduction and contains sections 1 and parts 1--7 of section 2 of the CDM. Parts 1--7 included the following: (2.1) Design of SSC; (2.2) Reactor; (2.3) RCS and connected systems; (2.4) Engineered Safety Features; (2.5) Instrumentation and Control; (2.6) Electric Power; and (2.7) Auxiliary Systems

  15. The System 80+ Standard Plant design control document. Volume 11

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers parts 6 and 7 and appendix 7A for section 7 (Instrumentation and Control) of the ADM Design and Analysis. The topics covered by these are: other systems required for safety; control systems not required by safety; and CMF evaluation of limiting faults. Parts 1--3 of section 8 (Electric Power) of the ADM are also included in this volume. Topics covered by these parts are: introduction; offsite power system; and onsite power system

  16. The System 80+ Standard Plant design control document. Volume 19

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains five technical specification bases that are part of Appendix 16 A of the ADM Design and Analysis. They are: TS B3.3 Instrumentation Bases; TS B3.4 RCS Bases; TS B3.5 ECCS Bases; TS B3.6 Containment Systems Bases; and TS B3.7 Plant Systems Bases

  17. The System 80+ Standard Plant design control document. Volume 21

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 1--10 of section 19 (Probabilistic Risk Assessment) of the ADM Design and Analysis. Topics covered are: methodology; initiating event evaluation; accident sequence determination; data analysis; systems analysis; external events analysis; shutdown risk assessment; accident sequence quantification; and sensitivity analysis. Also included in this volume are Appendix 19.8A Shutdown Risk Assessment and Appendix A to Appendix 19.8A Request for Information

  18. The System 80+ Standard Plant design control document. Volume 2

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume covers the following information of the CDM: (2.8) Steam and power conversion; (2.9) Radioactive waste management; (2.10) Tech Support Center; (2.11) Initial test program; (2.12) Human factors; and sections 3, 4, and 5. Also covered in this volume are parts 1--6 of section 1 (General Plant Description) of the ADM Design and Analysis

  19. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  20. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  1. The System 80+ Standard Plant design control document. Volume 24

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains sections 7--11 of the ADM Emergency Operations Guidelines. Topics covered are: excess steam demand recovery; loss of all feedwater; loss of offsite power; station blackout recovery; and functional recovery guideline. Appendix A Severe Accident Management Guidelines and Appendix B Lower Mode Operational Guidelines are also included

  2. Understanding Creative Design Processes by Integrating Sketching and CAD Modelling Design Environments: A Preliminary Protocol Result from Architectural Designers

    Directory of Open Access Journals (Sweden)

    Yi Teng Shih

    2015-11-01

    Full Text Available This paper presents the results of a preliminary protocol study of the cognitive behaviour of architectural designers during the design process. The aim is to better understand the similarities and differences in cognitive behaviour using Sequential Mixed Media (SMM and Alternative Mixed Media (AMM approaches, and how switching between media may impact on design processes. Two participants with at least one-year’s professional design experience and a Bachelor of Design degree, and competence in both sketching and computer-aid design (CAD modelling participated in the study. Video recordings of participants working on different projects were coded using the Function-Behaviour-Structure (FBS coding scheme. Participants were also interviewed and their explanations about their switching behaviours were categorised into three types: S→C, S/C↹R and C→S. Preliminary results indicate that switching between media may influence how designers identify problems and develop solutions. In particular, two design issues were identified.  These relate to the FBS coding scheme, where structure (S and behaviour derived from structure (Bs, change to documentation (D after switching from sketching to CAD modelling (S→C. These switches make it possible for designers to integrate both approaches into one design medium and facilitate their design processes in AMM design environments.

  3. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    International Nuclear Information System (INIS)

    Weber, C.M.

    1995-01-01

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: 'Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented

  4. Preliminary design of the repository, stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-01-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  5. Preliminary design of the repository. Stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-04-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  6. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  7. Project W-236A, work plan for preparation of a design requirements document

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    This work plan outlines the tasks necessary, and defines the organizational responsibilities for preparing a Design Requirements Document (DRD) for project W-236A, Multi-Function Waste Tank Facility (MWTF). A DRD is a Systems Engineering document which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This system element is usually assigned to a specific project, in this case the MWTF. The DRD is the document that connects the TWRS program requirements with the highest level projects requirements and provides the project's link to the overall TWRS mission. The MWTF DRD effort is somewhat unique in that the project is already in detailed design, whereas a DRO is normally prepared prior to preliminary design. The MWTF design effort was initiated with a Functional Design Criteria (FDC) and a Supplemental Design Requirements Document (SDRD) bounding the high level requirements. Another unique aspect of this effort is that some of the TWRS program requirements are still in development. Because of these unique aspects of the MWTF DRD development, the MWTF will be developed from existing TWRS Program requirements and project specific requirements contained in the FDC and SDRD. The following list describes the objectives of the MWTF DRD: determine the primary functions of the tanks through a functional decomposition of the TWRS Program high level functions; allocate the primary functions to a sub-system architecture for the tanks; define the fundamental design features in terms of performance requirements for the system and subsystems; identify system interfaces and design constraints; and document the results in a DRD

  8. Solar Power Tower Design Basis Document, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  9. Methodology for Preliminary Design of Electrical Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Richard P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stamp, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Henry, Jordan M [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Abdallah, Tarek [U.S. Army Corps of Engineers, Washington, DC (United States)

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  10. System design document for the plutonium stabilization and packaging system

    International Nuclear Information System (INIS)

    1996-01-01

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans

  11. System design document for the plutonium stabilization and packaging system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

  12. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  13. BANDUNG JENGKI FROM HERITAGE POINT OF VIEW: DOCUMENTATION AND PRELIMINARY SEARCH ON SIGNIFICANCE

    Directory of Open Access Journals (Sweden)

    WULANDARI Ratri

    2016-07-01

    Full Text Available Jengki architecture is one of Indonesian post-colonial architecture style popular in 1950 to 1970. Most study of Jengki was done in Jakarta, Semarang, and Malang. In Bandung, there is no written record of Jengki identification or documentation found. This paper tries to recognize and document Jengki typology in Bandung as a preliminary study on its presences, and its variant, in the city. It also tries to look at this typology from heritage point of view, whether there is significance in accordance to heritage criteria. Using site survey and Google street view, data were collected and elaborated in table to recognize Jengki traits in a suspected building. Building’s significances were then reviewed using criteria mentioned in local legislation.  It is found that not all suspected Jengki building contain all Jengki traits rather more late modern Indonesian character.  Private buildings were assessed to have less heritage value, while public building retains more. Deeper study and documentation on Jengki in Bandung are still needed to legitimate Jengki as heritage since there is no study ever done previously on this issue

  14. Preliminary design review: Brayton Isotope Power System

    International Nuclear Information System (INIS)

    The design aspects covered include flight system design, design criteria/margins/reliability, GDS design, system analysis, materials, system assembly procedure, and government furnished equipment-BTPS

  15. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  16. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  17. Preliminary radiation shielding design for BOOMERANG

    International Nuclear Information System (INIS)

    Donahue, Richard J.

    2002-01-01

    Preliminary radiation shielding specifications are presented here for the 3 GeV BOOMERANG Australian synchrotron light source project. At this time the bulk shield walls for the storage ring and injection system (100 MeV Linac and 3 GeV Booster) are considered for siting purposes

  18. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  19. Design Document for Control Dewar and Vacuum Pump Platforms

    International Nuclear Information System (INIS)

    Rucinksi, R.

    1997-01-01

    This engineering note documents the design of the control dewar and vacuum pump platform that is to be installed on the D-Zero detector. It's purpose is twofold. Firstly it is a summary and repository of the final design calculations of the structure. Secondly, it documents that design follows the American Institute of Steel Construction (AISC) manual and applicable OSHA requirements with respect to walking working surfaces. The information contained in the main body of this note is supported by raw calculations included as the appendix. The platform is a truss type frame strucrure constructed primarily of rectangular steel tubing. The upper platform is for support of the control dewar (cryogenic/electrical interface for the solenoid), visible light photon counter (VLPC) cryogenic bayonet can, and infrequently, personnel during the connection and disconnection of the detector to building services. Figure 1 shows a layout of the structure as mounted on the detector and with the installed equipment. The connection of the platform to the detector is not conventional. Two main booms cantilever the structure to a location outside of the detector. The mounting location and support booms allow for the uninhibited motion of the detector components.

  20. Transient and accident analyses topical design basis documents

    International Nuclear Information System (INIS)

    Chi, Larry; Eckert, Eugene; Grim, Brit

    2004-01-01

    The designers and operators of nuclear power plants have extensively documented system functions, licensing performance, and operating procedures for all conditions. This paper presents a complementary, systematic approach for the documentation of all requirements that are based on the analysis of operational transients, abnormal transients, accidents, and other events which are included in the design and licensing basis for the plant. Up to now, application of the approach has focused on required mitigation actions (automatic or manual). All mitigation actions are directly identified with all applicable reactor events, as well as the plant-unique systems that work together to perform each function. The approach is also applicable to all operational functions. The approach makes extensive use of data base methods, thereby providing effective ways to interrogate the information for the varied users of this information. Examples of use include: evaluations of system design changes and equipment modifications, safety evaluations of any plant change (e.g., USNRC 10CFR50.59 review), plant operations (e.g., manual actions during unplanned events), system interactions, classification of safety-related equipment, environmental qualification of equipment, and mitigation requirements for different reactor operating states. This approach has been applied in customized ways to several boiling water reactor (BWR) units, based on the desires and needs of the specific utility. (author)

  1. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  2. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie

    1997-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  3. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie; Hirt, Manfred A.

    2008-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  4. Design document for landfill capping Prototype Decision Support System

    International Nuclear Information System (INIS)

    Stone, J.J.; Paige, G.; Hakonson, T.E.; Lane, L.J.

    1994-01-01

    The overall objective of the Prototype Decision Support System for shallow land burial project is to ''Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.'' The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10's--100's of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE's cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria

  5. Future CANDU nuclear power plant design requirements document executive summary

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  6. ETF Mission Statement document. ETF Design Center team

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.

  7. ETF Mission Statement document. ETF Design Center team

    International Nuclear Information System (INIS)

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices

  8. Software Design Document for the AMP Nuclear Fuel Performance Code

    International Nuclear Information System (INIS)

    Philip, Bobby; Clarno, Kevin T.; Cochran, Bill

    2010-01-01

    The purpose of this document is to describe the design of the AMP nuclear fuel performance code. It provides an overview of the decomposition into separable components, an overview of what those components will do, and the strategic basis for the design. The primary components of a computational physics code include a user interface, physics packages, material properties, mathematics solvers, and computational infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the development of AMP, but the primary physics components will be entirely new. The material properties required by these physics operators include many highly non-linear properties, which will be replicated from FRAPCON and LIFE where applicable, as well as some computationally-intensive operations, such as gap conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf leadership class computational solvers, AMP will leverage the Trilinos, PETSc, and SUNDIALS packages. The computational infrastructure includes a build system, mesh database, and other building blocks of a computational physics package. The user interface will be developed through a collaborative effort with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as much as possible and will be discussed in detail in a future document.

  9. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)

    2015-12-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  10. Aberrations in preliminary design of ITER divertor impurity influx monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki; Katsunuma, Atsushi; Kitazawa, Daisuke; Ohmori, Keisuke

    2015-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  11. Preliminary Design of a Femtosecond Oscilloscope

    CERN Document Server

    Gazazyan, Edmond D; Kalantaryan, Davit K; Laziev, Edouard; Margaryan, Amour

    2005-01-01

    The calculations on motion of electrons in a finite length electromagnetic field of linearly and circularly polarized laser beams have shown that one can use the transversal deflection of electrons on a screen at a certain distance after the interaction region for the measurement of the length and longitudinal particle distribution of femtosecond bunches. In this work the construction and preliminary parameters of various parts of a device that may be called femtosecond oscilloscope are considered. The influence of various factors, such as the energy spread and size of the electron bunches, are taken into account. For CO2 laser intensity 1016 W/cm2 and field free drift length 1m the deflection is 5.3 and 0.06 cm, while the few centimeters long interaction length between 2 mirrors requires assembling accuracy 6 mm and 1.3 micron for 20 MeV to 50 keV, respectively.

  12. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  13. Timing and control monitor system upgrade design document. Version 4

    International Nuclear Information System (INIS)

    Brandt, J.J.

    1984-01-01

    This is a design document for the Timing and Control Monitor System Upgrade Project. This project is intended to provide a replacement system for the existing user Encoder Monitor Systems and Varian 72 Control Room computer systems. All of these systems reside at the Nevada Test Site. The function of the T and C Monitor System is to gather real-time statistics and data on user defined key variables from control, communication, data acquistion systems, and from the monitoring system itself. The control, communication, and data acquisition systems each operate separately from the monitor system. The T and C Monitor System gathers this data in order to verify the readiness of an event to begin countdown. This includes setup, verification, calibration, and peripheral services, report any failures that may occur during the countdown, verify detonation and containment, and assist reentry activities after the event

  14. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  15. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  16. A preliminary study on the relevancy of sustainable building design ...

    African Journals Online (AJOL)

    This preliminary study aims to explore the relationship between sustainable building design paradigms and commercial property depreciation, to assist in the understanding of sustainable building design impact towards commercial building value and rental de employs the qualitative method and analyses valuers' current ...

  17. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network

  18. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  19. Preliminary ALARA design concept for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs.

  20. Preliminary ALARA design concept for SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kim, Seung Nam; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    SMART(System-integrated Modular Advanced ReacTor) is a space saving integral type nuclear rector with the thermal power of 330 MW. This report provides general design guide and authority in NSSS designs for SMART needed to maintain the occupational doses and doses to members of public ALARA to meet the regulatory requirements. Paragraph 20.1 of 10 CFR 20, ''Standards for Protection Against Radiation'', states that licensee should make every reasonable effort to maintain exposures to radiation as far below the limits specified in Part 20 as is reasonably achievable. The ALARA (as low as is reasonably achievable) principle is incorporated into Korean radiation protection law as paragraph one Article 97 of the Atomic Energy Act. (Jan. 1995). This ALARA Design Concept for SMART provides 1) description of the organization and responsibilities needed for upper level management support and authority in order for the implementation of ALARA, 2) guidance and procedures for design, review, and evaluation needed for SMART ALARA program implementation, 3) general design guidelines for SMART NSSS and BOP designers to implement ALARA principles in design stage, and 4) training and instruction requirement of SMART NSSS and BOP designers for the familiarization of ALARA principles to be implemented in NSSS designs. (Author). 4 refs., 1 tabs

  1. 28 CFR 68.45 - Designation of parts of documents.

    Science.gov (United States)

    2010-07-01

    ... UNLAWFUL EMPLOYMENT OF ALIENS, UNFAIR IMMIGRATION-RELATED EMPLOYMENT PRACTICES, AND DOCUMENT FRAUD § 68.45... afforded an opportunity to examine the entire document and to offer in evidence in like manner other...

  2. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  3. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  4. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina

    2015-01-01

    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  5. Documentation control process of Brazilian multipurpose reactor: conceptual design and basic design

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Prates, Jose Eduardo; Longo, Guilherme Carneiro; Salvetti, Tereza Cristina, E-mail: ekibrit@ipen.br, E-mail: jeprates@ipen.br, E-mail: glongo@ipen.br, E-mail: salvetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Established in the scope of Plan of Action of the Ministry of Science, Technology and Innovation (PACTI/MCTI) in 2007, the construction of the Brazilian Multipurpose Reactor (RMB) is on the way. This type of reactor has a broad spectrum of applications in the nuclear field and related technologies such as the radioisotopes used as supplies in the production of radiopharmaceuticals, with very much benefit to the Brazilian society being, therefore, the main goal of the Project. RMB Project consists of the following stages: site selection and site evaluation; design (conceptual design, basic design, detailed design and experimental design); construction (procurement, manufacturing; civil construction; electromechanical construction and assembling); commissioning; operation and decommissioning. Each stage requires adaptation of human resources for the stage schedule execution. The implementation of a project of this magnitude requires a complex project management, which covers not only technical, but also administrative areas. Licensing, financial resources, quality and document control systems, engineering are some of the areas involved in project success. The development of the conceptual and basic designs involved the participation of three main engineering companies. INTERTECHNE Consultores S.A. was in charge of conceptual and basic designs for conventional systems of buildings and infrastructure. INVAP S.E. was responsible for preparing the basic design of the reactor core and annexes. MRS Estudos Ambientais Ltda. has prepared documents for environmental licensing. This paper describes the procedures used during conceptual and basic design stages to control design documentation and flow of this documentation, involving the analysis and incorporation of comments from experts, control and storage of a volume of approximately 15,000 documents. (author)

  6. Preliminary A ampersand PCT multiple detector design

    International Nuclear Information System (INIS)

    Roberson, G.P.; Martz, H.E.; Camp, D.C.; Decman, D.J.; Johansson, E.M.

    1997-01-01

    The next generation, multi-detector active and passive computed tomography (A ampersand PCT) scanner will be optimized for speed and accuracy. At the Lawrence Livermore National Lab (LLNL) we have demonstrated the trade-offs between different A ampersand PCT design parameters that affect the speed and quality of the assay results. These fundamental parameters govern the optimum system design. Although the multi-detector scanner design has priority put on speed to increase waste drum throughput, higher speed should not compromise assay accuracy. One way to increase the speed of the A ampersand PCT technology is to use multiple detectors. This yields a linear speedup by a factor approximately equal to the number of detectors used without a compromise in system accuracy. There are many different design scenarios that can be developed using multiple detectors. Here we describe four different scenarios and discuss the trade-offs between them. Also, some considerations are given in this design description for the implementation of a multiple detector technology in a field- deployable mobile trailer system

  7. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  8. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  9. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  10. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  11. Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-10

    This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

  12. Preliminary systems design study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept

  13. 78 FR 13563 - Energy Conservation Program: Availability of the Preliminary Technical Support Document for...

    Science.gov (United States)

    2013-02-28

    ... identify and resolve issues involved in the preliminary analyses. Chapter 2 of the preliminary technical... DOE conducted in-depth technical analyses in the following areas for GSFLs and IRLs currently under... also begun work on the manufacturer impact analysis and identified the methods to be used for the LCC...

  14. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  15. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    International Nuclear Information System (INIS)

    Bargelski, C. J.; Berrett, D. E.

    1998-01-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables

  16. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG ampersand G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used

  17. Preliminary Mechanical Design of FHX for PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jinyup; Koo, G. H.; Kim, S. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, more specific data from analysis and mechanical method of approach to design will be addressed. Especially, frame of tube bundle and housing of FHX. Heretofore, it is concept design by mechanical basic knowledge and research of various structures that are activating in realities. Especially, to reduce thermal stress, we have planning to attach insulations inside the housing. In as much as FHX is as important on SFR as the other part, hereafter, we will develop FEM to check feasibility of the FHX's housing design in order to perform static and thermal analysis as well as bucking, seismic and so on. The Forced-draft sodium-to-air Heat Exchanger system (FHX) (employed in the Active Decay Heat Removal System (ADHRS) is a shell-and-tube type counter-current flow heat exchanger with serpentine finned-tube arrangement. Liquid sodium flows over the finned tubes. The unit is placed above the reactor building and has function of dumping the system heat load into the final heat sink, i. e., the atmosphere. Heat is transmitted from the primary hot sodium pool into the ADHRS sodium loop via Decay Heat Exchanger (DHX), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX sodium tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically driven air blower. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric air into the FHX unit, a tall air stack is also provided to secure natural draft head of natural circulation air flow against a loss power supply. The stack also has rain protecting structures to prevent inflow of rain drops or undesired

  18. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals

  19. Preliminary systems design study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem

  20. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic (TRU) waste stored at the Radioactive Waste Management Complex's (RWMC's) Subsurface Disposal Area (SDA) at INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendices. 3 figs., 3 tabs

  1. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Quapp, W.J.; Feizollahi, F.; Del Signore, J.C.

    1991-07-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume 1 contains an executive summary. The SDS summary and analysis of results are presented in Volume 2. Volumes 3 through 7 contain detailed descriptions of twelve system and four subsystem concepts. Volume 8 contains the appendixes. 23 refs., 23 figs., 16 tabs

  2. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  3. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Science.gov (United States)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  4. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  5. Preliminary Systems Design Study assessment report

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ''WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4)

  6. Preliminary design study for a corkscrew gantry

    International Nuclear Information System (INIS)

    Koehler, A.M.

    1987-01-01

    For two years or more a group including the author has been working together to study some problems related to the design of a gentry system for flexible direction of a proton beam for clinical treatments. Some consideration was given to the classic gantry geometry. Attempting to reduce the radius of the gantry arm by reducing the drift space after the scattering foils led to an analysis of the significance of inverse square intensity effects. The conclusion reached is that a drift space of about 3 meters is required to preserve some skin sparing for larger targets. To circumvent this problem the scattering foils ere put somewhere inside or even before the gantry system, accepting the fact that magnet apertures would have to be increased. This gantry system has the interesting ability to produce oblong fields of excellent uniformity with reasonable efficiency, preferentially with the long axis of the field parallel to the axis of rotation. It was disappointing, however, to find that the overall size of the gantry with its counterweights remained very large. Another change in geometry was proposed therefore in order to reduce the space taken up by the gantry and its counterweight. The beam is bent 45 0 in the horizontal plane and then again by 45 0 so that it is pointing away from isocenter, but in the plan of rotation of the gantry. The beam is now bent in that plane of rotation until it is pointed at isocenter. This is accomplished by two bends of 135 0 each with a suitable drift space between them so that the beam is pointed vertically downward at isocenter. The three dimensional complexity of the beam trajectory led to the name Corkscrew Gantry

  7. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  8. The 'Reacteur Jules Horowitz': The preliminary design

    International Nuclear Information System (INIS)

    Ballagny, A.; Frachet, S.; Minguet, J.L.; Leydier, C.

    1999-01-01

    The 'Reactor Jules Horowitz' is a new research reactor project dedicated to materials and nuclear fuels testing, the location of which is foreseen at the CEA-Cadarache site, and the start-up in 2008. The launching of this project arises from a double finding: 1) the development of nuclear power plants aimed at satisfying the energy needs of the next century cannot be envisaged without the disposal of experimental reactors which are unrivalled for the validation of new concepts of nuclear fuels, materials, and components as well as for their qualification under irradiation. 2) the present park of experimental reactors is 30 to 40 years old and it is advisable to examine henceforth the necessity and the nature of a new reactor to take over and replace, at the beginning of next century, the reactors shut-down in the mean time or at the very end of their lives. Within this framework, the CEA has undertaken, in the last years, a reflection on the mid and long term irradiations needs, to determine the main features and performances of this new reactor. The concept of the reactor will have to fulfil the thermal neutron irradiation requirements as well as the fast neutron experimental needs, with a great potential versatility for any new irradiation programs. The selected reactor project, among several different concepts, is finally a light water open pool concept, with 100 MW thermal power. It could reach neutronic fluxes twice those of present French reactors, and allows many irradiations in the core and around the core, under high neutron fluxes. The reactor will satisfy the highest level of safety in full accordance with international safety recommendations and French safety approach for this kind of nuclear facility, thus giving an added safety margin keeping in mind the versatility of research reactors. The feasibility studies have been focused on the main items, and have permit to determine: the core and fuel designs, with added pressurisation; the different core

  9. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  10. Gemini Planet Imager: Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2007-05-10

    completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.

  11. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  12. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  13. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  14. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  15. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  16. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  17. The role and design of screen images in software documentation.

    NARCIS (Netherlands)

    van der Meij, Hans

    2000-01-01

    Software documentation for the novice user typically must try to achieve at least three goals: to support basic knowledge and skills development; to prevent or support the handling of mistakes, and to support the joint handling of manual, input device and screen. This paper concentrates on the

  18. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  19. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  20. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  1. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  2. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  3. Collective Design of an E-Textbook: Teachers' Collective Documentation

    Science.gov (United States)

    Gueudet, Ghislaine; Pepin, Birgit; Sabra, Hussein; Trouche, Luc

    2016-01-01

    In this study, we investigated design processes in teacher collectives, which have been made possible by new "digital" opportunities: platforms, discussion lists, etc. The object of our study is the French Sésamath teacher association and its design of a grade 10 e-textbook, more precisely the design of the "functions" chapter.…

  4. Data Warehouse Design from HL7 Clinical Document Architecture Schema.

    Science.gov (United States)

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2015-01-01

    This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests.

  5. A Generative Computer Model for Preliminary Design of Mass Housing

    Directory of Open Access Journals (Sweden)

    Ahmet Emre DİNÇER

    2014-05-01

    Full Text Available Today, we live in what we call the “Information Age”, an age in which information technologies are constantly being renewed and developed. Out of this has emerged a new approach called “Computational Design” or “Digital Design”. In addition to significantly influencing all fields of engineering, this approach has come to play a similar role in all stages of the design process in the architectural field. In providing solutions for analytical problems in design such as cost estimate, circulation systems evaluation and environmental effects, which are similar to engineering problems, this approach is being used in the evaluation, representation and presentation of traditionally designed buildings. With developments in software and hardware technology, it has evolved as the studies based on design of architectural products and production implementations with digital tools used for preliminary design stages. This paper presents a digital model which may be used in the preliminary stage of mass housing design with Cellular Automata, one of generative design systems based on computational design approaches. This computational model, developed by scripts of 3Ds Max software, has been implemented on a site plan design of mass housing, floor plan organizations made by user preferences and facade designs. By using the developed computer model, many alternative housing types could be rapidly produced. The interactive design tool of this computational model allows the user to transfer dimensional and functional housing preferences by means of the interface prepared for model. The results of the study are discussed in the light of innovative architectural approaches.

  6. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  7. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  8. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    International Nuclear Information System (INIS)

    1995-01-01

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors

  9. TPX: Contractor preliminary design review. Volume 3, Design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presented as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.

  10. Modular Integrated Stackable Layers (MISL) MI_MSP430A Board Design Document (BDD)

    Science.gov (United States)

    Yim, Hester

    2013-01-01

    This is a board-level design document for Modular Integrated Stackable Layers (MISL) MI_MSP430A board (PIN MSP430F5438A). The Board Design Document (BDD) contains the description, features of microcontroller, electrical and mechanical design, and drawings.

  11. Microgrid Design Toolkit (MDT) Technical Documentation and Component Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Arguello, Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The Microgrid Design Toolkit (MDT) is a decision support software tool for microgrid designers to use during the microgrid design process. The models that support the two main capabilities in MDT are described. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new microgrid in the early stages of the design process. MSC is a mixed-integer linear program that is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on refining a microgrid design for operation in islanded mode. This second capability relies on two models: the Technology Management Optimization (TMO) model and Performance Reliability Model (PRM). TMO uses a genetic algorithm to create and refine a collection of candidate microgrid designs. It uses PRM, a simulation based reliability model, to assess the performance of these designs. TMO produces a collection of microgrid designs that perform well with respect to one or more performance metrics.

  12. Documenting handicap situations and eliminations through Universal Design patterns

    Directory of Open Access Journals (Sweden)

    Ann Heylighen

    2009-11-01

    Full Text Available According to contemporary academic and social insights,human functional limitations and handicaps are not exclusively the result of the physical and / or mental characteristics of the individual (medical model, but theycan just as well be a consequence of a maladjustment of the social and physical environment (conflict / social model.This radical reversal of focus from person to environment,or in other words, from the assessment that the person isimpeded to the insight that the physical and socialenvironment is an impediment, has far-reaching consequences for the designing of human-made environments.The recent Universal Design paradigm extends beyond accommodating ‘modal’ users and aims to include the realdiversity of user populations, including those with physical and / or mental impairments and functional limitations. To achieve this, a large amount of design information in connection with human dis-abilities (limitations andpossibilities is required.Together with prescriptive laws and regulations, designers need descriptive information about; on the one hand,CONFLICTS between users and built environments, and onthe other hand, empirically evident design RESOLUTIONS. In response to this need, the paper advances the development of specific Universal Design Patterns (UD Patterns in order to collect and organise this information for decision makers and for designers.

  13. Preliminary design study of a large scale graphite oxidation loop

    International Nuclear Information System (INIS)

    Epel, L.G.; Majeski, S.J.; Schweitzer, D.G.; Sheehan, T.V.

    1979-08-01

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  14. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  15. Designing, Implementing and Documenting the Atlas Networking Test-bed.

    CERN Document Server

    Martinsen, Hans Åge

    The A Toroidal LHC ApparatuS (Atlas) experiment at the Large Hadron Colider (LHC) in European Organization for Nuclear Research (CERN), Geneva is a production environment. To develop new architectures, test new equipment and evaluate new technologies a well supported test bench is needed. A new one is now being commissioned and I will take a leading role in its development, commissioning and operation. This thesis will cover the requirements, the implementation, the documentation and the approach to the different challenges in implementing the testbed. I will be joining the project in the early stages and start by following the work that my colleagues are doing and then, as I get a better understanding, more responsibility will be given to me. To be able to suggest and implement solutions I will have to understand what the requirements are and how to achieve these requirements with the given resources.

  16. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  17. Review of SFR Design Safety using Preliminary Regulatory PSA Model

    International Nuclear Information System (INIS)

    Na, Hyun Ju; Lee, Yong Suk; Shin, Andong; Suh, Nam Duk

    2013-01-01

    The major objective of this research is to develop a risk model for regulatory verification of the SFR design, and thereby, make sure that the SFR design is adequate from a risk perspective. In this paper, the development result of preliminary regulatory PSA model of SFR is discussed. In this paper, development and quantification result of preliminary regulatory PSA model of SFR is discussed. It was confirmed that the importance PDRC and ADRC dampers is significant as stated in the result of KAERI PSA model. However, the importance can be changed significantly depending on assumption of CCCG and CCF factor of PDRC and ADRC dampers. SFR (sodium-cooled fast reactor) which is Gen-IV nuclear energy system, is designed to accord with the concept of stability, sustainability and proliferation resistance. KALIMER-600, which is under development in Korea, includes passive safety systems (e. g. passive reactor shutdown, passive residual heat removal, and etc.) as well as active safety systems. Risk analysis from a regulatory perspective is needed to support the regulatory body in its safety and licensing review for SFR (KALIMER-600). Safety issues should be identified in the early design phase in order to prevent the unexpected cost increase and delay of the SFR licensing schedule that may be caused otherwise

  18. Preliminary Design Progress of the HCCR TBM for ITER testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Jin, Hyung Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea has designed a helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield, which is called the TBM-set, to be tested in ITER, a Nuclear Facility INB-174. Through the conceptual design review (CDR), its design integrity was successfully demonstrated at the conceptual design level at various loads. After CD approval, preliminary design (PD) was started and the progress is introduced in the present study. After PD review and approval, final design and then fabrication will be started. The main purpose of PD is to design the TBM-set according to the fabrication aspect and more detailed design for interfaces with ITER machine, such as installed TBM port plug and frame. With these considering, PD of TBM-set was started. PD for HCCR TBM has been performed (so far v0.24) from the CD model. FW, BZ, SW, TES/NAS, BM, and connecting support design were performed through the analyses, if necessary. The manufacturability was the main concern for PD model development. Thermal hydraulic analysis will be performed to evaluate the temperature and pressure drop in TBM-set. The structural integrity of TBM-set will be confirmed with combined various loads condition.

  19. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage II. Preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Results are presented for two elements in the Georgetown University ICES program - the installation of a 2500-kW backpressure steam-turbine generator within a new extension to the heating and cooling plant (cogeneration) and the provision of four additional ash silos for the university's atmospheric fluidized-bed boiler plant (added storage scheme). The preliminary design and supporting documentation for the work items and architectural drawings are presented. Section 1 discusses the basis for the report, followed by sections on: feasibility analysis update; preliminary design documents; instrumentation and testing; revised work management plan; and appendices including outline constructions, turbine-generator prepurchase specification, design calculations, cost estimates, and Potomac Electric Company data. (MCW)

  20. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1991-10-01

    The requirements for Westinghouse Hanford independent review of the Preliminary Safety Analysis Report (PSAR) are contained in Section 1.0, Subsection 4.3 of WCH-CM-4-46. Specifically, this manual requires the following: (1) Formal functional reviews of the HWVP PSAR by the future operating organization (HWVP Operations), and the independent review organizations (HWVP and Environmental Safety Assurance, Environmental Assurance, and Quality Assurance); and (2) Review and approval of the HWVP PSAR by the Tank Waste Disposal (TWD) Subcouncil of the Safety and Environmental Advisory Council (SEAC), which provides independent advice to the Westinghouse Hanford President and executives on matters of safety and environmental protection. 7 refs

  1. The Role and Design of Screen Images in Software Documentation.

    Science.gov (United States)

    van der Meij, Hans

    2000-01-01

    Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…

  2. Preliminary application of Structure from Motion and GIS to document decomposition and taphonomic processes.

    Science.gov (United States)

    Carlton, Connor D; Mitchell, Samantha; Lewis, Patrick

    2018-01-01

    Over the past decade, Structure from Motion (SfM) has increasingly been used as a means of digital preservation and for documenting archaeological excavations, architecture, and cultural material. However, few studies have tapped the potential of using SfM to document and analyze taphonomic processes affecting burials for forensic sciences purposes. This project utilizes SfM models to elucidate specific post-depositional events that affected a series of three human cadavers deposited at the South East Texas Applied Forensic Science Facility (STAFS). The aim of this research was to test the ability for untrained researchers to employ spatial software and photogrammetry for data collection purposes. For a series of three months a single lens reflex (SLR) camera was used to capture a series of overlapping images at periodic stages in the decomposition process of each cadaver. These images are processed through photogrammetric software that creates a 3D model that can be measured, manipulated, and viewed. This project used photogrammetric and geospatial software to map changes in decomposition and movement of the body from original deposition points. Project results indicate SfM and GIS as a useful tool for documenting decomposition and taphonomic processes. Results indicate photogrammetry is an efficient, relatively simple, and affordable tool for the documentation of decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  4. Preliminary shielding design evaluation for reactor assembly of SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kang, Chang M.; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    This report describes a preliminary evaluations of SMART shielding design near the reactor core by using the DORT two-dimensional discrete ordinates transport code. The results indicate that maximum neutron fluence at the bottom of reactor vessel is 1.64x10 17 n/cm 2 and that on the radial surface of reactor vessel is 6.71x10 16 n/cm 2 . These results meet the requirement, 1.0x10 20 n/cm 2 , in 10 CFR 50.61 and the integrity of SMART reactor vessel is confirmed during the lifetime of reactor. (Author). 20 refs., 11 tabs., 8 figs

  5. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  6. Design criteria document, electrical system, K-Basin essential systems recovery, Project W-405

    International Nuclear Information System (INIS)

    Hoyle, J.R.

    1994-01-01

    This Design Criteria Document provides the criteria for design and construction of electrical system modifications for 100K Area that are essential to protect the safe operation and storage of spent nuclear fuel in the K-Basin facilities

  7. Learning Asset Technology Integration Support Tool Design Document

    Science.gov (United States)

    2010-05-11

    language known as Hypertext Preprocessor ( PHP ) and by MySQL – a relational database management system that can also be used for content management. It...Requirements The LATIST tool will be implemented utilizing a WordPress platform with MySQL as the database. Also the LATIST system must effectively work... MySQL . When designing the LATIST system there are several considerations which must be accounted for in the working prototype. These include: • DAU

  8. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  9. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  10. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  11. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    Science.gov (United States)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  12. Software design implementation document for TRAC-M data structures

    Energy Technology Data Exchange (ETDEWEB)

    Jolly-Woodruff, S. [Ogden Environmental and Energy Services (United States); Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Giguere, P.; Dearing, J.; Boyack, B. [Los Alamos National Lab., NM (United States)

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained.

  13. Software design implementation document for TRAC-M data structures

    International Nuclear Information System (INIS)

    Jolly-Woodruff, S.; Mahaffy, J.; Giguere, P.; Dearing, J.; Boyack, B.

    1997-07-01

    The Transient Reactor Analysis Code (TRAC)-M system-wide and component data structures are to be reimplemented by using the new features of Fortran 90 (F90). There will be no changes to the conceptual design, data flow, or computational flow with respect to the current TRAC-P, except that readability, maintainability, and extensibility will be improved. However, the task described here is a basic step that does not meet all future needs of the code, especially regarding extensibility. TRAC-M will be fully functional and will produce null computational changes with respect to TRAC-P, Version 5.4.25; computational efficiency will not be degraded significantly. The existing component and functional modularity and possibilities for coarse-grained parallelism will be retained

  14. Preliminary study of magnet design for an SSC

    International Nuclear Information System (INIS)

    Taylor, C.E.; Meuser, R.B.

    1983-08-01

    The overriding design consideration for the SSC magnets is that cost of the facility be minimized; at 8 T, approximately 40 km of bending magnets is required for each ring of a 20 TeV collider. We present some results of a parametric study of two-in-one, iron-core magnets for an SSC. These results are necessarily preliminary in nature, and are intended only to show some of the trade-offs for a wide range of the variables. We show also some results for a reference design that produces 6.5 T in the aperture at 4.4 K for a coil inside diameter of 40 mm. It is not to be inferred that we have established this to be an optimum in any sense

  15. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  16. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  17. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  18. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  19. Preliminary Design Through Graphs: A Tool for Automatic Layout Distribution

    Directory of Open Access Journals (Sweden)

    Carlo Biagini

    2015-02-01

    Full Text Available Diagrams are essential in the preliminary stages of design for understanding distributive aspects and assisting the decision-making process. By drawing a schematic graph, designers can visualize in a synthetic way the relationships between many aspects: functions and spaces, distribution of layouts, space adjacency, influence of traffic flows within a facility layout, and so on. This process can be automated through the use of modern Information and Communication Technologies tools (ICT that allow the designers to manage a large quantity of information. The work that we will present is part of an on-going research project into how modern parametric software influences decision-making on the basis of automatic and optimized layout distribution. The method involves two phases: the first aims to define the ontological relation between spaces, with particular reference to a specific building typology (rules of aggregation of spaces; the second entails the implementation of these rules through the use of specialist software. The generation of ontological relations begins with the collection of data from historical manuals and analyses of case studies. These analyses aim to generate a “relationship matrix” based on preferences of space adjacency. The phase of implementing the previously defined rules is based on the use of Grasshopper to analyse and visualize different layout configurations. The layout is generated by simulating a process involving the collision of spheres, which represents specific functions of the design program. The spheres are attracted or rejected as a function of the relationships matrix, as defined above. The layout thus obtained will remain in a sort of abstract state independent of information about the exterior form, but will still provide a useful tool for the decision-making process. In addition, preliminary results gathered through the analysis of case studies will be presented. These results provide a good variety

  20. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  1. Re-usable templates for documenting the elaboration and architectural design of the CMS software

    International Nuclear Information System (INIS)

    Wellisch, J.P.; Tuura, L.

    2001-01-01

    Modern standards and definitions of deliverables for software development are provided by various standards like PSS-05, CMMI, ECSS, Volere, Rational Unified process or SPICE (ISO 15504). Modern document templates and the corresponding documents are based on atomic shells that cross-link, and can be subsequently assembled into a set of complete documents; views of the information in the shells. This makes the information easy to maintain, and enables selective views of the documentation. The authors will present a catalogue of document templates that has been developed in the context of the CMS CAFE forum, as well as their cross-linkage, using UML as the modelling language. The templates allow for documenting the elaboration and architectural design phases of software development. They can be used as the basis for establishing and documenting architecture, while establishing trace-ability to use-cases, requirements, constraints, and important technological choices in a maintainable manner

  2. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project

  3. Preliminary Design Study of the Hollow Electron Lens for LHC

    CERN Document Server

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  4. Requirements for the data transfer during the examination of design documentation

    Directory of Open Access Journals (Sweden)

    Karakozova Irina

    2017-01-01

    Full Text Available When you transfer the design documents to the examination office, number of incompatible electronic documents increases dramatically. The article discusses the way to solve the problem of transferring of the text and graphic data of design documentation for state and non-state expertise, as well as verification of estimates and requirement management. The methods for the recognition of the system elements and requirements for the transferring of text and graphic design documents are provided. The need to use the classification and coding of various elements of information systems (structures, objects, resources, requirements, contracts, etc. in data transferring systems is indicated separately. The authors have developed a sequence of document processing and transmission of data during the examination, and propose a language for describing the construction of the facility, taking into account the classification criteria of the structures and construction works.

  5. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  6. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials (1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF 4 or ThF 4 or some combination thereof. Future systems could look at using PuF 3 or PuF 4 as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory. Preliminary design studies

  7. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  8. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  9. Preliminary design for a pierce wiggler beamstick and addendum

    International Nuclear Information System (INIS)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs

  10. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    Science.gov (United States)

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  11. Liquid-metal fast-breeder reactors: Preliminary safety and environmental information document. Volume VI

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning LMFBR design characteristics; uranium-plutonium/uranium recycle homogeneous core; uranium-plutonium/uranium spiked recycle heterogeneous core; uranium-plutonium/uranium spiked recycle homogeneous core; uranium-plutonium/thorium spiked recycle heterogeneous core; uranium-plutonium/thorium spiked recycle homogeneous core; thorium-plutonium/thorium spiked recycle homogeneous core; denatured uranium-233/thorium cycle homogeneous core; safety consideration for the LMFBR; and environmental considerations

  12. Licensing assessment of the CANDU pressurized heavy water reactor. Volume I. Preliminary safety information document

    International Nuclear Information System (INIS)

    1977-06-01

    The PHWR design contains certain features that will require significant modifications to comply with USNRC siting and safety requirements. The most significant of these features are the reactor vessel; control systems; quality assurance program requirements; seismic design of structures, systems and components; and providing an inservice inspection program capability. None of these areas appear insolvable with current state-of-the-art engineering or with upgrading of the quality assurance program for components constructed outside of the USA. In order to be licensed in the U. S., the entire reactor assembly would have to be redesigned to comply with ASME Boiler and Pressure Vessel Code, Section III, Division 1 and Division 2. A summary matrix at the end of this volume identifies compliance of the systems and structures of the PHWR plant with the USNRC General Design Criteria. The matrix further identifies the estimated incremental cost to a 600 MWe PHWR that would be required to license the plant in the U. S. Further, the matrix identifies whether or not the incremental licensing cost is size dependent and the relative percentage of the base direct cost of a Canadian sited plant

  13. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  14. Context sensitive design : thinking beyond the pavement : documentation of workshop development and training.

    Science.gov (United States)

    2005-05-01

    This report documents the development and presentation of the workshop titled Thinking Beyond the Pavement A Workshop on Context Sensitive Design. Work began on the workshop development in 1998 after the Kentucky Transportation Cabinet was ...

  15. Preliminary conceptual design of target system. Pt. 1. System configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Haga, Katsuhiro; Kaminaga, Masanori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-07-01

    In the 21st century, neutron is expected to play a very important role in the fields of structural biology, nuclear physics, material science if a very high-intensity neutron source will be built because of its superior nature as an probe to investigate material structure and its function. The Japan Atomic Energy Research Institute has launched the Neutron Science Project for construction and utilization of a high-intensity spallation neutron source coupled with a proton accelerator. In the project, a neutron scattering facility is planned to be constructed in an early stage. Development of a 5MW spallation neutron source is one of the most difficult technical challenges in this project. A two-step development plan of the target was established to construct a 5MW-target station In the 1st step, a 1.5MW target will be constructed to develop 5MW target technology. The preliminary conceptual design was conducted to clarify the specifications of the target system of 1.5MW and 5MW including system layout, scale etc. This report describes (1) a design policy, (2) a layout of system consisting of the target, remote-handling devices, bio-shieldings etc., (3) specifications of components and facilities such as cooling systems for target and moderators, beam-port shutter and air conditioning system, (4) overhaul procedures by remote-handling devices, (5) safety assessment, and (6) necessary R and D items derived from the design activity. (author)

  16. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  17. Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

    1994-11-01

    This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities

  18. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  19. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  20. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II

    International Nuclear Information System (INIS)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site

  1. Preliminary Feasibility Assessment of Integrating CCHP with NW Food Processing Plant #1: Modeling Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Michael G.; Srivastava, Viraj; Wagner, Anne W.; Makhmalbaf, Atefe; Thornton, John

    2014-01-01

    The Pacific Northwest National Laboratory (PNNL) has launched a project funded by the Bonneville Power Association (BPA) to identify strategies for increasing industrial energy efficiency and reducing energy costs of Northwest Food Processors Association (NWFPA) plants through deployment of novel combinations and designs of variable-output combined heat and power (CHP) distributed generation (DG), combined cooling, heating and electric power (CCHP) DG and energy storage systems. Detailed evaluations and recommendations of CHP and CCHP DG systems will be performed for several Northwest (NW) food processing sites. The objective is to reduce the overall energy use intensity of NW food processors by 25% by 2020 and by 50% by 2030, as well as reducing emissions and understanding potential congestion reduction impacts on the transmission system in the Pacific Northwest.

  2. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  3. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  4. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  5. Permian Basin, Texas: Volume 1, Text: Final preliminary design report

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a description of the preliminary design for an Exploratory Shaft Facility (ESF) at the proposed 49 acre site located 21 miles north of Hereford, Texas in Deaf Smith County. Department of Energy must conduct in situ testing at depth to ascertain the engineering and environmental suitability of the site for further consideration for nuclear waste repository development. The ESF includes the construction of two 12-ft diameter engineered shafts for accessing the bedded salt horizon to conduct in situ tests to ascertain if the site should be considered a candidate site for the first High Level Nuclear Waste Repository. This report includes pertinent engineering drawings for two shafts and all support facilities necessary for shaft construction and testing program operation. Shafts will be constructed by conventional drill-and-blast methods employing ground freezing prior to shaft construction to stabilize the existing groundwater and soil conditions at the site. A watertight liner and seal system will be employed to prevent intermingling of aquifers and provide a stable shaft throughout its design life. 38 refs., 37 figs., 14 tabs

  6. Information Management Platform for Data Analytics and Aggregation (IMPALA) System Design Document

    Science.gov (United States)

    Carnell, Andrew; Akinyelu, Akinyele

    2016-01-01

    The System Design document tracks the design activities that are performed to guide the integration, installation, verification, and acceptance testing of the IMPALA Platform. The inputs to the design document are derived from the activities recorded in Tasks 1 through 6 of the Statement of Work (SOW), with the proposed technical solution being the completion of Phase 1-A. With the documentation of the architecture of the IMPALA Platform and the installation steps taken, the SDD will be a living document, capturing the details about capability enhancements and system improvements to the IMPALA Platform to provide users in development of accurate and precise analytical models. The IMPALA Platform infrastructure team, data architecture team, system integration team, security management team, project manager, NASA data scientists and users are the intended audience of this document. The IMPALA Platform is an assembly of commercial-off-the-shelf (COTS) products installed on an Apache-Hadoop platform. User interface details for the COTS products will be sourced from the COTS tools vendor documentation. The SDD is a focused explanation of the inputs, design steps, and projected outcomes of every design activity for the IMPALA Platform through installation and validation.

  7. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    Science.gov (United States)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  8. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  9. Development of a system for managing document delivery schedule(DDS) for NSSS system design

    International Nuclear Information System (INIS)

    Baek, S. H.; Baek, J. M.; Sohn, Y. S.; Shon, G. H.

    1999-01-01

    The construction of nuclear power plant is a long-term project from initial design to commercial operation. To accomplish NSSS (Nuclear Steam Supply System) system design successfully, the systematic and effective method for managing the system design product and interface correspondence with other organizations is required. To meet this requirement, a system has been developed to control the document delivery schedule, approval process and interface correspondence transmittal, and to report the documentation status periodically from the beginning of the YGN 5 and 6 project. This system is expected to contribute as the beginning step to development of integrated project management system. (author)

  10. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  11. Subseabed radionuclide migration studies and preliminary repository design concepts

    International Nuclear Information System (INIS)

    Brush, L.H.

    1982-01-01

    Geochemical research carried out by the US Subseabed Disposal Program is described. Data from studies of high-temperature interactions between sediments and pore water (seawater) and from studies of sorption and diffusion of radionuclides in oxidized, deep-sea sediments are used, along with results from heat transfer studies, to predict migration rates of raionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging. Fission products with moderate K/sub D/ values (10 2 to 10 5 ml/g) and actinides with high K/sub D/ values (10 3 to 10 6 ml/g) would not migrate significant distances before decaying to innocuous concentrations. Among this group are 137 Cs, 90 Sr, and 239 Pu. The results for anionic species in oxidized sediments are less encouraging. Planning for field verification of these laboratory and modeling studies is currently under way. Conceptual repository designs and emplacement options are also described. 33 references, 15 figures, 1 table

  12. System requirements and design description for the document basis database interface (DocBasis)

    International Nuclear Information System (INIS)

    Lehman, W.J.

    1997-01-01

    This document describes system requirements and the design description for the Document Basis Database Interface (DocBasis). The DocBasis application is used to manage procedures used within the tank farms. The application maintains information in a small database to track the document basis for a procedure, as well as the current version/modification level and the basis for the procedure. The basis for each procedure is substantiated by Administrative, Technical, Procedural, and Regulatory requirements. The DocBasis user interface was developed by Science Applications International Corporation (SAIC)

  13. A preliminary design of mechanical device on industrial digital radiography equipment design

    International Nuclear Information System (INIS)

    Nur Khasan; Samuel Praptoyo

    2015-01-01

    A preliminary design of mechanical device on industrial digital radiography equipment has been done. this design is intended as a basis for the manufacture of complete facilities for the realization a prototype on industrial digital radiography equipment. the design and construction were carried out by paying attention to the general configuration of the basic design in which its mechanical design has several components with specific dimensions and heavy mass. this design consist of a main frame holder, flat panel detector support and hydraulic hand stacker for mounting the x-ray machine. this mechanical device design will then be fabricated to facilitate and assist work of digital radiographic retrieval. computer application programs sketch-up is used to draw this design and the analysis stress of autodesk inventor to analysis the strength construction design. the results of this design are the configuration drawing, sketch drawings of construction and the safety factor of construction design with a minimum value of 2.39 as well as a maximum value of 15 when to be simulated by the load 500 Kg which is 4 times of total workload. (author)

  14. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  15. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    International Nuclear Information System (INIS)

    Croft, Stephen; Martancik, David; Young, Brian; Chard MJ, Patrick; Estop J, Robert; Sheila Melton; Arnone, Gaetano J.

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL

  16. Preliminary Design of Optimized Reactor Insulator for Severe Accident Mitigation of APR1400

    International Nuclear Information System (INIS)

    Heo, Sun; Lee, Jae-Gon; Kang, Yong-Chul

    2007-01-01

    APR1400, a Korean evolutionary advance light water reactor, has many advanced safety feature to prevent and mitigate of design basis accident (DBA) and severe accident. When reactor cooling system (RCS) fails to cooling its core, the core melted down and the molten core gathers together on bottom of reactor vessel. The molten core hurts reactor vessel and is released to containment, which raises the release of radioactive isotopes and the heating of the containment atmosphere. Finally, the corium is accumulated in the bottom of reactor cavity and it also raises the Molten Core and Concrete Interaction (MCCI) and the heating of containment atmosphere. There are two strategies to cooling molten core. Those are in-vessel retention and ex-vessel cooling. At the early stage of APR1400 design, only ex-vessel cooling which is cooling of the molten core outside the vessel after vessel failure is considered based on EPRI Utility Requirement Document (URD) for Evolutionary LWR. However, a need has been arisen to reflect current research findings on severe accident phenomena and mitigation technologies to Korean URD and IVRERVC (In-Vessel corium Retention using Ex-Reactor Vessel Cooling) was adopted APR1400. The ERVC is not considered as a licensing design basis but based on the defense-in-depth principle and safety margin basis, which is the top-tier requirement of the severe accident mitigation design as stated in the KURD. The Severe Accident Management strategy for APR1400 is intended to aid the plant operating staff to secure reactor vessel integrity in the early stage of the severe accident. As a part of a design implementation of IVR-ERVC for APR1400, we developed the preliminary design requirement, design specification and conceptual design

  17. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  18. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  19. Design support document for the K Basins Vertical Fuel Handling Tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the design support information for the Vertical Fuel Handling Tools, developed for the removal of N Reactor fuel elements from their storage canisters in the K Basins storage pool and insertion into the Single Fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N Reactor fuel elements is part of the overall characterization effort. These new hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element vertically from the storage canister. Additionally, a Mark II storage canister Lip Seal Protector was designed and fabricated for use during fuel retrieval. This device was required to prevent damage to the canister lip should a fuel element accidentally be dropped during its retrieval, using the handling tools. Supporting documentation for this device is included in this document

  20. Simplified methods and application to preliminary design of piping for elevated temperature service

    International Nuclear Information System (INIS)

    Severud, L.K.

    1975-01-01

    A number of simplified stress analysis methods and procedures that have been used on the FFTF project for preliminary design of piping operating at elevated temperatures are described. The rationale and considerations involved in developing the procedures and preliminary design guidelines are given. Applications of the simplified methods to a few FFTF pipelines are described and the success of these guidelines are measured by means of comparisons to pipeline designs that have had detailed Code type stress analyses. (U.S.)

  1. Current Status of HCCR TBM Design for the Preliminary Design Phase Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) TBM-set will be installed in the equatorial port no.18 of ITER inside the vacuum vessel directly facing the plasma. TBM-set refers the TBM and associated shield and connecting support. After the Conceptual Design Review (CDR), Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design is being updated for the preparation of the preliminary design phase. The manufacturability is considered based on the TBM-set model of the conceptual design phase. In this work, the design changes for each component of the TBM-set is described in comparison with the CD phase. The current design direction and details is presented. The first wall (FW) is component facing the plasma directly. This component should have a superior cooling performance. Present Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design was described in comparison with the CD model. The manufacturability was considered in current PD phase. The detained design of the connecting support will be determined reflecting the load assessment. The structural integrity will be confirmed with a various load condition.

  2. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  3. "Is This Ethical?" A Survey of Opinion on Principles and Practices of Document Design.

    Science.gov (United States)

    Dragga, Sam

    1996-01-01

    Reprints a corrected version of an article originally published in the volume 43, number 1 issue of this journal. Presents results of a national survey of technical communicators and technical communication teachers assessing the ethics of seven document design cases involving manipulation of typography, illustrations, and photographs. Offers…

  4. FROM DOCUMENTATION IMAGES TO RESTAURATION SUPPORT TOOLS: A PATH FOLLOWING THE NEPTUNE FOUNTAIN IN BOLOGNA DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    F. I. Apollonio

    2017-05-01

    Full Text Available The sixteenth-century Fountain of Neptune is one of Bologna’s most renowned landmarks. During the recent restoration activities of the monumental sculpture group, consisting in precious marbles and highly refined bronzes with water jets, a photographic campaign has been carried out exclusively for documentation purposes of the current state of preservation of the complex. Nevertheless, the highquality imagery was used for a different use, namely to create a 3D digital model accurate in shape and color by means of automated photogrammetric techniques and a robust customized pipeline. This 3D model was used as basic tool to support many and different activities of the restoration site. The paper describes the 3D model construction technique used and the most important applications in which it was used as support tool for restoration: (i reliable documentation of the actual state; (ii surface cleaning analysis; (iii new water system and jets; (iv new lighting design simulation; (v support for preliminary analysis and projectual studies related to hardly accessible areas; (vi structural analysis; (vii base for filling gaps or missing elements through 3D printing; (viii high-quality visualization and rendering and (ix support for data modelling and semantic-based diagrams.

  5. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  6. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    International Nuclear Information System (INIS)

    Zhao, Zhou; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-01-01

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li_4SiO_4 pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  7. A Preliminary Rubric Design to Evaluate Mixed Methods Research

    Science.gov (United States)

    Burrows, Timothy J.

    2013-01-01

    With the increase in frequency of the use of mixed methods, both in research publications and in externally funded grants there are increasing calls for a set of standards to assess the quality of mixed methods research. The purpose of this mixed methods study was to conduct a multi-phase analysis to create a preliminary rubric to evaluate mixed…

  8. Design and drafting document control procedures for CPRF/ZTH experiment

    International Nuclear Information System (INIS)

    Pollat, L.L.; Kewish, R.W.

    1989-01-01

    This paper will present, in general, the control procedures for design approval, review, changes, and release of engineering documents. It will also discuss interface control for tasks so that possible design interference does not occur. A document control procedure to insure that design criteria are met and technical specifications translate into workable drawings was instituted to support the Confinement Physics Research Facility (CPRF/ZTH) construction program. Our goal, to eliminate any conflicts that might arise between various tasks as the final designs are developed, required tight control and up-to-date design information. Detailed procedure for reviews were instituted, since circumventing the process of design and drafting anywhere might have proven disastrous to the CPRF/ZTH program. Design is a process of translating technical requirements, according to established standards, into drawings that are usable for fabrication and assembly. Both the designer and engineer are responsible for adhering to standards that have been established by the Mechanical Engineering Section for the CPRF/ZTH program. 6 refs., 5 figs

  9. ITER final design report, cost review and safety analysis (FDR) and relevant documents

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains the fourth major milestone report and documents associated with its acceptance, review and approval. This ITER Final Design Report, Cost Review and Safety Analysis was presented to the ITER Council at its 13th meeting in February 1998 and was approved at its extraordinary meeting on 25 June 1998. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics and schedule and cost estimates are given

  10. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  11. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  12. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  13. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  14. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-01

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor

  15. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  16. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    OpenAIRE

    Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...

  17. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  18. Waste Receiving and Packaging, Module 2A, Supplemental Design Requirements Document

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Boothe, G.F.; Hinkle, A.L.; Horgos, R.M.; LeClair, M.D.; Nash, C.R.; Ocampo, V.P.; Pauly, T.R.; Stroup, J.L.; Weingardt, K.M.

    1994-01-01

    The Supplemental Design Requirements Document (SDRD) is used to communicate plant design information from Westinghouse Hanford Company (WHC) to the US Department of Energy (DOE) and the cognizant Architect Engineer (A/E). Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in a Functional Design Criteria (FDC) report; and to serve as a means of change control for design commitments in the Conceptual Design Report. The mission of WRAP 2A on the Hanford site is the treatment of contact handled low level mixed waste (MW) for final disposal. The overall systems engineering steps used to reach construction and operation of WRAP 2A are depicted in Figure 1. The WRAP 2A SDRD focuses on the requirements to address the functional analysis provided in Figure 1. This information is provided in sections 2 through 5 of this SDRD. The mission analysis and functional analysis are to be provided in a separate supporting document. The organization of sections 2 through 5 corresponds to the requirements identified in the WRAP 2A functional analysis

  19. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  20. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  1. Supplmental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    International Nuclear Information System (INIS)

    Ocampo, V.P.

    1994-11-01

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria

  2. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  3. GCFR demonstration plant: conceptual design and status report. Briefing document and executive summary

    International Nuclear Information System (INIS)

    1980-12-01

    Helium Breeder Associates (HBA), a non-profit corporation, has been the program manager and technical integrator of the Gas-Cooled Fast Reactor (GCFR) development effort since 1977. When DOE discontinued support of the GCFR in 1980, the HBA members undertook the task of providing for an orderly termination and documentation of the program. HBA does not agree with the government's rational for withdrawing support for this promising technology and has directed its termination and documentation toward preserving the current state of its development. Toward that end, HBA has compiled a report of which this is a brief summary covering the conceptual design of the demonstration plant and status of the program as of the end of 1980. All the work in design, development, safety, and licensing which has been done to date, both in this country and in Europe, has given positive results and the prognosis for ultimately achieving the potential advantages of the GCFR is excellent. The report is intended to provide the reader with the design considerations that were current at the time of program termination. The report could be useful in restarting the program in the future by establishing the basis of the completed conceptual design and indicating a logical path for new design and development

  4. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  5. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  6. Contingency Contractor Optimization Phase 3 Sustainment Software Design Document - Contingency Contractor Optimization Tool - Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa; Jones, Katherine A

    2016-05-01

    This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATL Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.

  7. System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference

    International Nuclear Information System (INIS)

    1996-01-01

    A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnacetrays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented

  8. Preliminary Design Analysis of a HGD for the NHDD Program at Korea

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, H. Y.; Lee, S. B.; Kim, Y. W.

    2007-01-01

    Korea Atomic Energy Research Institute is in the process of carrying out a Nuclear Hydrogen Development and Demonstration (NHDD) Program by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. A coaxial double-tube Hot Gas Duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the NHDD program. Recently, a preliminary design evaluation for the hot gas duct of the NHDD program was carried out. These preliminary design activities include a decision on the geometric dimensions, a strength evaluation, an appropriate material selection, and identifying the design code for the HGD. In this study, a preliminary strength evaluation for the HGD of the NHDD program has been undertaken based on the HTR-10 design concepts. Also, a preliminary evaluation of the creep-fatigue damage for a high temperature HGD structure has been carried out according to the draft code case for Alloy 617. Preliminary strength evaluation results for the HGD showed that the geometric dimensions of the proposed HGD would be acceptable for the design requirements

  9. Preliminary design of offshore wind turbine support structures : The importance of proper mode shape estimation

    NARCIS (Netherlands)

    Van der Male, P.

    2013-01-01

    Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the

  10. ICT and UD: Preliminary Study for Recommendations to Design Accessible University Courses.

    Science.gov (United States)

    Pagliara, Silvio Marcello; Sánchez Utgé, Marta; De Anna, Lucia

    2017-01-01

    Starting from the Universal Design in the educational context principles, the experiences gained during the FIRB project "Net@ccessibility" and the high-education courses for teachers' specialization on special education, this research will focus on preliminary studies in order to define the recommendations for designing accessible university courses.

  11. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  12. Low-Level Burial Grounds Dangerous Waste Permit Application design documents

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents the Functional Design Criteria for trenches to be constructed to receive solid radioactive mixed waste (RMW) from on and offsite generators. The new RMW disposal facilities are considered modifications to or lateral expansion of the existing low-level waste burial grounds. The new facilities upgrade the existing disposal practice for RMW to the minimum technology requirements of the Resource Conservation and Recovery Act. The proposed locations for the two facilities are: 218-E-10 for drag-off-waste packages and, 218-W-4C for non drag-off waste packages

  13. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  14. Preliminary safety analysis for key design features of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, D. H.; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, S. O.; Lee, Y. B.; Jeong, K. S

    2000-07-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER(Korea Advanced Liquid Metal Reactor) under the long-term nuclear R and D program. In this report, descriptions of the KALIMER safety design features and safety analyses results for selected ATWS accidents are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the safety evaluation procedure for the KALIMER design is described in chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure design performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram(ATWS) have been performed to investigate the KALIMER system response to the events. They are categorized as bounding events(BEs) because of their low probability of occurrence. In chapter 4, the design of the KALIMER containment dome and the results of its performance analysis are presented. The designs of the existing LMR containment and the KALIMER containment dome have been compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core kinetics and hydraulic behavior during HCDA in chapter 5. Mathematical formulations have been developed in the framework of the modified bethe-tait method, and scoping analyses have been performed for the KALIMER core behavior during super-prompt critical excursions.

  15. EXPLOSION POTENTIAL ASSESSMENT OF HEAT EXCHANGER NETWORK AT THE PRELIMINARY DESIGN STAGE

    Directory of Open Access Journals (Sweden)

    MOHSIN PASHA

    2016-07-01

    Full Text Available The failure of Shell and Tube Heat Exchangers (STHE is being extensively observed in the chemical process industries. This failure can cause enormous production loss and have a potential of dangerous consequences such as an explosion, fire and toxic release scenarios. There is an urgent need for assessing the explosion potential of shell and tube heat exchanger at the preliminary design stage. In current work, inherent safety index based approach is used to resolve the highlighted issue. Inherent Safety Index for Shell and Tube Heat Exchanger (ISISTHE is a newly developed index for assessing the inherent safety level of a STHE at the preliminary design stage. This index is composed of preliminary design variables and integrated with the process design simulator (Aspen HYSYS. Process information can easily be transferred from process design simulator to MS Excel spreadsheet owing to this integration. This index could potentially facilitate the design engineer to analyse the worst heat exchanger in the heat exchanger network. Typical heat exchanger network of the steam reforming process is presented as a case study and the worst heat exchanger of this network has been identified. It is inferred from this analysis that shell and tube heat exchangers possess high operating pressure, corrected mean temperature difference (CMTD and flammability and reactive potential needs to be critically analysed at the preliminary design stage.

  16. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  17. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  18. Preliminary research on design of traveling wave reactor

    International Nuclear Information System (INIS)

    Yan Mingyu; Chen Bin; Feng Linna; Zhang Yong

    2015-01-01

    An engineering feasible conceptual core design of large scale (e.g. 1OOOMWe output) TWR is proposed with investigation and qualitative optimization on the proper design of fuel element structure, fuel pellet, liquid metal filling gap, fuel assembly structure, core reflector and shielding and shutdown control rods. The optimized design presents a flatten radial neutron flux with a better equivalent state distribution, which means the long term burning state could be defined by initial core design and further corrected by the travelling wave progress. The optimized fuel structure improves the flow distribution between the central, parallel and corner channels. Furthermore, the power control of TWR could be implemented by the adjusting of coolant pump rotation speed as the change of coolant flow. Though the load rejection and power control between 15% to 100% nominal power could not be fulfilled by flow control without the participation of bank A control rods. (authors)

  19. The Preliminary Design and Fabrication of a Manually Operated ...

    African Journals Online (AJOL)

    A ten (10) tonnes capacity agro waste manual briquetting machine have been designed and fabricated using locally available materials. The machine principal parts are made of frame, compaction chamber and base plate . Compaction ...

  20. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  1. Integration of holography into the design of bank notes and security documents

    Science.gov (United States)

    Dunn, Paul

    2000-10-01

    The use of holograms and other diffractive optically variable devices have been used successfully in the fight against counterfeiting of security documents for several years. More recently they have become globally accepted as a key security feature on banknotes as reflected in their prime use on the Euronotes to be issues in 2002. The success of the design and origination of these images depends upon their strong visual appeal, their overt and covert content and the ability to offer unique features that provides an extremely difficult barrier for the would be counterfeiter to overcome. The basic design principles both for banknote and general security print application are discussed in this review document. TO be effective as a security device the image must be fit for the purpose. This means that the image must contain the level of overt and covert features that are easy to recognize, containing high level security features and form part of an educational program aimed at the product user and specifically trained security personnel. More specifically it must meet a clearly defined performance criteria.

  2. Preliminary design of an osmotic-type salinity gradient energy converter. Phase I, design effort

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The base case that was studied for this Phase I Interim Report is a 50 kWe design with 3.5% salt water (seawater) on one side and saturated salt water on the other side of the semi-permeable membrane. This case included a solar evaporation pond. The report includes system descriptions, system component descriptions, siting restrictions, environmental considerations, pretreatment, membrane characteristics, preliminary system capital costs, and recommendations for further work. During the course of the study and investigations, it was decided to extend the review to develop an additional basic flow sheet using brackish water instead of seawater with a solar pond. This option requires reduced flow rates and therefore can utilize smaller and less expensive components as compared to the seawater base case. Based on data for reverse osmosis water purification systems, the operating costs for pretreatment and labor would also be expected to be less for the brackish water system than for the seawater system. Finally, the use of brackish water systems greatly increases the potential number of sites available for a practical Osmo-Hydro Power System.

  3. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 1, Report

    International Nuclear Information System (INIS)

    1986-01-01

    This design report describes the NUS Preliminary Design of the Prototype Spent Nuclear Fuel Rod Consolidation Equipment for the Department of Energy. The sections of the report elaborate on each facet of the preliminary design. A concept summary is provided to assist the reader in rapidly understanding the complete design. The NUS Prototype Spent Fuel Rod Consolidation System is an automatically controlled system to consolidate a minimum of 750 MT (heavy metal)/year of US commercial nuclear reactor fuel, at 75% availability. The system is designed with replaceable components utilizing the latest state-of-the-art technology. This approach gives the system the flexibility to be developed without costly development programs, yet accept new technology as it evolves over the next ten years. Capability is also provided in the system design to accommodate a wide variety of fuel conditions and to recover from any situation which may arise

  4. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  5. City of Hoboken Energy Surety Analysis: Preliminary Design Summary

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military and Energy Systems Analysis Dept.; Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Smith, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Readiness and Sustainment Technology Dept.; Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Henry, Jordan M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Critical Infrastructure Systems Dept.; Jensen, Richard Pearson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2014-09-01

    In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.

  6. Preliminary design implications of SSC fixed-target operation

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered

  7. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    International Nuclear Information System (INIS)

    Calvin, H.A.

    1995-01-01

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System

  8. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  9. Preliminary design considerations for the stage 1 PEP lattice

    International Nuclear Information System (INIS)

    Helm, R.H.; Lee, M.J.

    1974-07-01

    A general description of the proposed PEP e + e - storage ring is discussed in the paper. We discuss the lattice and its operating characteristics in more detail, show how the design luminosity operative regions may be met and outline the limits of the operative regions of the beam parameters in several modes of operation. 18 refs., 16 figs., 1 tab

  10. The Guardian: Preliminary design of a close air support aircraft

    Science.gov (United States)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  11. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  12. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  13. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  14. Preliminary conceptual engineering design considerations for the MX machine

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Calderon, M.U.; Hibbs, S.M.; Kozman, T.A.

    1975-01-01

    The mirror experiment was designed to develop the technologies necessary to make the transition from the presently small-scale physics experiments (2XIIB and BBII) to large-scale steady-state DT burning systems, such as the Fusion Engineering Research Facility (FERF) and Controlled Thermonuclear Reactors (CTR) based on plasma confinement in open magnetic geometry. The confinement parameters in the design of the present machine include a 20-kG central field with a mirror ratio of 2 to 1 and an overall BL product approximately 5 times greater than that currently available with the 2XIIB compression coils (or a mirror-to-mirror length of 3.4 m). Several types of Yin-Yang minimum parallel B parallel geometries were studied, and a ''displaced'' Yin-Yang was chosen because the center of the machine is easily accessable between the coils and between the magnet lobes. Other important design considerations include the target plasma system, the vacuum system, and the injectors. The target plasma system includes a pellet generating system used to produce a 400-μm deuterium pellet and a two-arm laser system where the laser energy is produced from a 1-kJ, 10-GW CO 2 laser at 100 ns

  15. The effect of electronic health record software design on resident documentation and compliance with evidence-based medicine.

    Science.gov (United States)

    Rodriguez Torres, Yasaira; Huang, Jordan; Mihlstin, Melanie; Juzych, Mark S; Kromrei, Heidi; Hwang, Frank S

    2017-01-01

    This study aimed to determine the role of electronic health record software in resident education by evaluating documentation of 30 elements extracted from the American Academy of Ophthalmology Dry Eye Syndrome Preferred Practice Pattern. The Kresge Eye Institute transitioned to using electronic health record software in June 2013. We evaluated the charts of 331 patients examined in the resident ophthalmology clinic between September 1, 2011, and March 31, 2014, for an initial evaluation for dry eye syndrome. We compared documentation rates for the 30 evidence-based elements between electronic health record chart note templates among the ophthalmology residents. Overall, significant changes in documentation occurred when transitioning to a new version of the electronic health record software with average compliance ranging from 67.4% to 73.6% (p Electronic Health Record A had high compliance (>90%) in 13 elements while Electronic Health Record B had high compliance (>90%) in 11 elements. The presence of dialog boxes was responsible for significant changes in documentation of adnexa, puncta, proptosis, skin examination, contact lens wear, and smoking exposure. Significant differences in documentation were correlated with electronic health record template design rather than individual resident or residents' year in training. Our results show that electronic health record template design influences documentation across all resident years. Decreased documentation likely results from "mouse click fatigue" as residents had to access multiple dialog boxes to complete documentation. These findings highlight the importance of EHR template design to improve resident documentation and integration of evidence-based medicine into their clinical notes.

  16. The effect of electronic health record software design on resident documentation and compliance with evidence-based medicine.

    Directory of Open Access Journals (Sweden)

    Yasaira Rodriguez Torres

    Full Text Available This study aimed to determine the role of electronic health record software in resident education by evaluating documentation of 30 elements extracted from the American Academy of Ophthalmology Dry Eye Syndrome Preferred Practice Pattern. The Kresge Eye Institute transitioned to using electronic health record software in June 2013. We evaluated the charts of 331 patients examined in the resident ophthalmology clinic between September 1, 2011, and March 31, 2014, for an initial evaluation for dry eye syndrome. We compared documentation rates for the 30 evidence-based elements between electronic health record chart note templates among the ophthalmology residents. Overall, significant changes in documentation occurred when transitioning to a new version of the electronic health record software with average compliance ranging from 67.4% to 73.6% (p 90% in 13 elements while Electronic Health Record B had high compliance (>90% in 11 elements. The presence of dialog boxes was responsible for significant changes in documentation of adnexa, puncta, proptosis, skin examination, contact lens wear, and smoking exposure. Significant differences in documentation were correlated with electronic health record template design rather than individual resident or residents' year in training. Our results show that electronic health record template design influences documentation across all resident years. Decreased documentation likely results from "mouse click fatigue" as residents had to access multiple dialog boxes to complete documentation. These findings highlight the importance of EHR template design to improve resident documentation and integration of evidence-based medicine into their clinical notes.

  17. Preliminary S-CO_2 Compressor Design for Micro Modular Reactor

    International Nuclear Information System (INIS)

    Lee, Jekyoung; Cho, Seong Kuk; Kim, Seong Gu; Lee, Jeong Ik

    2016-01-01

    Due to economic benefit of S-CO_2 Brayton cycle which is came from high efficiency and compactness, active research is currently conducted by various research groups and various approaches are suggested to take benefits of S-CO_2 Brayton cycle. KAIST research team also has been working on advanced concept for application of S-CO_2 Brayton cycle to nuclear system and Micro Modular Reactor (MMR) concept was suggested. The preliminary compressor design of S-CO_2 compressor for MMR system was carried out to observe feasibility of compressor design. Preliminary S-CO_2 compressor design for MMR system was successfully conducted and some issues are discovered from the design study. From the previous work done by Cho, conceptual design for MMR system was provided. Thus, further preliminary design should be carried out to obtain feasible S-CO_2 compressor design for MMR system. KAIST_TMD which is turbomachinery in-house code for real gases including S-CO_2 is continuously updated and currently it has 3D geometry construction and design optimization capability

  18. A preliminary analysis of the BOP design management in nuclear power plant

    International Nuclear Information System (INIS)

    Tian Bin

    2014-01-01

    BOP project is an important part of nuclear power plant to maintain the normal operation and maintenance of the plant. The level of the design management has the important influences on the quality of the whole project, Design management includes the choice of the design standards, design evaluation, document control, the management of the design interface, design modification management and the management of the design service. The paper will start from various design issues in the construction of the Fuqing BOP project, analyse the causes of the problems on the design schedule management, interface, evaluation and the modification management. And then the paper also provides suggestions for improvement about all of this. (author)

  19. Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yueying; Kruger, Albert A.

    2013-12-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

  20. 42 CFR 137.360 - Does the Secretary approve project planning and design documents prepared by the Self-Governance...

    Science.gov (United States)

    2010-10-01

    ... design documents prepared by the Self-Governance Tribe? 137.360 Section 137.360 Public Health PUBLIC... HUMAN SERVICES TRIBAL SELF-GOVERNANCE Construction Roles of the Secretary in Establishing and... documents prepared by the Self-Governance Tribe? The Secretary shall have at least one opportunity to...

  1. Preliminary design study of the Tandem Mirror Reactor (TMR)

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-01-01

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb 3 Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given

  2. Development of an event-driven parser for active document and web-based nuclear design system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo

    2005-02-15

    Nuclear design works consist of extensive unit job modules in which many computer codes are used. Each unit module requires time-consuming and erroneous input preparation, code run, output analysis and quality assurance process. The task for safety evaluation of reload core is especially the most man-power intensive and time-consuming due to the large amount of calculations and data exchanges. The purpose of this study is to develop a new nuclear design system called Innovative Design Processor (IDP) in order to minimize human effort and maximize design quality and productivity, and then to achieve an ultimately optimized core loading pattern. Two new basic principles of IDP are the document-oriented design and the web based design. Contrary to the conventional code-oriented or procedure-oriented design, the document-oriented design is human-oriented in that the final document is automatically prepared with complete analysis, table and plots, if the designer writes a design document called active document and feeds it to a parser. This study defined a number of active components and developed an event-driven parser for the active document in HTML (Hypertext Markup Language) or XML (Extensible Markup Language). The active documents can be created on the web, which is another framework of IDP. Using proper mix-up of server side and client side programming under the HAMP (HP-UX/Apache/MySQL/PHP) environment, the document-oriented design process on the web is modeled as a design wizard for designer's convenience and platform independency. This automation using IDP was tested for the reload safety evaluation of Korea Standard Nuclear Power Plant (KSNP) type PWRs. Great time saving was confirmed and IDP can complete several-month jobs in a few days. More optimized core loading pattern, therefore, can be obtained since it takes little time to do the reload safety evaluation tasks with several core loading pattern candidates. Since the technology is also applicable to

  3. Development of an event-driven parser for active document and web-based nuclear design system

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2005-02-01

    Nuclear design works consist of extensive unit job modules in which many computer codes are used. Each unit module requires time-consuming and erroneous input preparation, code run, output analysis and quality assurance process. The task for safety evaluation of reload core is especially the most man-power intensive and time-consuming due to the large amount of calculations and data exchanges. The purpose of this study is to develop a new nuclear design system called Innovative Design Processor (IDP) in order to minimize human effort and maximize design quality and productivity, and then to achieve an ultimately optimized core loading pattern. Two new basic principles of IDP are the document-oriented design and the web based design. Contrary to the conventional code-oriented or procedure-oriented design, the document-oriented design is human-oriented in that the final document is automatically prepared with complete analysis, table and plots, if the designer writes a design document called active document and feeds it to a parser. This study defined a number of active components and developed an event-driven parser for the active document in HTML (Hypertext Markup Language) or XML (Extensible Markup Language). The active documents can be created on the web, which is another framework of IDP. Using proper mix-up of server side and client side programming under the HAMP (HP-UX/Apache/MySQL/PHP) environment, the document-oriented design process on the web is modeled as a design wizard for designer's convenience and platform independency. This automation using IDP was tested for the reload safety evaluation of Korea Standard Nuclear Power Plant (KSNP) type PWRs. Great time saving was confirmed and IDP can complete several-month jobs in a few days. More optimized core loading pattern, therefore, can be obtained since it takes little time to do the reload safety evaluation tasks with several core loading pattern candidates. Since the technology is also applicable to the

  4. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  5. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included

  6. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 2, Drawings

    International Nuclear Information System (INIS)

    1986-01-01

    This volume consists of 65 E size drawings and 4 sketches of the NUS spent fuel rod consolidation equipment. The drawings have been grouped into categories; a detailed list of the drawings is included. The sketches prepared during the preliminary design process have been included

  7. Notification: Preliminary Research on EPA's Design for the Environment Product Labeling Program OIG

    Science.gov (United States)

    Project #OPE-FY14-4012, November 06, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) Design for the Environment (DfE) Product Labeling Program.

  8. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1983-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II

  9. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description o...

  10. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  11. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  12. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  13. Adapting the design of Anesthesia Information Management Systems to innovations depicted in Industrial Property documents.

    Science.gov (United States)

    Spyropoulos, B; Tzavaras, A; Zogogianni, D; Botsivaly, M

    2013-01-01

    The purpose of this paper is to present the design and the current development status of an Anesthesia Information Management System (AIMS). For this system, the physical and technical advances, depicted in relevant, recently published Industrial Property documents, have been taken into account. Additional innovative sensors create further data-load to be managed. Novel wireless data-transmission modes demand eventually compliance to further proper standards, so that interoperability between AIMS and the existing Hospital Information Systems is being sustained. We attempted to define, the state-of-the-art concerning the functions, the design-prerequisites and the relevant standards and of an "emerging" AIMS that is combining hardware innovation, real-time data acquisition, processing and displaying and lastly enabling the necessary interoperability with the other components of the existing Hospital Information Systems. Finally, we report based on this approach, about the design and implementation status, of our "real-world" system under development and discuss the multifarious obstacles encountered during this still on-going project.

  14. Design and preliminary biomechanical analysis of artificial cervical joint complex.

    Science.gov (United States)

    Jian, Yu; Lan-Tao, Liu; Zhao, Jian-ning; Jian-ning, Zhao

    2013-06-01

    To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis. The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces. As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group. After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.

  15. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  16. Kemper County IGCC (tm) Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

    2012-07-01

    The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

  17. Design and preliminary assessment of Vanderbilt hand exoskeleton.

    Science.gov (United States)

    Gasser, Benjamin W; Bennett, Daniel A; Durrough, Christina M; Goldfarb, Michael

    2017-07-01

    This paper presents the design of a hand exoskeleton intended to enable or facilitate bimanual activities of daily living (ADLs) for individuals with chronic upper extremity hemiparesis resulting from stroke. The paper describes design of the battery-powered, self-contained exoskeleton and presents the results of initial testing with a single subject with hemiparesis from stroke. Specifically, an experiment was conducted requiring the subject to repeatedly remove the lid from a water bottle both with and without the hand exoskeleton. The relative times required to remove the lid from the bottles was considerably lower when using the exoskeleton. Specifically, the average amount of time required to grasp the bottle with the paretic hand without the exoskeleton was 25.9 s, with a standard deviation of 33.5 s, while the corresponding average amount of time required to grasp the bottle with the exoskeleton was 5.1 s, with a standard deviation of 1.9 s. Thus, the task time involving the paretic hand was reduced by a factor of five, while the standard deviation was reduced by a factor of 16.

  18. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  19. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  20. Preliminary design considerations for automatic refueling at N Reactor

    International Nuclear Information System (INIS)

    Quapp, W.J.; Yount, J.A.

    1985-01-01

    The Refueling Enhancement Program is an effort to upgrade and improve the N Reactor refueling operation. Primary goals of this effort are to reduce personnel exposure, reduce effluents to the environment, and, where possible, increase the refueling rate. Recent advances in available commercial robotics systems have prompted a look at automating the Charge/Discharge (C/D) operations. Current efforts will culminate in a conceptual design report (CDR) and accompanying economic and risk analysis in January 1986. Based on the results in that report, DOE will review the viability of the approach as a future capital project. Implementation of automation in existing plants raises questions regarding both the programmatic (how does one implement such an effort) and technical (what equipment is available; how will it be applied) concerns. This paper addresses both aspects

  1. Preliminary Design Study for a National Digital Seismograph Network

    Science.gov (United States)

    Peterson, Jon; Hutt, Charles R.

    1981-01-01

    Introduction Recently, the National Research Council published a report by the Panel on National, Regional, and Local Seismograph Networks of the Committee on Seismology in which the principal recommendation was for the establishment of a national digital seismograph network (NDSN). The Panel Report (Bolt, 1980) addresses both the need and the scientific requirements for the new national network. The purpose of this study has been to translate the scientific requirements into an instrumentation concept for the NSDS. There are literally hundreds, perhaps thousands, of seismographs in operation within the United States. Each serves an important purpose, but most have limited objectives in time, in region, or in the types of data that are being recorded. The concept of a national network, funded and operated by the Federal Government, is based on broader objectives that include continuity of time, uniform coverage, standardization of data format and instruments, and widespread use of the data for a variety of research purposes. A national digital seismograph network will be an important data resource for many years to come; hence, its design is likely to be of interest to most seismologists. Seismologists have traditionally been involved in the development and field operation of seismic systems and thus have been familiar with both the potential value and the limitations of the data. However, in recent years of increasing technological sophistication, the development of data sstems has fallen more to system engineers, and this trend is likely to continue. One danger in this is that the engineers may misinterpret scientific objectives or subordinate them to purely technological considerations. Another risk is that the data users may misuse or misinterpret the data because they are not aware of the limitations of the data system. Perhaps the most important purpose of a design study such as this is to stimulate a dialogue between system engineers and potential data users

  2. Preliminary electrostatic and mechanical design of a SINGAP-MAMuG compatible accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Grando, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: luca.grando@igi.cnr.it; Dal Bello, S.; De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Pilan, N. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Rizzolo, A.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    Each ITER NB injector shall provide 16.5 MW auxiliary power by accelerating a deuterium beam across a voltage of -1 MV. At present two possible alternatives for the accelerator are considered: the reference design, based on MAMuG electrostatic accelerator, where the total voltage is graded using five grids at intermediate steps of 200 kV, and the alternative concept, the SINGAP accelerator, for which the total voltage is held by one single gap. This paper focuses a preliminary feasibility study of integration of SINGAP accelerator grids into the support structure of a MAMuG type accelerator; the review or design of new electrostatic shields to improve the voltage withstanding capability of the system and the preliminary design of electrical and hydraulic connections routing from the bushing to the accelerator are also discussed. Electrostatic and mechanical analyses carried out to support the design are described in detail.

  3. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  4. Mont-Terri heater test: design and preliminary results

    International Nuclear Information System (INIS)

    Garcia-Sineriz, J.L.; Fuentes, J.L.; Mayor, J.C.; Huertas, F.

    2003-01-01

    Safety and long-term behaviour of underground permanent repositories depend on a combination of several engineered and geological barriers. The properties of the geological barriers are the natural conditions of the formation, while the performance of the engineered barriers is a result of their design and construction. The properties of the engineered barriers are deeply influenced by the interactions between both geological and engineered barriers in response to the conditions expected in a high level waste repository. These interactions need to be identified and fully understood to allow their input in models describing the behaviour of the near field to predict reliably the long-term performance and safety of a repository. The Heating Experiment (HE) project, which is taking place at the Mont-Terri underground laboratory in Switzerland, is conceived as a research project to learn more about the coupled thermo-hydro-mechanical processes in a clay formation around a heat source similar to those in a potential repository, with special emphasis on the interaction between the clay host rock and the bentonite buffer that is part of the engineered barrier, under saturated conditions. This project is co-funded by the European Commission and performed as part of the fifth EURATOM framework programme, key action Nuclear Fission (1998-2002). For that purpose, a central vertical borehole of 300 mm diameter and 7 m deep was drilled and an electrical heater surrounded with a Spanish bentonite buffer was installed inside. More than seventeen boreholes were instrumented for measuring parameters such as temperatures, total pressures, radial displacements, gas/water release and for performing geo-electric tomography. A total of 112 instruments were installed. The complexity of the issues involved requires a multi-partner approach and there exists a mutual interest of national research organisations to co-operate on a European level: two national agencies, which are responsible

  5. Design and preliminary results of the IMA plasma focus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H M; Masoud, M M [Arab Republic of Egypt, Atomic Energy Authority Plasma physics and Nuclear Fusion department, Cairo (Egypt)

    1994-12-31

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U{sub c} h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J{sub z} is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs.

  6. Design and preliminary results of the IMA plasma focus experiment

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1993-01-01

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U c h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J z is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs

  7. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  8. Mod-5A wind turbine generator program design report. Volume 2: Conceptual and preliminary design, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind tunnel generator is documented. There are four volumes. In Volume 2, book 2 the requirements and criteria for the design are presented. The development tests, which determined or characterized many of the materials and components of the wind turbine generator, are described.

  9. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  10. A study on the development plan and preliminary design of proton accelerator for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Choi, B H; Park, C K; Chung, K S. and others

    1997-11-01

    A study on the development plan and preliminary design for the realisation of high current proton accelerator to be used as an essential component for the R and D of accelerator-driven system (ADS) for energy production and transmutation of long-lived radionuclides. Various fields of application of the accelerator such as basic nuclear physics, material science, biology, high energy physics, medicine, etc. were also investigated. From the preliminary design study, 1 GeV (20 mA) - Linac is required for the purposed of transmutation and energy production. Specification of injector, RFQ, CCTL and SL was also suggested. For the case study, a duoplasmatron ion source was designed by KAERI and fabricated by a domestic manufacturer, and the performance was also tested. (author). 71 refs., 61 tabs., 131 figs

  11. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  12. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  13. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  14. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  15. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  16. Game Design Document Format For Video Games With Passive Dynamic Difficulty Adjustment

    Directory of Open Access Journals (Sweden)

    Pratama Wirya Atmaja

    2016-07-01

    satisfaction of its players is the primary mean to measure its quality. One important element of player’s satisfaction is a proper difficulty level, which is neither too easy nor too hard. The current state-of-the-art way to implement it is with Dynamic Difficulty Adjustment (DDA, which allows the difficulty level of a video game to be adjusted at run-time. Currently, the most popular type of DDA is the passive one. Meanwhile, Game Design Document (GDD is an important artefact in the development process of a video game software, and there is still no GDD format that supports the design of passive DDA mechanism. The aim of this research was to find a new GDD format that supports the mechanism. We modified a general purpose GDD format by adding new parts for designing passive DDA mechanism. We tested the usefulness of the modified format in a testing process involving developers and players. The developers developed video games using the modified GDD format and the general purpose one. Their development processes were observed and evaluated to know if there were any difficulties. The resulting video games were played by the players to find which are better in terms of passive DDA mechanism. The result of developer testing showed that the modified format is better than the general purpose one. The result of player testing showed that the video games made with the modified format are better than their counterparts, albeit by an insignificant margin. Based on the results, we declare that the modified GDD format is successful.Keywords: Video game, requirement engineering, game design document, dynamic difficulty adjustment, software development.

  17. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    Trapasiya, Shobhit; Muvvala, Venkata Nagaraju; Rambilas, P.; Gangadharan, Roopesh; Rotti, Chandramouli; Chakraborty, Arun Kumar; Sharma, Dheeraj Kumar

    2015-01-01

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  18. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  19. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  20. Crew Health Care System (CHeCS) Design Research, Documentations, and Evaluations

    Science.gov (United States)

    CLement, Bethany M.

    2011-01-01

    The Crew Health Care System (CHeCS) is a group within the Space Life Science Directorate (SLSD) that focuses on the overall health of astronauts by reinforcing the three divisions - the Environmental Maintenance System (EMS), the Countermeasures System (CMS), and the Health Maintenance System (HMS). This internship provided opportunity to gain knowledge, experience, and skills in CHeCS engineering and operations tasks. Various and differing tasks allowed for occasions to work independently, network to get things done, and show leadership abilities. Specific exercises included reviewing hardware certification, operations, and documentation within the ongoing Med Kit Redesign (MKR) project, and learning, writing, and working various common pieces of paperwork used in the engineering and design process. Another project focused on the distribution of various pieces of hardware to off-site research facilities with an interest in space flight health care. The main focus of this internship, though, was on a broad and encompassing understanding of the engineering process as time was spent looking at each individual step in a variety of settings and tasks.

  1. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  2. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  3. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  4. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  5. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  6. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  7. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  8. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  9. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  10. Essential issues in the design of shared document/image libraries

    Science.gov (United States)

    Gladney, Henry M.; Mantey, Patrick E.

    1990-08-01

    We consider what is needed to create electronic document libraries which mimic physical collections of books, papers, and other media. The quantitative measures of merit for personal workstations-cost, speed, size of volatile and persistent storage-will improve by at least an order ofmagnitude in the next decade. Every professional worker will be able to afford a very powerful machine, but databases and libraries are not really economical and useful unless they are shared. We therefore see a two-tier world emerging, in which custodians of information make it available to network-attached workstations. A client-server model is the natural description of this world. In collaboration with several state governments, we have considered what would be needed to replace paper-based record management for a dozen different applications. We find that a professional worker can anticipate most data needs and that (s)he is interested in each clump of data for a period of days to months. We further find that only a small fraction of any collection will be used in any period. Given expected bandwidths, data sizes, search times and costs, and other such parameters, an effective strategy to support user interaction is to bring large clumps from their sources, to transform them into convenient representations, and only then start whatever investigation is intended. A system-managed hierarchy of caches and archives is indicated. Each library is a combination of a catalog and a collection, and each stored item has a primary instance which is the standard by which the correctness of any copy is judged. Catalog records mostly refer to 1 to 3 stored items. Weighted by the number of bytes to be stored, immutable data dominate collections. These characteristics affect how consistency, currency, and access control of replicas distributed in the network should be managed. We present the large features of a design for network docun1ent/image library services. A prototype is being built for

  11. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  12. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  13. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  14. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  15. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  16. Design and implementation of an inpatient physician documentation system using off-the-shelf components.

    Science.gov (United States)

    Cucina, Russell J; Bokser, Seth J; Carter, Jonathan T; McLaren, Kevin M; Blum, Michael S

    2007-10-11

    We report the development and implementation of an electronic inpatient physician documentation system using off-the-shelf components, rapidly and at low cost. Within 9 months of deployment, over half of physician notes were electronic, and within 20 months, paper physician notes were eliminated. Our results suggest institutions can prioritize conversion to inpatient electronic physician documentation without waiting for development of sophisticated software packages or large capital investments.

  17. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  18. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  19. Preliminary structural evaluations of the STAR-LM reactor vessel and the support design

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Sienicki, James J.; Moisseytsev, Anton

    2007-01-01

    In this paper, preliminary structural evaluations of the reactor vessel and support design of the STAR-LM (The Secure, Transportable, Autonomous Reactor - Liquid Metal variant), which is a lead-cooled reactor, are carried out with respect to an elevated temperature design and seismic design. For an elevated temperature design, the structural integrity of a direct coolant contact to the reactor vessel is investigated by using a detail structural analysis and the ASME-NH code rules. From the results of the structural analyses and the integrity evaluations, it was found that the design concept of a direct coolant contact to the reactor vessel cannot satisfy the ASME-NH rules for a given design condition. Therefore, a design modification with regards to the thermal barrier is introduced in the STAR-LM design. For a seismic design, detailed seismic time history response analyses for a reactor vessel with a consideration of a fluid-structure interaction are carried out for both a top support type and a bottom support type. And from the results of the hydrodynamic pressure responses, an investigation of the minimum thickness design of the reactor vessel is tentatively carried out by using the ASME design rules

  20. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. The database system for the management of technical documentations of PWR fuel design project using CD-ROM

    International Nuclear Information System (INIS)

    Park, Bong Sik; Lee, Won Jae; Ryu, Jae Kwon; Jo, In Hang; Chang, Jong Hwa.

    1996-12-01

    In this report, the database system developed for the management of technical documentation of PWR fuel design project using CD-ROM (compact disk - read only memory) is described. The database system, KIRDOCM (KAERI Initial and Reload Fuel project technical documentation management), is developed and installed on PC using Visual Foxpro 3.0. Descriptions are focused on the user interface of the KIRDOCM. Introduction addresses the background and concept of the development. The main chapter describes the user requirements, the analysis of computing environment, the design of KIRDOCM, the implementation of the KIRDOCM, user's manual of KIRDOCM and the maintenance of the KIRDOCM for future improvement. The implementation of KIRDOCM system provides the efficiency in the management, maintenance and indexing of the technical documents. And, it is expected that KIRDOCM may be a good reference in applying Visual Foxpro for the development of information management system. (author). 2 tabs., 13 figs., 8 refs

  2. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  3. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    Science.gov (United States)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  4. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations

  5. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    International Nuclear Information System (INIS)

    Broekema, P.C.; Nieuwpoort, R.V. van; Bal, H.E.

    2015-01-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload

  6. 1972 preliminary safety analysis report based on a conceptual design of a proposed repository in Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    1977-08-01

    This preliminary safety analysis report is based on a proposed Federal Repository at Lyons, Kansas, for receiving, handling, and depositing radioactive solid wastes in bedded salt during the remainder of this century. The safety analysis applies to a hypothetical site in central Kansas identical to the Lyons site, except that it is free of nearby salt solution-mining operations and bore holes that cannot be plugged to Repository specifications. This PSAR contains much information that also appears in the conceptual design report. Much of the geological-hydrological information was gathered in the Lyons area. This report is organized in 16 sections: considerations leading to the proposed Repository, design requirements and criteria, a description of the Lyons site and its environs, land improvements, support facilities, utilities, different impacts of Repository operations, safety analysis, design confirmation program, operational management, requirements for eventually decommissioning the facility, design criteria for protection from severe natural events, and the proposed program of experimental investigations. (DLC)

  7. Preliminary structural design of composite main rotor blades for minimum weight

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.

  8. Gas turbine designer computer program - a study of using a computer for preliminary design of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Rickard

    1995-11-01

    This thesis presents calculation schemes and theories for preliminary design of the fan, high pressure compressor and turbine of a gas turbine. The calculations are presented step by step, making it easier to implement in other applications. The calculation schemes have been implemented as a subroutine in a thermodynamic program. The combination of the thermodynamic cycle calculation and the design calculation turned out to give quite relevant results, when predicting the geometry and performance of an existing aero engine. The program developed is able to handle several different gas turbines, including those in which the flow is split (i.e. turbofan engines). The design process is limited to the fan, compressor and turbine of the gas turbine, the rest of the components have not been considered. Output from the program are main geometry, presented both numerically and as a scale plot, component efficiencies, stresses in critical points and a simple prediction of turbine blade temperatures. 11 refs, 21 figs, 1 tab

  9. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  10. Preliminary safety assessment study for the conceptual design of a repository in tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-12-01

    Preliminary estimates of the upper bounds on postulated worst-case radiological releases resulting from possible accidents during the operating period of a prospective repository in tuff at Yucca Mountain are presented. Possible disrupting events are screened to identify the accidents of greatest potential consequence. The radiological dose commitments for the general public and repository personnel are estimated for postulated releases caused by natural phenomena, man-made events, and operational accidents. All postulated worst-case releases result in doses to the public that are lower than the 0.5-rem, whole-body dose-per-accident limit set by the Nuclear Regulatory Commission (NRC) in 10 CFR 60. Doses to repository personnel are within the NRC's 5.0-rem/yr occupational exposure limit set in 10 CFR 20 for normal operations. Doses are within this limit for all accidents except the transportation accident and fire in a drift. A preliminary risk assessment has also been performed. Based on this preliminary safety study, the proposed site boundaries and design criteria routinely used in constructing nuclear facilities appear to be adequate to protect the safety of the general public during the operating phase of the repository

  11. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  12. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  13. Judicial problems in connection with preliminary decision and construction design approval in nuclear licensing procedures

    International Nuclear Information System (INIS)

    Schmieder, K.

    1977-01-01

    Standardization in nuclear engineering makes two demands on a legal instrument which is to make this standardization possible and which is to promote standardization in the nuclear licensing practice: On the basis of just one licence for a constructional part or a component, its applicability in any number of subsequent facility licensing procedures has to be warranted, and by virtue of its binding effect, standardization has to create a sufficiently big confidence protection with manufacturers, constructioneers and operators to offer sufficiently effective incentives for standardization. The nuclear preliminary decision pursuant to section 7 a of the Atomic Energy Act in the form of the component preliminary decision appears to be unsuitable as a legal instrument for standardization, as the preliminary decision refers exclusively to the construction of a concrete facility. For standardization in reactor engineering, the construction design approval appears to be basically the proper legal instrument on account of its legal structure as well as its economic effect. Its binding effect encouters a limitation with regard to third parties in so far that this limitation could question again the binding effect in a subsequent site-dependent nuclear licence procedure. The legal structure of the extent of the binding effect, which is decisive for the suitability of the construction design approval, lies with the legislator. The following questions have to be regulated: Ought the applicant to have a legal claim on the granting of a construction design approval, or ought it to be at the discretion of the authorities, and secondly, the extent of the binding effect in terms of time on the basis of the fixation of a time limit, or on the basis of the possibility of subsequent conditions to be imposed, or the revocation. (orig./HP) [de

  14. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Kiju Lee

    2018-05-01

    Full Text Available Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach.Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept were also administered.Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  15. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  16. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  17. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  18. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  19. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  20. Preliminary neutron design of the flux flatter for silicon doping at the RA10

    International Nuclear Information System (INIS)

    Cintas, A.; Bazzana, S.

    2012-01-01

    The neutron transmutation doping of silicon (NTD) is one of the facilities under development for the RA10 project. In order to obtain high quality semiconductor, commercial requirements of NTD include achieving high axial and radial uniformity in the silicon targets. Axial uniformity is achieved locating a neutron screen around the Si ingot, obtaining a flat axial distribution of the dopant concentration. We present the neutron design of this screen, also known as flux flattener. MCNP5 was used to model the screen design. We have reached a satisfactory preliminary screen design after numerous iterations. The fluctuation in the axial distribution of the reaction capture rate ( 30 Si(n,γ) 31 Si) is under ≠1,5%, which is the required level by the semiconductor industry to accept the final product (author)

  1. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  2. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  3. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  4. Preliminary physical design of 7 MeV proton RFQ for the accelerator driven-energy system

    International Nuclear Information System (INIS)

    Luo Zihua

    2000-01-01

    The preliminary physical design of 7 MeV proton RFQ for the ADS (Accelerator Driven-energy System) is briefly described. The design features and the basic parameters and the design version of the RFQ are discussed. The matches between IS and RFQ and between RFQ and CCDTL/DTL are also discussed. The ideas of research for the RFQ are presented

  5. Risk-informed analysis as a support to the preliminary design of the CEA GFR2400

    International Nuclear Information System (INIS)

    Bertrand, F.; Bassi, C.; Azria, P.; Bentivoglio, F.; Messie, A.; Balmain, M.

    2012-01-01

    The integration of safety issues in the early phase of the design of a 4. generation reactor of the concepts is expected. For this purpose, probabilistic insights are increasingly employed in the safety demonstration in combination with the deterministic approach in the frame of a so-called risk informed approach. The present paper deals with the safety assessment of the preliminary design of the GFR2400 developed by CEA and how it has been improved in order to fulfil deterministic criteria as well as to reach a risk level comparable to the generation III reactors. GFR2400 is a 2400 MWth, 3-loops, helium-cooled fast reactor developed at a pre-conceptual design stage whose secondary circuit is filled with a mixture of helium and nitrogen, the ternary circuit being filled with water vaporized in 3 steam generators according to a classical Rankine cycle. The resulting cycle efficiency is very close to 45 %. Considering the results obtained with a preliminary level 1 PSA (L1PSA) model, it emerged that an increased reliability of the DHR (Decay Heat Removal) function in high pressure conditions (not corresponding to a LOCA) was suitable to reduce the overall core damage frequency. On the other hand, some small break LOCA situations were not adequately mitigated according to the line of protection deterministic method. Both issues have been solved by design improvements. In addition, this final L1PSA model, characterized by success criteria based on transient calculations performed with the CATHARE2 code and performed in a perimeter extended to all representative internal initiating events at full operating power, permitted to propose design evolutions that did not increase significantly the CDF. In the same time, those evolutions enabled the DHR system to increase its redundancy level as required in the deterministic approach. Finally, a modified design has been reached implying a more extended covering of various accidental situations by means of a progressive DHR

  6. Does decision documentation help junior designers rationalize their decisions? A comparative multiple-case study

    NARCIS (Netherlands)

    Heesch, U. van; Avgeriou, P.; Tang, A.

    Software architecture design is challenging, especially for junior software designers. Lacking practice and experience, junior designers need process support in order to make rational architecture decisions. In this paper, we present the results of a comparative multiple-case study conducted to find

  7. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  8. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  9. Design and preliminary testing of a Bottom-Mounted Second Shutdown Drive Mechanism for the KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghaun; Lee, Jin Haeng; Yoo, Yeon-Sik, E-mail: yooys@kaeri.re.kr; Cho, Yeong-Garp; Lee, Hyokwang; Sun, Jongoh; Ryu, Jeong Soo

    2016-10-15

    Highlights: • The basic design principle, features and characteristics of the BMSSDM for KJRR are described. • The current development status based on practical fabrications, performance tests, and evaluations is described. • We have verified that all of the BMSSDM components satisfied their design requirements. • All of the performance requirements are satisfied from the performance test results. • The endurance test results show there are no structural failures and the wear of the impact parts in the hydraulic cylinder assembly is negligible. - Abstract: The KiJang Research Reactor (KJRR) is now being designed and undergoing preliminary construction by the Korea Atomic Energy Research Institute (KAERI). The driving parts of the Second Shutdown Drive Mechanism (SSDM) for the KJRR are located in a Reactivity Control Mechanism (RCM) room below the reactor pool bottom. In this paper, the design principle and concept of the Bottom-Mounted SSDM (BMSSDM) for the KJRR are introduced. From the experimental evaluations of the design, fabrication and performance, we verified that all of the BMSSDM components in the current design and development status satisfy their design requirements.

  10. Preliminary neutronic design of spock reactor: A nuclear system for space power generation

    International Nuclear Information System (INIS)

    Burgio, N.; Santagata, A.; Cumo, M.; Fasano, A.; Frullini, M.

    2007-01-01

    Aim of this paper is to preliminary investigates the neutronic features of an upgrade of the MAUS [1] nuclear reactor whose core will be able to supply a thermoelectric converter in order to generate 30 kW of electricity for space applications. The neutronic layout of SPOCK (Space Power Core Ka) is a compact, MOX fuelled, liquid metal cooled and totally reflected fast reactor with a control system based on neutron absorption. Spock, that during the heart and launch operation must be maintained in sub-critical state, has to start up in the outer space at 40 K temperatures with the coolant in a solid state and it will reach the operating steady condition at the maximum temperature of 1300 K with the coolant in the liquid state. The main design goal is to maintains, in the operating conditions of a typical space mission, the control of the appropriate criticality margin versus temperature and coolant physical state. For this purpose, a neutronic/thermal-hydraulic calculation chain able to assists the entire design process must be set up. As preliminary recognition, MCNPX 2.5.0 and FLUENT calculations were carried out. The emerging key features of SPOCK are: an equilateral triangular mesh of 91 cylindrical UO 2 fuel rods with a Molybdenum clad ensured by two grids of the same material, cooled by liquid Sodium and contained in an AISI 316 L vessel. The core is totally wrapped by a Beryllium reflector that hosts six absorber (B 4 C) rotating control rods. The reactor shape is cylindrical (radius = 30 cm and height = 60 cm) with a total mass of 275 kg. The excess reactivity was of 5000 PCM at 1300 K. A preliminary evaluation of the control rods worth and a power spatial distribution were also discussed. Through the definition of an ideal reference K e ff value at 300 K for the actual SPOCK configuration, a sensitivity analysis on various cross sections data and material physical properties was performed for the given mission temperature range, allowing consideration on

  11. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  12. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    International Nuclear Information System (INIS)

    Oh, J.S.; Choi, J.; Suh, J.H.; Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W.; Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H.

    2013-01-01

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients

  13. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    Science.gov (United States)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  14. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.S., E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, J.; Suh, J.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W. [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H. [Hyosung Corp., 450, Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); and others

    2013-10-15

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients.

  15. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  16. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  17. Preliminary power train design for a state-of-the-art electric vehicle

    Science.gov (United States)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  18. Customer Relationship Management System in Occupational Safety & Health Companies: Research on Practice and Preliminary Design Solution

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-10-01

    Full Text Available One of the most prominent contemporary trends in formation of companies is the approach to development of a customer-oriented company. In this matter, various versions related to the intensity of this orientation are differentiated. Customer relationship management (CRM system is a well-known concept, and its practice is being studied and improved in connection to various sectors. Companies providing services of occupational safety and health (OHS mainly cooperate with a large number of customers and the quality of this cooperation largely affects the occupational safety and health of employees. Therefore, it is of both scientific and wider social interest to study and improve the relationship of these companies with their customers. This paper investigates the practice of applying CRM in Croatian OHS companies. It identifies the existing conditions and suggests possible improvements in the practice of CRM, based on experts’ assessments using analytic hierarchy process evaluation. Universal preliminary design was created as a framework concept for the formation of a typical customer-oriented OHS services company. Preliminary design includes a structural view, which provides more details through system diagrams, and an illustration of main cooperation processes of a company with its customer.

  19. MOD-2 wind turbine system concept and preliminary design report. Volume 2: Detailed report

    Science.gov (United States)

    1979-01-01

    The configuration development of the MOD-2 wind turbine system (WTS) is documented. The MOD-2 WTS project is a continuation of DOE programs to develop and achieve early commercialization of wind energy. The MOD-2 is design optimized for commercial production rates which, in multiunit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than four cents per kilowatt hour.

  20. Does decision documentation help junior designers rationalize their decisions? A comparative multiple-case study

    OpenAIRE

    Heesch, U. van; Avgeriou, P.; Tang, A.

    2013-01-01

    Software architecture design is challenging, especially for junior software designers. Lacking practice and experience, junior designers need process support in order to make rational architecture decisions. In this paper, we present the results of a comparative multiple-case study conducted to find out if decision viewpoints from van Heesch et al. (2012, in press) can provide such a support. The case study was conducted with four teams of software engineering students working in industrial s...

  1. TPX: Contractor preliminary design review. Volume 1, Presentation and design description. Final report

    International Nuclear Information System (INIS)

    Hartman, D.; Naumovich; Walstrom, P.; Clarkson, I.; Schultheiss, J.; Burger, A.

    1995-01-01

    This first volume of the five volume set begins with a CPDR overview and then details the PF magnet system, manufacturing R ampersand D, Westinghouse R ampersand D, the central solenoid, the PF 5 ring coil, the PF 6/7 ring coil, quality assurance, and the system design description

  2. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  3. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  4. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  5. TPX: Contractor preliminary design review. Volume 5, Manufacturing R ampersand D

    International Nuclear Information System (INIS)

    Roach, J.F.; Urban, W.M.; Hartman, D.

    1995-01-01

    TPX Insulation ampersand Impregnation R ampersand D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed

  6. Preliminary design studies of the draining tanks for the Molten Salt Fast Reactor

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Allibert, M.; Heuer, D.; Brovchenko, M.; Laureau, A.; Ghetta, V.; Rubiolo, P.

    2014-01-01

    reactor called the Molten Salt Fast Reactor (MSFR). The reference MSFR design is a 3000 MWth reactor with a total fuel salt volume of 18 m3, operated at a mean fuel temperature of 750 deg. C. The first confinement barrier of the reactor includes a salt draining system. In case of a planned reactor shut down or in case of accidents leading to an excessive increase of the temperature in the fuel circuit, the fuel configuration may be changed passively by gravitational draining of the fuel salt in dedicated draining tank located under the reactor and designed to provide adequate reactivity margins while insuring a passive cooling of the fuel salt to extract the residual heat from the short to the long term. The present preliminary assessment of this sub-critical draining system has been performed to identify the physical constraints and to give some orders of magnitude of characteristic time periods (authors)

  7. TPX: Contractor preliminary design review. Volume 5, Manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.F.; Urban, W.M.; Hartman, D. [Everson Electric Co., Bekthlehem, PA (United States)

    1995-08-04

    TPX Insulation & Impregnation R&D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed.

  8. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  9. Optimization study and preliminary design for Latina NPP early core retrieval and reactor dismantling

    International Nuclear Information System (INIS)

    Macci, E.; Zirpolo, S.; Imparato, A.; Cacace, A.; Parry, D.; Walkden, P.

    2002-01-01

    In June 2000, an agreement was established between Sogin and BNFL to enable the two companies to co-operate, using their specific experiences in the decommissioning field, for the benefit of projects in Italy, the United Kingdom and for third markets. A decommissioning strategy for the Latina NPP was initially developed in a Phase 1 Study which produced a conceptual design for the decommissioning of the reactor. This study was completed in June 2000. Since then, a second study has been completed, which has further developed the strategy and produced preliminary designs for the early dismantling of the core and reactor building at Latina. The engineering and safety data were produced in order to support Sogin in the preparation of a safety case for plant decommissioning. This safety case was submitted to the Italian Regulator, ANPA, in February 2002. (author)

  10. Using the Front Page of "The Wall Street Journal" to Teach Document Design and Audience Analysis.

    Science.gov (United States)

    Moore, Patrick

    1989-01-01

    Explains an assignment for the audience analysis segment of a business writing course which compares the front page design of "The Wall Street Journal" with that of a local daily newspaper in order to emphasize the use of design devices in effectively writing to busy people. (SR)

  11. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  12. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  13. Multilivel interfaces for power plant control rooms II: A preliminary design space

    International Nuclear Information System (INIS)

    Vicente, K.J.

    1992-01-01

    Events that are unfamiliar to operators and that have not been anticipated by designers pose the greatest threat to system safely in nuclear power plants. The abstraction hierarchy has been proposed as a representation frame-work that can be adopted to design interfaces that support operators in dealing with these unanticipated events. It consists of a multilevel representation format that represents a plant in terms of both physical and functional constraints. In a companion article, the work that has been done on this topic in academia, industry, and research laboratories was reviewed. On the basis of the results of that review, this article proposes a preliminary design space for multilevel interfaces based on the abstraction hierarchy. This space serves several worthwhile purposes: providing a unified framework within which to compare and contrast previous and future work in this area, providing a coherent research agenda by identifying some of the dimensions that can be meaningfully manipulated and evaluated in future experiments, and finally, serving as an input design by outlining the various decisions that need to be made in developing multilevel interfaces and the different options that are currently available for each of those decisions. Consequently this article should be of interest to researchers, designers, and regulators concerned with nuclear power-plant control rooms

  14. Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  15. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    Science.gov (United States)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  16. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  17. Engineering design, stress and thermal analysis, and documentation for SATS program

    Science.gov (United States)

    1973-01-01

    An in-depth analysis and mechanical design of the solar array stowage and deployment arrangements for use in Small Applications Technology Satellite spacecraft is presented. Alternate approaches for the major elements of work are developed and evaluated. Elements include array stowage and deployment arrangements, the spacecraft and array behavior in the spacecraft despin mode, and the design of the main hinge and segment hinge assemblies. Feasibility calculations are performed and the preferred approach is identified.

  18. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  19. DSRS guidelines. Reference document for the IAEA Design Safety Review Services

    International Nuclear Information System (INIS)

    1999-01-01

    The publication covers the general topic of design safety review of a nuclear power plant. It is intended to make Member States aware of the possibility of a service through which they can have a better appreciation of the overall design of a facility or of a plant already in operation. It includes a generic and procedural part followed by a technical part corresponding to different systems of a nuclear power plant. It is intended to be used mainly in preparation and execution of a design review service by the IAEA and to provide information to potential recipients of the service regarding the effort involved and the topics that can be covered. it is expected to be useful if Member States decide to conduct such reviews themselves either through regulatory authorities or as part of self assessment activities by plant management

  20. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  1. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  2. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bauer, S.J.

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs

  3. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  4. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    Science.gov (United States)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  5. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  6. Preliminary concept design of the divertor remote handling system for DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Di Gironimo, G. [ENEA/CREATE/University of Naples Federico II, 80125 Naples (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2014-11-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor Mover: Hydraulic telescopic boom concept design. An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • Transportation cask conceptual studies and logistic. - Abstract: This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes. This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.

  7. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    Science.gov (United States)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  8. Beyond-design-basis accident management in the RF regulation documents

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    2010-01-01

    The article observes the issues of the management of beyond-design-basis accidents (BDBA) in the existing regulations in Russia. The ideology of the approach to the definition of the BDBA list to formulate the management guidelines has been proposed [ru

  9. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  10. Preliminary conceptual designs for advanced packages for the geologic disposal of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1979-04-01

    The present study assumes that the spent fuel will be disposed of in mined repositories in continental geologic formations, and that the post-emplacement control of the radioactive species will be accomplished independently by both the natural barrier, i.e., the geosphere, and the engineered barrier system, i.e., the package components consisting of the stabilizer, the canister, and the overpack; and the barrier components external to the package consisting of the hole sleeve and the backfill medium. The present document provides an overview of the nature of the spent fuel waste; the general approach to waste containment, using the defense-in-depth philosophy; material options, both metallic and nonmetallic, for the components of the engineered barrier system; a set of strawman criteria to guide the development of package/engineered barrier systems; and four preliminary concepts representing differing approaches to the solution of the containment problem. These concepts use: a corrosion-resistant meta canister in a special backfill (2 barriers); a mild steel canister in a corrosion-resistant metallic or nonmetallic hole sleeve, surrounded by a special backfill (2 barriers); a corrosion-resistant canister and a corrosion-resistant overpack (or hole sleeve) in a special backfill (3 barriers); and a mild steel canister in a massive corrosion-resistant bore sleeve surrounded by a polymer layer and a special backfill (3 barriers). The lack of definitive performance requirements makes it impossible to evaluate these concepts on a functional basis at the present time.

  11. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    Science.gov (United States)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  12. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  13. Preliminary studi on neutronic aspect of a conceptual design of the Kartini reactor base ADS facility

    International Nuclear Information System (INIS)

    Tegas Sutondo

    2012-01-01

    A preliminary study on neutronic aspect of a conceptual design of ADS facility with the basis of Kartini Reaktor, has been performed. The study was intended to see the feasibility from neutronic point of view of Kartini reactor, to be used as a small scale of NPP’s waste transmutation experimental facility. A SRAC code was used as the basis of calculations. The results indicate that the presence of minor actinides (MA) will give a positive reactivity, which tends to increase with the increase of MA concentrations. Based on the defined criteria of subcriticality and by considering the core power distributions and the level of reactivity contribution of MA element, it is concluded that Kartini reactor is potential enough to be used as an ADS experimental facility, mainly for MA concentration between 30 to 50 % of the assumed mixture of C-MA matrix. (author)

  14. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A., E-mail: awaris@fi.itb.ac.id; Basar, K. [Nuclear Physics & Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

    2016-03-11

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  15. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    International Nuclear Information System (INIS)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility

  16. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    International Nuclear Information System (INIS)

    Waris, A.; Basar, K.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.

    2016-01-01

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  17. The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO

    Energy Technology Data Exchange (ETDEWEB)

    Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Brooks, A F; Hosken, D J; Munch, J; Veitch, P J [Department of Physics, The University of Adelaide, Adelaide, SA, 5005 Australia (Australia); Charlton, P [School of Computing and Mathematics, Charles Sturt University, NSW 2678 (Australia); Galloway, D [School of Mathematical Sciences, Monash University, Vic 3800 (Australia); Hughes, S [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); McClelland, D E; Scott, S M; Slagmolen, B J J [Department of Physics, Australian National University, Canberra, ACT 0200 (Australia); Melatos, A [School of Physics University of Melbourne, Parkville Vic 3010 Australia (Australia)], E-mail: dgb@physics.uwa.edu.au (and others)

    2008-07-15

    The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor {approx}4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design.

  18. The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO

    International Nuclear Information System (INIS)

    Blair, D G; Barriga, P; Coward, D; Dumas, J-C; Fan, Y; Gras, S; Howell, E; Ju, L; Miao, H; Brooks, A F; Hosken, D J; Munch, J; Veitch, P J; Charlton, P; Galloway, D; Hughes, S; McClelland, D E; Scott, S M; Slagmolen, B J J; Melatos, A

    2008-01-01

    The proposed southern hemisphere gravitational wave detector AIGO increases the projected average baseline of the global array of ground based gravitational wave detectors by a factor ∼4. This allows the world array to be substantially improved. The orientation of AIGO allows much better resolution of both wave polarisations. This enables better distance estimates for inspiral events, allowing unambiguous optical identification of host galaxies for about 25% of neutron star binary inspiral events. This can allow Hubble Law estimation without optical identification of an outburst, and can also allow deep exposure imaging with electromagnetic telescopes to search for weak afterglows. This allows independent estimates of cosmological acceleration and dark energy as well as improved understanding of the physics of neutron star and black hole coalescences. This paper reviews and summarises the science benefits of AIGO and presents a preliminary conceptual design

  19. Design principle of TVO's final repository and preliminary adaptation to site specific conditions

    International Nuclear Information System (INIS)

    Salo, J-P.; Reikkola, R.

    1995-01-01

    Teollisuuden Voima Oy (TVO) is responsible for the management of spent fuel produced by the Olkiluoto power plant. TVO's current programme of spent fuel management is based on the guidelines and time schedule set by the Finnish Government. TVO has studied a final disposal concept in which the spent fuel bundles are encapsulated in copper canisters and emplaced in Finnish bedrock. According to the plan the final repository for spent fuel will be in operation by 2020. TVO's updated technical plans for the disposal of spent fuel together with a performance analysis (TVO-92) were submitted to the authorities in 1992. The paper describes the design principle of TVO's final repository and preliminary adaptation of the repository to site specific conditions. (author). 10 refs., 5 figs

  20. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  1. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  2. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  3. Software documentation and user's manual for fish-impingement sampling design and estimation method computer programs

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-11-01

    This report contains a description of three computer programs that implement the theory of sampling designs and the methods for estimating fish-impingement at the cooling-water intakes of nuclear power plants as described in companion report ANL/ES-60. Complete FORTRAN listings of these programs, named SAMPLE, ESTIMA, and SIZECO, are given and augmented with examples of how they are used

  4. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  5. Conceptual design of disposal facility below the generally used depth. Document prepared by other institute, based on the trust contract

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Wataru; Nakagawa, Tatsuo; Mukunoki, Atsushi; Goto, Kikuji [JGC Corp., Tokyo (Japan)

    2002-02-01

    Radioisotope, nuclear fuel materials, and so on have been used in the various fields such as the research activities of universities and research institutes or the treatment and diagnosis of the medical institutes. It is necessary to treat and dispose of radioactive wastes safety and economically. However, as for radioactive wastes disposal below the generally used depth, a concrete disposal concept isn't examined, and the safety of disposal isn't evaluated, either. This report contains building of the database for the radioactive wastes applicable for disposal below the generally used depth, and preliminary safety evaluation was enforced on the setup of condition presumed in the present. Finally subjects for the conceptual design of the disposal facility below the generally used depth were extracted. (author)

  6. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  7. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  8. Advanced software development workstation. Engineering scripting language graphical editor: DRAFT design document

    Science.gov (United States)

    1991-01-01

    The Engineering Scripting Language (ESL) is a language designed to allow nonprogramming users to write Higher Order Language (HOL) programs by drawing directed graphs to represent the program and having the system generate the corresponding program in HOL. The ESL system supports user generation of HOL programs through the manipulation of directed graphs. The components of this graphs (nodes, ports, and connectors) are objects each of which has its own properties and property values. The purpose of the ESL graphical editor is to allow the user to create or edit graph objects which represent programs.

  9. Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    Science.gov (United States)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les

    1991-01-01

    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.

  10. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  11. Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF+)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il, E-mail: nwiko@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Ho Hee, E-mail: nhhlee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Sungyeol, E-mail: csy@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Ki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Byung Heung, E-mail: b.h.park@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, In Tae, E-mail: nitkim@kaeri.re.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Han Soo, E-mail: hslee5@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-10-01

    Highlights: • Conceptual design is created for a pilot pyroprocessing plant treating PWR spent fuel. • Pilot-scale design is based on a capacity of 400 tHM/yr with 60 years lifetime. • All individual processes are integrated into a single system from feed to products. • Overall facility design is developed for a pilot pyroprocessing plant. • Unit process cost is estimated for pyroprocessing with uncertainties. - Abstract: Korea has developed pyroprocessing technology as a potential option for recycling spent fuels (SFs) from pressurized water reactors (PWRs). The pyroprocessing consists of various key unit processes and a number of research activities have been focused on each process. However, to realize the whole pyroprocessing concept, there is a critical need for integrating the individual developments and addressing a material flow from feed to final products. In addition, the advancement on overall facility design is an indispensable aspect for demonstration and commercialization of the pyroprocessing. In this study, a facility named as Korea Advanced Pyroprocess Facility Plus (KAPF+) is conceptualized with a capacity of 400 tHM/yr. The process steps are categorized based on their own characteristics while the capacities of process equipment are determined based on the current technical levels. The facility concept with a site layout of 104,000 m{sup 2} is developed by analyzing the operation conditions and materials treated in each process. As an economic approach to the proposed facility, the unit cost (781 $/kgHM denominated in 2009 USD) for KAPF+ is also analyzed with the conceptual design with preliminary sensitivity assessments including decontamination and decommissioning costs, a discount rate, staffing costs, and plant lifetime. While classifying and describing cost details of KAPF+, this study compares the unit cost of KAPF+ treating PWR SF to that of the pyroprocessing facility treating sodium-cooled fast reactor (SFR) SF.

  12. New shipyard layout design for the preliminary phase & case study for the green field project

    Science.gov (United States)

    Song, Young Joo; Woo, Jong Hun

    2013-03-01

    For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  13. New shipyard layout design for the preliminary phase & case study for the green field project

    Directory of Open Access Journals (Sweden)

    Young Joo Song

    2013-03-01

    Full Text Available For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.

  14. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  15. Preliminary design of a small air loop for system analysis and validation of Cathare code

    International Nuclear Information System (INIS)

    Marchand, M.; Saez, M.; Tauveron, N.; Tenchine, D.; Germain, T.; Geffraye, G.; Ruby, G.P.

    2007-01-01

    The French Atomic Energy Commission (Cea) is carrying on the design of a Small Air Loop for System Analysis (SALSA), devoted to the study of gas cooled nuclear reactors behaviour in normal and incidental/accidental operating conditions. The reduced size of the SALSA components compared to a full-scale reactor and air as gaseous coolant instead of Helium will allow an easy management of the loop. The main purpose of SALSA will be the validation of the associated thermal hydraulic safety simulation codes, like CATHARE. The main goal of this paper is to present the methodology used to define the characteristics of the loop. In a first step, the study has been focused on a direct-cycle system for the SALSA loop with few global constraints using a similarity analysis to support the definition and design of the loop. Similarity requirements have been evaluated to determine the scale factors which have to be applied to the SALSA loop components. The preliminary conceptual design of the SALSA plant with a definition of each component has then be carried out. The whole plant has been modelled using the CATHARE code. Calculations of the SALSA steady-state in nominal conditions and of different plant transients in direct-cycle have been made. The first system results obtained on the global behaviour of the loop confirm that SALSA can be representative of a Gas-Cooled nuclear reactor with some minor design modifications. In a second step, the current prospects focus on the SALSA loop capability to reproduce correctly the heat transfer occurring in specific incidental situations. Heat decay removal by natural convection is a crucial point of interest. The first results show that the behaviour and the efficiency of the loop are strongly influenced by the definition of the main parameters for each component. A complete definition of SALSA is under progress. (authors)

  16. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  17. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  18. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  19. Preliminary design report for prototypical spent nuclear fuel rod consolidation equipment

    International Nuclear Information System (INIS)

    Judson, B.F.; Maillet, J.; O'Neill, G.L.; Tsitsichvili, J.; Tucoulat, D.

    1986-12-01

    The purpose of the Prototypical Consolidation Demonstration Project (PCDP) is to develop and demonstrate the equipment system that will be used to consolidate the bulk of the spent nuclear fuel generated in the United States prior to its placement in a geological repository. The equipment must thus be capable of operating on a routine production basis over a long period of time with stringent requirements for safety, reliability, productivity and cost-effectiveness. Four phases are planned for the PCDP. Phase 1 is the Preliminary Design of generic consolidation equipment that could be installed at a Monitored Retrievable Storage (MRS) facility or in the Receiving ampersand Handling Facility at a geologic repository site. Phase 2 will be the Final Design and preparation of procurement packages for the equipment in a configuration capable of being installed and tested in a special enclosure within the TAN Hot Shop at DOE's Idaho National Engineering Laboratory. In Phase 3 the equipment will be fabricated and then tested with mock fuel elements in a contractor's facility. Finally, in Phase 4 the equipment will be moved to the TAN facility for demonstration operation with irradiated spent fuel elements. 55 figs., 15 tabs

  20. Preliminary Design and Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine Blade

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Kim, Tae W.; Suh, Kune Y.

    2007-01-01

    The supercritical gas turbine Brayton cycle has been adopted in the secondary loop of the Generation IV Nuclear Energy Systems, and planned to be installed in power conversion cycles of the nuclear fusion reactors as well. The supercritical carbon dioxide (SCO 2 ) is one of widely considered fluids for this concept. The potential beneficiaries include the Secure Transportable Autonomous Reactor- Liquid Metal (STAR-LM), the Korea Advanced Liquid Metal Reactor (KALIMER) and Battery Omnibus Reactor Integral System (BORIS) which is being developed at the Seoul National University. The reason for these welcomed applications is that the SCO 2 Brayton cycle can achieve higher overall energy conversion efficiency than the steam turbine Rankine cycle. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). The MOBIS design power conversion efficiency is about 45%. Gas turbine design is crucial part in achieving this high efficiency. In this paper, the preliminary analysis on first stage of gas turbine was performed using CFX as a solver