Best linear decoding of random mask images
International Nuclear Information System (INIS)
Woods, J.W.; Ekstrom, M.P.; Palmieri, T.M.; Twogood, R.E.
1975-01-01
In 1968 Dicke proposed coded imaging of x and γ rays via random pinholes. Since then, many authors have agreed with him that this technique can offer significant image improvement. A best linear decoding of the coded image is presented, and its superiority over the conventional matched filter decoding is shown. Experimental results in the visible light region are presented. (U.S.)
Interpolation decoding method with variable parameters for fractal image compression
International Nuclear Information System (INIS)
He Chuanjiang; Li Gaoping; Shen Xiaona
2007-01-01
The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207-13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal
Decoding using back-project algorithm from coded image in ICF
International Nuclear Information System (INIS)
Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan
1999-01-01
The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments
Locating and decoding barcodes in fuzzy images captured by smart phones
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
Image transmission system using adaptive joint source and channel decoding
Liu, Weiliang; Daut, David G.
2005-03-01
In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.
Video encoder/decoder for encoding/decoding motion compensated images
1996-01-01
Video encoder and decoder, provided with a motion compensator for motion-compensated video coding or decoding in which a picture is coded or decoded in blocks in alternately horizontal and vertical steps. The motion compensator is provided with addressing means (160) and controlled multiplexers
Zhang, Wuhong; Chen, Lixiang
2016-06-15
Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.
Bayer image parallel decoding based on GPU
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
International Nuclear Information System (INIS)
Hasegawa, Takeo; Hashiba, Hiroshi; Akagi, Kiyoshi; Kobayashi, Akitoshi; Matsuda, Magoichi
1979-01-01
Research has been done on optically reconstructed imaging employing the Multiple Pinhole Coded Aperture (hereafter abbreviated as MPCA) in radioisotope tomographic imaging. However, problems remain in the optically reconstructed image method. Therefore, we employed a minicomputer (hereafter abbreviated as CPU) and developed the software for decoding and managing the radioisotope tomographic image. Combining the MPCA and the CPU system, we were able to decode and manage the radioisotope tomographic image. 1) In comparison to the optically decoded MPCA image, various input commands are possibly in the CPU method according to the dialogue between the CPU and the on line typewriter. In addition to this, decoded tomographic images of unrestricted depth are readily attainable. 2) In the CPU method noise elimination and other aspects of image management can be easily performed. (author)
An compression algorithm for medical images and a display with the decoding function
International Nuclear Information System (INIS)
Gotoh, Toshiyuki; Nakagawa, Yukihiro; Shiohara, Morito; Yoshida, Masumi
1990-01-01
This paper describes and efficient image compression method for medical images, a high-speed display with the decoding function. In our method, an input image is divided into blocks, and either of Discrete Cosine Transform coding (DCT) or Block Truncation Coding (BTC) is adaptively applied on each block to improve image quality. The display, we developed, receives the compressed data from the host computer and reconstruct images of good quality at high speed using four decoding microprocessors on which our algorithm is implemented in pipeline. By the experiments, our method and display were verified to be effective. (author)
Directory of Open Access Journals (Sweden)
David G. Daut
2007-03-01
Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.
Directory of Open Access Journals (Sweden)
Liu Weiliang
2007-01-01
Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.
EEG source imaging assists decoding in a face recognition task
DEFF Research Database (Denmark)
Andersen, Rasmus S.; Eliasen, Anders U.; Pedersen, Nicolai
2017-01-01
of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source...
A study of the decoding of multiple pinhole coded aperture RI tomographic images
International Nuclear Information System (INIS)
Hasegawa, Takeo; Kobayashi, Akitoshi; Nishiyama, Yutaka
1980-01-01
The authors constructed a Multiple Pinhole Coded Aperture (MPCA) and developed related decoding software. When simple coordinate transformation was performed, omission of points and shifting of counts occurred. By selecting various tomographic planes and collecting count for each tomographic depth from the shadowgram, a solution to these problems was found. The counts from the central portion of the tomographic image from the MPCA were incorrectly high, this was rectified by a correction function to improve the uniformity correction program of the γ-camera. Depth resolution of the tomographic image improved in proportion to the area encompassed by the pinhole configuration. An MPCA with a uniform arrangement of pinholes (e, g, pinholes in an arrangement parallel to the X-axis or the Y-axis) yielded decoded tomographic images of inferior quality. Optimum results were obtained with a ring-shaped arrangement yielding clinically applicable tomographic images even for large objects. (author)
Fast decoding algorithms for coded aperture systems
International Nuclear Information System (INIS)
Byard, Kevin
2014-01-01
Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques
Visual image reconstruction from human brain activity: A modular decoding approach
International Nuclear Information System (INIS)
Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro
2009-01-01
Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.
Comparisons of coded aperture imaging using various apertures and decoding methods
International Nuclear Information System (INIS)
Chang, L.T.; Macdonald, B.; Perez-Mendez, V.
1976-07-01
The utility of coded aperture γ camera imaging of radioisotope distributions in Nuclear Medicine is in its ability to give depth information about a three dimensional source. We have calculated imaging with Fresnel zone plate and multiple pinhole apertures to produce coded shadows and reconstruction of these shadows using correlation, Fresnel diffraction, and Fourier transform deconvolution. Comparisons of the coded apertures and decoding methods are made by evaluating their point response functions both for in-focus and out-of-focus image planes. Background averages and standard deviations were calculated. In some cases, background subtraction was made using combinations of two complementary apertures. Results using deconvolution reconstruction for finite numbers of events are also given
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Markov source model for printed music decoding
Kopec, Gary E.; Chou, Philip A.; Maltz, David A.
1995-03-01
This paper describes a Markov source model for a simple subset of printed music notation. The model is based on the Adobe Sonata music symbol set and a message language of our own design. Chord imaging is the most complex part of the model. Much of the complexity follows from a rule of music typography that requires the noteheads for adjacent pitches to be placed on opposite sides of the chord stem. This rule leads to a proliferation of cases for other typographic details such as dot placement. We describe the language of message strings accepted by the model and discuss some of the imaging issues associated with various aspects of the message language. We also point out some aspects of music notation that appear problematic for a finite-state representation. Development of the model was greatly facilitated by the duality between image synthesis and image decoding. Although our ultimate objective was a music image model for use in decoding, most of the development proceeded by using the evolving model for image synthesis, since it is computationally far less costly to image a message than to decode an image.
Utilizing Cross-Layer Information to Improve Performance in JPEG2000 Decoding
Directory of Open Access Journals (Sweden)
Hannes Persson
2007-01-01
Full Text Available We focus on wireless multimedia communication and investigate how cross-layer information can be used to improve performance at the application layer, using JPEG2000 as an example. The cross-layer information is in the form of soft information from the physical layer. The soft information, which is supplied by a soft decision demodulator, yields reliability measures for the received bits and is fed into two soft input iterative JPEG2000 image decoders. When errors are detected with the error detecting mechanisms in JPEG2000, the decoders utilize the soft information to point out likely transmission errors. Hence, the decoders can correct errors and increase the image quality without making time-consuming retransmissions. We believe that the proposed decoding method utilizing soft information is suitable for a general IP-based network and that it keeps the principles of a layered structure of the protocol stack intact. Further, experimental results with images transmitted over a simulated wireless channel show that a simple decoding algorithm that utilizes soft information can give high gains in image quality compared to the standard hard-decision decoding.
Toward a universal decoder of linguistic meaning from brain activation.
Pereira, Francisco; Lou, Bin; Pritchett, Brianna; Ritter, Samuel; Gershman, Samuel J; Kanwisher, Nancy; Botvinick, Matthew; Fedorenko, Evelina
2018-03-06
Prior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences.
Document image retrieval through word shape coding.
Lu, Shijian; Li, Linlin; Tan, Chew Lim
2008-11-01
This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.
Coding/decoding two-dimensional images with orbital angular momentum of light.
Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping
2016-04-01
We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.
Adaptive decoding of MPEG-4 sprites for memory-constrained embedded systems
Pastrnak, M.; Farin, D.S.; With, de P.H.N.; Cardinal, J.; Cerf, N.; Delgrnage, O.
2005-01-01
Background sprite decoding is an essential part of object-based video coding.The composition and rendering of a final scene involves the placing of individual video objects in a predefined way superimposed on the decoded background image. The MPEG-4 standard includes the decoding algorithm for
Decoding subjective mental states from fMRI activity patterns
International Nuclear Information System (INIS)
Tamaki, Masako; Kamitani, Yukiyasu
2011-01-01
In recent years, functional magnetic resonance imaging (fMRI) decoding has emerged as a powerful tool to read out detailed stimulus features from multi-voxel brain activity patterns. Moreover, the method has been extended to perform a primitive form of 'mind-reading,' by applying a decoder 'objectively' trained using stimulus features to more 'subjective' conditions. In this paper, we first introduce basic procedures for fMRI decoding based on machine learning techniques. Second, we discuss the source of information used for decoding, in particular, the possibility of extracting information from subvoxel neural structures. We next introduce two experimental designs for decoding subjective mental states: the 'objective-to-subjective design' and the 'subjective-to-subjective design.' Then, we illustrate recent studies on the decoding of a variety of mental states, such as, attention, awareness, decision making, memory, and mental imagery. Finally, we discuss the challenges and new directions of fMRI decoding. (author)
Document image database indexing with pictorial dictionary
Akbari, Mohammad; Azimi, Reza
2010-02-01
In this paper we introduce a new approach for information retrieval from Persian document image database without using Optical Character Recognition (OCR).At first an attribute called subword upper contour label is defined then, a pictorial dictionary is constructed based on this attribute for the subwords. By this approach we address two issues in document image retrieval: keyword spotting and retrieval according to the document similarities. The proposed methods have been evaluated on a Persian document image database. The results have proved the ability of this approach in document image information retrieval.
Neural network decoder for quantum error correcting codes
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
Semantic Document Image Classification Based on Valuable Text Pattern
Directory of Open Access Journals (Sweden)
Hossein Pourghassem
2011-01-01
Full Text Available Knowledge extraction from detected document image is a complex problem in the field of information technology. This problem becomes more intricate when we know, a negligible percentage of the detected document images are valuable. In this paper, a segmentation-based classification algorithm is used to analysis the document image. In this algorithm, using a two-stage segmentation approach, regions of the image are detected, and then classified to document and non-document (pure region regions in the hierarchical classification. In this paper, a novel valuable definition is proposed to classify document image in to valuable or invaluable categories. The proposed algorithm is evaluated on a database consisting of the document and non-document image that provide from Internet. Experimental results show the efficiency of the proposed algorithm in the semantic document image classification. The proposed algorithm provides accuracy rate of 98.8% for valuable and invaluable document image classification problem.
Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.
Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel
2015-05-15
We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.
Real Time Decoding of Color Symbol for Optical Positioning System
Directory of Open Access Journals (Sweden)
Abdul Waheed Malik
2015-01-01
Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.
Padeliadu, Susana; Antoniou, Faye
2014-01-01
Experts widely consider decoding and fluency as the basis of reading comprehension, while at the same time consistently documenting problems in these areas as major characteristics of students with learning disabilities. However, scholars have developed most of the relevant research within phonologically deep languages, wherein decoding problems…
Tingerthal, John Steven
2013-01-01
Using case study methodology and autoethnographic methods, this study examines a process of curricular development known as "Decoding the Disciplines" (Decoding) by documenting the experience of its application in a construction engineering mechanics course. Motivated by the call to integrate what is known about teaching and learning…
Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.
Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming
2017-10-20
Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
On minimizing the maximum broadcast decoding delay for instantly decodable network coding
Douik, Ahmed S.
2014-09-01
In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints.
On minimizing the maximum broadcast decoding delay for instantly decodable network coding
Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.
2014-01-01
In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a
Neural decoding of visual imagery during sleep.
Horikawa, T; Tamaki, M; Miyawaki, Y; Kamitani, Y
2013-05-03
Visual imagery during sleep has long been a topic of persistent speculation, but its private nature has hampered objective analysis. Here we present a neural decoding approach in which machine-learning models predict the contents of visual imagery during the sleep-onset period, given measured brain activity, by discovering links between human functional magnetic resonance imaging patterns and verbal reports with the assistance of lexical and image databases. Decoding models trained on stimulus-induced brain activity in visual cortical areas showed accurate classification, detection, and identification of contents. Our findings demonstrate that specific visual experience during sleep is represented by brain activity patterns shared by stimulus perception, providing a means to uncover subjective contents of dreaming using objective neural measurement.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-01-01
Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.
Robust binarization of degraded document images using heuristics
Parker, Jon; Frieder, Ophir; Frieder, Gideon
2013-12-01
Historically significant documents are often discovered with defects that make them difficult to read and analyze. This fact is particularly troublesome if the defects prevent software from performing an automated analysis. Image enhancement methods are used to remove or minimize document defects, improve software performance, and generally make images more legible. We describe an automated, image enhancement method that is input page independent and requires no training data. The approach applies to color or greyscale images with hand written script, typewritten text, images, and mixtures thereof. We evaluated the image enhancement method against the test images provided by the 2011 Document Image Binarization Contest (DIBCO). Our method outperforms all 2011 DIBCO entrants in terms of average F1 measure - doing so with a significantly lower variance than top contest entrants. The capability of the proposed method is also illustrated using select images from a collection of historic documents stored at Yad Vashem Holocaust Memorial in Israel.
Raz, Gal; Svanera, Michele; Singer, Neomi; Gilam, Gadi; Cohen, Maya Bleich; Lin, Tamar; Admon, Roee; Gonen, Tal; Thaler, Avner; Granot, Roni Y; Goebel, Rainer; Benini, Sergio; Valente, Giancarlo
2017-12-01
Major methodological advancements have been recently made in the field of neural decoding, which is concerned with the reconstruction of mental content from neuroimaging measures. However, in the absence of a large-scale examination of the validity of the decoding models across subjects and content, the extent to which these models can be generalized is not clear. This study addresses the challenge of producing generalizable decoding models, which allow the reconstruction of perceived audiovisual features from human magnetic resonance imaging (fMRI) data without prior training of the algorithm on the decoded content. We applied an adapted version of kernel ridge regression combined with temporal optimization on data acquired during film viewing (234 runs) to generate standardized brain models for sound loudness, speech presence, perceived motion, face-to-frame ratio, lightness, and color brightness. The prediction accuracies were tested on data collected from different subjects watching other movies mainly in another scanner. Substantial and significant (Q FDR movies (R¯=0.62, R¯ = 0.60, R¯ = 0.60, respectively) with high reproducibility of the predictors across subjects. The face ratio model produced significant correlations in 7 out of 8 movies (R¯=0.56). The lightness and brightness models did not show robustness (R¯=0.23, R¯ = 0). Further analysis of additional data (95 runs) indicated that loudness reconstruction veridicality can consistently reveal relevant group differences in musical experience. The findings point to the validity and generalizability of our loudness, speech, motion, and face ratio models for complex cinematic stimuli (as well as for music in the case of loudness). While future research should further validate these models using controlled stimuli and explore the feasibility of extracting more complex models via this method, the reliability of our results indicates the potential usefulness of the approach and the resulting models
Document imaging finding niche in petroleum industry
International Nuclear Information System (INIS)
Cisco, S.L.
1992-01-01
Optical disk-based document imaging systems can reduce operating costs, save office space, and improve access to necessary information for petroleum companies that have extensive records in various formats. These imaging systems help solve document management problems to improve technical and administrative operations. Enron Gas Pipeline Group has installed a document imaging system for engineering applications to integrate records stored on paper, microfilm, or computer-aided drafting (CAD) systems. BP Exploration Inc. recently implemented a document imaging system for administrative applications. The company is evaluating an expansion of the system to include engineering and technical applications. The petroleum industry creates, acquires, distributes, and retrieves enormous amounts of data and information, which are stored on multiple media, including paper, microfilm, and electronic formats. There are two main factors responsible for the immense information storage requirements in the petroleum industry
DOCUMENT IMAGE REGISTRATION FOR IMPOSED LAYER EXTRACTION
Directory of Open Access Journals (Sweden)
Surabhi Narayan
2017-02-01
Full Text Available Extraction of filled-in information from document images in the presence of template poses challenges due to geometrical distortion. Filled-in document image consists of null background, general information foreground and vital information imposed layer. Template document image consists of null background and general information foreground layer. In this paper a novel document image registration technique has been proposed to extract imposed layer from input document image. A convex polygon is constructed around the content of the input and the template image using convex hull. The vertices of the convex polygons of input and template are paired based on minimum Euclidean distance. Each vertex of the input convex polygon is subjected to transformation for the permutable combinations of rotation and scaling. Translation is handled by tight crop. For every transformation of the input vertices, Minimum Hausdorff distance (MHD is computed. Minimum Hausdorff distance identifies the rotation and scaling values by which the input image should be transformed to align it to the template. Since transformation is an estimation process, the components in the input image do not overlay exactly on the components in the template, therefore connected component technique is applied to extract contour boxes at word level to identify partially overlapping components. Geometrical features such as density, area and degree of overlapping are extracted and compared between partially overlapping components to identify and eliminate components common to input image and template image. The residue constitutes imposed layer. Experimental results indicate the efficacy of the proposed model with computational complexity. Experiment has been conducted on variety of filled-in forms, applications and bank cheques. Data sets have been generated as test sets for comparative analysis.
Decoding of interleaved Reed-Solomon codes using improved power decoding
DEFF Research Database (Denmark)
Puchinger, Sven; Rosenkilde ne Nielsen, Johan
2017-01-01
We propose a new partial decoding algorithm for m-interleaved Reed-Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1 − Rm/m+1 at all code rates R, in time polynomial in the code length n. For m > 2, this is an asymptotic improvement over the previous...... state-of-the-art for all rates, and the first improvement for R > 1/3 in the last 20 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius....
Adaptive Algorithms for Automated Processing of Document Images
2011-01-01
ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University
Low-Power Bitstream-Residual Decoder for H.264/AVC Baseline Profile Decoding
Directory of Open Access Journals (Sweden)
Xu Ke
2009-01-01
Full Text Available Abstract We present the design and VLSI implementation of a novel low-power bitstream-residual decoder for H.264/AVC baseline profile. It comprises a syntax parser, a parameter decoder, and an Inverse Quantization Inverse Transform (IQIT decoder. The syntax parser detects and decodes each incoming codeword in the bitstream under the control of a hierarchical Finite State Machine (FSM; the IQIT decoder performs inverse transform and quantization with pipelining and parallelism. Various power reduction techniques, such as data-driven based on statistic results, nonuniform partition, precomputation, guarded evaluation, hierarchical FSM decomposition, TAG method, zero-block skipping, and clock gating , are adopted and integrated throughout the bitstream-residual decoder. With innovative architecture, the proposed design is able to decode QCIF video sequences of 30 fps at a clock rate as low as 1.5 MHz. A prototype H.264/AVC baseline decoding chip utilizing the proposed decoder is fabricated in UMC 0.18 m 1P6M CMOS technology. The proposed design is measured under 1 V 1.8 V supply with 0.1 V step. It dissipates 76 W at 1 V and 253 W at 1.8 V.
A New Wavelet-Based Document Image Segmentation Scheme
Institute of Scientific and Technical Information of China (English)
赵健; 李道京; 俞卞章; 耿军平
2002-01-01
The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.
Goal-oriented rectification of camera-based document images.
Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J
2011-04-01
Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.
Completion time reduction in instantly decodable network coding through decoding delay control
Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.
2014-01-01
For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.
Completion time reduction in instantly decodable network coding through decoding delay control
Douik, Ahmed S.
2014-12-01
For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users\\' and their overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we use a heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios.
No-reference analysis of decoded MPEG images for PSNR estimation and post-processing
DEFF Research Database (Denmark)
Forchhammer, Søren; Li, Huiying; Andersen, Jakob Dahl
2011-01-01
We propose no-reference analysis and processing of DCT (Discrete Cosine Transform) coded images based on estimation of selected MPEG parameters from the decoded video. The goal is to assess MPEG video quality and perform post-processing without access to neither the original stream nor the code...... stream. Solutions are presented for MPEG-2 video. A method to estimate the quantization parameters of DCT coded images and MPEG I-frames at the macro-block level is presented. The results of this analysis is used for deblocking and deringing artifact reduction and no-reference PSNR estimation without...... code stream access. An adaptive deringing method using texture classification is presented. On the test set, the quantization parameters in MPEG-2 I-frames are estimated with an overall accuracy of 99.9% and the PSNR is estimated with an overall average error of 0.3dB. The deringing and deblocking...
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan
2005-01-01
We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...... of codewords at minimal distance from the received vector, we also obtain new information about the code....
Adaptive decoding of convolutional codes
Hueske, K.; Geldmacher, J.; Götze, J.
2007-06-01
Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
Lisovskii, F. V.; Mansvetova, E. G.
2017-05-01
For digital magnetic recording of encoded information with longitudinal magnetization of the tape, the connection between the domain structure of a storage medium and magneto-optical image of its stray fields obtained using a magnetic film with a perpendicular anisotropy and a large Faraday rotation has been studied. For two-frequency binary code without returning to zero, an algorithm is developed, that allows uniquely decoding of the information recorded on the tape based on analysis of an image of stray fields.
DEFF Research Database (Denmark)
Nielsen, Rasmus Refslund
2002-01-01
This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed.......This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed....
Adaptive decoding of convolutional codes
Directory of Open Access Journals (Sweden)
K. Hueske
2007-06-01
Full Text Available Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
Stamp Detection in Color Document Images
DEFF Research Database (Denmark)
Micenkova, Barbora; van Beusekom, Joost
2011-01-01
, moreover, it can be imprinted with a variable quality and rotation. Previous methods were restricted to detection of stamps of particular shapes or colors. The method presented in the paper includes segmentation of the image by color clustering and subsequent classification of candidate solutions...... by geometrical and color-related features. The approach allows for differentiation of stamps from other color objects in the document such as logos or texts. For the purpose of evaluation, a data set of 400 document images has been collected, annotated and made public. With the proposed method, recall of 83...
Decoding Facial Expressions: A New Test with Decoding Norms.
Leathers, Dale G.; Emigh, Ted H.
1980-01-01
Describes the development and testing of a new facial meaning sensitivity test designed to determine how specialized are the meanings that can be decoded from facial expressions. Demonstrates the use of the test to measure a receiver's current level of skill in decoding facial expressions. (JMF)
Forced Sequence Sequential Decoding
DEFF Research Database (Denmark)
Jensen, Ole Riis; Paaske, Erik
1998-01-01
We describe a new concatenated decoding scheme based on iterations between an inner sequentially decoded convolutional code of rate R=1/4 and memory M=23, and block interleaved outer Reed-Solomon (RS) codes with nonuniform profile. With this scheme decoding with good performance is possible as low...... as Eb/N0=0.6 dB, which is about 1.25 dB below the signal-to-noise ratio (SNR) that marks the cutoff rate for the full system. Accounting for about 0.45 dB due to the outer codes, sequential decoding takes place at about 1.7 dB below the SNR cutoff rate for the convolutional code. This is possible since...... the iteration process provides the sequential decoders with side information that allows a smaller average load and minimizes the probability of computational overflow. Analytical results for the probability that the first RS word is decoded after C computations are presented. These results are supported...
Document Examination: Applications of Image Processing Systems.
Kopainsky, B
1989-12-01
Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.
Signature detection and matching for document image retrieval.
Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan
2009-11-01
As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.
The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?
Maloney, Ryan T
2015-01-01
Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.
Online decoding of object-based attention using real-time fMRI.
Niazi, Adnan M; van den Broek, Philip L C; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A J
2014-01-01
Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transparently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder performed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based attention requires a multivariate decoding approach that can detect these distributed patterns of cortical activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Forced Sequence Sequential Decoding
DEFF Research Database (Denmark)
Jensen, Ole Riis
In this thesis we describe a new concatenated decoding scheme based on iterations between an inner sequentially decoded convolutional code of rate R=1/4 and memory M=23, and block interleaved outer Reed-Solomon codes with non-uniform profile. With this scheme decoding with good performance...... is possible as low as Eb/No=0.6 dB, which is about 1.7 dB below the signal-to-noise ratio that marks the cut-off rate for the convolutional code. This is possible since the iteration process provides the sequential decoders with side information that allows a smaller average load and minimizes the probability...... of computational overflow. Analytical results for the probability that the first Reed-Solomon word is decoded after C computations are presented. This is supported by simulation results that are also extended to other parameters....
On Decoding Interleaved Chinese Remainder Codes
DEFF Research Database (Denmark)
Li, Wenhui; Sidorenko, Vladimir; Nielsen, Johan Sebastian Rosenkilde
2013-01-01
We model the decoding of Interleaved Chinese Remainder codes as that of finding a short vector in a Z-lattice. Using the LLL algorithm, we obtain an efficient decoding algorithm, correcting errors beyond the unique decoding bound and having nearly linear complexity. The algorithm can fail...... with a probability dependent on the number of errors, and we give an upper bound for this. Simulation results indicate that the bound is close to the truth. We apply the proposed decoding algorithm for decoding a single CR code using the idea of “Power” decoding, suggested for Reed-Solomon codes. A combination...... of these two methods can be used to decode low-rate Interleaved Chinese Remainder codes....
An Introduction to Document Imaging in the Financial Aid Office.
Levy, Douglas A.
2001-01-01
First describes the components of a document imaging system in general and then addresses this technology specifically in relation to financial aid document management: its uses and benefits, considerations in choosing a document imaging system, and additional sources for information. (EV)
Imaging and visual documentation in medicine
International Nuclear Information System (INIS)
Wamsteker, K.; Jonas, U.; Veen, G. van der; Waes, P.F.G.M. van
1987-01-01
DOCUMED EUROPE '87 was organized to provide information to the physician on the constantly progressing developments in medical imaging technology. Leading specialists lectured on the state-of-the-art of imaging technology and visual documentation in medicine. This book presents a collection of the papers presented at the conference. refs.; figs.; tabs
List Decoding of Algebraic Codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde
We investigate three paradigms for polynomial-time decoding of Reed–Solomon codes beyond half the minimum distance: the Guruswami–Sudan algorithm, Power decoding and the Wu algorithm. The main results concern shaping the computational core of all three methods to a problem solvable by module...... Hermitian codes using Guruswami–Sudan or Power decoding faster than previously known, and we show how to Wu list decode binary Goppa codes....... to solve such using module minimisation, or using our new Demand–Driven algorithm which is also based on module minimisation. The decoding paradigms are all derived and analysed in a self-contained manner, often in new ways or examined in greater depth than previously. Among a number of new results, we...
Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding
Douik, Ahmed
2016-06-27
For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.
Decoding Delay Controlled Completion Time Reduction in Instantly Decodable Network Coding
Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2016-01-01
For several years, the completion time and the decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to act completely against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. This paper investigates the effect of controlling the decoding delay to reduce the completion time below its currently best-known solution in both perfect and imperfect feedback with persistent erasure channels. To solve the problem, the decodingdelay- dependent expressions of the users’ and overall completion times are derived in the complete feedback scenario. Although using such expressions to find the optimal overall completion time is NP-hard, the paper proposes two novel heuristics that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Afterward, the paper extends the study to the imperfect feedback scenario in which uncertainties at the sender affects its ability to anticipate accurately the decoding delay increase at each user. The paper formulates the problem in such environment and derives the expression of the minimum increase in the completion time. Simulation results show the performance of the proposed solutions and suggest that both heuristics achieves a lower mean completion time as compared to the best-known heuristics for the completion time reduction in perfect and imperfect feedback. The gap in performance becomes more significant as the erasure of the channel increases.
Decoding facial expressions based on face-selective and motion-sensitive areas.
Liang, Yin; Liu, Baolin; Xu, Junhai; Zhang, Gaoyan; Li, Xianglin; Wang, Peiyuan; Wang, Bin
2017-06-01
Humans can easily recognize others' facial expressions. Among the brain substrates that enable this ability, considerable attention has been paid to face-selective areas; in contrast, whether motion-sensitive areas, which clearly exhibit sensitivity to facial movements, are involved in facial expression recognition remained unclear. The present functional magnetic resonance imaging (fMRI) study used multi-voxel pattern analysis (MVPA) to explore facial expression decoding in both face-selective and motion-sensitive areas. In a block design experiment, participants viewed facial expressions of six basic emotions (anger, disgust, fear, joy, sadness, and surprise) in images, videos, and eyes-obscured videos. Due to the use of multiple stimulus types, the impacts of facial motion and eye-related information on facial expression decoding were also examined. It was found that motion-sensitive areas showed significant responses to emotional expressions and that dynamic expressions could be successfully decoded in both face-selective and motion-sensitive areas. Compared with static stimuli, dynamic expressions elicited consistently higher neural responses and decoding performance in all regions. A significant decrease in both activation and decoding accuracy due to the absence of eye-related information was also observed. Overall, the findings showed that emotional expressions are represented in motion-sensitive areas in addition to conventional face-selective areas, suggesting that motion-sensitive regions may also effectively contribute to facial expression recognition. The results also suggested that facial motion and eye-related information played important roles by carrying considerable expression information that could facilitate facial expression recognition. Hum Brain Mapp 38:3113-3125, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.
Sato, João R; Basilio, Rodrigo; Paiva, Fernando F; Garrido, Griselda J; Bramati, Ivanei E; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge
2013-01-01
The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.
Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.
Directory of Open Access Journals (Sweden)
João R Sato
Full Text Available The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM, fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.
Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox
Sato, João R.; Basilio, Rodrigo; Paiva, Fernando F.; Garrido, Griselda J.; Bramati, Ivanei E.; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge
2013-01-01
The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available. PMID:24312569
Document image binarization using "multi-scale" predefined filters
Saabni, Raid M.
2018-04-01
Reading text or searching for key words within a historical document is a very challenging task. one of the first steps of the complete task is binarization, where we separate foreground such as text, figures and drawings from the background. Successful results of this important step in many cases can determine next steps to success or failure, therefore it is very vital to the success of the complete task of reading and analyzing the content of a document image. Generally, historical documents images are of poor quality due to their storage condition and degradation over time, which mostly cause to varying contrasts, stains, dirt and seeping ink from reverse side. In this paper, we use banks of anisotropic predefined filters in different scales and orientations to develop a binarization method for degraded documents and manuscripts. Using the fact, that handwritten strokes may follow different scales and orientations, we use predefined sets of filter banks having various scales, weights, and orientations to seek a compact set of filters and weights in order to generate diffrent layers of foregrounds and background. Results of convolving these fiters on the gray level image locally, weighted and accumulated to enhance the original image. Based on the different layers, seeds of components in the gray level image and a learning process, we present an improved binarization algorithm to separate the background from layers of foreground. Different layers of foreground which may be caused by seeping ink, degradation or other factors are also separated from the real foreground in a second phase. Promising experimental results were obtained on the DIBCO2011 , DIBCO2013 and H-DIBCO2016 data sets and a collection of images taken from real historical documents.
Improved decoding for a concatenated coding system
DEFF Research Database (Denmark)
Paaske, Erik
1990-01-01
The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...
The Fluid Reading Primer: Animated Decoding Support for Emergent Readers.
Zellweger, Polle T.; Mackinlay, Jock D.
A prototype application called the Fluid Reading Primer was developed to help emergent readers with the process of decoding written words into their spoken forms. The Fluid Reading Primer is part of a larger research project called Fluid Documents, which is exploring the use of interactive animation of typography to show additional information in…
Performance evaluation methodology for historical document image binarization.
Ntirogiannis, Konstantinos; Gatos, Basilis; Pratikakis, Ioannis
2013-02-01
Document image binarization is of great importance in the document image analysis and recognition pipeline since it affects further stages of the recognition process. The evaluation of a binarization method aids in studying its algorithmic behavior, as well as verifying its effectiveness, by providing qualitative and quantitative indication of its performance. This paper addresses a pixel-based binarization evaluation methodology for historical handwritten/machine-printed document images. In the proposed evaluation scheme, the recall and precision evaluation measures are properly modified using a weighting scheme that diminishes any potential evaluation bias. Additional performance metrics of the proposed evaluation scheme consist of the percentage rates of broken and missed text, false alarms, background noise, character enlargement, and merging. Several experiments conducted in comparison with other pixel-based evaluation measures demonstrate the validity of the proposed evaluation scheme.
Fast decoders for qudit topological codes
International Nuclear Information System (INIS)
Anwar, Hussain; Brown, Benjamin J; Campbell, Earl T; Browne, Dan E
2014-01-01
Qudit toric codes are a natural higher-dimensional generalization of the well-studied qubit toric code. However, standard methods for error correction of the qubit toric code are not applicable to them. Novel decoders are needed. In this paper we introduce two renormalization group decoders for qudit codes and analyse their error correction thresholds and efficiency. The first decoder is a generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah (arXiv:1112.3252). We modify this decoder to overcome a percolation effect which limits its threshold performance for many-level quantum systems. The second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to optimize the efficiency of implementation in the high dimensional case. In each case, we estimate thresholds for the uncorrelated bit-flip error model and provide a comparative analysis of the performance of both these approaches to error correction of qudit toric codes. (paper)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Toric Codes, Multiplicative Structure and Decoding
DEFF Research Database (Denmark)
Hansen, Johan Peder
2017-01-01
Long linear codes constructed from toric varieties over finite fields, their multiplicative structure and decoding. The main theme is the inherent multiplicative structure on toric codes. The multiplicative structure allows for \\emph{decoding}, resembling the decoding of Reed-Solomon codes and al...
New public dataset for spotting patterns in medieval document images
En, Sovann; Nicolas, Stéphane; Petitjean, Caroline; Jurie, Frédéric; Heutte, Laurent
2017-01-01
With advances in technology, a large part of our cultural heritage is becoming digitally available. In particular, in the field of historical document image analysis, there is now a growing need for indexing and data mining tools, thus allowing us to spot and retrieve the occurrences of an object of interest, called a pattern, in a large database of document images. Patterns may present some variability in terms of color, shape, or context, making the spotting of patterns a challenging task. Pattern spotting is a relatively new field of research, still hampered by the lack of available annotated resources. We present a new publicly available dataset named DocExplore dedicated to spotting patterns in historical document images. The dataset contains 1500 images and 1464 queries, and allows the evaluation of two tasks: image retrieval and pattern localization. A standardized benchmark protocol along with ad hoc metrics is provided for a fair comparison of the submitted approaches. We also provide some first results obtained with our baseline system on this new dataset, which show that there is room for improvement and that should encourage researchers of the document image analysis community to design new systems and submit improved results.
Fast decoding algorithms for geometric coded apertures
International Nuclear Information System (INIS)
Byard, Kevin
2015-01-01
Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.
FPGA implementation of low complexity LDPC iterative decoder
Verma, Shivani; Sharma, Sanjay
2016-07-01
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.
Bounded-Angle Iterative Decoding of LDPC Codes
Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2009-01-01
Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).
Concatenated coding system with iterated sequential inner decoding
DEFF Research Database (Denmark)
Jensen, Ole Riis; Paaske, Erik
1995-01-01
We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...
A Multiresolution Image Completion Algorithm for Compressing Digital Color Images
Directory of Open Access Journals (Sweden)
R. Gomathi
2014-01-01
Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.
Soft-decision decoding of RS codes
DEFF Research Database (Denmark)
Justesen, Jørn
2005-01-01
By introducing a few simplifying assumptions we derive a simple condition for successful decoding using the Koetter-Vardy algorithm for soft-decision decoding of RS codes. We show that the algorithm has a significant advantage over hard decision decoding when the code rate is low, when two or more...
A Document Imaging Technique for Implementing Electronic Loan Approval Process
Directory of Open Access Journals (Sweden)
J. Manikandan
2015-04-01
Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.
Resource Efficient LDPC Decoders for Multimedia Communication
Chandrasetty, Vikram Arkalgud; Aziz, Syed Mahfuzul
2013-01-01
Achieving high image quality is an important aspect in an increasing number of wireless multimedia applications. These applications require resource efficient error correction hardware to detect and correct errors introduced by the communication channel. This paper presents an innovative flexible architecture for error correction using Low-Density Parity-Check (LDPC) codes. The proposed partially-parallel decoder architecture utilizes a novel code construction technique based on multi-level H...
Decoding small surface codes with feedforward neural networks
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
Video coding for decoding power-constrained embedded devices
Lu, Ligang; Sheinin, Vadim
2004-01-01
Low power dissipation and fast processing time are crucial requirements for embedded multimedia devices. This paper presents a technique in video coding to decrease the power consumption at a standard video decoder. Coupled with a small dedicated video internal memory cache on a decoder, the technique can substantially decrease the amount of data traffic to the external memory at the decoder. A decrease in data traffic to the external memory at decoder will result in multiple benefits: faster real-time processing and power savings. The encoder, given prior knowledge of the decoder"s dedicated video internal memory cache management scheme, regulates its choice of motion compensated predictors to reduce the decoder"s external memory accesses. This technique can be used in any standard or proprietary encoder scheme to generate a compliant output bit stream decodable by standard CPU-based and dedicated hardware-based decoders for power savings with the best quality-power cost trade off. Our simulation results show that with a relatively small amount of dedicated video internal memory cache, the technique may decrease the traffic between CPU and external memory over 50%.
A novel parallel pipeline structure of VP9 decoder
Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan
2018-04-01
To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.
SYMBOL LEVEL DECODING FOR DUO-BINARY TURBO CODES
Directory of Open Access Journals (Sweden)
Yogesh Beeharry
2017-05-01
Full Text Available This paper investigates the performance of three different symbol level decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations involved in the three decoding techniques, and a computational complexity analysis are given. Simulation results with different couple lengths, code-rates, and QPSK modulation reveal that the symbol level decoding with bit-level information outperforms the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a complexity analysis reveals that symbol level decoding with bit-level information reduces the decoding complexity by 19.6 % in terms of the total number of computations required for each half-iteration as compared to symbol level decoding.
NP-hardness of decoding quantum error-correction codes
Hsieh, Min-Hsiu; Le Gall, François
2011-05-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
NP-hardness of decoding quantum error-correction codes
International Nuclear Information System (INIS)
Hsieh, Min-Hsiu; Le Gall, Francois
2011-01-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
Evaluation framework for K-best sphere decoders
Shen, Chungan; Eltawil, Ahmed M.; Salama, Khaled N.
2010-01-01
or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature
Adaptive removal of background and white space from document images using seam categorization
Fillion, Claude; Fan, Zhigang; Monga, Vishal
2011-03-01
Document images are obtained regularly by rasterization of document content and as scans of printed documents. Resizing via background and white space removal is often desired for better consumption of these images, whether on displays or in print. While white space and background are easy to identify in images, existing methods such as naïve removal and content aware resizing (seam carving) each have limitations that can lead to undesirable artifacts, such as uneven spacing between lines of text or poor arrangement of content. An adaptive method based on image content is hence needed. In this paper we propose an adaptive method to intelligently remove white space and background content from document images. Document images are different from pictorial images in structure. They typically contain objects (text letters, pictures and graphics) separated by uniform background, which include both white paper space and other uniform color background. Pixels in uniform background regions are excellent candidates for deletion if resizing is required, as they introduce less change in document content and style, compared with deletion of object pixels. We propose a background deletion method that exploits both local and global context. The method aims to retain the document structural information and image quality.
Neural Decoder for Topological Codes
Torlai, Giacomo; Melko, Roger G.
2017-07-01
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.
LDPC Decoding on GPU for Mobile Device
Directory of Open Access Journals (Sweden)
Yiqin Lu
2016-01-01
Full Text Available A flexible software LDPC decoder that exploits data parallelism for simultaneous multicode words decoding on the mobile device is proposed in this paper, supported by multithreading on OpenCL based graphics processing units. By dividing the check matrix into several parts to make full use of both the local memory and private memory on GPU and properly modify the code capacity each time, our implementation on a mobile phone shows throughputs above 100 Mbps and delay is less than 1.6 millisecond in decoding, which make high-speed communication like video calling possible. To realize efficient software LDPC decoding on the mobile device, the LDPC decoding feature on communication baseband chip should be replaced to save the cost and make it easier to upgrade decoder to be compatible with a variety of channel access schemes.
The serial message-passing schedule for LDPC decoding algorithms
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Improved Power Decoding of One-Point Hermitian Codes
DEFF Research Database (Denmark)
Puchinger, Sven; Bouw, Irene; Rosenkilde, Johan Sebastian Heesemann
2017-01-01
We propose a new partial decoding algorithm for one-point Hermitian codes that can decode up to the same number of errors as the Guruswami–Sudan decoder. Simulations suggest that it has a similar failure probability as the latter one. The algorithm is based on a recent generalization of the power...... decoding algorithm for Reed–Solomon codes and does not require an expensive root-finding step. In addition, it promises improvements for decoding interleaved Hermitian codes....
Decoding communities in networks.
Radicchi, Filippo
2018-02-01
According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.
Decoding communities in networks
Radicchi, Filippo
2018-02-01
According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.
Reaction Decoder Tool (RDT): extracting features from chemical reactions.
Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M
2016-07-01
Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.
Document image mosaicing: A novel approach
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 28 April 2003; revised 22 July 2003. Abstract. ... Hence, document image mosaicing is the process of merging split ..... Case 2: Algorithm 2 is an improved version of algorithm 1 which eliminates the drawbacks of ... One of the authors (PS) thanks the All India Council for Technical Education, New Delhi for.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid
2012-10-01
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid
2013-04-04
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\\\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid; Alouini, Mohamed-Slim
2012-01-01
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
Interior point decoding for linear vector channels
International Nuclear Information System (INIS)
Wadayama, T
2008-01-01
In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem
Interior point decoding for linear vector channels
Energy Technology Data Exchange (ETDEWEB)
Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp
2008-01-15
In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.
Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination
Zhong, Xin; Wang, Xinwei; Zhou, Yan
2018-01-01
A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.
Symbol synchronization for the TDRSS decoder
Costello, D. J., Jr.
1983-01-01
Each 8 bits out of the Viterbi decoder correspond to one symbol of the R/S code. Synchronization must be maintained here so that each 8-bit symbol delivered to the R/S decoder corresponds to an 8-bit symbol from the R/S encoder. Lack of synchronization, would cause an error in almost every R/S symbol since even a - 1-bit sync slip shifts every bit in each 8-bit symbol by one position, therby confusing the mapping betweeen 8-bit sequences and symbols. The error correcting capability of the R/S code would be exceeded. Possible ways to correcting this condition include: (1) designing the R/S decoder to recognize the overload and shifting the output sequence of the inner decoder to establish a different sync state; (2) using the characteristics of the inner decoder to establish symbol synchronization for the outer code, with or without a deinterleaver and an interleaver; and (3) modifying the encoder to alternate periodically between two sets of generators.
A class of Sudan-decodable codes
DEFF Research Database (Denmark)
Nielsen, Rasmus Refslund
2000-01-01
In this article, Sudan's algorithm is modified into an efficient method to list-decode a class of codes which can be seen as a generalization of Reed-Solomon codes. The algorithm is specialized into a very efficient method for unique decoding. The code construction can be generalized based...... on algebraic-geometry codes and the decoding algorithms are generalized accordingly. Comparisons with Reed-Solomon and Hermitian codes are made....
Multi-stage decoding for multi-level block modulation codes
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
On Rational Interpolation-Based List-Decoding and List-Decoding Binary Goppa Codes
DEFF Research Database (Denmark)
Beelen, Peter; Høholdt, Tom; Nielsen, Johan Sebastian Rosenkilde
2013-01-01
We derive the Wu list-decoding algorithm for generalized Reed–Solomon (GRS) codes by using Gröbner bases over modules and the Euclidean algorithm as the initial algorithm instead of the Berlekamp–Massey algorithm. We present a novel method for constructing the interpolation polynomial fast. We gi...... and a duality in the choice of parameters needed for decoding, both in the case of GRS codes and in the case of Goppa codes....
Non-Local Sparse Image Inpainting for Document Bleed-Through Removal
Directory of Open Access Journals (Sweden)
Muhammad Hanif
2018-05-01
Full Text Available Bleed-through is a frequent, pervasive degradation in ancient manuscripts, which is caused by ink seeped from the opposite side of the sheet. Bleed-through, appearing as an extra interfering text, hinders document readability and makes it difficult to decipher the information contents. Digital image restoration techniques have been successfully employed to remove or significantly reduce this distortion. This paper proposes a two-step restoration method for documents affected by bleed-through, exploiting information from the recto and verso images. First, the bleed-through pixels are identified, based on a non-stationary, linear model of the two texts overlapped in the recto-verso pair. In the second step, a dictionary learning-based sparse image inpainting technique, with non-local patch grouping, is used to reconstruct the bleed-through-contaminated image information. An overcomplete sparse dictionary is learned from the bleed-through-free image patches, which is then used to estimate a befitting fill-in for the identified bleed-through pixels. The non-local patch similarity is employed in the sparse reconstruction of each patch, to enforce the local similarity. Thanks to the intrinsic image sparsity and non-local patch similarity, the natural texture of the background is well reproduced in the bleed-through areas, and even a possible overestimation of the bleed through pixels is effectively corrected, so that the original appearance of the document is preserved. We evaluate the performance of the proposed method on the images of a popular database of ancient documents, and the results validate the performance of the proposed method compared to the state of the art.
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
Encoder-decoder optimization for brain-computer interfaces.
Directory of Open Access Journals (Sweden)
Josh Merel
2015-06-01
Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
Iterative Decoding of Concatenated Codes: A Tutorial
Directory of Open Access Journals (Sweden)
Phillip A. Regalia
2005-05-01
Full Text Available The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA, among others. Despite an accrued understanding of iterative decoding over the years, the Ã¢Â€Âœturbo principleÃ¢Â€Â remains elusive to master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and characterize fixed points in terms of a Ã¢Â€ÂœconsensusÃ¢Â€Â property between constituent decoders. We review how the decoding algorithm for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both parallel and serial concatenated codes.
Image magnification based on similarity analogy
International Nuclear Information System (INIS)
Chen Zuoping; Ye Zhenglin; Wang Shuxun; Peng Guohua
2009-01-01
Aiming at the high time complexity of the decoding phase in the traditional image enlargement methods based on fractal coding, a novel image magnification algorithm is proposed in this paper, which has the advantage of iteration-free decoding, by using the similarity analogy between an image and its zoom-out and zoom-in. A new pixel selection technique is also presented to further improve the performance of the proposed method. Furthermore, by combining some existing fractal zooming techniques, an efficient image magnification algorithm is obtained, which can provides the image quality as good as the state of the art while greatly decrease the time complexity of the decoding phase.
Joint Decoding of Concatenated VLEC and STTC System
Directory of Open Access Journals (Sweden)
Chen Huijun
2008-01-01
Full Text Available Abstract We consider the decoding of wireless communication systems with both source coding in the application layer and channel coding in the physical layer for high-performance transmission over fading channels. Variable length error correcting codes (VLECs and space time trellis codes (STTCs are used to provide bandwidth efficient data compression as well as coding and diversity gains. At the receiver, an iterative joint source and space time decoding scheme are developed to utilize redundancy in both STTC and VLEC to improve overall decoding performance. Issues such as the inseparable systematic information in the symbol level, the asymmetric trellis structure of VLEC, and information exchange between bit and symbol domains have been considered in the maximum a posteriori probability (MAP decoding algorithm. Simulation results indicate that the developed joint decoding scheme achieves a significant decoding gain over the separate decoding in fading channels, whether or not the channel information is perfectly known at the receiver. Furthermore, how rate allocation between STTC and VLEC affects the performance of the joint source and space-time decoder is investigated. Different systems with a fixed overall information rate are studied. It is shown that for a system with more redundancy dedicated to the source code and a higher order modulation of STTC, the joint decoding yields better performance, though with increased complexity.
Joint Decoding of Concatenated VLEC and STTC System
Directory of Open Access Journals (Sweden)
Huijun Chen
2008-07-01
Full Text Available We consider the decoding of wireless communication systems with both source coding in the application layer and channel coding in the physical layer for high-performance transmission over fading channels. Variable length error correcting codes (VLECs and space time trellis codes (STTCs are used to provide bandwidth efficient data compression as well as coding and diversity gains. At the receiver, an iterative joint source and space time decoding scheme are developed to utilize redundancy in both STTC and VLEC to improve overall decoding performance. Issues such as the inseparable systematic information in the symbol level, the asymmetric trellis structure of VLEC, and information exchange between bit and symbol domains have been considered in the maximum a posteriori probability (MAP decoding algorithm. Simulation results indicate that the developed joint decoding scheme achieves a significant decoding gain over the separate decoding in fading channels, whether or not the channel information is perfectly known at the receiver. Furthermore, how rate allocation between STTC and VLEC affects the performance of the joint source and space-time decoder is investigated. Different systems with a fixed overall information rate are studied. It is shown that for a system with more redundancy dedicated to the source code and a higher order modulation of STTC, the joint decoding yields better performance, though with increased complexity.
FPGA Realization of Memory 10 Viterbi Decoder
DEFF Research Database (Denmark)
Paaske, Erik; Bach, Thomas Bo; Andersen, Jakob Dahl
1997-01-01
sequence mode when feedback from the Reed-Solomon decoder is available. The Viterbi decoder is realized using two Altera FLEX 10K50 FPGA's. The overall operating speed is 30 kbit/s, and since up to three iterations are performed for each frame and only one decoder is used, the operating speed...
Research on coding and decoding method for digital levels
Energy Technology Data Exchange (ETDEWEB)
Tu Lifen; Zhong Sidong
2011-01-20
A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1mm when the measuring range is between 2m and 100m, which can meet practical needs.
Research on coding and decoding method for digital levels.
Tu, Li-fen; Zhong, Si-dong
2011-01-20
A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1 mm when the measuring range is between 2 m and 100 m, which can meet practical needs.
Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey
Directory of Open Access Journals (Sweden)
Pierre Siohan
2005-05-01
Full Text Available Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC and variable-length source codes (VLC widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.
Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey
Guillemot, Christine; Siohan, Pierre
2005-12-01
Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.
High Speed Frame Synchronization and Viterbi Decoding
DEFF Research Database (Denmark)
Paaske, Erik; Justesen, Jørn; Larsen, Knud J.
1996-01-01
The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...
High Speed Frame Synchronization and Viterbi Decoding
DEFF Research Database (Denmark)
Paaske, Erik; Justesen, Jørn; Larsen, Knud J.
1998-01-01
The study has been divided into two phases. The purpose of Phase 1 of the study was to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. After selection of which specific...... potentially useful.Algorithms for frame synchronization are described and analyzed. Further, the high level architecture of units that contain frame synchronization and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder...... towards a realization in an FPGA.Node synchronization performed within a Viterbi decoder is discussed, and the high level architectures of three possible implementations of Viterbi decoders are described: The first implementation uses a number of commercially available decoders while the the two others...
A Scalable Architecture of a Structured LDPC Decoder
Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon
2004-01-01
We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.
Evaluation framework for K-best sphere decoders
Shen, Chungan
2010-08-01
While Maximum-Likelihood (ML) is the optimum decoding scheme for most communication scenarios, practical implementation difficulties limit its use, especially for Multiple Input Multiple Output (MIMO) systems with a large number of transmit or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature with widely varying performance to area and power metrics. In this semi-tutorial paper we present a holistic view of different Sphere decoding techniques and K-best decoding techniques, identifying the key algorithmic and implementation trade-offs. We establish a consistent benchmark framework to investigate and compare the delay cost, power cost, and power-delay-product cost incurred by each method. Finally, using the framework, we propose and analyze a novel architecture and compare that to other published approaches. Our goal is to explicitly elucidate the overall advantages and disadvantages of each proposed algorithms in one coherent framework. © 2010 World Scientific Publishing Company.
Ancient administrative handwritten documents: X-ray analysis and imaging
International Nuclear Information System (INIS)
Albertin, F.; Astolfo, A.; Stampanoni, M.; Peccenini, Eva; Hwu, Y.; Kaplan, F.; Margaritondo, G.
2015-01-01
The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project
Ancient administrative handwritten documents: X-ray analysis and imaging
Energy Technology Data Exchange (ETDEWEB)
Albertin, F., E-mail: fauzia.albertin@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Astolfo, A. [Paul Scherrer Institut (PSI), Villigen (Switzerland); Stampanoni, M. [Paul Scherrer Institut (PSI), Villigen (Switzerland); ETHZ, Zürich (Switzerland); Peccenini, Eva [University of Ferrara (Italy); Technopole of Ferrara (Italy); Hwu, Y. [Academia Sinica, Taipei, Taiwan (China); Kaplan, F. [Ecole Polytechnique Fédérale de Lausanne (EPFL) (Switzerland); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2015-01-30
The heavy-element content of ink in ancient administrative documents makes it possible to detect the characters with different synchrotron imaging techniques, based on attenuation or refraction. This is the first step in the direction of non-interactive virtual X-ray reading. Handwritten characters in administrative antique documents from three centuries have been detected using different synchrotron X-ray imaging techniques. Heavy elements in ancient inks, present even for everyday administrative manuscripts as shown by X-ray fluorescence spectra, produce attenuation contrast. In most cases the image quality is good enough for tomography reconstruction in view of future applications to virtual page-by-page ‘reading’. When attenuation is too low, differential phase contrast imaging can reveal the characters from refractive index effects. The results are potentially important for new information harvesting strategies, for example from the huge Archivio di Stato collection, objective of the Venice Time Machine project.
More than meets the eye: the role of self-identity in decoding complex emotional states.
Stevenson, Michael T; Soto, José A; Adams, Reginald B
2012-10-01
Folk wisdom asserts that "the eyes are the window to the soul," and empirical science corroborates a prominent role for the eyes in the communication of emotion. Herein we examine variation in the ability to "read" the eyes of others as a function of social group membership, employing a widely used emotional state decoding task: "Reading the Mind in Eyes." This task has documented impaired emotional state decoding across racial groups, with cross-race performance on par with that previously reported as a function of autism spectrum disorders. The present study extended this work by examining the moderating role of social identity in such impairments. For college students more highly identified with their university, cross-race performance differences were not found for judgments of "same-school" eyes but remained for "rival-school" eyes. These findings suggest that impaired emotional state decoding across groups may thus be more amenable to remediation than previously realized.
Decoding thalamic afferent input using microcircuit spiking activity.
Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N
2015-04-01
A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.
Sk Md Obaidullah; Anamika Mondal; Nibaran Das; Kaushik Roy
2014-01-01
Identification of script from document images is an active area of research under document image processing for a multilingual/ multiscript country like India. In this paper the real life problem of printed script identification from official Indian document images is considered and performances of different well-known classifiers are evaluated. Two important evaluating parameters, namely, AAR (average accuracy rate) and MBT (model building time), are computed for this performance analysi...
Orientation decoding: Sense in spirals?
Clifford, Colin W G; Mannion, Damien J
2015-04-15
The orientation of a visual stimulus can be successfully decoded from the multivariate pattern of fMRI activity in human visual cortex. Whether this capacity requires coarse-scale orientation biases is controversial. We and others have advocated the use of spiral stimuli to eliminate a potential coarse-scale bias-the radial bias toward local orientations that are collinear with the centre of gaze-and hence narrow down the potential coarse-scale biases that could contribute to orientation decoding. The usefulness of this strategy is challenged by the computational simulations of Carlson (2014), who reported the ability to successfully decode spirals of opposite sense (opening clockwise or counter-clockwise) from the pooled output of purportedly unbiased orientation filters. Here, we elaborate the mathematical relationship between spirals of opposite sense to confirm that they cannot be discriminated on the basis of the pooled output of unbiased or radially biased orientation filters. We then demonstrate that Carlson's (2014) reported decoding ability is consistent with the presence of inadvertent biases in the set of orientation filters; biases introduced by their digital implementation and unrelated to the brain's processing of orientation. These analyses demonstrate that spirals must be processed with an orientation bias other than the radial bias for successful decoding of spiral sense. Copyright © 2014 Elsevier Inc. All rights reserved.
Grasp movement decoding from premotor and parietal cortex.
Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg
2011-10-05
Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.
O2-GIDNC: Beyond instantly decodable network coding
Aboutorab, Neda
2013-06-01
In this paper, we are concerned with extending the graph representation of generalized instantly decodable network coding (GIDNC) to a more general opportunistic network coding (ONC) scenario, referred to as order-2 GIDNC (O2-GIDNC). In the O2-GIDNC scheme, receivers can store non-instantly decodable packets (NIDPs) comprising two of their missing packets, and use them in a systematic way for later decodings. Once this graph representation is found, it can be used to extend the GIDNC graph-based analyses to the proposed O2-GIDNC scheme with a limited increase in complexity. In the proposed O2-GIDNC scheme, the information of the stored NIDPs at the receivers and the decoding opportunities they create can be exploited to improve the broadcast completion time and decoding delay compared to traditional GIDNC scheme. The completion time and decoding delay minimizing algorithms that can operate on the new O2-GIDNC graph are further described. The simulation results show that our proposed O2-GIDNC improves the completion time and decoding delay performance of the traditional GIDNC. © 2013 IEEE.
On decoding of multi-level MPSK modulation codes
Lin, Shu; Gupta, Alok Kumar
1990-01-01
The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.
Multi-stage decoding of multi-level modulation codes
Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.
1991-01-01
Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).
Binary Systematic Network Coding for Progressive Packet Decoding
Jones, Andrew L.; Chatzigeorgiou, Ioannis; Tassi, Andrea
2015-01-01
We consider binary systematic network codes and investigate their capability of decoding a source message either in full or in part. We carry out a probability analysis, derive closed-form expressions for the decoding probability and show that systematic network coding outperforms conventional net- work coding. We also develop an algorithm based on Gaussian elimination that allows progressive decoding of source packets. Simulation results show that the proposed decoding algorithm can achieve ...
Power decoding Reed-Solomon codes up to the Johnson radius
DEFF Research Database (Denmark)
Rosenkilde, Johan Sebastian Heesemann
2018-01-01
Power decoding, or "decoding using virtual interleaving" is a technique for decoding Reed-Solomon codes up to the Sudan radius. Since the method's inception, it has been an open question if it is possible to use this approach to decode up to the Johnson radius - the decoding radius of the Guruswami...
Application of Beyond Bound Decoding for High Speed Optical Communications
DEFF Research Database (Denmark)
Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José
2013-01-01
This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....
Polar Coding with CRC-Aided List Decoding
2015-08-01
TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536
Decoding of concatenated codes with interleaved outer codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom; Thommesen, Christian
2004-01-01
Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....
Iterative channel decoding of FEC-based multiple-description codes.
Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B
2012-03-01
Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.
Modified Decoding Algorithm of LLR-SPA
Directory of Open Access Journals (Sweden)
Zhongxun Wang
2014-09-01
Full Text Available In wireless sensor networks, the energy consumption is mainly occurred in the stage of information transmission. The Low Density Parity Check code can make full use of the channel information to save energy. Because of the widely used decoding algorithm of the Low Density Parity Check code, this paper proposes a new decoding algorithm which is based on the LLR-SPA (Sum-Product Algorithm in Log-Likelihood-domain to improve the accuracy of the decoding algorithm. In the modified algorithm, a piecewise linear function is used to approximate the complicated Jacobi correction term in LLR-SPA decoding algorithm. Construct the tangent by the tangency point to the function of Jacobi correction term, which is based on the first order Taylor Series. In this way, the proposed piecewise linear approximation offers almost a perfect match to the function of Jacobi correction term. Meanwhile, the proposed piecewise linear approximation could avoid the operation of logarithmic which is more suitable for practical application. The simulation results show that the proposed algorithm could improve the decoding accuracy greatly without noticeable variation of the computational complexity.
Pseudo real-time coded aperture imaging system with intensified vidicon cameras
International Nuclear Information System (INIS)
Han, K.S.; Berzins, G.J.
1977-01-01
A coded image displayed on a TV monitor was used to directly reconstruct a decoded image. Both the coded and the decoded images were viewed with intensified vidicon cameras. The coded aperture was a 15-element nonredundant pinhole array. The coding and decoding were accomplished simultaneously during the scanning of a single 16-msec TV frame
Real-time minimal-bit-error probability decoding of convolutional codes
Lee, L.-N.
1974-01-01
A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.
Real-time minimal bit error probability decoding of convolutional codes
Lee, L. N.
1973-01-01
A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.
LOCAL BINARIZATION FOR DOCUMENT IMAGES CAPTURED BY CAMERAS WITH DECISION TREE
Directory of Open Access Journals (Sweden)
Naser Jawas
2012-07-01
Full Text Available Character recognition in a document image captured by a digital camera requires a good binary image as the input for the separation the text from the background. Global binarization method does not provide such good separation because of the problem of uneven levels of lighting in images captured by cameras. Local binarization method overcomes the problem but requires a method to partition the large image into local windows properly. In this paper, we propose a local binariation method with dynamic image partitioning using integral image and decision tree for the binarization decision. The integral image is used to estimate the number of line in the document image. The number of line in the document image is used to devide the document into local windows. The decision tree makes a decision for threshold in every local window. The result shows that the proposed method can separate the text from the background better than using global thresholding with the best OCR result of the binarized image is 99.4%. Pengenalan karakter pada sebuah dokumen citra yang diambil menggunakan kamera digital membutuhkan citra yang terbinerisasi dengan baik untuk memisahkan antara teks dengan background. Metode binarisasi global tidak memberikan hasil pemisahan yang bagus karena permasalahan tingkat pencahayaan yang tidak seimbang pada citra hasil kamera digital. Metode binarisasi lokal dapat mengatasi permasalahan tersebut namun metode tersebut membutuhkan metode untuk membagi citra ke dalam bagian-bagian window lokal. Pada paper ini diusulkan sebuah metode binarisasi lokal dengan pembagian citra secara dinamis menggunakan integral image dan decision tree untuk keputusan binarisasi lokalnya. Integral image digunakan untuk mengestimasi jumlah baris teks dalam dokumen citra. Jumlah baris tersebut kemudian digunakan untuk membagi citra dokumen ke dalam window lokal. Keputusan nilai threshold untuk setiap window lokal ditentukan dengan decisiontree. Hasilnya menunjukkan
Lei, Ted Chih-Wei; Tseng, Fan-Shuo
2017-07-01
This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.
Study of bifurcation behavior of two-dimensional turbo product code decoders
International Nuclear Information System (INIS)
He Yejun; Lau, Francis C.M.; Tse, Chi K.
2008-01-01
Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values
Architecture for time or transform domain decoding of reed-solomon codes
Shao, Howard M. (Inventor); Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Deutsch, Leslie J. (Inventor)
1989-01-01
Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.
Study of bifurcation behavior of two-dimensional turbo product code decoders
Energy Technology Data Exchange (ETDEWEB)
He Yejun [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China); Lau, Francis C.M. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)], E-mail: encmlau@polyu.edu.hk; Tse, Chi K. [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong (China)
2008-04-15
Turbo codes, low-density parity-check (LDPC) codes and turbo product codes (TPCs) are high performance error-correction codes which employ iterative algorithms for decoding. Under different conditions, the behaviors of the decoders are different. While the nonlinear dynamical behaviors of turbo code decoders and LDPC decoders have been reported in the literature, the dynamical behavior of TPC decoders is relatively unexplored. In this paper, we investigate the behavior of the iterative algorithm of a two-dimensional TPC decoder when the input signal-to-noise ratio (SNR) varies. The quantity to be measured is the mean square value of the posterior probabilities of the information bits. Unlike turbo decoders or LDPC decoders, TPC decoders do not produce a clear 'waterfall region'. This is mainly because the TPC decoding algorithm does not converge to 'indecisive' fixed points even at very low SNR values.
Sub-quadratic decoding of one-point hermitian codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter
2015-01-01
We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....
Dynamics of intracellular information decoding.
Kobayashi, Tetsuya J; Kamimura, Atsushi
2011-10-01
A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.
Decoding intention at sensorimotor timescales.
Directory of Open Access Journals (Sweden)
Mathew Salvaris
Full Text Available The ability to decode an individual's intentions in real time has long been a 'holy grail' of research on human volition. For example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli to be delivered at different moments during development of intention and action. Several Brain Computer Interface applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but only if the intention is sustained over a period of several seconds; much longer than the timescales identified in psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The implications for volition are considered.
Dynamics of intracellular information decoding
International Nuclear Information System (INIS)
Kobayashi, Tetsuya J; Kamimura, Atsushi
2011-01-01
A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity
Performance breakdown in optimal stimulus decoding.
Lubomir Kostal; Lansky, Petr; Pilarski, Stevan
2015-06-01
One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.
Real-time SHVC software decoding with multi-threaded parallel processing
Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu
2014-09-01
This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.
High-throughput GPU-based LDPC decoding
Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin
2010-08-01
Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.
Neuroprosthetic Decoder Training as Imitation Learning.
Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P
2016-05-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
Neuroprosthetic Decoder Training as Imitation Learning.
Directory of Open Access Journals (Sweden)
Josh Merel
2016-05-01
Full Text Available Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger, can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
Iterative List Decoding of Concatenated Source-Channel Codes
Directory of Open Access Journals (Sweden)
Hedayat Ahmadreza
2005-01-01
Full Text Available Whenever variable-length entropy codes are used in the presence of a noisy channel, any channel errors will propagate and cause significant harm. Despite using channel codes, some residual errors always remain, whose effect will get magnified by error propagation. Mitigating this undesirable effect is of great practical interest. One approach is to use the residual redundancy of variable length codes for joint source-channel decoding. In this paper, we improve the performance of residual redundancy source-channel decoding via an iterative list decoder made possible by a nonbinary outer CRC code. We show that the list decoding of VLC's is beneficial for entropy codes that contain redundancy. Such codes are used in state-of-the-art video coders, for example. The proposed list decoder improves the overall performance significantly in AWGN and fully interleaved Rayleigh fading channels.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid; Alouini, Mohamed-Slim
2013-01-01
channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement
Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel
Abediseid, Walid
2013-06-01
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter - the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity. © 2013 IEEE.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and
Singer product apertures—A coded aperture system with a fast decoding algorithm
International Nuclear Information System (INIS)
Byard, Kevin; Shutler, Paul M.E.
2017-01-01
A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.
Singer product apertures—A coded aperture system with a fast decoding algorithm
Energy Technology Data Exchange (ETDEWEB)
Byard, Kevin, E-mail: kevin.byard@aut.ac.nz [School of Economics, Faculty of Business, Economics and Law, Auckland University of Technology, Auckland 1142 (New Zealand); Shutler, Paul M.E. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)
2017-06-01
A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.
Synthesizer for decoding a coded short wave length irradiation
International Nuclear Information System (INIS)
1976-01-01
The system uses point irradiation source, typically an X-ray emitter, which illuminates a three dimensional object consisting of a set of parallel planes, each of which acts as a source of coded information. The secondary source images are superimposed on a common flat screen. The decoding system comprises an imput light-screen detector, a picture screen amplifier, a beam deflector, on output picture screen, an optical focussing unit including three lenses, a masking unit, an output light screen detector and a video signal reproduction unit of cathode ray tube from, or similar, to create a three dimensional image of the object. (G.C.)
Spotting Separator Points at Line Terminals in Compressed Document Images for Text-line Segmentation
R, Amarnath; Nagabhushan, P.
2017-01-01
Line separators are used to segregate text-lines from one another in document image analysis. Finding the separator points at every line terminal in a document image would enable text-line segmentation. In particular, identifying the separators in handwritten text could be a thrilling exercise. Obviously it would be challenging to perform this in the compressed version of a document image and that is the proposed objective in this research. Such an effort would prevent the computational burde...
LDPC-based iterative joint source-channel decoding for JPEG2000.
Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane
2007-02-01
A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.
Deep Learning Methods for Improved Decoding of Linear Codes
Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair
2018-02-01
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.
Bayesian population decoding of spiking neurons.
Gerwinn, Sebastian; Macke, Jakob; Bethge, Matthias
2009-01-01
The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a 'spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.
Bayesian population decoding of spiking neurons
Directory of Open Access Journals (Sweden)
Sebastian Gerwinn
2009-10-01
Full Text Available The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a `spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.
Three phase full wave dc motor decoder
Studer, P. A. (Inventor)
1977-01-01
A three phase decoder for dc motors is disclosed which employs an extremely simple six transistor circuit to derive six properly phased output signals for fullwave operation of dc motors. Six decoding transistors are coupled at their base-emitter junctions across a resistor network arranged in a delta configuration. Each point of the delta configuration is coupled to one of three position sensors which sense the rotational position of the motor. A second embodiment of the invention is disclosed in which photo-optical isolators are used in place of the decoding transistors.
Decoding and Encoding Facial Expressions in Preschool-Age Children.
Zuckerman, Miron; Przewuzman, Sylvia J.
1979-01-01
Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…
Belief propagation decoding of quantum channels by passing quantum messages
International Nuclear Information System (INIS)
Renes, Joseph M
2017-01-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical–quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels. (fast track communication)
Belief propagation decoding of quantum channels by passing quantum messages
Renes, Joseph M.
2017-07-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.
Decoding Humor Experiences from Brain Activity of People Viewing Comedy Movies
Sawahata, Yasuhito; Komine, Kazuteru; Morita, Toshiya; Hiruma, Nobuyuki
2013-01-01
Humans naturally have a sense of humor. Experiencing humor not only encourages social interactions, but also produces positive physiological effects on the human body, such as lowering blood pressure. Recent neuro-imaging studies have shown evidence for distinct mental state changes at work in people experiencing humor. However, the temporal characteristics of these changes remain elusive. In this paper, we objectively measured humor-related mental states from single-trial functional magnetic resonance imaging (fMRI) data obtained while subjects viewed comedy TV programs. Measured fMRI data were labeled on the basis of the lag before or after the viewer’s perception of humor (humor onset) determined by the viewer-reported humor experiences during the fMRI scans. We trained multiple binary classifiers, or decoders, to distinguish between fMRI data obtained at each lag from ones obtained during a neutral state in which subjects were not experiencing humor. As a result, in the right dorsolateral prefrontal cortex and the right temporal area, the decoders showed significant classification accuracies even at two seconds ahead of the humor onsets. Furthermore, given a time series of fMRI data obtained during movie viewing, we found that the decoders with significant performance were also able to predict the upcoming humor events on a volume-by-volume basis. Taking into account the hemodynamic delay, our results suggest that the upcoming humor events are encoded in specific brain areas up to about five seconds before the awareness of experiencing humor. Our results provide evidence that there exists a mental state lasting for a few seconds before actual humor perception, as if a viewer is expecting the future humorous events. PMID:24324656
Text extraction method for historical Tibetan document images based on block projections
Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian
2017-11-01
Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.
Video semaphore decoding for free-space optical communication
Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.
2001-04-01
Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.
Decoding Algorithms for Random Linear Network Codes
DEFF Research Database (Denmark)
Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank
2011-01-01
We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...
Comparison of approaches for mobile document image analysis using server supported smartphones
Ozarslan, Suleyman; Eren, P. Erhan
2014-03-01
With the recent advances in mobile technologies, new capabilities are emerging, such as mobile document image analysis. However, mobile phones are still less powerful than servers, and they have some resource limitations. One approach to overcome these limitations is performing resource-intensive processes of the application on remote servers. In mobile document image analysis, the most resource consuming process is the Optical Character Recognition (OCR) process, which is used to extract text in mobile phone captured images. In this study, our goal is to compare the in-phone and the remote server processing approaches for mobile document image analysis in order to explore their trade-offs. For the inphone approach, all processes required for mobile document image analysis run on the mobile phone. On the other hand, in the remote-server approach, core OCR process runs on the remote server and other processes run on the mobile phone. Results of the experiments show that the remote server approach is considerably faster than the in-phone approach in terms of OCR time, but adds extra delays such as network delay. Since compression and downscaling of images significantly reduce file sizes and extra delays, the remote server approach overall outperforms the in-phone approach in terms of selected speed and correct recognition metrics, if the gain in OCR time compensates for the extra delays. According to the results of the experiments, using the most preferable settings, the remote server approach performs better than the in-phone approach in terms of speed and acceptable correct recognition metrics.
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2017-08-01
Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar
Hendley, Tom
1995-01-01
Discussion of digital document image processing focuses on issues and options associated with greyscale and color image processing. Topics include speed; size of original document; scanning resolution; markets for different categories of scanners, including photographic libraries, publishing, and office applications; hybrid systems; data…
Oppositional Decoding as an Act of Resistance.
Steiner, Linda
1988-01-01
Argues that contributors to the "No Comment" feature of "Ms." magazine are engaging in oppositional decoding and speculates on why this is a satisfying group process. Also notes such decoding presents another challenge to the idea that mass media has the same effect on all audiences. (SD)
Nonlinear filtering for character recognition in low quality document images
Diaz-Escobar, Julia; Kober, Vitaly
2014-09-01
Optical character recognition in scanned printed documents is a well-studied task, where the captured conditions like sheet position, illumination, contrast and resolution are controlled. Nowadays, it is more practical to use mobile devices for document capture than a scanner. So as a consequence, the quality of document images is often poor owing to presence of geometric distortions, nonhomogeneous illumination, low resolution, etc. In this work we propose to use multiple adaptive nonlinear composite filters for detection and classification of characters. Computer simulation results obtained with the proposed system are presented and discussed.
Generalized Sudan's List Decoding for Order Domain Codes
DEFF Research Database (Denmark)
Geil, Hans Olav; Matsumoto, Ryutaroh
2007-01-01
We generalize Sudan's list decoding algorithm without multiplicity to evaluation codes coming from arbitrary order domains. The number of correctable errors by the proposed method is larger than the original list decoding without multiplicity....
Combined fMRI- and eye movement-based decoding of bistable plaid motion perception.
Wilbertz, Gregor; Ketkar, Madhura; Guggenmos, Matthias; Sterzer, Philipp
2018-05-01
The phenomenon of bistable perception, in which perception alternates spontaneously despite constant sensory stimulation, has been particularly useful in probing the neural bases of conscious perception. The study of such bistability requires access to the observer's perceptual dynamics, which is usually achieved via active report. This report, however, constitutes a confounding factor in the study of conscious perception and can also be biased in the context of certain experimental manipulations. One approach to circumvent these problems is to track perceptual alternations using signals from the eyes or the brain instead of observers' reports. Here we aimed to optimize such decoding of perceptual alternations by combining eye and brain signals. Eye-tracking and functional magnetic resonance imaging (fMRI) was performed in twenty participants while they viewed a bistable visual plaid motion stimulus and reported perceptual alternations. Multivoxel pattern analysis (MVPA) for fMRI was combined with eye-tracking in a Support vector machine to decode participants' perceptual time courses from fMRI and eye-movement signals. While both measures individually already yielded high decoding accuracies (on average 86% and 88% correct, respectively) classification based on the two measures together further improved the accuracy (91% correct). These findings show that leveraging on both fMRI and eye movement data may pave the way for optimized no-report paradigms through improved decodability of bistable motion perception and hence for a better understanding of the neural correlates of consciousness. Copyright © 2018 Elsevier Inc. All rights reserved.
Fast words boundaries localization in text fields for low quality document images
Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry
2018-04-01
The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3
Locally decodable codes and private information retrieval schemes
Yekhanin, Sergey
2010-01-01
Locally decodable codes (LDCs) are codes that simultaneously provide efficient random access retrieval and high noise resilience by allowing reliable reconstruction of an arbitrary bit of a message by looking at only a small number of randomly chosen codeword bits. Local decodability comes with a certain loss in terms of efficiency - specifically, locally decodable codes require longer codeword lengths than their classical counterparts. Private information retrieval (PIR) schemes are cryptographic protocols designed to safeguard the privacy of database users. They allow clients to retrieve rec
Turbo decoder architecture for beyond-4G applications
Wong, Cheng-Chi
2013-01-01
This book describes the most recent techniques for turbo decoder implementation, especially for 4G and beyond 4G applications. The authors reveal techniques for the design of high-throughput decoders for future telecommunication systems, enabling designers to reduce hardware cost and shorten processing time. Coverage includes an explanation of VLSI implementation of the turbo decoder, from basic functional units to advanced parallel architecture. The authors discuss both hardware architecture techniques and experimental results, showing the variations in area/throughput/performance with respec
Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.
Sajda, Paul
2010-01-01
In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.
Squires, Katie Ellen
2013-01-01
This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…
Image authentication using distributed source coding.
Lin, Yao-Chung; Varodayan, David; Girod, Bernd
2012-01-01
We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.
A real-time MPEG software decoder using a portable message-passing library
Energy Technology Data Exchange (ETDEWEB)
Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan
1995-12-31
We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.
Efficient universal computing architectures for decoding neural activity.
Directory of Open Access Journals (Sweden)
Benjamin I Rapoport
Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion
Robust pattern decoding in shape-coded structured light
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
RECOVERY OF DOCUMENT TEXT FROM TORN FRAGMENTS USING IMAGE PROCESSING
C.Prasad; Dr.Mahesh; Dr.S.A.K. Jilani
2016-01-01
Recovery of document from its torn or damaged fragments play an important role in the field of forensics and archival study. Reconstruction of the torn papers manually with the help of glue and tapes etc., is tedious, time consuming and not satisfactory. For torn images reconstruction we go for image mosaicing, where we reconstruct the image using features (corners) and RANSAC with homography.But for the torn fragments there is no such similarity portion between fragments. Hence we propose a ...
Optimal and efficient decoding of concatenated quantum block codes
International Nuclear Information System (INIS)
Poulin, David
2006-01-01
We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead
Error Recovery Properties and Soft Decoding of Quasi-Arithmetic Codes
Directory of Open Access Journals (Sweden)
Christine Guillemot
2007-08-01
Full Text Available This paper first introduces a new set of aggregated state models for soft-input decoding of quasi arithmetic (QA codes with a termination constraint. The decoding complexity with these models is linear with the sequence length. The aggregation parameter controls the tradeoff between decoding performance and complexity. It is shown that close-to-optimal decoding performance can be obtained with low values of the aggregation parameter, that is, with a complexity which is significantly reduced with respect to optimal QA bit/symbol models. The choice of the aggregation parameter depends on the synchronization recovery properties of the QA codes. This paper thus describes a method to estimate the probability mass function (PMF of the gain/loss of symbols following a single bit error (i.e., of the difference between the number of encoded and decoded symbols. The entropy of the gain/loss turns out to be the average amount of information conveyed by a length constraint on both the optimal and aggregated state models. This quantity allows us to choose the value of the aggregation parameter that will lead to close-to-optimal decoding performance. It is shown that the optimum position for the length constraint is not the last time instant of the decoding process. This observation leads to the introduction of a new technique for robust decoding of QA codes with redundancy which turns out to outperform techniques based on the concept of forbidden symbol.
Word Processing in Dyslexics: An Automatic Decoding Deficit?
Yap, Regina; Van Der Leu, Aryan
1993-01-01
Compares dyslexic children with normal readers on measures of phonological decoding and automatic word processing. Finds that dyslexics have a deficit in automatic phonological decoding skills. Discusses results within the framework of the phonological deficit and the automatization deficit hypotheses. (RS)
On the decoding process in ternary error-correcting output codes.
Escalera, Sergio; Pujol, Oriol; Radeva, Petia
2010-01-01
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
LDPC Codes--Structural Analysis and Decoding Techniques
Zhang, Xiaojie
2012-01-01
Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…
Coding aperture applied to X-ray imaging
International Nuclear Information System (INIS)
Brunol, J.; Sauneuf, R.; Gex, J.P.
1980-05-01
We present some X-ray images of grids and plasmas. These images were obtained by using a single circular slit (annular code) as coding aperture and a computer decoding process. The experimental resolution is better than 10μm and it is expected to be in the order of 2 or 3 μm with the same code and an improved decoding process
Construction and decoding of matrix-product codes from nested codes
DEFF Research Database (Denmark)
Hernando, Fernando; Lally, Kristine; Ruano, Diego
2009-01-01
We consider matrix-product codes [C1 ... Cs] · A, where C1, ..., Cs are nested linear codes and matrix A has full rank. We compute their minimum distance and provide a decoding algorithm when A is a non-singular by columns matrix. The decoding algorithm decodes up to half of the minimum distance....
Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
Hou, Fen-fei; Yang, Ming
2012-12-01
A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.
Low Complexity List Decoding for Polar Codes with Multiple CRC Codes
Directory of Open Access Journals (Sweden)
Jong-Hwan Kim
2017-04-01
Full Text Available Polar codes are the first family of error correcting codes that provably achieve the capacity of symmetric binary-input discrete memoryless channels with low complexity. Since the development of polar codes, there have been many studies to improve their finite-length performance. As a result, polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd generation partnership project. However, the decoder implementation is one of the big practical problems and low complexity decoding has been studied. This paper addresses a low complexity successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check (CRC codes. While some research uses multiple CRC codes to reduce memory and time complexity, we consider the operational complexity of decoding, and reduce it by optimizing CRC positions in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not only complexity reduction from early stopping of decoding, but also additional reduction from the reduced number of decoding paths.
Decoding bipedal locomotion from the rat sensorimotor cortex
Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.
2015-01-01
Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower
An FPGA Implementation of (3,6-Regular Low-Density Parity-Check Code Decoder
Directory of Open Access Journals (Sweden)
Tong Zhang
2003-05-01
Full Text Available Because of their excellent error-correcting performance, low-density parity-check (LDPC codes have recently attracted a lot of attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3,k-regular LDPC code partly parallel decoder architecture based on which we implement a 9216-bit, rate-1/2(3,6-regular LDPC code decoder on Xilinx FPGA device. This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 10Ã¢ÂˆÂ’6 at 2 dB over AWGN channel while performing maximum 18 decoding iterations.
Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel
Abediseid, Walid; Alouini, Mohamed-Slim
2013-01-01
channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement
Distributed coding/decoding complexity in video sensor networks.
Cordeiro, Paulo J; Assunção, Pedro
2012-01-01
Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.
Observations on Polar Coding with CRC-Aided List Decoding
2016-09-01
TECHNICAL REPORT 3041 September 2016 Observations on Polar Coding with CRC-Aided List Decoding David Wasserman Approved for public release. SSC...described in [2, 3]. In FY15 and FY16 we used cyclic redundancy check (CRC)-aided polar list decoding [4]. Section 2 describes the basics of polar coding ...and gives details of the encoders and decoders we used. In the course of our research, we performed simulations of polar codes in hundreds of cases
DEFF Research Database (Denmark)
Martins, Bo; Forchhammer, Søren
1999-01-01
MPEG-2 video decoding is examined. A unified approach to quality improvement, chrominance upsampling, de-interlacing and superresolution is presented. The information over several frames is combined as part of the processing....
Emotion Decoding and Incidental Processing Fluency as Antecedents of Attitude Certainty.
Petrocelli, John V; Whitmire, Melanie B
2017-07-01
Previous research demonstrates that attitude certainty influences the degree to which an attitude changes in response to persuasive appeals. In the current research, decoding emotions from facial expressions and incidental processing fluency, during attitude formation, are examined as antecedents of both attitude certainty and attitude change. In Experiment 1, participants who decoded anger or happiness during attitude formation expressed their greater attitude certainty, and showed more resistance to persuasion than participants who decoded sadness. By manipulating the emotion decoded, the diagnosticity of processing fluency experienced during emotion decoding, and the gaze direction of the social targets, Experiment 2 suggests that the link between emotion decoding and attitude certainty results from incidental processing fluency. Experiment 3 demonstrated that fluency in processing irrelevant stimuli influences attitude certainty, which in turn influences resistance to persuasion. Implications for appraisal-based accounts of attitude formation and attitude change are discussed.
Directory of Open Access Journals (Sweden)
Hossein Pourghassem
2010-10-01
Full Text Available The conversion of document image to its electronic version is a very important problem in the saving, searching and retrieval application in the official automation system. For this purpose, analysis of the document image is necessary. In this paper, a hierarchical classification structure based on a two-stage segmentation algorithm is proposed. In this structure, image is segmented using the proposed two-stage segmentation algorithm. Then, the type of the image regions such as document and non-document image is determined using multiple classifiers in the hierarchical classification structure. The proposed segmentation algorithm uses two algorithms based on wavelet transform and thresholding. Texture features such as correlation, homogeneity and entropy that extracted from co-occurrenc matrix and also two new features based on wavelet transform are used to classifiy and lable the regions of the image. The hierarchical classifier is consisted of two Multilayer Perceptron (MLP classifiers and a Support Vector Machine (SVM classifier. The proposed algorithm is evaluated on a database consisting of document and non-document images that provides from Internet. The experimental results show the efficiency of the proposed approach in the region segmentation and classification. The proposed algorithm provides accuracy rate of 97.5% on classification of the regions.
On Lattice Sequential Decoding for Large MIMO Systems
Ali, Konpal S.
2014-04-01
Due to their ability to provide high data rates, Multiple-Input Multiple-Output (MIMO) wireless communication systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In the case of large overdetermined MIMO systems, we employ the Sequential Decoder using the Fano Algorithm. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. We attempt to bound the error by bounding the bias, using the minimum distance of a lattice. Also, a particular trend is observed with increasing SNR: a region of low complexity and high error, followed by a region of high complexity and error falling, and finally a region of low complexity and low error. For lower bias values, the stages of the trend are incurred at lower SNR than for higher bias values. This has the important implication that a low enough bias value, at low to moderate SNR, can result in low error and low complexity even for large MIMO systems. Our work is compared against Lattice Reduction (LR) aided Linear Decoders (LDs). Another impressive observation for low bias values that satisfy the error bound is that the Sequential Decoder\\'s error is seen to fall with increasing system size, while it grows for the LR-aided LDs. For the case of large underdetermined MIMO systems, Sequential Decoding with two preprocessing schemes is proposed – 1) Minimum Mean Square Error Generalized Decision Feedback Equalization (MMSE-GDFE) preprocessing 2) MMSE-GDFE preprocessing, followed by Lattice Reduction and Greedy Ordering. Our work is compared against previous work which employs Sphere Decoding preprocessed using MMSE-GDFE, Lattice Reduction and Greedy Ordering. For the case of large systems, this results in high complexity and difficulty in choosing the sphere radius. Our schemes
Correcting geometric and photometric distortion of document images on a smartphone
Simon, Christian; Williem; Park, In Kyu
2015-01-01
A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.
A Parallel Approach to Fractal Image Compression
Lubomir Dedera
2004-01-01
The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
USE OF IMAGE BASED MODELLING FOR DOCUMENTATION OF INTRICATELY SHAPED OBJECTS
Directory of Open Access Journals (Sweden)
M. Marčiš
2016-06-01
Full Text Available In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.
Use of Image Based Modelling for Documentation of Intricately Shaped Objects
Marčiš, M.; Barták, P.; Valaška, D.; Fraštia, M.; Trhan, O.
2016-06-01
In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.
Sequential decoders for large MIMO systems
Ali, Konpal S.
2014-05-01
Due to their ability to provide high data rates, multiple-input multiple-output (MIMO) systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In this paper, we employ the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. Numerical results are done that show moderate bias values result in a decent performance-complexity trade-off. We also attempt to bound the error by bounding the bias, using the minimum distance of a lattice. The variations in complexity with SNR have an interesting trend that shows room for considerable improvement. Our work is compared against linear decoders (LDs) aided with Element-based Lattice Reduction (ELR) and Complex Lenstra-Lenstra-Lovasz (CLLL) reduction. © 2014 IFIP.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
Construction and decoding of a class of algebraic geometry codes
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
Multiformat decoder for a DSP-based IP set-top box
Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.
2007-05-01
Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.
STACK DECODING OF LINEAR BLOCK CODES FOR DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM
Directory of Open Access Journals (Sweden)
H. Prashantha Kumar
2012-03-01
Full Text Available The boundaries between block and convolutional codes have become diffused after recent advances in the understanding of the trellis structure of block codes and the tail-biting structure of some convolutional codes. Therefore, decoding algorithms traditionally proposed for decoding convolutional codes have been applied for decoding certain classes of block codes. This paper presents the decoding of block codes using tree structure. Many good block codes are presently known. Several of them have been used in applications ranging from deep space communication to error control in storage systems. But the primary difficulty with applying Viterbi or BCJR algorithms to decode of block codes is that, even though they are optimum decoding methods, the promised bit error rates are not achieved in practice at data rates close to capacity. This is because the decoding effort is fixed and grows with block length, and thus only short block length codes can be used. Therefore, an important practical question is whether a suboptimal realizable soft decision decoding method can be found for block codes. A noteworthy result which provides a partial answer to this question is described in the following sections. This result of near optimum decoding will be used as motivation for the investigation of different soft decision decoding methods for linear block codes which can lead to the development of efficient decoding algorithms. The code tree can be treated as an expanded version of the trellis, where every path is totally distinct from every other path. We have derived the tree structure for (8, 4 and (16, 11 extended Hamming codes and have succeeded in implementing the soft decision stack algorithm to decode them. For the discrete memoryless channel, gains in excess of 1.5dB at a bit error rate of 10-5 with respect to conventional hard decision decoding are demonstrated for these codes.
Visual perception as retrospective Bayesian decoding from high- to low-level features.
Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning
2017-10-24
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.
EXIT Chart Analysis of Binary Message-Passing Decoders
DEFF Research Database (Denmark)
Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard
2007-01-01
Binary message-passing decoders for LDPC codes are analyzed using EXIT charts. For the analysis, the variable node decoder performs all computations in the L-value domain. For the special case of a hard decision channel, this leads to the well know Gallager B algorithm, while the analysis can...... be extended to channels with larger output alphabets. By increasing the output alphabet from hard decisions to four symbols, a gain of more than 1.0 dB is achieved using optimized codes. For this code optimization, the mixing property of EXIT functions has to be modified to the case of binary message......-passing decoders....
Text segmentation in degraded historical document images
Directory of Open Access Journals (Sweden)
A.S. Kavitha
2016-07-01
Full Text Available Text segmentation from degraded Historical Indus script images helps Optical Character Recognizer (OCR to achieve good recognition rates for Hindus scripts; however, it is challenging due to complex background in such images. In this paper, we present a new method for segmenting text and non-text in Indus documents based on the fact that text components are less cursive compared to non-text ones. To achieve this, we propose a new combination of Sobel and Laplacian for enhancing degraded low contrast pixels. Then the proposed method generates skeletons for text components in enhanced images to reduce computational burdens, which in turn helps in studying component structures efficiently. We propose to study the cursiveness of components based on branch information to remove false text components. The proposed method introduces the nearest neighbor criterion for grouping components in the same line, which results in clusters. Furthermore, the proposed method classifies these clusters into text and non-text cluster based on characteristics of text components. We evaluate the proposed method on a large dataset containing varieties of images. The results are compared with the existing methods to show that the proposed method is effective in terms of recall and precision.
Decoding Hermitian Codes with Sudan's Algorithm
DEFF Research Database (Denmark)
Høholdt, Tom; Nielsen, Rasmus Refslund
1999-01-01
We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q-polynomial, and a reduct......We present an efficient implementation of Sudan's algorithm for list decoding Hermitian codes beyond half the minimum distance. The main ingredients are an explicit method to calculate so-called increasing zero bases, an efficient interpolation algorithm for finding the Q...
Decoding algorithm for vortex communications receiver
Kupferman, Judy; Arnon, Shlomi
2018-01-01
Vortex light beams can provide a tremendous alphabet for encoding information. We derive a symbol decoding algorithm for a direct detection matrix detector vortex beam receiver using Laguerre Gauss (LG) modes, and develop a mathematical model of symbol error rate (SER) for this receiver. We compare SER as a function of signal to noise ratio (SNR) for our algorithm and for the Pearson correlation algorithm. To our knowledge, this is the first comprehensive treatment of a decoding algorithm of a matrix detector for an LG receiver.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Low Complexity Approach for High Throughput Belief-Propagation based Decoding of LDPC Codes
Directory of Open Access Journals (Sweden)
BOT, A.
2013-11-01
Full Text Available The paper proposes a low complexity belief propagation (BP based decoding algorithm for LDPC codes. In spite of the iterative nature of the decoding process, the proposed algorithm provides both reduced complexity and increased BER performances as compared with the classic min-sum (MS algorithm, generally used for hardware implementations. Linear approximations of check-nodes update function are used in order to reduce the complexity of the BP algorithm. Considering this decoding approach, an FPGA based hardware architecture is proposed for implementing the decoding algorithm, aiming to increase the decoder throughput. FPGA technology was chosen for the LDPC decoder implementation, due to its parallel computation and reconfiguration capabilities. The obtained results show improvements regarding decoding throughput and BER performances compared with state-of-the-art approaches.
Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.
Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh
2017-11-15
The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.
Images and society (or Images, Society and its Decoding
Directory of Open Access Journals (Sweden)
Juan Soto Ramírez
2012-11-01
Full Text Available Common sense, the thinking of the people par excellence, asserts that: a picture is worth a thousand words. This is a big mistake. The images are not carriers of meanings. The images always go through three basic processes are: production, circulation and reception. These processes are always determined in the time and social space. They are always the result of multiple relationships (social, ideological, political, moral, religious, etc., established with them. Always there are so many elements beyond the image, which determines its meaning. The meaning of an image always depends on the relationships established with it in a historical time and space, socially and culturally determined. The images are never alone. To decrypt their meanings, you must first know the symbolic life of the societies in which they appear. Images do not have a single meaning because it depends on the historical and cultural geography which presents. The images always have a close relationship with the society they were born. The Muhammad cartoons not offend everyone equally.
Firing rate estimation using infinite mixture models and its application to neural decoding.
Shibue, Ryohei; Komaki, Fumiyasu
2017-11-01
Neural decoding is a framework for reconstructing external stimuli from spike trains recorded by various neural recordings. Kloosterman et al. proposed a new decoding method using marked point processes (Kloosterman F, Layton SP, Chen Z, Wilson MA. J Neurophysiol 111: 217-227, 2014). This method does not require spike sorting and thereby improves decoding accuracy dramatically. In this method, they used kernel density estimation to estimate intensity functions of marked point processes. However, the use of kernel density estimation causes problems such as low decoding accuracy and high computational costs. To overcome these problems, we propose a new decoding method using infinite mixture models to estimate intensity. The proposed method improves decoding performance in terms of accuracy and computational speed. We apply the proposed method to simulation and experimental data to verify its performance. NEW & NOTEWORTHY We propose a new neural decoding method using infinite mixture models and nonparametric Bayesian statistics. The proposed method improves decoding performance in terms of accuracy and computation speed. We have successfully applied the proposed method to position decoding from spike trains recorded in a rat hippocampus. Copyright © 2017 the American Physiological Society.
High-speed architecture for the decoding of trellis-coded modulation
Osborne, William P.
1992-01-01
Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.
An efficient adaptive arithmetic coding image compression technology
International Nuclear Information System (INIS)
Wang Xing-Yuan; Yun Jiao-Jiao; Zhang Yong-Lei
2011-01-01
This paper proposes an efficient lossless image compression scheme for still images based on an adaptive arithmetic coding compression algorithm. The algorithm increases the image coding compression rate and ensures the quality of the decoded image combined with the adaptive probability model and predictive coding. The use of adaptive models for each encoded image block dynamically estimates the probability of the relevant image block. The decoded image block can accurately recover the encoded image according to the code book information. We adopt an adaptive arithmetic coding algorithm for image compression that greatly improves the image compression rate. The results show that it is an effective compression technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
A Parallel Approach to Fractal Image Compression
Directory of Open Access Journals (Sweden)
Lubomir Dedera
2004-01-01
Full Text Available The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus
2013-01-01
The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of
Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang
2013-09-01
Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. © 2013 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.
Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?
Directory of Open Access Journals (Sweden)
Liana C L Portugal
Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model
Electrophysiological difference between mental state decoding and mental state reasoning.
Cao, Bihua; Li, Yiyuan; Li, Fuhong; Li, Hong
2012-06-29
Previous studies have explored the neural mechanism of Theory of Mind (ToM), but the neural correlates of its two components, mental state decoding and mental state reasoning, remain unclear. In the present study, participants were presented with various photographs, showing an actor looking at 1 of 2 objects, either with a happy or an unhappy expression. They were asked to either decode the emotion of the actor (mental state decoding task), predict which object would be chosen by the actor (mental state reasoning task), or judge at which object the actor was gazing (physical task), while scalp potentials were recorded. Results showed that (1) the reasoning task elicited an earlier N2 peak than the decoding task did over the prefrontal scalp sites; and (2) during the late positive component (240-440 ms), the reasoning task elicited a more positive deflection than the other two tasks did at the prefrontal scalp sites. In addition, neither the decoding task nor the reasoning task has no left/right hemisphere difference. These findings imply that mental state reasoning differs from mental state decoding early (210 ms) after stimulus onset, and that the prefrontal lobe is the neural basis of mental state reasoning. Copyright © 2012 Elsevier B.V. All rights reserved.
Partially blind instantly decodable network codes for lossy feedback environment
Sorour, Sameh
2014-09-01
In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.
Complexity Analysis of Reed-Solomon Decoding over GF without Using Syndromes
Directory of Open Access Journals (Sweden)
Chen Ning
2008-01-01
Full Text Available Abstract There has been renewed interest in decoding Reed-Solomon (RS codes without using syndromes recently. In this paper, we investigate the complexity of syndromeless decoding, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis focuses on RS codes over characteristic-2 fields, for which some multiplicative FFT techniques are not applicable. Due to moderate block lengths of RS codes in practice, our analysis is complete, without big notation. In addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. For high-rate RS codes, when compared to syndrome-based decoding algorithms, not only syndromeless decoding algorithms require more field operations regardless of implementation, but also decoder architectures based on their direct implementations have higher hardware costs and lower throughput. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.
A quantum algorithm for Viterbi decoding of classical convolutional codes
Grice, Jon R.; Meyer, David A.
2014-01-01
We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...
Design of a VLSI Decoder for Partially Structured LDPC Codes
Directory of Open Access Journals (Sweden)
Fabrizio Vacca
2008-01-01
of their parity matrix can be partitioned into two disjoint sets, namely, the structured and the random ones. For the proposed class of codes a constructive design method is provided. To assess the value of this method the constructed codes performance are presented. From these results, a novel decoding method called split decoding is introduced. Finally, to prove the effectiveness of the proposed approach a whole VLSI decoder is designed and characterized.
An evaluation of the effect of JPEG, JPEG2000, and H.264/AVC on CQR codes decoding process
Vizcarra Melgar, Max E.; Farias, Mylène C. Q.; Zaghetto, Alexandre
2015-02-01
This paper presents a binarymatrix code based on QR Code (Quick Response Code), denoted as CQR Code (Colored Quick Response Code), and evaluates the effect of JPEG, JPEG2000 and H.264/AVC compression on the decoding process. The proposed CQR Code has three additional colors (red, green and blue), what enables twice as much storage capacity when compared to the traditional black and white QR Code. Using the Reed-Solomon error-correcting code, the CQR Code model has a theoretical correction capability of 38.41%. The goal of this paper is to evaluate the effect that degradations inserted by common image compression algorithms have on the decoding process. Results show that a successful decoding process can be achieved for compression rates up to 0.3877 bits/pixel, 0.1093 bits/pixel and 0.3808 bits/pixel for JPEG, JPEG2000 and H.264/AVC formats, respectively. The algorithm that presents the best performance is the H.264/AVC, followed by the JPEG2000, and JPEG.
Multiuser Random Coding Techniques for Mismatched Decoding
Scarlett, Jonathan; Martinez, Alfonso; Guillén i Fàbregas, Albert
2016-01-01
This paper studies multiuser random coding techniques for channel coding with a given (possibly suboptimal) decoding rule. For the mismatched discrete memoryless multiple-access channel, an error exponent is obtained that is tight with respect to the ensemble average, and positive within the interior of Lapidoth's achievable rate region. This exponent proves the ensemble tightness of the exponent of Liu and Hughes in the case of maximum-likelihood decoding. An equivalent dual form of Lapidoth...
Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu
2016-01-01
We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Row Reduction Applied to Decoding of Rank Metric and Subspace Codes
DEFF Research Database (Denmark)
Puchinger, Sven; Nielsen, Johan Sebastian Rosenkilde; Li, Wenhui
2017-01-01
We show that decoding of ℓ-Interleaved Gabidulin codes, as well as list-ℓ decoding of Mahdavifar–Vardy (MV) codes can be performed by row reducing skew polynomial matrices. Inspired by row reduction of F[x] matrices, we develop a general and flexible approach of transforming matrices over skew...... polynomial rings into a certain reduced form. We apply this to solve generalised shift register problems over skew polynomial rings which occur in decoding ℓ-Interleaved Gabidulin codes. We obtain an algorithm with complexity O(ℓμ2) where μ measures the size of the input problem and is proportional...... to the code length n in the case of decoding. Further, we show how to perform the interpolation step of list-ℓ-decoding MV codes in complexity O(ℓn2), where n is the number of interpolation constraints....
ESVD: An Integrated Energy Scalable Framework for Low-Power Video Decoding Systems
Directory of Open Access Journals (Sweden)
Wen Ji
2010-01-01
Full Text Available Video applications using mobile wireless devices are a challenging task due to the limited capacity of batteries. The higher complex functionality of video decoding needs high resource requirements. Thus, power efficient control has become more critical design with devices integrating complex video processing techniques. Previous works on power efficient control in video decoding systems often aim at the low complexity design and not explicitly consider the scalable impact of subfunctions in decoding process, and seldom consider the relationship with the features of compressed video date. This paper is dedicated to developing an energy-scalable video decoding (ESVD strategy for energy-limited mobile terminals. First, ESVE can dynamically adapt the variable energy resources due to the device aware technique. Second, ESVD combines the decoder control with decoded data, through classifying the data into different partition profiles according to its characteristics. Third, it introduces utility theoretical analysis during the resource allocation process, so as to maximize the resource utilization. Finally, it adapts the energy resource as different energy budget and generates the scalable video decoding output under energy-limited systems. Experimental results demonstrate the efficiency of the proposed approach.
Cellular automaton decoders of topological quantum memories in the fault tolerant setting
International Nuclear Information System (INIS)
Herold, Michael; Eisert, Jens; Kastoryano, Michael J; Campbell, Earl T
2017-01-01
Active error decoding and correction of topological quantum codes—in particular the toric code—remains one of the most viable routes to large scale quantum information processing. In contrast, passive error correction relies on the natural physical dynamics of a system to protect encoded quantum information. However, the search is ongoing for a completely satisfactory passive scheme applicable to locally interacting two-dimensional systems. Here, we investigate dynamical decoders that provide passive error correction by embedding the decoding process into local dynamics. We propose a specific discrete time cellular-automaton decoder in the fault tolerant setting and provide numerical evidence showing that the logical qubit has a survival time extended by several orders of magnitude over that of a bare unencoded qubit. We stress that (asynchronous) dynamical decoding gives rise to a Markovian dissipative process. We hence equate cellular-automaton decoding to a fully dissipative topological quantum memory, which removes errors continuously. In this sense, uncontrolled and unwanted local noise can be corrected for by a controlled local dissipative process. We analyze the required resources, commenting on additional polylogarithmic factors beyond those incurred by an ideal constant resource dynamical decoder. (paper)
Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding
Douik, Ahmed S.
2013-10-01
In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.
Delay reduction in lossy intermittent feedback for generalized instantly decodable network coding
Douik, Ahmed S.; Sorour, Sameh; Alouini, Mohamed-Slim; Ai-Naffouri, Tareq Y.
2013-01-01
In this paper, we study the effect of lossy intermittent feedback loss events on the multicast decoding delay performance of generalized instantly decodable network coding. These feedback loss events create uncertainty at the sender about the reception statues of different receivers and thus uncertainty to accurately determine subsequent instantly decodable coded packets. To solve this problem, we first identify the different possibilities of uncertain packets at the sender and their probabilities. We then derive the expression of the mean decoding delay. We formulate the Generalized Instantly Decodable Network Coding (G-IDNC) minimum decoding delay problem as a maximum weight clique problem. Since finding the optimal solution is NP-hard, we design a variant of the algorithm employed in [1]. Our algorithm is compared to the two blind graph update proposed in [2] through extensive simulations. Results show that our algorithm outperforms the blind approaches in all the situations and achieves a tolerable degradation, against the perfect feedback, for large feedback loss period. © 2013 IEEE.
Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Ahmed Azouaoui
2012-01-01
Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.
Optimal coding-decoding for systems controlled via a communication channel
Yi-wei, Feng; Guo, Ge
2013-12-01
In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.
Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim
2018-04-01
Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.
Survey Of Lossless Image Coding Techniques
Melnychuck, Paul W.; Rabbani, Majid
1989-04-01
Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.
An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).
Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling
2018-04-17
Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.
An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT
Directory of Open Access Journals (Sweden)
Ran Li
2018-04-01
Full Text Available Aimed at a low-energy consumption of Green Internet of Things (IoT, this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi
2017-12-01
We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.
Decoding error-correcting codes with Gröbner bases
Bulygin, S.; Pellikaan, G.R.; Veldhuis, R.; Cronie, H.; Hoeksema, H.
2007-01-01
The decoding of arbitrary linear block codes is accomplished by solving a system of quadratic equations by means of Buchberger’s algorithm for finding a Gröbner basis. This generalizes the algorithm of Berlekamp-Massey for decoding Reed Solomon, Goppa and cyclic codes up to half the true minimum
StegNet: Mega Image Steganography Capacity with Deep Convolutional Network
Directory of Open Access Journals (Sweden)
Pin Wu
2018-06-01
Full Text Available Traditional image steganography often leans interests towards safely embedding hidden information into cover images with payload capacity almost neglected. This paper combines recent deep convolutional neural network methods with image-into-image steganography. It successfully hides the same size images with a decoding rate of 98.2% or bpp (bits per pixel of 23.57 by changing only 0.76% of the cover image on average. Our method directly learns end-to-end mappings between the cover image and the embedded image and between the hidden image and the decoded image. We further show that our embedded image, while with mega payload capacity, is still robust to statistical analysis.
Decoding Individual Finger Movements from One Hand Using Human EEG Signals
Gonzalez, Jania; Ding, Lei
2014-01-01
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (pEEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies. PMID:24416360
Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav
2018-04-01
Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.
Systolic array processing of the sequential decoding algorithm
Chang, C. Y.; Yao, K.
1989-01-01
A systolic array processing technique is applied to implementing the stack algorithm form of the sequential decoding algorithm. It is shown that sorting, a key function in the stack algorithm, can be efficiently realized by a special type of systolic arrays known as systolic priority queues. Compared to the stack-bucket algorithm, this approach is shown to have the advantages that the decoding always moves along the optimal path, that it has a fast and constant decoding speed and that its simple and regular hardware architecture is suitable for VLSI implementation. Three types of systolic priority queues are discussed: random access scheme, shift register scheme and ripple register scheme. The property of the entries stored in the systolic priority queue is also investigated. The results are applicable to many other basic sorting type problems.
Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming
2011-01-01
Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.
Directory of Open Access Journals (Sweden)
Sk Md Obaidullah
2014-01-01
multiscript country like India. In this paper the real life problem of printed script identification from official Indian document images is considered and performances of different well-known classifiers are evaluated. Two important evaluating parameters, namely, AAR (average accuracy rate and MBT (model building time, are computed for this performance analysis. Experiment was carried out on 459 printed document images with 5-fold cross-validation. Simple Logistic model shows highest AAR of 98.9% among all. BayesNet and Random Forest model have average accuracy rate of 96.7% and 98.2% correspondingly with lowest MBT of 0.09 s.
Techniques and Architectures for Hazard-Free Semi-Parallel Decoding of LDPC Codes
Directory of Open Access Journals (Sweden)
Rovini Massimo
2009-01-01
Full Text Available The layered decoding algorithm has recently been proposed as an efficient means for the decoding of low-density parity-check (LDPC codes, thanks to the remarkable improvement in the convergence speed (2x of the decoding process. However, pipelined semi-parallel decoders suffer from violations or "hazards" between consecutive updates, which not only violate the layered principle but also enforce the loops in the code, thus spoiling the error correction performance. This paper describes three different techniques to properly reschedule the decoding updates, based on the careful insertion of "idle" cycles, to prevent the hazards of the pipeline mechanism. Also, different semi-parallel architectures of a layered LDPC decoder suitable for use with such techniques are analyzed. Then, taking the LDPC codes for the wireless local area network (IEEE 802.11n as a case study, a detailed analysis of the performance attained with the proposed techniques and architectures is reported, and results of the logic synthesis on a 65 nm low-power CMOS technology are shown.
Multiple LDPC decoding for distributed source coding and video coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Luong, Huynh Van; Huang, Xin
2011-01-01
Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...
Partially blind instantly decodable network codes for lossy feedback environment
Sorour, Sameh; Douik, Ahmed S.; Valaee, Shahrokh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2014-01-01
an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both
A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video
DEFF Research Database (Denmark)
Forchhammer, Søren; Martins, Bo
2002-01-01
to the desired format. The processing involves an estimated quality of individual pixels based on MPEG image type and local quantization value. The mean-squared error (MSE) is reduced, compared to the directly decoded sequence, and annoying ringing artifacts, including mosquito noise, are effectively suppressed....... The superresolution pictures obtained by the algorithm are of much higher visual quality and have lower MSE than superresolution pictures obtained by simple spatial interpolation....
VLSI Architectures for Sliding-Window-Based Space-Time Turbo Trellis Code Decoders
Directory of Open Access Journals (Sweden)
Georgios Passas
2012-01-01
Full Text Available The VLSI implementation of SISO-MAP decoders used for traditional iterative turbo coding has been investigated in the literature. In this paper, a complete architectural model of a space-time turbo code receiver that includes elementary decoders is presented. These architectures are based on newly proposed building blocks such as a recursive add-compare-select-offset (ACSO unit, A-, B-, Γ-, and LLR output calculation modules. Measurements of complexity and decoding delay of several sliding-window-technique-based MAP decoder architectures and a proposed parameter set lead to defining equations and comparison between those architectures.
Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.
Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A
2012-11-01
Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.
Decoding English Alphabet Letters Using EEG Phase Information
Directory of Open Access Journals (Sweden)
YiYan Wang
2018-02-01
Full Text Available Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8. These results may provide a new approach for brain-computer interface techniques (BCI and may deepen our understanding of EEG oscillations in cognition.
Multi-Trial Guruswami–Sudan Decoding for Generalised Reed–Solomon Codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde; Zeh, Alexander
2013-01-01
An iterated refinement procedure for the Guruswami–Sudan list decoding algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list...
Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels
Directory of Open Access Journals (Sweden)
Wang Xiaodong
2002-01-01
Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.
Decoding Interleaved Gabidulin Codes using Alekhnovich's Algorithm
DEFF Research Database (Denmark)
Puchinger, Sven; Müelich, Sven; Mödinger, David
2017-01-01
We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an O(ℓ3n(ω+1)/2log(n)) decoding algorithm for ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent.......We prove that Alekhnovich's algorithm can be used for row reduction of skew polynomial matrices. This yields an O(ℓ3n(ω+1)/2log(n)) decoding algorithm for ℓ-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication exponent....
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Kashyap Manohar
2008-01-01
Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Chris Winstead
2008-04-01
Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Analysis and Design of Binary Message-Passing Decoders
DEFF Research Database (Denmark)
Lechner, Gottfried; Pedersen, Troels; Kramer, Gerhard
2012-01-01
Binary message-passing decoders for low-density parity-check (LDPC) codes are studied by using extrinsic information transfer (EXIT) charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the L-value domain. A hard decision channel results...... message-passing decoders. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived....... in the well-know Gallager B algorithm, and increasing the output alphabet from hard decisions to two bits yields a gain of more than 1.0 dB in the required signal to noise ratio when using optimized codes. The code optimization requires adapting the mixing property of EXIT functions to the case of binary...
An overview of turbo decoding on fading channels
ATILGAN, Doğan
2009-01-01
A review of turbo coding and decoding has been presented in the literature [1]. In that paper, turbo coding and decoding on AWGN (Additive White Gaussian Noise) channels has been elaborated. In wireless communications, a phenomennon called multipath fading is frequently encountered. Therefore, investigation of efficient techniques to tackle with the destructive effects of fading is essential. Turbo coding has been proven as an efficient channel coding technique for AWGN channels. Some of the ...
Design and Analysis of Adaptive Message Coding on LDPC Decoder with Faulty Storage
Directory of Open Access Journals (Sweden)
Guangjun Ge
2018-01-01
Full Text Available Unreliable message storage severely degrades the performance of LDPC decoders. This paper discusses the impacts of message errors on LDPC decoders and schemes improving the robustness. Firstly, we develop a discrete density evolution analysis for faulty LDPC decoders, which indicates that protecting the sign bits of messages is effective enough for finite-precision LDPC decoders. Secondly, we analyze the effects of quantization precision loss for static sign bit protection and propose an embedded dynamic coding scheme by adaptively employing the least significant bits (LSBs to protect the sign bits. Thirdly, we give a construction of Hamming product code for the adaptive coding and present low complexity decoding algorithms. Theoretic analysis indicates that the proposed scheme outperforms traditional triple modular redundancy (TMR scheme in decoding both threshold and residual errors, while Monte Carlo simulations show that the performance loss is less than 0.2 dB when the storage error probability varies from 10-3 to 10-4.
Information hiding techniques for infrared images: exploring the state-of-the art and challenges
Pomponiu, Victor; Cavagnino, Davide; Botta, Marco; Nejati, Hossein
2015-10-01
The proliferation of Infrared technology and imaging systems enables a different perspective to tackle many computer vision problems in defense and security applications. Infrared images are widely used by the law enforcement, Homeland Security and military organizations to achieve a significant advantage or situational awareness, and thus is vital to protect these data against malicious attacks. Concurrently, sophisticated malware are developed which are able to disrupt the security and integrity of these digital media. For instance, illegal distribution and manipulation are possible malicious attacks to the digital objects. In this paper we explore the use of a new layer of defense for the integrity of the infrared images through the aid of information hiding techniques such as watermarking. In this context, we analyze the efficiency of several optimal decoding schemes for the watermark inserted into the Singular Value Decomposition (SVD) domain of the IR images using an additive spread spectrum (SS) embedding framework. In order to use the singular values (SVs) of the IR images with the SS embedding we adopt several restrictions that ensure that the values of the SVs will maintain their statistics. For both the optimal maximum likelihood decoder and sub-optimal decoders we assume that the PDF of SVs can be modeled by the Weibull distribution. Furthermore, we investigate the challenges involved in protecting and assuring the integrity of IR images such as data complexity and the error probability behavior, i.e., the probability of detection and the probability of false detection, for the applied optimal decoders. By taking into account the efficiency and the necessary auxiliary information for decoding the watermark, we discuss the suitable decoder for various operating situations. Experimental results are carried out on a large dataset of IR images to show the imperceptibility and efficiency of the proposed scheme against various attack scenarios.
Vectorization of Reed Solomon decoding and mapping on the EVP
Kumar, A.; Berkel, van C.H.
2008-01-01
Reed Solomon (RS) codes are used in a variety of (wireless) communication systems. Although commonly implemented in dedicated hardware, this paper explores the mapping of high-throughput RS decoding on vector DSPs. The four modules of such a decoder, viz. Syndrome Computation, Key Equation Solver,
Efficient decoding with steady-state Kalman filter in neural interface systems.
Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R
2011-02-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.
What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images.
Rodriguez-Vaamonde, Sergio; Torresani, Lorenzo; Fitzgibbon, Andrew W
2015-06-01
Traditional Web search engines do not use the images in the HTML pages to find relevant documents for a given query. Instead, they typically operate by computing a measure of agreement between the keywords provided by the user and only the text portion of each page. In this paper we study whether the content of the pictures appearing in a Web page can be used to enrich the semantic description of an HTML document and consequently boost the performance of a keyword-based search engine. We present a Web-scalable system that exploits a pure text-based search engine to find an initial set of candidate documents for a given query. Then, the candidate set is reranked using visual information extracted from the images contained in the pages. The resulting system retains the computational efficiency of traditional text-based search engines with only a small additional storage cost needed to encode the visual information. We test our approach on one of the TREC Million Query Track benchmarks where we show that the exploitation of visual content yields improvement in accuracies for two distinct text-based search engines, including the system with the best reported performance on this benchmark. We further validate our approach by collecting document relevance judgements on our search results using Amazon Mechanical Turk. The results of this experiment confirm the improvement in accuracy produced by our image-based reranker over a pure text-based system.
Effect of video decoder errors on video interpretability
Young, Darrell L.
2014-06-01
The advancement in video compression technology can result in more sensitivity to bit errors. Bit errors can propagate causing sustained loss of interpretability. In the worst case, the decoder "freezes" until it can re-synchronize with the stream. Detection of artifacts enables downstream processes to avoid corrupted frames. A simple template approach to detect block stripes and a more advanced cascade approach to detect compression artifacts was shown to correlate to the presence of artifacts and decoder messages.
Parallel iterative decoding of transform domain Wyner-Ziv video using cross bitplane correlation
DEFF Research Database (Denmark)
Luong, Huynh Van; Huang, Xin; Forchhammer, Søren
2011-01-01
decoding scheme is proposed to improve the coding efficiency of TDWZ video codecs. The proposed parallel iterative LDPC decoding scheme is able to utilize cross bitplane correlation during decoding, by iteratively refining the soft-input, updating a modeled noise distribution and thereafter enhancing......In recent years, Transform Domain Wyner-Ziv (TDWZ) video coding has been proposed as an efficient Distributed Video Coding (DVC) solution, which fully or partly exploits the source statistics at the decoder to reduce the computational burden at the encoder. In this paper, a parallel iterative LDPC...
Decoding bipedal locomotion from the rat sensorimotor cortex
Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.
2015-10-01
Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds
110 °C range athermalization of wavefront coding infrared imaging systems
Feng, Bin; Shi, Zelin; Chang, Zheng; Liu, Haizheng; Zhao, Yaohong
2017-09-01
110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.
The fast decoding of Reed-Solomon codes using Fermat theoretic transforms and continued fractions
Reed, I. S.; Scholtz, R. A.; Welch, L. R.; Truong, T. K.
1978-01-01
It is shown that Reed-Solomon (RS) codes can be decoded by using a fast Fourier transform (FFT) algorithm over finite fields GF(F sub n), where F sub n is a Fermat prime, and continued fractions. This new transform decoding method is simpler than the standard method for RS codes. The computing time of this new decoding algorithm in software can be faster than the standard decoding method for RS codes.
Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter
Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.
2016-01-01
Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549
Complexity Analysis of Reed-Solomon Decoding over GF(2m without Using Syndromes
Directory of Open Access Journals (Sweden)
Zhiyuan Yan
2008-06-01
Full Text Available There has been renewed interest in decoding Reed-Solomon (RS codes without using syndromes recently. In this paper, we investigate the complexity of syndromeless decoding, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis focuses on RS codes over characteristic-2 fields, for which some multiplicative FFT techniques are not applicable. Due to moderate block lengths of RS codes in practice, our analysis is complete, without big O notation. In addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. For high-rate RS codes, when compared to syndrome-based decoding algorithms, not only syndromeless decoding algorithms require more field operations regardless of implementation, but also decoder architectures based on their direct implementations have higher hardware costs and lower throughput. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.
A lossy graph model for delay reduction in generalized instantly decodable network coding
Douik, Ahmed S.
2014-06-01
The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.
Central Decoding for Multiple Description Codes based on Domain Partitioning
Directory of Open Access Journals (Sweden)
M. Spiertz
2006-01-01
Full Text Available Multiple Description Codes (MDC can be used to trade redundancy against packet loss resistance for transmitting data over lossy diversity networks. In this work we focus on MD transform coding based on domain partitioning. Compared to Vaishampayan’s quantizer based MDC, domain based MD coding is a simple approach for generating different descriptions, by using different quantizers for each description. Commonly, only the highest rate quantizer is used for reconstruction. In this paper we investigate the benefit of using the lower rate quantizers to enhance the reconstruction quality at decoder side. The comparison is done on artificial source data and on image data.
Decoding Dyslexia, a Common Learning Disability
... if they continue to struggle. Read More "Dyslexic" Articles In Their Own Words: Dealing with Dyslexia / Decoding Dyslexia, a Common Learning Disability / What is Dyslexia? / Special Education and Research ...
A Fully Parallel VLSI-implementation of the Viterbi Decoding Algorithm
DEFF Research Database (Denmark)
Sparsø, Jens; Jørgensen, Henrik Nordtorp; Paaske, Erik
1989-01-01
In this paper we describe the implementation of a K = 7, R = 1/2 single-chip Viterbi decoder intended to operate at 10-20 Mbit/sec. We propose a general, regular and area efficient floor-plan that is also suitable for implementation of decoders for codes with different generator polynomials...
Recent results in the decoding of Algebraic geometry codes
DEFF Research Database (Denmark)
Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
Word Decoding Development during Phonics Instruction in Children at Risk for Dyslexia.
Schaars, Moniek M H; Segers, Eliane; Verhoeven, Ludo
2017-05-01
In the present study, we examined the early word decoding development of 73 children at genetic risk of dyslexia and 73 matched controls. We conducted monthly curriculum-embedded word decoding measures during the first 5 months of phonics-based reading instruction followed by standardized word decoding measures halfway and by the end of first grade. In kindergarten, vocabulary, phonological awareness, lexical retrieval, and verbal and visual short-term memory were assessed. The results showed that the children at risk were less skilled in phonemic awareness in kindergarten. During the first 5 months of reading instruction, children at risk were less efficient in word decoding and the discrepancy increased over the months. In subsequent months, the discrepancy prevailed for simple words but increased for more complex words. Phonemic awareness and lexical retrieval predicted the reading development in children at risk and controls to the same extent. It is concluded that children at risk are behind their typical peers in word decoding development starting from the very beginning. Furthermore, it is concluded that the disadvantage increased during phonics instruction and that the same predictors underlie the development of word decoding in the two groups of children. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Machine printed text and handwriting identification in noisy document images.
Zheng, Yefeng; Li, Huiping; Doermann, David
2004-03-01
In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.
Min-Max decoding for non binary LDPC codes
Savin, Valentin
2008-01-01
Iterative decoding of non-binary LDPC codes is currently performed using either the Sum-Product or the Min-Sum algorithms or slightly different versions of them. In this paper, several low-complexity quasi-optimal iterative algorithms are proposed for decoding non-binary codes. The Min-Max algorithm is one of them and it has the benefit of two possible LLR domain implementations: a standard implementation, whose complexity scales as the square of the Galois field's cardinality and a reduced c...
Indian Academy of Sciences (India)
Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.
Liu, K. Y.
1986-01-01
High-speed decoder intended for use with Reed-Solomon (RS) codes of long code length and high error-correcting capability. Design based on algorithm that includes high-radix Fermat transform procedure, which is most efficient for high speeds. RS code in question has code-word length of 256 symbols, of which 224 are information symbols and 32 are redundant.
Prior Knowledge Improves Decoding of Finger Flexion from Electrocorticographic (ECoG Signals
Directory of Open Access Journals (Sweden)
Zuoguan eWang
2011-11-01
Full Text Available Brain-computer interfaces (BCIs use brain signals to convey a user's intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG recordings from the surface of the brain in humans can give information about kinematic parameters (eg{} hand velocity or finger flexion. The decoding approaches in these studies usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target movement parameter. In this paper, we incorporate prior knowledge using a Bayesian decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we exploit the anatomic constraints and dynamic constraints that govern finger flexion and incorporate these constraints in the construction, structure, and the probabilistic functions of the prior model of a switched non-parametric dynamic system (SNDS. Given a measurement model resulting from a traditional linear regression method, we decoded finger flexion using posterior estimation that combined the prior and measurement models. Our results show that the application of the Bayesian decoding model, which incorporates prior knowledge, improves decoding performance compared to the application of a linear regression model, which does not incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation.
Role of Gender and Linguistic Diversity in Word Decoding Development
Verhoeven, Ludo; van Leeuwe, Jan
2011-01-01
The purpose of the present study was to investigate the role of gender and linguistic diversity in the growth of Dutch word decoding skills throughout elementary school for a representative sample of children living in the Netherlands. Following a longitudinal design, the children's decoding abilities for (1) regular CVC words, (2) complex…
[Digitalization, archival storage and use of image documentation in the GastroBase-II system].
Kocna, P
1997-05-14
"GastroBase-II" is a module of the clinical information system "KIS-ComSyD"; The main part is represented by structured data-text with an expert system including on-line image digitalization in gastroenterology (incl. endoscopic, X-ray and endosonography pictures). The hardware and software of the GastroBase are described as well as six-years experiences with application of digitalized image data. An integration of a picture into text, reports, slides for a lecture or an electronic atlas is documented with examples. Briefly are reported out experiences with graphic editors (PhotoStyler), text editor (WordPerfect) and slide preparation for lecturing with the presentation software PowerPoint. The multimedia applications on the CD-ROM illustrate a modern trend using digitalized image documentation for pregradual and postgradual education.
A bidirectional brain-machine interface featuring a neuromorphic hardware decoder
Directory of Open Access Journals (Sweden)
Fabio Boi
2016-12-01
Full Text Available Bidirectional brain-machine interfaces (BMIs establish a two-way direct communication link4 between the brain and the external world. A decoder translates recorded neural activity into motor5 commands and an encoder delivers sensory information collected from the environment directly6 to the brain creating a closed-loop system. These two modules are typically integrated in bulky7 external devices. However, the clinical support of patients with severe motor and sensory deficits8 requires compact, low-power, and fully implantable systems that can decode neural signals to9 control external devices. As a first step toward this goal, we developed a modular bidirectional BMI10 setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented11 a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.12 On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn13 to decode neural signals recorded from the brain into motor outputs controlling the movements14 of an external device. The modularity of the BMI allowed us to tune the individual components15 of the setup without modifying the whole system. In this paper we present the features of16 this modular BMI, and describe how we configured the network of spiking neuron circuits to17 implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm18 that connects bidirectionally the brain of an anesthetized rat with an external object. We show that19 the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s20 trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is21 mature enough for the development of BMI modules that are sufficiently low-power and compact,22 while being highly computationally powerful and adaptive.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro
2016-01-01
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.
Peeling Decoding of LDPC Codes with Applications in Compressed Sensing
Directory of Open Access Journals (Sweden)
Weijun Zeng
2016-01-01
Full Text Available We present a new approach for the analysis of iterative peeling decoding recovery algorithms in the context of Low-Density Parity-Check (LDPC codes and compressed sensing. The iterative recovery algorithm is particularly interesting for its low measurement cost and low computational complexity. The asymptotic analysis can track the evolution of the fraction of unrecovered signal elements in each iteration, which is similar to the well-known density evolution analysis in the context of LDPC decoding algorithm. Our analysis shows that there exists a threshold on the density factor; if under this threshold, the recovery algorithm is successful; otherwise it will fail. Simulation results are also provided for verifying the agreement between the proposed asymptotic analysis and recovery algorithm. Compared with existing works of peeling decoding algorithm, focusing on the failure probability of the recovery algorithm, our proposed approach gives accurate evolution of performance with different parameters of measurement matrices and is easy to implement. We also show that the peeling decoding algorithm performs better than other schemes based on LDPC codes.
DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry
Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe
2006-08-01
Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.
IQ Predicts Word Decoding Skills in Populations with Intellectual Disabilities
Levy, Yonata
2011-01-01
This is a study of word decoding in adolescents with Down syndrome and in adolescents with Intellectual Deficits of unknown etiology. It was designed as a replication of studies of word decoding in English speaking and in Hebrew speaking adolescents with Williams syndrome ([0230] and [0235]). Participants' IQ was matched to IQ in the groups with…
Coder and decoder of fractal signals of comb-type structure
Directory of Open Access Journals (Sweden)
Politanskyi R. L.
2014-08-01
Full Text Available The article presents a coder and decoder of fractal signals of comb-type structure (FSCS based on microcontrollers (MC. The coder and decoder consist of identical control modules, while their managed modules have different schematic constructions. The control module performs forming or recognition of signals, and also carries out the function of information exchange with a computer. The basic element of the control module is a PIC18F2550 microcontroller from MicroChip. The coder of the system forms fractal signals of a given order according to the information bits coming from the computer. Samples of the calculated values of the amplitudes of elementary rectangular pulses that constitute the structure of fractal pulses are stored in the memory of the microcontroller as a table. Minimum bit capacity of the DAC necessary for the generation of FSCS of fourth order is four bits. The operation algorithm, "wired" into the controller of the program, provides for encoding of the transmitted information by two-bit symbols. Recognition of the start of transmission of each byte in communication channel is performed by the transmission of the timing signal. In a decoder the microcontroller carries out reception and decoding of the received fractal signals which are then transmitted to the computer. The developed algorithm of the program for the microcontroller of the decoder is carried out by determination of order of fractal impulse after the value of sum of amplitudes of elementary impulses, constituents fractal signal. The programs for coder and decoder are written in "C". In the most critical places of the program influencing on the fast-acting of chart “assembler” insertions are done. The blocks of the coder and decoder were connected with a coaxial 10 meters long cable with an impendance of 75 Ohm. The signals generated by the developed coder of FSCS, were studied using a digital oscillograph. On the basis of the obtained spectrums, it is possible
Analysis of the gammaholographic image formation
International Nuclear Information System (INIS)
Fonroget, J.; Roucayrol, J.C.; Perrin, J.; Belvaux, Y.; Paris-11 Univ., 91 - Orsay
1975-01-01
Gammaholography, or coded opening gammagraphy, is a new gammagraphic method in which the standard collimators are replaced by one or more modulator screens placed between the detector and the radioactive object. The recording obtained is a coded image or incoherent hologram which contains three-dimensional information on the object and can be decoded analogically in a very short time. The formation of the image has been analyzed in the coding and optical decoding phases in the case of a single coding screen modulated according to a Fresnel zoned lattice. The analytical expression established for the modulation transfer function (MTF) of the system can be used to study, by computerized simulation, the influence of the number of zones on the quality of the image [fr
Decoding DNA labels by melting curve analysis using real-time PCR.
Balog, József A; Fehér, Liliána Z; Puskás, László G
2017-12-01
Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.
Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten
2015-08-01
Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.
Wild, Walter James
1988-12-01
External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.
Analysis of Iterated Hard Decision Decoding of Product Codes with Reed-Solomon Component Codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2007-01-01
Products of Reed-Solomon codes are important in applications because they offer a combination of large blocks, low decoding complexity, and good performance. A recent result on random graphs can be used to show that with high probability a large number of errors can be corrected by iterating...... minimum distance decoding. We present an analysis related to density evolution which gives the exact asymptotic value of the decoding threshold and also provides a closed form approximation to the distribution of errors in each step of the decoding of finite length codes....
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque
2017-01-01
Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).
Video coding and decoding devices and methods preserving ppg relevant information
2013-01-01
The present invention relates to a video encoding device (10) for encoding video data and a corresponding video decoding device, wherein during decoding PPG relevant information shall be preserved. For this purpose the video coding device (10) comprises a first encoder (20) for encoding input video
Successful decoding of famous faces in the fusiform face area.
Directory of Open Access Journals (Sweden)
Vadim Axelrod
Full Text Available What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.
Energy Technology Data Exchange (ETDEWEB)
Rouyer, A. [CEA Bruyeres-le-Chatel, 91 (France)
2005-10-15
Coded aperture imagery is particularly suited for imaging objects emitting penetrating radiation (hard X rays, gamma, neutrons), or for particles with rectilinear trajectories (electrons, protons, alpha particles, etc.). It is used when methods based on classical optical principles (reflection, refraction, diffraction), are invalid, or when the source emission is too weak for the well known pinhole method to give a usable image. The optical system consists in an aperture through an absorbing screen, named coding aperture, whose transmission is calculated in such a way that the spatial resolution is similar to that of a simple pinhole device, but with a far superior radiation collecting efficiency. We present a new decoding method,, called filtered autocorrelation, and illustrate its performances on images obtained with various coding apertures. (author)
3D Documentation of Archaeological Excavations Using Image-Based Point Cloud
Directory of Open Access Journals (Sweden)
Umut Ovalı
2017-03-01
Full Text Available Rapid progress in digital technology enables us to create three-dimensional models using digital images. Low cost, time efficiency and accurate results of this method put to question if this technique can be an alternative to conventional documentation techniques, which generally are 2D orthogonal drawings. Accurate and detailed 3D models of archaeological features have potential for many other purposes besides geometric documentation. This study presents a recent image-based three-dimensional registration technique employed in 2013 at one of the ancient city in Turkey, using “Structure from Motion” (SfM algorithms. A commercial software is applied to investigate whether this method can be used as an alternative to other techniques. Mesh model of the some section of the excavation section of the site were produced using point clouds were produced from the digital photographs. Accuracy assessment of the produced model was realized using the comparison of the directly measured coordinates of the ground control points with produced from model. Obtained results presented that the accuracy is around 1.3 cm.
Method of forming latent image to protect documents based on the effect moire
Troyan, О.
2015-01-01
Analysis of modern methods of information protection based on printed documents. It is shown that methods of protection from moiré effect provide reliable and effective protection by gaining new protection technology that is displayed in the optical acceleration motion layers and causes moire in fraud. Latent images can securely protect paper documents. Introduce a system of equations to calculate curvilinear patterns, where the optical formula of acceleration and periods moire stored in i...
Human Genome Research: Decoding DNA
dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human
Decoder calibration with ultra small current sample set for intracortical brain-machine interface
Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping
2018-04-01
Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application
Document image analysis: A primer
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
(1) Typical documents in today's office are computer-generated, but even so, inevitably by different computers and ... different sizes, from a business card to a large engineering drawing. Document analysis ... Whether global or adaptive ...
Fractal Image Coding Based on a Fitting Surface
Directory of Open Access Journals (Sweden)
Sheng Bi
2014-01-01
Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.
CERN. Geneva. Audiovisual Unit; Antonerakis, S E
2002-01-01
Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.
Biological 2-Input Decoder Circuit in Human Cells
2015-01-01
Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115
Biological 2-input decoder circuit in human cells.
Guinn, Michael; Bleris, Leonidas
2014-08-15
Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.
How Major Depressive Disorder affects the ability to decode multimodal dynamic emotional stimuli
Directory of Open Access Journals (Sweden)
FILOMENA SCIBELLI
2016-09-01
Full Text Available Most studies investigating the processing of emotions in depressed patients reported impairments in the decoding of negative emotions. However, these studies adopted static stimuli (mostly stereotypical facial expressions corresponding to basic emotions which do not reflect the way people experience emotions in everyday life. For this reason, this work proposes to investigate the decoding of emotional expressions in patients affected by Recurrent Major Depressive Disorder (RMDDs using dynamic audio/video stimuli. RMDDs’ performance is compared with the performance of patients with Adjustment Disorder with Depressed Mood (ADs and healthy (HCs subjects. The experiments involve 27 RMDDs (16 with acute depression - RMDD-A, and 11 in a compensation phase - RMDD-C, 16 ADs and 16 HCs. The ability to decode emotional expressions is assessed through an emotion recognition task based on short audio (without video, video (without audio and audio/video clips. The results show that AD patients are significantly less accurate than HCs in decoding fear, anger, happiness, surprise and sadness. RMDD-As with acute depression are significantly less accurate than HCs in decoding happiness, sadness and surprise. Finally, no significant differences were found between HCs and RMDD-Cs in a compensation phase. The different communication channels and the types of emotion play a significant role in limiting the decoding accuracy.
A quantum algorithm for Viterbi decoding of classical convolutional codes
Grice, Jon R.; Meyer, David A.
2015-07-01
We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.
Using Social Scientific Criteria to Evaluate Cultural Theories: Encoding/Decoding Evaluated
Directory of Open Access Journals (Sweden)
Evan L. Kropp
2015-12-01
Full Text Available This article transcends the issue of conflicting theoretical schools of thought to formulate a method of social scientific style theory evaluation for cultural studies. It is suggested that positivist social scientific models of theory critique can be used to assess cultural models of communication to determine if they should be classified as theories. A set of evaluation criteria is formulated as a guide and applied to Stuart Hall’s Encoding/Decoding to determine if it is a theory. Conclusions find the sharing of criteria between schools of thought is judicious, Encoding/Decoding fits the established criteria, and Encoding/Decoding should be referred to as a theory.
A Low-Complexity Joint Detection-Decoding Algorithm for Nonbinary LDPC-Coded Modulation Systems
Wang, Xuepeng; Bai, Baoming; Ma, Xiao
2010-01-01
In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner. It requires low computational complexity, offers good system performance and has a fast rate of decoding convergence. Compared to the q-ary sum-product algorithm (QSPA), it provides an attractive candidate for practical applications of q-ary LDP...
Decoding sound level in the marmoset primary auditory cortex.
Sun, Wensheng; Marongelli, Ellisha N; Watkins, Paul V; Barbour, Dennis L
2017-10-01
Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons. NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts. Copyright © 2017 the American Physiological Society.
Jointly-check iterative decoding algorithm for quantum sparse graph codes
International Nuclear Information System (INIS)
Jun-Hu, Shao; Bao-Ming, Bai; Wei, Lin; Lin, Zhou
2010-01-01
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with a standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms the standard BP algorithm with an obvious performance improvement. (general)
High-Speed Soft-Decision Decoding of Two Reed-Muller Codes
Lin, Shu; Uehara, Gregory T.
1996-01-01
In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RNI subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a hi ch data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to
Efficient decoding of random errors for quantum expander codes
Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony
2017-01-01
We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...
Multi-level trellis coded modulation and multi-stage decoding
Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu
1990-01-01
Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.
Directory of Open Access Journals (Sweden)
Johann A. Briffa
2014-06-01
Full Text Available In this study, the authors consider time-varying block (TVB codes, which generalise a number of previous synchronisation error-correcting codes. They also consider various practical issues related to maximum a posteriori (MAP decoding of these codes. Specifically, they give an expression for the expected distribution of drift between transmitter and receiver because of synchronisation errors. They determine an appropriate choice for state space limits based on the drift probability distribution. In turn, they obtain an expression for the decoder complexity under given channel conditions in terms of the state space limits used. For a given state space, they also give a number of optimisations that reduce the algorithm complexity with no further loss of decoder performance. They also show how the MAP decoder can be used in the absence of known frame boundaries, and demonstrate that an appropriate choice of decoder parameters allows the decoder to approach the performance when frame boundaries are known, at the expense of some increase in complexity. Finally, they express some existing constructions as TVB codes, comparing performance with published results and showing that improved performance is possible by taking advantage of the flexibility of TVB codes.
Dynamic high resolution imaging of rats
International Nuclear Information System (INIS)
Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.
1990-01-01
A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance
Sequential decoders for large MIMO systems
Ali, Konpal S.; Abediseid, Walid; Alouini, Mohamed-Slim
2014-01-01
the Sequential Decoder using the Fano Algorithm for large MIMO systems. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity
Deep learning with convolutional neural networks for EEG decoding and visualization.
Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio
2017-11-01
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Deep learning with convolutional neural networks for EEG decoding and visualization
Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio
2017-01-01
Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865
Douik, Ahmed S.
2015-11-05
This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.
Analysis of error floor of LDPC codes under LP decoding over the BSC
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Chilappagari, Shashi [UNIV OF AZ; Vasic, Bane [UNIV OF AZ; Stepanov, Mikhail [UNIV OF AZ
2009-01-01
We consider linear programming (LP) decoding of a fixed low-density parity-check (LDPC) code over the binary symmetric channel (BSC). The LP decoder fails when it outputs a pseudo-codeword which is not a codeword. We propose an efficient algorithm termed the instanton search algorithm (ISA) which, given a random input, generates a set of flips called the BSC-instanton and prove that: (a) the LP decoder fails for any set of flips with support vector including an instanton; (b) for any input, the algorithm outputs an instanton in the number of steps upper-bounded by twice the number of flips in the input. We obtain the number of unique instantons of different sizes by running the ISA sufficient number of times. We then use the instanton statistics to predict the performance of the LP decoding over the BSC in the error floor region. We also propose an efficient semi-analytical method to predict the performance of LP decoding over a large range of transition probabilities of the BSC.
Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2015-01-01
This paper considers the multicast decoding delay reduction problem for generalized instantly decodable network coding (G-IDNC) over persistent erasure channels with feedback imperfections. The feedback scenario discussed is the most general situation in which the sender does not always receive acknowledgments from the receivers after each transmission and the feedback communications are subject to loss. The decoding delay increment expressions are derived and employed to express the decoding delay reduction problem as a maximum weight clique problem in the G-IDNC graph. This paper provides a theoretical analysis of the expected decoding delay increase at each time instant. Problem formulations in simpler channel and feedback models are shown to be special cases of the proposed generalized formulation. Since finding the optimal solution to the problem is known to be NP-hard, a suboptimal greedy algorithm is designed and compared with blind approaches proposed in the literature. Through extensive simulations, the proposed algorithm is shown to outperform the blind methods in all situations and to achieve significant improvement, particularly for high time-correlated channels.
Image content authentication based on channel coding
Zhang, Fan; Xu, Lei
2008-03-01
The content authentication determines whether an image has been tampered or not, and if necessary, locate malicious alterations made on the image. Authentication on a still image or a video are motivated by recipient's interest, and its principle is that a receiver must be able to identify the source of this document reliably. Several techniques and concepts based on data hiding or steganography designed as a means for the image authentication. This paper presents a color image authentication algorithm based on convolution coding. The high bits of color digital image are coded by the convolution codes for the tamper detection and localization. The authentication messages are hidden in the low bits of image in order to keep the invisibility of authentication. All communications channels are subject to errors introduced because of additive Gaussian noise in their environment. Data perturbations cannot be eliminated but their effect can be minimized by the use of Forward Error Correction (FEC) techniques in the transmitted data stream and decoders in the receiving system that detect and correct bits in error. This paper presents a color image authentication algorithm based on convolution coding. The message of each pixel is convolution encoded with the encoder. After the process of parity check and block interleaving, the redundant bits are embedded in the image offset. The tamper can be detected and restored need not accessing the original image.
Distributed-phase OCDMA encoder-decoders based on fiber Bragg gratings
Zhang, Zhaowei; Tian, C.; Petropoulos, P.; Richardson, D.J.; Ibsen, M.
2007-01-01
We propose and demonstrate new optical code-division multiple-access (OCDMA) encoder-decoders having a continuous phase-distribution. With the same spatial refractive index distribution as the reconfigurable optical phase encoder-decoders, they are inherently suitable for the application in reconfigurable OCDMA systems. Furthermore, compared with conventional discrete-phase devices, they also have additional advantages of being more tolerant to input pulse width and, therefore, have the poten...
Long-Term Asynchronous Decoding of Arm Motion Using Electrocorticographic Signals in Monkeys
Chao, Zenas C.; Nagasaka, Yasuo; Fujii, Naotaka
2009-01-01
Brain–machine interfaces (BMIs) employ the electrical activity generated by cortical neurons directly for controlling external devices and have been conceived as a means for restoring human cognitive or sensory-motor functions. The dominant approach in BMI research has been to decode motor variables based on single-unit activity (SUA). Unfortunately, this approach suffers from poor long-term stability and daily recalibration is normally required to maintain reliable performance. A possible alternative is BMIs based on electrocorticograms (ECoGs), which measure population activity and may provide more durable and stable recording. However, the level of long-term stability that ECoG-based decoding can offer remains unclear. Here we propose a novel ECoG-based decoding paradigm and show that we have successfully decoded hand positions and arm joint angles during an asynchronous food-reaching task in monkeys when explicit cues prompting the onset of movement were not required. Performance using our ECoG-based decoder was comparable to existing SUA-based systems while evincing far superior stability and durability. In addition, the same decoder could be used for months without any drift in accuracy or recalibration. These results were achieved by incorporating the spatio-spectro-temporal integration of activity across multiple cortical areas to compensate for the lower fidelity of ECoG signals. These results show the feasibility of high-performance, chronic and versatile ECoG-based neuroprosthetic devices for real-life applications. This new method provides a stable platform for investigating cortical correlates for understanding motor control, sensory perception, and high-level cognitive processes. PMID:20407639
Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.
2016-01-01
Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948
Linear-time general decoding algorithm for the surface code
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
La Documentation photographique
Directory of Open Access Journals (Sweden)
Magali Hamm
2009-03-01
Full Text Available La Documentation photographique, revue destinée aux enseignants et étudiants en histoire-géographie, place l’image au cœur de sa ligne éditoriale. Afin de suivre les évolutions actuelles de la géographie, la collection propose une iconographie de plus en plus diversifiée : cartes, photographies, mais aussi caricatures, une de journal ou publicité, toutes étant considérées comme un document géographique à part entière. Car l’image peut se faire synthèse ; elle peut au contraire montrer les différentes facettes d’un objet ; souvent elle permet d’incarner des phénomènes géographiques. Associées à d’autres documents, les images aident les enseignants à initier leurs élèves à des raisonnements géographiques complexes. Mais pour apprendre à les lire, il est fondamental de les contextualiser, de les commenter et d’interroger leur rapport au réel.The Documentation photographique, magazine dedicated to teachers and students in History - Geography, places the image at the heart of its editorial line. In order to follow the evolutions of Geography, the collection presents a more and more diversified iconography: maps, photographs, but also drawings or advertisements, all this documents being considered as geographical ones. Because image can be a synthesis; on the contrary it can present the different facets of a same object; often it enables to portray geographical phenomena. Related to other documents, images assist the teachers in the students’ initiation to complex geographical reasoning. But in order to learn how to read them, it is fundamental to contextualize them, comment them and question their relations with reality.
Decoding visual object categories from temporal correlations of ECoG signals.
Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu
2014-04-15
How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.
An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata
Seyedi, Saeid; Navimipour, Nima Jafari
2018-03-01
Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.
Lossless, Near-Lossless, and Refinement Coding of Bi-level Images
DEFF Research Database (Denmark)
Martins, Bo; Forchhammer, Søren Otto
1997-01-01
We present general and unified algorithms for lossy/lossless codingof bi-level images. The compression is realized by applying arithmetic coding to conditional probabilities. As in the current JBIG standard the conditioning may be specified by a template.For better compression, the more general....... Introducing only a small amount of loss in halftoned test images, compression is increased by up to a factor of four compared with JBIG. Lossy, lossless, and refinement decoding speed and lossless encoding speed are less than a factor of two slower than JBIG. The (de)coding method is proposed as part of JBIG......-2, an emerging international standard for lossless/lossy compression of bi-level images....
Analysis of Minimal LDPC Decoder System on a Chip Implementation
Directory of Open Access Journals (Sweden)
T. Palenik
2015-09-01
Full Text Available This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC. The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.
Identifying musical pieces from fMRI data using encoding and decoding models.
Hoefle, Sebastian; Engel, Annerose; Basilio, Rodrigo; Alluri, Vinoo; Toiviainen, Petri; Cagy, Maurício; Moll, Jorge
2018-02-02
Encoding models can reveal and decode neural representations in the visual and semantic domains. However, a thorough understanding of how distributed information in auditory cortices and temporal evolution of music contribute to model performance is still lacking in the musical domain. We measured fMRI responses during naturalistic music listening and constructed a two-stage approach that first mapped musical features in auditory cortices and then decoded novel musical pieces. We then probed the influence of stimuli duration (number of time points) and spatial extent (number of voxels) on decoding accuracy. Our approach revealed a linear increase in accuracy with duration and a point of optimal model performance for the spatial extent. We further showed that Shannon entropy is a driving factor, boosting accuracy up to 95% for music with highest information content. These findings provide key insights for future decoding and reconstruction algorithms and open new venues for possible clinical applications.
Performance Analysis of a Decoding Algorithm for Algebraic Geometry Codes
DEFF Research Database (Denmark)
Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund; Høholdt, Tom
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.
Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei
2009-10-12
A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system.
Yoles-Frenkel, Michal; Kahan, Anat; Ben-Shaul, Yoram
2018-05-23
The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time. SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic
Hardware Implementation of A Non-RLL Soft-decoding Beacon-based Visible Light Communication Receiver
Nguyen, Duc-Phuc; Le, Dinh-Dung; Tran, Thi-Hong; Huynh, Huu-Thuan; Nakashima, Yasuhiko
2018-01-01
Visible light communication (VLC)-based beacon systems, which usually transmit identification (ID) information in small-size data frames are applied widely in indoor localization applications. There is one fact that flicker of LED light should be avoid in any VLC systems. Current flicker mitigation solutions based on run-length limited (RLL) codes suffer from reduced code rates, or are limited to hard-decoding forward error correction (FEC) decoders. Recently, soft-decoding techniques of RLL-...
Mutiple LDPC Decoding using Bitplane Correlation for Transform Domain Wyner-Ziv Video Coding
DEFF Research Database (Denmark)
Luong, Huynh Van; Huang, Xin; Forchhammer, Søren
2011-01-01
Distributed video coding (DVC) is an emerging video coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. This paper considers a Low Density Parity Check (LDPC) based Transform Domain Wyner-Ziv (TDWZ) video...... codec. To improve the LDPC coding performance in the context of TDWZ, this paper proposes a Wyner-Ziv video codec using bitplane correlation through multiple parallel LDPC decoding. The proposed scheme utilizes inter bitplane correlation to enhance the bitplane decoding performance. Experimental results...
Coded aperture imaging of alpha source spatial distribution
International Nuclear Information System (INIS)
Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul
2012-01-01
The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.
Decoding spikes in a spiking neuronal network
Energy Technology Data Exchange (ETDEWEB)
Feng Jianfeng [Department of Informatics, University of Sussex, Brighton BN1 9QH (United Kingdom); Ding, Mingzhou [Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431 (United States)
2004-06-04
We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs.
Decoding spikes in a spiking neuronal network
International Nuclear Information System (INIS)
Feng Jianfeng; Ding, Mingzhou
2004-01-01
We investigate how to reliably decode the input information from the output of a spiking neuronal network. A maximum likelihood estimator of the input signal, together with its Fisher information, is rigorously calculated. The advantage of the maximum likelihood estimation over the 'brute-force rate coding' estimate is clearly demonstrated. It is pointed out that the ergodic assumption in neuroscience, i.e. a temporal average is equivalent to an ensemble average, is in general not true. Averaging over an ensemble of neurons usually gives a biased estimate of the input information. A method on how to compensate for the bias is proposed. Reconstruction of dynamical input signals with a group of spiking neurons is extensively studied and our results show that less than a spike is sufficient to accurately decode dynamical inputs
2010-10-01
..., satellite, public switched telephone network, or any other source that uses the EAS protocol. (2) Valid..., analog radio and television broadcast stations, analog cable systems and wireless cable systems may... program data must be retained even with power removed. (7) Outputs. Decoders shall have the following...
Lexical decoder for continuous speech recognition: sequential neural network approach
International Nuclear Information System (INIS)
Iooss, Christine
1991-01-01
The work presented in this dissertation concerns the study of a connectionist architecture to treat sequential inputs. In this context, the model proposed by J.L. Elman, a recurrent multilayers network, is used. Its abilities and its limits are evaluated. Modifications are done in order to treat erroneous or noisy sequential inputs and to classify patterns. The application context of this study concerns the realisation of a lexical decoder for analytical multi-speakers continuous speech recognition. Lexical decoding is completed from lattices of phonemes which are obtained after an acoustic-phonetic decoding stage relying on a K Nearest Neighbors search technique. Test are done on sentences formed from a lexicon of 20 words. The results are obtained show the ability of the proposed connectionist model to take into account the sequentiality at the input level, to memorize the context and to treat noisy or erroneous inputs. (author) [fr
A lossy graph model for delay reduction in generalized instantly decodable network coding
Douik, Ahmed S.; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2014-01-01
, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G
An Area-Efficient Reconfigurable LDPC Decoder with Conflict Resolution
Zhou, Changsheng; Huang, Yuebin; Huang, Shuangqu; Chen, Yun; Zeng, Xiaoyang
Based on Turbo-Decoding Message-Passing (TDMP) and Normalized Min-Sum (NMS) algorithm, an area efficient LDPC decoder that supports both structured and unstructured LDPC codes is proposed in this paper. We introduce a solution to solve the memory access conflict problem caused by TDMP algorithm. We also arrange the main timing schedule carefully to handle the operations of our solution while avoiding much additional hardware consumption. To reduce the memory bits needed, the extrinsic message storing strategy is also optimized. Besides the extrinsic message recover and the accumulate operation are merged together. To verify our architecture, a LDPC decoder that supports both China Multimedia Mobile Broadcasting (CMMB) and Digital Terrestrial/ Television Multimedia Broadcasting (DTMB) standards is developed using SMIC 0.13µm standard CMOS process. The core area is 4.75mm2 and the maximum operating clock frequency is 200MHz. The estimated power consumption is 48.4mW at 25MHz for CMMB and 130.9mW at 50MHz for DTMB with 5 iterations and 1.2V supply.
Cascading Oscillators in Decoding Speech: Reflection of a Cortical Computation Principle
2016-09-06
purely) auditory or articulatory model can explain this behavior. The insertion of gaps was interpreted as the act of providing extra decoding time...The windows are generated by a segmentation process, implemented by an array of cascaded oscillators. Correct segmentation is a critical...prerequisite for correct decoding, and segmentation is correct as long as the oscillators successfully track the input rhythms. Syllabic segmentation utilizes
Image Vector Quantization codec indexes filtering
Directory of Open Access Journals (Sweden)
Lakhdar Moulay Abdelmounaim
2012-01-01
Full Text Available Vector Quantisation (VQ is an efficient coding algorithm that has been widely used in the field of video and image coding, due to its fast decoding efficiency. However, the indexes of VQ are sometimes lost because of signal interference during the transmission. In this paper, we propose an efficient estimation method to conceal and recover the lost indexes on the decoder side, to avoid re-transmitting the whole image again. If the image or video has the limitation of a period of validity, re-transmitting the data wastes the resources of time and network bandwidth. Therefore, using the originally received correct data to estimate and recover the lost data is efficient in time-constrained situations, such as network conferencing or mobile transmissions. In nature images, the pixels are correlated with their neighbours and VQ partitions the image into sub-blocks and quantises them to the indexes that are transmitted; the correlation between adjacent indexes is very strong. There are two parts of the proposed method. The first is pre-processing and the second is an estimation process. In pre-processing, we modify the order of codevectors in the VQ codebook to increase the correlation among the neighbouring vectors. We then use a special filtering method in the estimation process. Using conventional VQ to compress the Lena image and transmit it without any loss of index can achieve a PSNR of 30.429 dB on the decoder. The simulation results demonstrate that our method can estimate the indexes to achieve PSNR values of 29.084 and 28.327 dB when the loss rate is 0.5% and 1%, respectively.
Directory of Open Access Journals (Sweden)
Vito De Feo
2017-05-01
Full Text Available Brain-machine interfaces (BMIs promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.
De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro
2017-01-01
Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.
International Nuclear Information System (INIS)
1974-01-01
The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation
Abediseid, Walid
2012-12-21
The exact average complexity analysis of the basic sphere decoder for general space-time codes applied to multiple-input multiple-output (MIMO) wireless channel is known to be difficult. In this work, we shed the light on the computational complexity of sphere decoding for the quasi- static, lattice space-time (LAST) coded MIMO channel. Specifically, we drive an upper bound of the tail distribution of the decoder\\'s computational complexity. We show that when the computational complexity exceeds a certain limit, this upper bound becomes dominated by the outage probability achieved by LAST coding and sphere decoding schemes. We then calculate the minimum average computational complexity that is required by the decoder to achieve near optimal performance in terms of the system parameters. Our results indicate that there exists a cut-off rate (multiplexing gain) for which the average complexity remains bounded. Copyright © 2012 John Wiley & Sons, Ltd.
Delay reduction in persistent erasure channels for generalized instantly decodable network coding
Sorour, Sameh
2013-06-01
In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.
Delay reduction in persistent erasure channels for generalized instantly decodable network coding
Sorour, Sameh; Aboutorab, Neda; Sadeghi, Parastoo; Karim, Mohammad Shahriar; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim
2013-01-01
In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.
Gates, Louis
2017-12-11
The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization-this generalization unifies the decoding cells (97% transparency). Deeper, the periodic table and singularity generalization together highlight the connectivity of the periodic cells. Moreover, these interrelated cells, coupled with the singularity generalization, clarify teaching targets and enable efficient learning of the letter-sound code. This singularity generalization, in turn, serves as a model for creating unified but easily stated subordinate generalizations for any one of the transparent cells or groups of cells shown within the tables. The article then expands the periodic cells into two tables of teacher-ready sample word lists-one table includes sample words for the basic and phonogram vowel cells, and the other table embraces word samples for the transparent consonant cells. The paper concludes with suggestions for teaching the cellular transparency embedded within reoccurring isolated words and running text to promote decoding automaticity of the periodic cells.
The Contribution of Attentional Control and Working Memory to Reading Comprehension and Decoding
Arrington, C. Nikki; Kulesz, Paulina A.; Francis, David J.; Fletcher, Jack M.; Barnes, Marcia A.
2014-01-01
Little is known about how specific components of working memory, namely, attentional processes including response inhibition, sustained attention, and cognitive inhibition, are related to reading decoding and comprehension. The current study evaluated the relations of reading comprehension, decoding, working memory, and attentional control in…
Coded aperture imaging: the modulation transfer function for uniformly redundant arrays
International Nuclear Information System (INIS)
Fenimore, E.E.
1980-01-01
Coded aperture imaging uses many pinholes to increase the SNR for intrinsically weak sources when the radiation can be neither reflected nor refracted. Effectively, the signal is multiplexed onto an image and then decoded, often by a computer, to form a reconstructed image. We derive the modulation transfer function (MTF) of such a system employing uniformly redundant arrays (URA). We show that the MTF of a URA system is virtually the same as the MTF of an individual pinhole regardless of the shape or size of the pinhole. Thus, only the location of the pinholes is important for optimum multiplexing and decoding. The shape and size of the pinholes can then be selected based on other criteria. For example, one can generate self-supporting patterns, useful for energies typically encountered in the imaging of laser-driven compressions or in soft x-ray astronomy. Such patterns contain holes that are all the same size, easing the etching or plating fabrication efforts for the apertures. A new reconstruction method is introduced called delta decoding. It improves the resolution capabilities of a coded aperture system by mitigating a blur often introduced during the reconstruction step
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
Energy Technology Data Exchange (ETDEWEB)
SANTHI, NANDAKISHORE [Los Alamos National Laboratory
2007-01-22
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relative error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.
Population coding and decoding in a neural field: a computational study.
Wu, Si; Amari, Shun-Ichi; Nakahara, Hiroyuki
2002-05-01
This study uses a neural field model to investigate computational aspects of population coding and decoding when the stimulus is a single variable. A general prototype model for the encoding process is proposed, in which neural responses are correlated, with strength specified by a gaussian function of their difference in preferred stimuli. Based on the model, we study the effect of correlation on the Fisher information, compare the performances of three decoding methods that differ in the amount of encoding information being used, and investigate the implementation of the three methods by using a recurrent network. This study not only rediscovers main results in existing literatures in a unified way, but also reveals important new features, especially when the neural correlation is strong. As the neural correlation of firing becomes larger, the Fisher information decreases drastically. We confirm that as the width of correlation increases, the Fisher information saturates and no longer increases in proportion to the number of neurons. However, we prove that as the width increases further--wider than (sqrt)2 times the effective width of the turning function--the Fisher information increases again, and it increases without limit in proportion to the number of neurons. Furthermore, we clarify the asymptotic efficiency of the maximum likelihood inference (MLI) type of decoding methods for correlated neural signals. It shows that when the correlation covers a nonlocal range of population (excepting the uniform correlation and when the noise is extremely small), the MLI type of method, whose decoding error satisfies the Cauchy-type distribution, is not asymptotically efficient. This implies that the variance is no longer adequate to measure decoding accuracy.
Decoding Pigeon Behavior Outcomes Using Functional Connections among Local Field Potentials.
Chen, Yan; Liu, Xinyu; Li, Shan; Wan, Hong
2018-01-01
Recent studies indicate that the local field potential (LFP) carries information about an animal's behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k -nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.
Decoding Illusory Self-location from Activity in the Human Hippocampus
Directory of Open Access Journals (Sweden)
Arvid eGuterstam
2015-07-01
Full Text Available Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI. The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving towards the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P0.05. At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P=0.012. These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.
Du, Jing; Wang, Jian
2015-11-01
Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.
van Ettinger-Veenstra, Helene; Widén, Carin; Engström, Maria; Karlsson, Thomas; Leijon, Ingemar; Nelson, Nina
2017-01-01
In preterm children with very low birth weight (VLBW ≤ 1500 g), reading problems are often observed. Reading comprehension is dependent on word decoding and language comprehension. We investigated neural activation-within brain regions important for reading-related to components of reading comprehension in young VLBW adolescents in direct comparison to normal birth weight (NBW) term-born peers, with the use of functional magnetic resonance imaging (fMRI). We hypothesized that the decoding mechanisms will be affected by VLBW, and expect to see increased neural activity for VLBW which may be modulated by task performance and cognitive ability. The study investigated 13 (11 included in fMRI) young adolescents (ages 12 to 14 years) born preterm with VLBW and in 13 NBW controls (ages 12-14 years) for performance on the Block Design and Vocabulary subtests of the Wechsler Intelligence Scale for Children; and for semantic, orthographic, and phonological processing during an fMRI paradigm. The VLBW group showed increased phonological activation in left inferior frontal gyrus, decreased orthographic activation in right supramarginal gyrus, and decreased semantic activation in left inferior frontal gyrus. Block Design was related to altered right-hemispheric activation, and VLBW showed lower WISC Block Design scores. Left angular gyrus showed activation increase specific for VLBW with high accuracy on the semantic test. Young VLBW adolescents showed no accuracy and reaction time performance differences on our fMRI language tasks, but they did exhibit altered neural activation during these tasks. This altered activation for VLBW was observed as increased activation during phonological decoding, and as mainly decreased activation during orthographic and semantic processing. Correlations of neural activation with accuracy on the semantic fMRI task and with decreased WISC Block Design performance were specific for the VLBW group. Together, results suggest compensatory
Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex
Directory of Open Access Journals (Sweden)
Kenji Ibayashi
2018-04-01
Full Text Available Restoration of speech communication for locked-in patients by means of brain computer interfaces (BCIs is currently an important area of active research. Among the neural signals obtained from intracranial recordings, single/multi-unit activity (SUA/MUA, local field potential (LFP, and electrocorticography (ECoG are good candidates for an input signal for BCIs. However, the question of which signal or which combination of the three signal modalities is best suited for decoding speech production remains unverified. In order to record SUA, LFP, and ECoG simultaneously from a highly localized area of human ventral sensorimotor cortex (vSMC, we fabricated an electrode the size of which was 7 by 13 mm containing sparsely arranged microneedle and conventional macro contacts. We determined which signal modality is the most capable of decoding speech production, and tested if the combination of these signals could improve the decoding accuracy of spoken phonemes. Feature vectors were constructed from spike frequency obtained from SUAs and event-related spectral perturbation derived from ECoG and LFP signals, then input to the decoder. The results showed that the decoding accuracy for five spoken vowels was highest when features from multiple signals were combined and optimized for each subject, and reached 59% when averaged across all six subjects. This result suggests that multi-scale signals convey complementary information for speech articulation. The current study demonstrated that simultaneous recording of multi-scale neuronal activities could raise decoding accuracy even though the recording area is limited to a small portion of cortex, which is advantageous for future implementation of speech-assisting BCIs.
Lee, Che-Wei; Tsai, Wen-Hsiang
2012-01-01
A new blind authentication method based on the secret sharing technique with a data repair capability for grayscale document images via the use of the Portable Network Graphics (PNG) image is proposed. An authentication signal is generated for each block of a grayscale document image, which, together with the binarized block content, is transformed into several shares using the Shamir secret sharing scheme. The involved parameters are carefully chosen so that as many shares as possible are generated and embedded into an alpha channel plane. The alpha channel plane is then combined with the original grayscale image to form a PNG image. During the embedding process, the computed share values are mapped into a range of alpha channel values near their maximum value of 255 to yield a transparent stego-image with a disguise effect. In the process of image authentication, an image block is marked as tampered if the authentication signal computed from the current block content does not match that extracted from the shares embedded in the alpha channel plane. Data repairing is then applied to each tampered block by a reverse Shamir scheme after collecting two shares from unmarked blocks. Measures for protecting the security of the data hidden in the alpha channel are also proposed. Good experimental results prove the effectiveness of the proposed method for real applications.
Performance Analysis of Iterative Decoding Algorithms for PEG LDPC Codes in Nakagami Fading Channels
Directory of Open Access Journals (Sweden)
O. Al Rasheed
2013-11-01
Full Text Available In this paper we give a comparative analysis of decoding algorithms of Low Density Parity Check (LDPC codes in a channel with the Nakagami distribution of the fading envelope. We consider the Progressive Edge-Growth (PEG method and Improved PEG method for the parity check matrix construction, which can be used to avoid short girths, small trapping sets and a high level of error floor. A comparative analysis of several classes of LDPC codes in various propagation conditions and decoded using different decoding algorithms is also presented.
On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2010-10-25
We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).
Joint Estimation and Decoding of Space-Time Trellis Codes
Directory of Open Access Journals (Sweden)
Zhang Jianqiu
2002-01-01
Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.
Soft decoding a self-dual (48, 24; 12) code
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
Bounded distance decoding of linear error-correcting codes with Gröbner bases
Bulygin, S.; Pellikaan, G.R.
2009-01-01
The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when
Dissociable roles of internal feelings and face recognition ability in facial expression decoding.
Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia
2016-05-15
The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.
Restoration of fMRI Decodability Does Not Imply Latent Working Memory States
Schneegans, Sebastian; Bays, Paul M.
2018-01-01
Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674
Directory of Open Access Journals (Sweden)
Liu Yu-Sun
2011-01-01
Full Text Available Abstract The performance of the wrap-around Viterbi decoding algorithm with finite truncation depth and fixed decoding trellis length is investigated for tail-biting convolutional codes in the mobile WiMAX standard. Upper bounds on the error probabilities induced by finite truncation depth and the uncertainty of the initial state are derived for the AWGN channel. The truncation depth and the decoding trellis length that yield negligible performance loss are obtained for all transmission rates over the Rayleigh channel using computer simulations. The results show that the circular decoding algorithm with an appropriately chosen truncation depth and a decoding trellis just a fraction longer than the original received code words can achieve almost the same performance as the optimal maximum likelihood decoding algorithm in mobile WiMAX. A rule of thumb for the values of the truncation depth and the trellis tail length is also proposed.
Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate
Padmanaban, Subash; Baker, Justin; Greger, Bradley
2018-01-01
Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding
Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex
Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang
2014-12-01
Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.
Directory of Open Access Journals (Sweden)
Edouard Gentaz
Full Text Available Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness. Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively. The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55% than in the two other groups (average decoders: 7%; good decoders: 0% and only 6 children (1.5% had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on "poor comprehenders" by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills.
Faster 2-regular information-set decoding
Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.
2011-01-01
Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and
Image interpolation used in three-dimensional range data compression.
Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian
2016-05-20
Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.
Image acquisition system using on sensor compressed sampling technique
Gupta, Pravir Singh; Choi, Gwan Seong
2018-01-01
Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.
List Decoding of Matrix-Product Codes from nested codes: an application to Quasi-Cyclic codes
DEFF Research Database (Denmark)
Hernando, Fernando; Høholdt, Tom; Ruano, Diego
2012-01-01
A list decoding algorithm for matrix-product codes is provided when $C_1,..., C_s$ are nested linear codes and $A$ is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list...... decoding algorithm for matrix-product codes with polynomial units, which are quasi-cyclic codes. Furthermore, it allows us to consider unique decoding for matrix-product codes with polynomial units....
An alternate way for image documentation in gamma camera processing units
International Nuclear Information System (INIS)
Schneider, P.
1980-01-01
For documentation of images and curves generated by a gamma camera processing system a film exposure tool from a CT system was linked to the video monitor by use of a resistance bridge. The machine has a stock capacity of 100 plane films. For advantage there is no need for an interface, the complete information on the monitor is transferred to the plane film and compared to software controlled data output on printer or plotter the device is tremendously time saving. (orig.) [de
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.
Directory of Open Access Journals (Sweden)
Naotsugu Tsuchiya
Full Text Available Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60-150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than 10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus.
DEFF Research Database (Denmark)
Keibler, Evan; Arumugam, Manimozhiyan; Brent, Michael R
2007-01-01
MOTIVATION: Hidden Markov models (HMMs) and generalized HMMs been successfully applied to many problems, but the standard Viterbi algorithm for computing the most probable interpretation of an input sequence (known as decoding) requires memory proportional to the length of the sequence, which can...... be prohibitive. Existing approaches to reducing memory usage either sacrifice optimality or trade increased running time for reduced memory. RESULTS: We developed two novel decoding algorithms, Treeterbi and Parallel Treeterbi, and implemented them in the TWINSCAN/N-SCAN gene-prediction system. The worst case...... asymptotic space and time are the same as for standard Viterbi, but in practice, Treeterbi optimally decodes arbitrarily long sequences with generalized HMMs in bounded memory without increasing running time. Parallel Treeterbi uses the same ideas to split optimal decoding across processors, dividing latency...
Decoding Signal Processing at the Single-Cell Level
Energy Technology Data Exchange (ETDEWEB)
Wiley, H. Steven
2017-12-01
The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.
Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.
Khan, Muhammad Jawad; Hong, Keum-Shik
2017-01-01
In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes
Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman
2011-01-01
Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...
Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza
2016-10-21
Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2 = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.
Unsupervised learning of facial emotion decoding skills.
Huelle, Jan O; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke
2014-01-01
Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant's response or the sender's true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practice effects often observed in cognitive tasks.
Feature reconstruction of LFP signals based on PLSR in the neural information decoding study.
Yonghui Dong; Zhigang Shang; Mengmeng Li; Xinyu Liu; Hong Wan
2017-07-01
To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed. Finally, the K-Nearest Neighbor (KNN) method is used to classify the reconstructed coding features to verify the decoding performance. The results show that the proposed method can achieve the highest accuracy compared to the other three methods and the decoding effect of the proposed method is robust.
Directory of Open Access Journals (Sweden)
Hassibi Babak
2002-01-01
Full Text Available Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory. Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations.
Jointly Decoded Raptor Codes: Analysis and Design for the BIAWGN Channel
Directory of Open Access Journals (Sweden)
Venkiah Auguste
2009-01-01
Full Text Available Abstract We are interested in the analysis and optimization of Raptor codes under a joint decoding framework, that is, when the precode and the fountain code exchange soft information iteratively. We develop an analytical asymptotic convergence analysis of the joint decoder, derive an optimization method for the design of efficient output degree distributions, and show that the new optimized distributions outperform the existing ones, both at long and moderate lengths. We also show that jointly decoded Raptor codes are robust to channel variation: they perform reasonably well over a wide range of channel capacities. This robustness property was already known for the erasure channel but not for the Gaussian channel. Finally, we discuss some finite length code design issues. Contrary to what is commonly believed, we show by simulations that using a relatively low rate for the precode , we can improve greatly the error floor performance of the Raptor code.
Keibler, Evan; Arumugam, Manimozhiyan; Brent, Michael R
2007-03-01
Hidden Markov models (HMMs) and generalized HMMs been successfully applied to many problems, but the standard Viterbi algorithm for computing the most probable interpretation of an input sequence (known as decoding) requires memory proportional to the length of the sequence, which can be prohibitive. Existing approaches to reducing memory usage either sacrifice optimality or trade increased running time for reduced memory. We developed two novel decoding algorithms, Treeterbi and Parallel Treeterbi, and implemented them in the TWINSCAN/N-SCAN gene-prediction system. The worst case asymptotic space and time are the same as for standard Viterbi, but in practice, Treeterbi optimally decodes arbitrarily long sequences with generalized HMMs in bounded memory without increasing running time. Parallel Treeterbi uses the same ideas to split optimal decoding across processors, dividing latency to completion by approximately the number of available processors with constant average overhead per processor. Using these algorithms, we were able to optimally decode all human chromosomes with N-SCAN, which increased its accuracy relative to heuristic solutions. We also implemented Treeterbi for Pairagon, our pair HMM based cDNA-to-genome aligner. The TWINSCAN/N-SCAN/PAIRAGON open source software package is available from http://genes.cse.wustl.edu.
Fast N-Gram Language Model Look-Ahead for Decoders With Static Pronunciation Prefix Trees
Huijbregts, M.A.H.; Ordelman, Roeland J.F.; de Jong, Franciska M.G.
2008-01-01
Decoders that make use of token-passing restrict their search space by various types of token pruning. With use of the Language Model Look-Ahead (LMLA) technique it is possible to increase the number of tokens that can be pruned without loss of decoding precision. Unfortunately, for token passing
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2014-01-01
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569
Single exposure optically compressed imaging and visualization using random aperture coding
Energy Technology Data Exchange (ETDEWEB)
Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il
2008-11-01
The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.
The cigarette pack as image: new evidence from tobacco industry documents.
Wakefield, M; Morley, C; Horan, J K; Cummings, K M
2002-03-01
To gain an understanding of the role of pack design in tobacco marketing. A search of tobacco company document sites using a list of specified search terms was undertaken during November 2000 to July 2001. Documents show that, especially in the context of tighter restrictions on conventional avenues for tobacco marketing, tobacco companies view cigarette packaging as an integral component of marketing strategy and a vehicle for (a) creating significant in-store presence at the point of purchase, and (b) communicating brand image. Market testing results indicate that such imagery is so strong as to influence smoker's taste ratings of the same cigarettes when packaged differently. Documents also reveal the careful balancing act that companies have employed in using pack design and colour to communicate the impression of lower tar or milder cigarettes, while preserving perceived taste and "satisfaction". Systematic and extensive research is carried out by tobacco companies to ensure that cigarette packaging appeals to selected target groups, including young adults and women. Cigarette pack design is an important communication device for cigarette brands and acts as an advertising medium. Many smokers are misled by pack design into thinking that cigarettes may be "safer". There is a need to consider regulation of cigarette packaging.
Using convolutional decoding to improve time delay and phase estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2010-01-26
The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.
Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture
Park, Seong Hyeon; Kim, ByeongDo; Kang, Chang Mook; Chung, Chung Choo; Choi, Jun Won
2018-01-01
In this paper, we propose a deep learning based vehicle trajectory prediction technique which can generate the future trajectory sequence of surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short-term memory (LSTM) based encoder and generates the future trajectory sequence using the LSTM based decoder. This structure produces the $K$ most likely trajectory candidates over occupancy grid ma...
Lossless, Near-Lossless, and Refinement Coding of Bi-level Images
DEFF Research Database (Denmark)
Martins, Bo; Forchhammer, Søren Otto
1999-01-01
We present general and unified algorithms for lossy/lossless coding of bi-level images. The compression is realized by applying arithmetic coding to conditional probabilities. As in the current JBIG standard the conditioning may be specified by a template.For better compression, the more general...... to the specialized soft pattern matching techniques which work better for text. Template based refinement coding is applied for lossy-to-lossless refinement. Introducing only a small amount of loss in halftoned test images, compression is increased by up to a factor of four compared with JBIG. Lossy, lossless......, and refinement decoding speed and lossless encoding speed are less than a factor of two slower than JBIG. The (de)coding method is proposed as part of JBIG2, an emerging international standard for lossless/lossy compression of bi-level images....
Learning a common dictionary for subject-transfer decoding with resting calibration.
Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin
2015-05-01
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
Khan, Muhammad Jawad; Hong, Keum-Shik
2017-01-01
In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain–computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface. PMID:28261084
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-01
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.
Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang
2018-01-15
In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection
Directory of Open Access Journals (Sweden)
Jiahui Meng
2018-01-01
Full Text Available In order to improve the performance of non-binary low-density parity check codes (LDPC hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER of 10−5 over an additive white Gaussian noise (AWGN channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.
Decoding of finger trajectory from ECoG using deep learning
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the
D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.
Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B
2018-01-01
Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).
The Three Stages of Coding and Decoding in Listening Courses of College Japanese Specialty
Yang, Fang
2008-01-01
The main focus of research papers on listening teaching published in recent years is the theoretical meanings of decoding on the training of listening comprehension ability. Although in many research papers the bottom-up approach and top-down approach, information processing mode theory, are applied to illustrate decoding and to emphasize the…
Hamilton, Stephen; Freed, Erin; Long, Debra L.
2016-01-01
The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…
Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory
Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer
2012-01-01
Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143
Efficient algorithms for maximum likelihood decoding in the surface code
Bravyi, Sergey; Suchara, Martin; Vargo, Alexander
2014-09-01
We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O (n2), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O (nχ3), where χ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for χ ≥4.
Gu, Yong; Angelaki, Dora E; DeAngelis, Gregory C
2014-07-01
Trial by trial covariations between neural activity and perceptual decisions (quantified by choice Probability, CP) have been used to probe the contribution of sensory neurons to perceptual decisions. CPs are thought to be determined by both selective decoding of neural activity and by the structure of correlated noise among neurons, but the respective roles of these factors in creating CPs have been controversial. We used biologically-constrained simulations to explore this issue, taking advantage of a peculiar pattern of CPs exhibited by multisensory neurons in area MSTd that represent self-motion. Although models that relied on correlated noise or selective decoding could both account for the peculiar pattern of CPs, predictions of the selective decoding model were substantially more consistent with various features of the neural and behavioral data. While correlated noise is essential to observe CPs, our findings suggest that selective decoding of neuronal signals also plays important roles.
O2-GIDNC: Beyond instantly decodable network coding
Aboutorab, Neda; Sorour, Sameh; Sadeghi, Parastoo
2013-01-01
In this paper, we are concerned with extending the graph representation of generalized instantly decodable network coding (GIDNC) to a more general opportunistic network coding (ONC) scenario, referred to as order-2 GIDNC (O2-GIDNC). In the O2-GIDNC
Fast decoder for local quantum codes using Groebner basis
Haah, Jeongwan
2013-03-01
Based on arXiv:1204.1063. A local translation-invariant quantum code has a description in terms of Laurent polynomials. As an application of this observation, we present a fast decoding algorithm for translation-invariant local quantum codes in any spatial dimensions using the straightforward division algorithm for multivariate polynomials. The running time is O (n log n) on average, or O (n2 log n) on worst cases, where n is the number of physical qubits. The algorithm improves a subroutine of the renormalization-group decoder by Bravyi and Haah (arXiv:1112.3252) in the translation-invariant case. This work is supported in part by the Insitute for Quantum Information and Matter, an NSF Physics Frontier Center, and the Korea Foundation for Advanced Studies.
Ayala, Sandra M
2010-01-01
Ten first grade students, participating in a Tier II response to intervention (RTI) reading program received an intervention of video self modeling to improve decoding skills and sight word recognition. The students were video recorded blending and segmenting decodable words, and reading sight words taken directly from their curriculum instruction. Individual videos were recorded and edited to show students successfully and accurately decoding words and practicing sight word recognition. Each...
Directory of Open Access Journals (Sweden)
Elaine Astrand
Full Text Available Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF: the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders.
Decoding ensemble activity from neurophysiological recordings in the temporal cortex.
Kreiman, Gabriel
2011-01-01
We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
Euclidean Geometry Codes, minimum weight words and decodable error-patterns using bit-flipping
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn; Jonsson, Bergtor
2005-01-01
We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns.......We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns....
LDPC code decoding adapted to the precoded partial response magnetic recording channels
International Nuclear Information System (INIS)
Lee, Jun; Kim, Kyuyong; Lee, Jaejin; Yang, Gijoo
2004-01-01
We propose a signal processing technique using LDPC (low-density parity-check) code instead of PRML (partial response maximum likelihood) system for the longitudinal magnetic recording channel. The scheme is designed by the precoder admitting level detection at the receiver-end and modifying the likelihood function for LDPC code decoding. The scheme can be collaborated with other decoder for turbo-like systems. The proposed algorithm can contribute to improve the performance of the conventional turbo-like systems
LDPC code decoding adapted to the precoded partial response magnetic recording channels
Energy Technology Data Exchange (ETDEWEB)
Lee, Jun E-mail: leejun28@sait.samsung.co.kr; Kim, Kyuyong; Lee, Jaejin; Yang, Gijoo
2004-05-01
We propose a signal processing technique using LDPC (low-density parity-check) code instead of PRML (partial response maximum likelihood) system for the longitudinal magnetic recording channel. The scheme is designed by the precoder admitting level detection at the receiver-end and modifying the likelihood function for LDPC code decoding. The scheme can be collaborated with other decoder for turbo-like systems. The proposed algorithm can contribute to improve the performance of the conventional turbo-like systems.
Directory of Open Access Journals (Sweden)
Mohammad S. Islam
2017-01-01
Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.
Research on lossless compression of true color RGB image with low time and space complexity
Pan, ShuLin; Xie, ChengJun; Xu, Lin
2008-12-01
Eliminating correlated redundancy of space and energy by using a DWT lifting scheme and reducing the complexity of the image by using an algebraic transform among the RGB components. An improved Rice Coding algorithm, in which presents an enumerating DWT lifting scheme that fits any size images by image renormalization has been proposed in this paper. This algorithm has a coding and decoding process without backtracking for dealing with the pixels of an image. It support LOCO-I and it can also be applied to Coder / Decoder. Simulation analysis indicates that the proposed method can achieve a high image compression. Compare with Lossless-JPG, PNG(Microsoft), PNG(Rene), PNG(Photoshop), PNG(Anix PicViewer), PNG(ACDSee), PNG(Ulead photo Explorer), JPEG2000, PNG(KoDa Inc), SPIHT and JPEG-LS, the lossless image compression ratio improved 45%, 29%, 25%, 21%, 19%, 17%, 16%, 15%, 11%, 10.5%, 10% separately with 24 pieces of RGB image provided by KoDa Inc. Accessing the main memory in Pentium IV,CPU2.20GHZ and 256MRAM, the coding speed of the proposed coder can be increased about 21 times than the SPIHT and the efficiency of the performance can be increased 166% or so, the decoder's coding speed can be increased about 17 times than the SPIHT and the efficiency of the performance can be increased 128% or so.
Facial Image Compression Based on Structured Codebooks in Overcomplete Domain
Directory of Open Access Journals (Sweden)
Vila-Forcén JE
2006-01-01
Full Text Available We advocate facial image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: image compression is considered from the position of source coding with side information and, contrarily to the existing scenarios where the side information is given explicitly; the side information is created based on a deterministic approximation of the local image features. We consider an image in the overcomplete transform domain as a realization of a random source with a structured codebook of symbols where each symbol represents a particular edge shape. Due to the partial availability of the side information at both encoder and decoder, we treat our problem as a modification of the Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available at the decoder. Finally, the paper presents a practical image compression algorithm for facial images based on our concept that demonstrates the superior performance in the very-low-bit-rate regime.
Decoding and finding the minimum distance with Gröbner bases : history and new insights
Bulygin, S.; Pellikaan, G.R.; Woungang, I.; Misra, S.; Misra, S.C.
2010-01-01
In this chapter, we discuss decoding techniques and finding the minimum distance of linear codes with the use of Grobner bases. First, we give a historical overview of decoding cyclic codes via solving systems polynominal equations over finite fields. In particular, we mention papers of Cooper,.
Older Adults Have Difficulty in Decoding Sarcasm
Phillips, Louise H.; Allen, Roy; Bull, Rebecca; Hering, Alexandra; Kliegel, Matthias; Channon, Shelley
2015-01-01
Younger and older adults differ in performance on a range of social-cognitive skills, with older adults having difficulties in decoding nonverbal cues to emotion and intentions. Such skills are likely to be important when deciding whether someone is being sarcastic. In the current study we investigated in a life span sample whether there are…
Directory of Open Access Journals (Sweden)
Helene van Ettinger-Veenstra
Full Text Available In preterm children with very low birth weight (VLBW ≤ 1500 g, reading problems are often observed. Reading comprehension is dependent on word decoding and language comprehension. We investigated neural activation-within brain regions important for reading-related to components of reading comprehension in young VLBW adolescents in direct comparison to normal birth weight (NBW term-born peers, with the use of functional magnetic resonance imaging (fMRI. We hypothesized that the decoding mechanisms will be affected by VLBW, and expect to see increased neural activity for VLBW which may be modulated by task performance and cognitive ability. The study investigated 13 (11 included in fMRI young adolescents (ages 12 to 14 years born preterm with VLBW and in 13 NBW controls (ages 12-14 years for performance on the Block Design and Vocabulary subtests of the Wechsler Intelligence Scale for Children; and for semantic, orthographic, and phonological processing during an fMRI paradigm. The VLBW group showed increased phonological activation in left inferior frontal gyrus, decreased orthographic activation in right supramarginal gyrus, and decreased semantic activation in left inferior frontal gyrus. Block Design was related to altered right-hemispheric activation, and VLBW showed lower WISC Block Design scores. Left angular gyrus showed activation increase specific for VLBW with high accuracy on the semantic test. Young VLBW adolescents showed no accuracy and reaction time performance differences on our fMRI language tasks, but they did exhibit altered neural activation during these tasks. This altered activation for VLBW was observed as increased activation during phonological decoding, and as mainly decreased activation during orthographic and semantic processing. Correlations of neural activation with accuracy on the semantic fMRI task and with decreased WISC Block Design performance were specific for the VLBW group. Together, results suggest
Unsupervised learning of facial emotion decoding skills
Directory of Open Access Journals (Sweden)
Jan Oliver Huelle
2014-02-01
Full Text Available Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practise without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear and sadness was shown in each clip. Although no external information about the correctness of the participant’s response or the sender’s true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practise effects often observed in cognitive tasks.
Decoding suprathreshold stochastic resonance with optimal weights
International Nuclear Information System (INIS)
Xu, Liyan; Vladusich, Tony; Duan, Fabing; Gunn, Lachlan J.; Abbott, Derek; McDonnell, Mark D.
2015-01-01
We investigate an array of stochastic quantizers for converting an analog input signal into a discrete output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is considered for different threshold level distributions. We show that for particular noise levels and choices of the threshold levels optimally weighting the quantizer responses provides a reduced mean square error in comparison with the original unweighted array. However, there are also many parameter regions where the original array provides near optimal performance, and when this occurs, it offers a much simpler approach than optimally weighting each quantizer's response. - Highlights: • A weighted summing array of independently noisy binary comparators is investigated. • We present an optimal linearly weighted decoding scheme for combining the comparator responses. • We solve for the optimal weights by applying least squares regression to simulated data. • We find that the MSE distortion of weighting before summation is superior to unweighted summation of comparator responses. • For some parameter regions, the decrease in MSE distortion due to weighting is negligible
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. Copyright: © 2016 Nam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond
Nam, Sung Sik
2016-11-29
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. Copyright: © 2016 Nam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia
2017-11-13
Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant
Transmission imaging with a coded source
International Nuclear Information System (INIS)
Stoner, W.W.; Sage, J.P.; Braun, M.; Wilson, D.T.; Barrett, H.H.
1976-01-01
The conventional approach to transmission imaging is to use a rotating anode x-ray tube, which provides the small, brilliant x-ray source needed to cast sharp images of acceptable intensity. Stationary anode sources, although inherently less brilliant, are more compatible with the use of large area anodes, and so they can be made more powerful than rotating anode sources. Spatial modulation of the source distribution provides a way to introduce detailed structure in the transmission images cast by large area sources, and this permits the recovery of high resolution images, in spite of the source diameter. The spatial modulation is deliberately chosen to optimize recovery of image structure; the modulation pattern is therefore called a ''code.'' A variety of codes may be used; the essential mathematical property is that the code possess a sharply peaked autocorrelation function, because this property permits the decoding of the raw image cast by th coded source. Random point arrays, non-redundant point arrays, and the Fresnel zone pattern are examples of suitable codes. This paper is restricted to the case of the Fresnel zone pattern code, which has the unique additional property of generating raw images analogous to Fresnel holograms. Because the spatial frequency of these raw images are extremely coarse compared with actual holograms, a photoreduction step onto a holographic plate is necessary before the decoded image may be displayed with the aid of coherent illumination
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
Scaffolding Students’ Independent Decoding of Unfamiliar Text with a Prototype of an eBook-Feature
DEFF Research Database (Denmark)
Gissel, Stig Toke
2015-01-01
the relevant spelling patterns and in generalizing, in order to strengthen their decoding skills. The prototype was evaluated with Danish students in the second grade to see how and under what circumstances students can use the feature in ways that strengthen their decoding skills and support them in reading...
Convolutional Encoder and Viterbi Decoder Using SOPC For Variable Constraint Length
DEFF Research Database (Denmark)
Kulkarni, Anuradha; Dnyaneshwar, Mantri; Prasad, Neeli R.
2013-01-01
Convolution encoder and Viterbi decoder are the basic and important blocks in any Code Division Multiple Accesses (CDMA). They are widely used in communication system due to their error correcting capability But the performance degrades with variable constraint length. In this context to have...... detailed analysis, this paper deals with the implementation of convolution encoder and Viterbi decoder using system on programming chip (SOPC). It uses variable constraint length of 7, 8 and 9 bits for 1/2 and 1/3 code rates. By analyzing the Viterbi algorithm it is seen that our algorithm has a better...
Dai, Bo; Gao, Zhensen; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya
2011-06-20
We compare the performances of the 0/π-phase-shifted SSFBG (0/π-SSFBG) and the ± π/2-phase-shifted SSFBG (± π/2-SSFBG) en/decoders in the three aspects: the security, coding and system performances. In terms of the security performance, we evaluate the security performance by the investigation on the encoded waveform of both encoders. We also propose and demonstrate the code extraction technique for the ± π/2-SSFBG encoder when input pulse has large pulse width. Then, we analyze the coding performance of these two kinds of en/decoders by the calculation of autocorrelation and cross-correlation with sets of 31-chip, 63-chip and 127-chip Gold codes. Furthermore, we propose and demonstrate the hybrid use of both en/decoders. To demonstrate the performance of both en/decoders and the hybrid use in the different systems, we employ four 31-chip 640 Gchip/s 0/π-SSFBG and ± π/2-SSFBG en/decoders in the 4-user 10 Gbps/user on-off keying and differential phase-shift keying OCDMA systems.
The effect of tRNA levels on decoding times of mRNA codons.
Dana, Alexandra; Tuller, Tamir
2014-08-01
The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cortical Decoding of Individual Finger and Wrist Kinematics for an Upper-Limb Neuroprosthesis
Aggarwal, Vikram; Tenore, Francesco; Acharya, Soumyadipta; Schieber, Marc H.; Thakor, Nitish V.
2010-01-01
Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R=0.76–0.86, MSE=0.04–0.05) and Kalman filter (R=0.68–0.86, MSE=0.04–0.07) performed better than a simple linear regression filter (0.58–0.81, 0.05–0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time. PMID:19964645
Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.
Ratan Murty, N Apurva; Arun, S P
2018-04-03
Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.
Directory of Open Access Journals (Sweden)
Margaret J. Couvillon
2012-03-01
Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.
Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding
Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen
2003-08-01
A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.
Segmentation of complex document
Directory of Open Access Journals (Sweden)
Souad Oudjemia
2014-06-01
Full Text Available In this paper we present a method for segmentation of documents image with complex structure. This technique based on GLCM (Grey Level Co-occurrence Matrix used to segment this type of document in three regions namely, 'graphics', 'background' and 'text'. Very briefly, this method is to divide the document image, in block size chosen after a series of tests and then applying the co-occurrence matrix to each block in order to extract five textural parameters which are energy, entropy, the sum entropy, difference entropy and standard deviation. These parameters are then used to classify the image into three regions using the k-means algorithm; the last step of segmentation is obtained by grouping connected pixels. Two performance measurements are performed for both graphics and text zones; we have obtained a classification rate of 98.3% and a Misclassification rate of 1.79%.
Illustrative examples in a bilingual decoding dictionary: An (un ...
African Journals Online (AJOL)
Keywords: Illustrative Examples, Bilingual Decoding Dictionary, Semantic Differences Between Source Language (Sl) And Target Language (Tl), Grammatical Differences Between Sl And Tl, Translation Of Examples, Transposition, Context-Dependent Translation, One-Word Equivalent, Zero Equivalent, Idiomatic ...
Application of MTR soft-decision decoding in multiple-head ...
Indian Academy of Sciences (India)
basic MTR logic circuits, and to develop, a new one, the soft-decision MTR decoder, based on such ... of integrated circuits provides their quite simple realization. ..... recording channels, PSU-UNS International Conference on Engineering and ...
Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam
2015-05-01
Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.
Scaffolding Students’ Independent Decoding of Unfamiliar Text with a Prototype of an eBook-feature
Directory of Open Access Journals (Sweden)
Stig T Gissel
2015-10-01
Full Text Available This study was undertaken to design, evaluate and refine an eBook-feature that supports students’ decoding of unfamiliar text. The feature supports students’ independent reading of eBooks with text-to-speech, graded support in the form of syllabification and rhyme analogy, and by dividing the word material into different categories based on the frequency and regularity of the word or its constituent parts. The eBook-feature is based on connectionist models of reading and reading acquisition and the theory of scaffolding. Students are supported in mapping between spelling and sound, in identifying the relevant spelling patterns and in generalizing, in order to strengthen their decoding skills. The prototype was evaluated with Danish students in the second grade to see how and under what circumstances students can use the feature in ways that strengthen their decoding skills and support them in reading unfamiliar text. It was found that most students could interact with the eBook-material in ways that the envisioned learning trajectory in the study predicts are beneficial in strengthening their decoding skills. The study contributes with both principles for designing digital learning material with supportive features for decoding unfamiliar text and with a concrete proposal for a design. The perspectives for making reading acquisition more differentiated and meaningful for second graders in languages with irregular spelling are discussed.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory.
Lee, Sue-Hyun; Baker, Chris I
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a "sensory recruitment" model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.
Multi-voxel decoding and the topography of maintained information during visual working memory
Directory of Open Access Journals (Sweden)
Sue-Hyun eLee
2016-02-01
Full Text Available The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis that demonstrate decoding of the maintained content in visual cortex, providing support for a ‘sensory recruitment’ model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.
Within-Category Decoding of Information in Different Attentional States in Short-Term Memory.
LaRocque, Joshua J; Riggall, Adam C; Emrich, Stephen M; Postle, Bradley R
2017-10-01
A long-standing assumption of cognitive neuroscience has been that working memory (WM) is accomplished by sustained, elevated neural activity. More recently, theories of WM have expanded this view by describing different attentional states in WM with differing activation levels. Several studies have used multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data to study neural activity corresponding to these WM states. Intriguingly, no evidence was found for active neural representations for information held in WM outside the focus of attention ("unattended memory items," UMIs), suggesting that only attended memory items (AMIs) are accompanied by an active trace. However, these results depended on category-level decoding, which lacks sensitivity to neural representations of individual items. Therefore, we employed a WM task in which subjects remembered the directions of motion of two dot arrays, with a retrocue indicating which was relevant for an imminent memory probe (the AMI). This design allowed MVPA decoding of delay-period fMRI signal at the stimulus-item level, affording a more sensitive test of the neural representation of UMIs. Whereas evidence for the AMI was reliably high, evidence for the UMI dropped to baseline, consistent with the notion that different WM attentional states may have qualitatively different mechanisms of retention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Embedding the shapes of regions of interest into a Clinical Document Architecture document.
Minh, Nguyen Hai; Yi, Byoung-Kee; Kim, Il Kon; Song, Joon Hyun; Binh, Pham Viet
2015-03-01
Sharing a medical image visually annotated by a region of interest with a remotely located specialist for consultation is a good practice. It may, however, require a special-purpose (and most likely expensive) system to send and view them, which is an unfeasible solution in developing countries such as Vietnam. In this study, we design and implement interoperable methods based on the HL7 Clinical Document Architecture and the eXtensible Markup Language Stylesheet Language for Transformation standards to seamlessly exchange and visually present the shapes of regions of interest using web browsers. We also propose a new integration architecture for a Clinical Document Architecture generator that enables embedding of regions of interest and simultaneous auto-generation of corresponding style sheets. Using the Clinical Document Architecture document and style sheet, a sender can transmit clinical documents and medical images together with coordinate values of regions of interest to recipients. Recipients can easily view the documents and display embedded regions of interest by rendering them in their web browser of choice. © The Author(s) 2014.
Codes on the Klein quartic, ideals, and decoding
DEFF Research Database (Denmark)
Hansen, Johan P.
1987-01-01
descriptions as left ideals in the group-algebra GF(2^{3})[G]. This description allows for easy decoding. For instance, in the case of the single error correcting code of length21and dimension16with minimal distance3. decoding is obtained by multiplication with an idempotent in the group algebra.......A sequence of codes with particular symmetries and with large rates compared to their minimal distances is constructed over the field GF(2^{3}). In the sequence there is, for instance, a code of length 21 and dimension10with minimal distance9, and a code of length21and dimension16with minimal...... distance3. The codes are constructed from algebraic geometry using the dictionary between coding theory and algebraic curves over finite fields established by Goppa. The curve used in the present work is the Klein quartic. This curve has the maximal number of rational points over GF(2^{3})allowed by Serre...
Hardwarearchitektur für einen universellen LDPC Decoder
Directory of Open Access Journals (Sweden)
C. Beuschel
2009-05-01
Full Text Available Im vorliegenden Beitrag wird eine universelle Decoderarchitektur für einen Low-Density Parity-Check (LDPC Code Decoder vorgestellt. Anders als bei den in der Literatur häufig beschriebenen Architekturen für strukturierte Codes ist die hier vorgestellte Architektur frei programmierbar, so dass jeder beliebige LDPC Code durch eine Änderung der Initialisierung des Speichers für die Prüfmatrix mit derselben Hardware decodiert werden kann. Die größte Herausforderung beim Entwurf von teilparallelen LDPC Decoder Architekturen liegt im konfliktfreien Datenaustausch zwischen mehreren parallelen Speichern und Berechnungseinheiten, wozu ein Mapping und Scheduling Algorithmus benötigt wird. Der hier vorgestellte Algorithmus stützt sich auf Graphentheorie und findet für jeden beliebigen LDPC Code eine für die Architektur optimale Lösung. Damit sind keine Wartezyklen notwendig und die Parallelität der Architektur wird zu jedem Zeitpunkt voll ausgenutzt.
Advanced multi-dimensional imaging of gamma-ray radiation
International Nuclear Information System (INIS)
Woodring, Mitchell; Beddingfield, David; Souza, David; Entine, Gerald; Squillante, Michael; Christian, James; Kogan, Alex
2003-01-01
The tracking of radiation contamination and distribution has become a high-priority US DOE task. To support DOE needs, Radiation Monitoring Devices Inc. has been actively carrying out research and development on a gamma-radiation imager, RadCam 2000 TM . The imager is based upon a position-sensitive PMT coupled to a scintillator near a MURA coded aperture. The modulated gamma flux detected by the PSPMT is mathematically decoded to produce images that are computer displayed in near real time. Additionally, we have developed a data-manipulation scheme which allows a multi-dimensional data array, comprised of x position, y position, and energy, to be used in the imaging process. In the imager software a gate can be set on a specific isotope energy to reveal where in the field of view the gated data lies or, conversely, a gate can be set on an area in the field of view to examine what isotopes are present in that area. This process is complicated by the FFT decoding process used with the coded aperture; however, we have achieved excellent performance and results are presented here
Imaging with rotating slit apertures and rotating collimators
International Nuclear Information System (INIS)
Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.
1982-01-01
The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given
Imaging with rotating slit apertures and rotating collimators
International Nuclear Information System (INIS)
Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.
1982-01-01
The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given
Decoding divergent series in nonparaxial optics.
Borghi, Riccardo; Gori, Franco; Guattari, Giorgio; Santarsiero, Massimo
2011-03-15
A theoretical analysis aimed at investigating the divergent character of perturbative series involved in the study of free-space nonparaxial propagation of vectorial optical beams is proposed. Our analysis predicts a factorial divergence for such series and provides a theoretical framework within which the results of recently published numerical experiments concerning nonparaxial propagation of vectorial Gaussian beams find a meaningful interpretation in terms of the decoding operated on such series by the Weniger transformation.
Decoding Reed-Solomon Codes beyond half the minimum distance
DEFF Research Database (Denmark)
Høholdt, Tom; Nielsen, Rasmus Refslund
1999-01-01
We describe an efficient implementation of M.Sudan"s algorithm for decoding Reed-Solomon codes beyond half the minimum distance. Furthermore we calculate an upper bound of the probabilty of getting more than one codeword as output...
HVS-based medical image compression
Energy Technology Data Exchange (ETDEWEB)
Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)
2005-07-01
Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.
HVS-based medical image compression
International Nuclear Information System (INIS)
Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao
2005-01-01
Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time
Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.
2016-02-01
Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the
Lee, L.-N.
1977-01-01
Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.
Choi, Hoseok; Lee, Jeyeon; Park, Jinsick; Lee, Seho; Ahn, Kyoung-ha; Kim, In Young; Lee, Kyoung-Min; Jang, Dong Pyo
2018-02-01
Objective. In arm movement BCIs (brain-computer interfaces), unimanual research has been much more extensively studied than its bimanual counterpart. However, it is well known that the bimanual brain state is different from the unimanual one. Conventional methodology used in unimanual studies does not take the brain stage into consideration, and therefore appears to be insufficient for decoding bimanual movements. In this paper, we propose the use of a two-staged (effector-then-trajectory) decoder, which combines the classification of movement conditions and uses a hand trajectory predicting algorithm for unimanual and bimanual movements, for application in real-world BCIs. Approach. Two micro-electrode patches (32 channels) were inserted over the dura mater of the left and right hemispheres of two rhesus monkeys, covering the motor related cortex for epidural electrocorticograph (ECoG). Six motion sensors (inertial measurement unit) were used to record the movement signals. The monkeys performed three types of arm movement tasks: left unimanual, right unimanual, bimanual. To decode these movements, we used a two-staged decoder, which combines the effector classifier for four states (left unimanual, right unimanual, bimanual movements, and stationary state) and movement predictor using regression. Main results. Using this approach, we successfully decoded both arm positions using the proposed decoder. The results showed that decoding performance for bimanual movements were improved compared to the conventional method, which does not consider the effector, and the decoding performance was significant and stable over a period of four months. In addition, we also demonstrated the feasibility of epidural ECoG signals, which provided an adequate level of decoding accuracy. Significance. These results provide evidence that brain signals are different depending on the movement conditions or effectors. Thus, the two-staged method could be useful if BCIs are used to
DECODING OF ACADEMIC CONTENT BY THE 1st GRADE STUDENTS
Directory of Open Access Journals (Sweden)
Kamil Błaszczyński
2017-07-01
Full Text Available In the paper a comparative study conducted on the 1st grade students of sociology and pedagogy is discussed. The study was focused on the language skills of students. The most important skills tested were the abilities to decode academic content. The study shows that the students have very poor language skills in decoding the academic content on every level of its complexity. They also have noticeable problems with the definition of basic academic terms. The significance of the obtained results are high because of the innovative topic and character of the study, which was the first such study conducted on students of a Polish university. Results are also valuable for academic teachers who are interested in such problems as effective communication with students.