WorldWideScience

Sample records for docosahexaenoic acid enhances

  1. Unesterified docosahexaenoic acid is protective in neuroinflammation

    Science.gov (United States)

    Orr, Sarah K; Palumbo, Sara; Bosetti, Francesca; Mount, Howard T; Kang, Jing X; E, Carol; Greenwood; Ma, David WL; Serhan, Charles N; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 PUFA modulation in transgenic and wildtype mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Further, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LCMS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute icv infusion of 17S-hydroperoxydocosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. PMID:23919613

  2. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy?

    Science.gov (United States)

    Heaton, Alexandra E; Meldrum, Suzanne J; Foster, Jonathan K; Prescott, Susan L; Simmer, Karen

    2013-11-20

    The proposal that dietary docosahexaenoic acid (DHA) enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs) of DHA supplementation in human term-born infants have been inconsistent. This article will (i) discuss the role of DHA in the human diet, (ii) explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity, and (iii) seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia). The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned.

  3. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy?

    Directory of Open Access Journals (Sweden)

    Alexandra Elizabeth Heaton

    2013-11-01

    Full Text Available The proposal that dietary docosahexaenoic acid (DHA enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs of DHA supplementation in human term-born infants have been inconsistent. This article will i discuss the role of DHA in the human diet, ii explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity and iii seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia. The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned.

  4. Effect of dietary docosahexaenoic acid on biosynthesis of docosahexaenoic acid from alpha-linolenic acid in young rats

    OpenAIRE

    DeMar, James C.; DiMartino, Carmine; Baca, Adam W.; Lefkowitz, William; Salem, Norman

    2008-01-01

    Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary α-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with un...

  5. Effects of Docosahexaenoic Acid on Neurotransmission

    OpenAIRE

    Tanaka, Kazuhiro; Farooqui, Akhlaq A.; Siddiqi, Nikhat J.; Alhomida, Abdullah S.; Ong, Wei-Yi

    2012-01-01

    Docosahexaenoic acid (DHA) is the major polyunsaturated fatty acid (PUFA) in the brain and a structural component of neuronal membranes. Changes in DHA content of neuronal membranes lead to functional changes in the activity of receptors and other proteins which might be associated with synaptic function. Accumulating evidence suggests the beneficial effects of dietary DHA supplementation on neurotransmission. This article reviews the beneficial effects of DHA on the brain; uptake, incorporat...

  6. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid.

    Science.gov (United States)

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-02-27

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism.

  7. Docosahexaenoic acid production by the marine algae Crypthecodinium cohnii

    NARCIS (Netherlands)

    De Swaaf, M.E.

    2003-01-01

    This thesis focuses on the production of docosahexaenoic acid (DHA; 22:6), an w-3 polyunsaturated fatty acid with applications in foods and pharmaceuticals, by Crypthecodinium cohnii. This chloroplastless heterotrophic marine microalga has been studied since the end of the nineteenth century and has

  8. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  9. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status

  10. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid

    NARCIS (Netherlands)

    Sijtsma, L.; Swaaf, de M.E.

    2004-01-01

    Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid composed of 22 carbon atoms and six double bonds. Because the first double bond, as counted from the methyl terminus, is at position three, DHA belongs to the so-called omega-3 group. In recent years, DHA has attracted much attention because

  11. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    Science.gov (United States)

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  13. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijick-Brouwer, D. A. Janneke; Hadders-Algra, Mijna; Doornbos, Bennard; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Muskiet, Frits A. J.; Djick-Brouwer, D.A.J.

    Introduction: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. Maternal diet influences milk DHA, whereas milk AA seems rather constant. We investigated milk AA, DHA and DHA/AA after supplementation of AA plus DHA, or DHA alone during pregnancy and lactation.

  14. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Mehran Nikan

    2016-01-01

    Full Text Available The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA, the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg. Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73% and cortex (up to 51% after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg, we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.

  15. Breast milk docosahexaenoic acid (DHA) correlates with DHA status of malnourished infants

    NARCIS (Netherlands)

    Smit, EN; Oelen, EA; Seerat, E; Muskiet, FAJ; Boersma, ER

    Aim-To investigate whether low docosahexaenoic acid (22:6 omega 3; DHA) status of malnourished, mostly breast fed infants is a result of low omega 3 fatty acid intake via breast milk. Methods-Fatty acid composition of breast milk of eight Pakistani mothers, and of the erythrocytes of their

  16. Long-Term Effects of Docosahexaenoic Acid-Bound Phospholipids and the Combination of Docosahexaenoic Acid-Bound Triglyceride and Egg Yolk Phospholipid on Lipid Metabolism in Mice

    Science.gov (United States)

    Che, Hongxia; Cui, Jie; Wen, Min; Xu, Jie; Yanagita, Teruyoshi; Wang, Qi; Xue, Changhu; Wang, Yuming

    2018-04-01

    The bioavailability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) depends on their chemical forms. This study investigated the long-term effects of DHA-bound triglyceride (TG-DHA), DHA-bound phospholipid (PL-DHA), and the combination of TG-DHA and egg yolk phospholipid (Egg-PL) on lipid metabolism in mice fed with a high-fat diet (fat levels of 22.5%). Male C57BL/6J mice were fed with different formulations containing 0.5% DHA, including TG-DHA, PL-DHA, and the combination of TG-DHA and Egg-PL, for 6 weeks. Serum, hepatic, and cerebral lipid concentrations and the fatty acid compositions of the liver and brain were determined. The concentrations of serum total triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and hepatic TG in the PL-DHA group and the combination group were significantly lower than those in the high-fat (HF) group ( P Egg-PL in decreasing the AI. Long-term dietary supplementation with low amount of DHA (0.5%) may improve hepatic DHA levels, although cerebral DHA levels may not be enhanced.

  17. Polymorphisms in the fatty acid desaturase genes and diet are important determinants of infant docosahexaenoic acid status

    DEFF Research Database (Denmark)

    Lauritzen, L.; Harsløf, L.; Larsen, L.H.

    2013-01-01

    Tissue docosahexaenoic acid (DHA) accretion in early infancy is supported by DHA in breast-milk and may thus decrease once complementary feeding takes over. Endogenous synthesis of DHA from alphalinolenic acid is low and polymorphisms in the genes that encodes the fatty acid desaturases (FADS) ha...

  18. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement.

    Science.gov (United States)

    Sarter, Barbara; Kelsey, Kristine S; Schwartz, Todd A; Harris, William S

    2015-04-01

    Several studies have demonstrated that vegetarians and vegans have much lower plasma concentrations of omega-3 fatty acids (i.e., docosahexaenoic and eicosapentaenoic acids) when compared to those who eat fish. The purposes of this study were 1) to define the age and/or sex-specific docosahexaenoic plus eicosapentaenoic acids levels in red blood cell membranes (expressed as a percent of total fatty acids; hereafter the omega-3 index) in long-term vegans, and 2) to determine the effects of a vegetarian omega-3 supplement (254 mg docosahexaenoic plus eicosapentaenoic acids/day for 4 months) on the omega-3 index. A sample (n = 165) of vegans was recruited, and their omega-3 index was determined using a dried blood spot methodology. A subset of 46 subjects with a baseline omega-3 index of vegan cohort, the index was significantly higher in females than males (3.9 ± 1.0% vs. 3.5 ± 1.0%; p = 0.026) and was directly related to age (p for trend = 0.009). The omega-3 index increased from 3.1 ± 0.6% to 4.8 ± 0.8% (p = 0.009) in the supplementation study. We conclude that vegans have low baseline omega-3 levels, but not lower than omnivores who also consume very little docosahexaenoic and eicosapentaenoic acids. The vegans responded robustly to a relatively low dose of a vegetarian omega-3 supplement. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg

  20. Fish oil supplementation improves docosahexaenoic acid status of malnourished infants

    NARCIS (Netherlands)

    Smit, EN; Oelen, EA; Seerat, E; Boersma, ER; Muskiet, FAJ

    Aim-To investigate whether the low docosahexaenoic acid (DHA) status of malnourished, mostly breast fed, Pakistani children can be improved by fish oil (FO) supplementation. Methods-Ten malnourished children (aged 8-30 months) received 500 mg FO daily for nine weeks. The supplement contained 62.8

  1. High-oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition

    Science.gov (United States)

    Ready-to-use therapeutic food (RUTF) is the preferred treatment for uncomplicated severe acute malnutrition. It contains large amounts of linoleic acid and little a-linolenic acid, which may reduce the availability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to the recovering child...

  2. Gas chromatography/mass spectrometry analysis of very long chain fatty acids, docosahexaenoic acid, phytanic acid and plasmalogen for the screening of peroxisomal disorders

    NARCIS (Netherlands)

    Takemoto, Yasuhiko; Suzuki, Yasuyuki; Horibe, Ryoko; Shimozawa, Nobuyuki; Wanders, Ronald J. A.; Kondo, Naomi

    2003-01-01

    Very long chain fatty acids (VLCFAs) and docosahexaenoic acid (DHA), phytanic acid, and plasmalogens are usually measured individually. A novel method for the screening of peroxisomal disorders, using gas chromatography/mass spectrometry (GC/MS), was developed. Saturated and unsaturated fatty acids,

  3. Docosahexaenoic acid concentrations are higher in women than in men through estrogenic effects

    NARCIS (Netherlands)

    Giltay, E.J.; Gooren, L.J.G.; Toorians, A.W.F.T.; Katan, M.B.; Zock, P.L.

    2004-01-01

    Background: During pregnancy there is a high demand for docosahexaenoic acid (DHA), which is needed for formation of the fetal brain. Women who do not consume marine foods must synthesize DHA from fatty acid precursors in vegetable foods. Objective: We studied sex differences in DHA status and the

  4. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  5. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  6. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  7. Docosahexaenoic Acid and Neurodevelopmental Outcomes of Term Infants.

    Science.gov (United States)

    Meldrum, Suzanne; Simmer, Karen

    2016-01-01

    Docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid, is essential for normal brain development. DHA is found predominantly in seafood, fish oil, breastmilk and supplemented formula. DHA intake in Western countries is often below recommendations. Observational studies have demonstrated an association between DHA intake in pregnancy and neurodevelopment of offspring but cannot fully adjust for confounding factors that influence child development. Randomised clinical trials of DHA supplementation during pregnancy and/or lactation, and of term infants, have not shown a consistent benefit nor harm on neurodevelopment of healthy children born at term. The evidence does not support DHA supplementation of healthy pregnant and lactating women, nor healthy infants. © 2016 S. Karger AG, Basel.

  8. Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic levels in postmenopausal women

    NARCIS (Netherlands)

    Giltay, E.J.; Duschek, E.J.J.; Katan, M.B.; Neele, S.J.; Netelenbos, J.C.; Zock, P.L.

    2004-01-01

    Estrogens may affect the essential n-6 and n-3 fatty acids arachidonic acid (AA; C20:4n-6) and docosahexaenoic acid (DHA; C22:6n-3). Therefore, we investigated the long-term effects of hormone replacement therapy and raloxifene, a selective estrogen-receptor modulator, in two randomized,

  9. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    International Nuclear Information System (INIS)

    Schick, P.K.; Webster, P.

    1987-01-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with [ 14 C]-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of [ 14 C]-20:4 into total MK phospholipids, 16% and 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of [ 14 C]-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of [ 14 C]-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA

  10. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    International Nuclear Information System (INIS)

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas

    2009-01-01

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  11. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    Science.gov (United States)

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  13. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.

    Science.gov (United States)

    Sahin, Deniz; Tas, Ezgi; Altindag, Ulkü Hüma

    2018-01-24

    Schizochytrium species is one of the most studied microalgae for production of docosahexaenoic acid (DHA) which is an omega-3 fatty acid with positive effects for human health. However, high cost and low yield in production phase makes optimization of cultivation process inevitable. We focus on the optimization of DHA production using Schizochytrium sp. using different media supplements; glucose, fructose and glycerol as carbon variants, proteose peptone and tryptone as nitrogen variants. The highest biomass (5.61 g/L) and total fatty acid yield (1.74 g/L) were obtained in proteose peptone medium which was used as the alternative nitrogen source instead of yeast extract. The highest DHA yield (0.40 g/L) was achieved with glycerol as the carbon source although it had the second lowest biomass production after ethanol containing medium. Ethanol, as an alternative carbon source and a precursor for acetyl-CoA, increased DHA percentage in total lipid content from 29.94 to 40.04% but decreasing the biomass drastically. Considering different carbon and nitrogen sources during cultivation of Schizochytrium sp. will improve DHA production. Combination of proteose peptone and glycerol as nitrogen and carbon sources, respectively, and addition of ethanol with a proper timing will be useful to have higher DHA yield.

  14. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid

  15. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows

    NARCIS (Netherlands)

    Klop, G.; Hatew, B.; Bannink, A.; Dijkstra, Jan

    2016-01-01

    An experiment was conducted to study potential interaction between the effects of feeding nitrate and docosahexaenoic acid (DHA; C22:6 n-3) on enteric CH4 production and performance of lactating dairy cows. Twenty-eight lactating Holstein dairy cows were grouped into 7 blocks of 4

  16. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Energy Technology Data Exchange (ETDEWEB)

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  17. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  18. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.

    Science.gov (United States)

    Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G

    2014-03-15

    Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Emotional based cognition in mice is differentially influenced by dose and lipid origin of dietary docosahexaenoic acid

    Science.gov (United States)

    Docosahexaenoic acid (DHA) is a major constituent, and primary omega-3 fatty acid, in the brain. Evidence suggests that DHA consumption may promote cognitive functioning and prevent cognitive decline, and these effects may be particularly relevant in the context of fear or stress. However, the pot...

  20. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources.

    Science.gov (United States)

    Echeverría, Francisca; Valenzuela, Rodrigo; Catalina Hernandez-Rodas, María; Valenzuela, Alfonso

    2017-09-01

    Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Docosahexaenoic Acid and Cognition throughout the Lifespan

    Directory of Open Access Journals (Sweden)

    Michael J. Weiser

    2016-02-01

    Full Text Available Docosahexaenoic acid (DHA is the predominant omega-3 (n-3 polyunsaturated fatty acid (PUFA found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.

  2. Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70.

    Science.gov (United States)

    Yu, Xin-Jun; Yu, Zhi-Qiang; Liu, Ying-Liang; Sun, Jie; Zheng, Jian-Yong; Wang, Zhao

    2015-11-01

    High-fructose corn syrup (HFCS) is an agro-source product and has been the most commonly used substitute for sugar as sweetener in food industry due to its low price and high solution property. In this study, the F55 HFCS, rich in fructose and glucose, was first tested for biomass and docosahexaenoic acid productions as a mixed carbon source by a newly isolated Aurantiochytrium sp.YLH70. After the compositions of the HFCS media were optimized, the results showed that the HFCS with additions of metal ion and vitamin at low concentrations was suitable for biomass and docosahexaenoic acid productions and the metal ion and sea salt had the most significant effects on biomass production. During the 5-l fed-batch fermentation, total HFCS containing 180 g l(-1) reducing sugar was consumed and yields of biomass, lipid, and DHA could reach 78.5, 51, and 20.1 g l(-1), respectively, at 114 h. Meanwhile, the daily productivity and the reducing sugar conversion yield for docosahexaenoic acid were up to 4.23 g l(-1)day(-1) and 0.11 g g(-1). The fatty acid profile of Aurantiochytrium sp.YLH70 showed that 46.4% of total fatty acid was docosahexaenoic acid, suggesting that Aurantiochytrium sp.YLH70 was a promising DHA producer.

  3. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  4. Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3 Leiden mice

    NARCIS (Netherlands)

    Wielinga, P.Y.; Harthoorn, L.F.; Verschuren, L.; Schoemaker, M.H.; Jouni, Z.E.; Tol, E.A.F. van; Kleemann, R.; Kooistra, T.

    2012-01-01

    Scope: This study addresses whether early life arachidonic acid (ARA)/docosahexaenoic acid (DHA) supplementation or eicosapentaenoic acid (EPA)/DHA (Omacor) supplementation affects body weight gain, lipid metabolism, and adipose tissue quantity and quality in later life in ApoE*3Leiden-transgenic

  5. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  6. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Science.gov (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  7. PENGARUH DOCOSAHEXAENOIC ACID (DHA PADA TUMBUH KEMBANG ANAK BALITA GIZI BURUK YANG DIRAWAT JALAN [The effect of DocosaHexaenoic Acid (DHA on growth and development of outpatient rehabilitation of children under-five with severe malnutrition

    Directory of Open Access Journals (Sweden)

    Astuti Lamid1, , , , dan

    2002-12-01

    Full Text Available The study examined the effect of DocosaHexaenoic Acid (DHA on growth and development of outpatient rehabilitation of children under five with severe malnutrition. Sample was children whose age from 6 to 24 months suffering from severe malnutrition with weight /age index of WHO standard of Z score 0,05.

  8. Docosahexaenoic acid triglyceride-based microemulsions with an added dendrimer - Structural considerations.

    Science.gov (United States)

    Lidich, Nina; Francesca Ottaviani, M; Hoffman, Roy E; Aserin, Abraham; Garti, Nissim

    2016-12-01

    Omega fatty acids, mainly the triglyceride of docosahexaenoic acid (TG-DHA), are considered important nutraceuticals. These compounds are water-insoluble and their transport across membranes depends on their carriers. Dendrimers are known as drug carriers across cell membranes and also as permeation enhancers. The solubilization of TG-DHA and dendrimer into a microemulsion (ME) system serving as a carrier could be used for a targeted delivery in the future. The interactions between TG-DHA and second generation poly(propyleneimine) dendrimers (PPI-G2) and their effect on structural transitions of ME were explored along the water dilution line using electron paramagnetic resonance and pulsed-gradient spin-echo NMR along with other analytical techniques. The microviscosity, order parameter, and micropolarity of all studied systems decrease upon water dilution. Incorporation of TG-DHA reduces the microviscosity, order, and micropolarity, whereas PPI-G2 leads to an increase in these parameters. The effect of PPI-G2 is more pronounced at relative high contents (1 and 5wt%) where PPI-G2 interacts with the hydrophilic headgroups of the surfactants. In the macroscale, the effects of TG-DHA and PPI-G2 differ mostly in the bicontinuous region, where macroviscosity increases upon TG-DHA incorporation and decreases upon solubilization of 5wt% PPI-G2. From DSC measurements it was concluded that in the presence of TG-DHA the PPI-G2 is intercalated easily at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model.

    Directory of Open Access Journals (Sweden)

    Priti Bahety

    Full Text Available BACKGROUND: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA in Alzheimer's disease (AD, the mechanism by which DHA affects amyloid-β precursor protein (AβPP-induced metabolic changes has not been studied. OBJECTIVE: To elucidate the metabolic phenotypes (metabotypes associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS. METHODS: The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. RESULTS: Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. CONCLUSION: Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.

  10. Associations of obesity with triglycerides and C-reactive protein are attenuated in adults with high red blood cell eicosapentaenoic and docosahexaenoic acids

    Science.gov (United States)

    Background:N-3 fatty acids are associated with favorable, and obesity with unfavorable, concentrations of chronic disease risk biomarkers.Objective:We examined whether high eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid intakes, measured as percentages of total red blood cell (RBC) fatty acid...

  11. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2007-01-01

    Evidence confirms that polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid, DHA are involved in growth as well in pigmentation of marine fish larvae. In the present study we examined the performance of common sole larvae reared...... on Artemia enriched with 10 formulated emulsions, differing in inclusions of ARA, EPA, and DHA. The specific growth rate of the sole larvae until late metamorphosis, 21 days after hatching (dah) was 20 to 27% d(-1). Even though the relative tissue essential fatty acid (EFA) concentrations significantly...... reflected dietary composition, neither standard growth nor larval survival were significantly related to the absolute concentrations of ARA, EPA and DHA or their ratios. This suggests low requirements for essential polyunsaturated fatty acids (PUFAs) in common sole. Malpigmentation was significantly related...

  12. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    Science.gov (United States)

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2017-05-01

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  13. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  14. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori.

    Science.gov (United States)

    Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L

    2017-03-15

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lowering dietary n-6 polyunsaturated fatty acids: interaction with brain arachidonic and docosahexaenoic acids.

    Science.gov (United States)

    Alashmali, Shoug M; Hopperton, Kathryn E; Bazinet, Richard P

    2016-02-01

    Arachidonic (ARA) and docosahexaenoic (DHA) acids are the most abundant polyunsaturated fatty acids (PUFA) in the brain, where they have many biological effects, including on inflammation, cell-signaling, appetite regulation, and blood flow. The Western diet contains a high ratio of n-6: n-3 PUFA. Although interest in lowering this ratio has largely focused on increasing intake of n-3 PUFA, few studies have examined lowering dietary n-6 PUFA. This review will evaluate the effect of lowering dietary n-6 PUFA on levels and metabolism of ARA and DHA in animal models and in humans, with a primary focus on the brain. In animal models, lowering dietary ARA or linoleic acid generally lowers levels of brain ARA and raises DHA. Lowering dietary n-6 PUFA can also modulate the levels of ARA and DHA metabolizing enzymes, as well as their associated bioactive mediators. Human studies examining changes in plasma fatty acid composition following n-6 PUFA lowering demonstrate no changes in levels of ARA and DHA, though there is evidence of alterations in their respective bioactive mediators. Lowering dietary n-6 PUFA, in animal models, can alter the levels and metabolism of ARA and DHA in the brain, but it remains to be determined whether these changes are clinically meaningful.

  16. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids

    Directory of Open Access Journals (Sweden)

    Somoza Veronika

    2009-02-01

    Full Text Available Abstract Background Conversion of linoleic acid (LA and alpha-linolenic acid (ALA to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids. Design and methods In order to determine the most effective ratio with regard to the conversion of ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, human hepatoma cells were incubated with varying ratios of [13C] labeled linoleic acid ([13C]LA- and alpha-linolenic acid ([13C]ALA-methylesters. Regulative cellular signal transduction pathways involved were studied by determinations of transcript levels of the genes encoding delta-5 desaturase (D5D and delta-6 desaturase (D6D, peroxisome proliferator-activated receptor alpha (PPARα and sterol regulatory element binding protein 1c (SREBP-1c. Mitogen-activated protein kinase kinase 1 (MEK1 and mitogen-activated protein kinase kinase kinase 1 (MEKK1 were also examined. Results Maximum conversion was observed in cells incubated with the mixture of [13C]LA/[13C]ALA at a ratio of 1:1, where 0.7% and 17% of the recovered [13C]ALA was converted to DHA and EPA, respectively. Furthermore, differential regulation of enzymes involved in the conversion at the transcript level, dependent on the ratio of administered n6 to n3 fatty acids in human hepatocytes was demonstrated. Conclusion Formation of EPA and DHA was highest at an administered LA/ALA ratio of 1:1, although gene expression of PPARα, SREBP-1c and D5D involved in ALA elongation were higher in the presence of ALA solely. Also, our findings suggest that a diet-induced enhancement of the cell membrane content of highly unsaturated fatty acids is only possible up to a certain level.

  17. Mechanisms regulating brain docosahexaenoic acid uptake: what is the recent evidence?

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Lacombe, R J Scott; Bazinet, Richard P

    2018-03-01

    To summarize recent advances pertaining to the mechanisms regulating brain docosahexaenoic acid (DHA) uptake. DHA is an omega-3 polyunsaturated fatty acid highly enriched in neuronal membranes and it is implicated in several important neurological processes. However, DHA synthesis is extremely limited within the brain. There are two main plasma pools that supply the brain with DHA: the nonesterified pool and the lysophosphatidylcholine (lysoPtdCho) pool. Quantitatively, plasma nonesterified-DHA (NE-DHA) is the main contributor to brain DHA. Fatty acid transport protein 1 (FATP1) in addition to fatty acid-binding protein 5 (FABP5) are key players that regulate brain uptake of NE-DHA. However, the plasma half-life of lysoPtdCho-DHA and its brain partition coefficient are higher than those of NE-DHA after intravenous administration. The mechanisms regulating brain DHA uptake are more complicated than once believed, but recent advances provide some clarity notably by suggesting that FATP1 and FABP5 are key contributors to cellular uptake of DHA at the blood-brain barrier. Elucidating how DHA enters the brain is important as we might be able to identify methods to better deliver DHA to the brain as a potential therapeutic.

  18. Alcohol abuse and docosahexaenoic acid: Effects on cerebral circulation and neurosurvival

    Directory of Open Access Journals (Sweden)

    Michael A Collins

    2015-01-01

    Full Text Available Alcohol abuse and alcoholism are major and yet surprisingly unacknowledged worldwide causes of brain damage, cognitive impairment, and dementia. Chronic abuse of alcohol is likely to elicit significant changes in essential polyenoic fatty acids and the membrane phospholipids (PLs that covalently contain them in brain membranes. Among the fatty acids of the omega-3 polyenoic class, docosahexaenoic acid (DHA, which is relatively concentrated in mammalian brain, has proven particularly important for proper brain development as well as neurosurvival and protection. DHA losses in brains of chronic alcohol-treated animals may contribute to alcohol′s neuroinflammatory and neuropathological sequelae; indeed, DHA supplementation has beneficial effects, including the possibility that its documented augmenting effects on cerebral circulation could be important. The neurochemical mechanisms by which DHA exerts its effects encompass several signaling routes involving both the membrane PLs in which DHA is esterified as well as unique neuroactive metabolites of the free fatty acid itself. In view of indications that brain DHA deficits are a deleterious outcome of human alcoholism, increasing brain DHA via supplementation during detoxification of alcoholics could potentially fortify against dependence-related neuroinjury.

  19. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    Science.gov (United States)

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function (ID 532) and maintenance

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... and fish oil”. From the references provided, the Panel assumes that the food constituents that are the subject of the claims are the n-6 fatty acid gamma-linolenic acid (GLA) in evening primrose oil and the n-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituents that are the subjects of the health claims are “omega-3 and omega-6 fatty acids (GLA)”, “gamma-linolenic acid + eicosapentaenoic acid (GLA+EPA)”, and “evening primrose oil...

  1. Docosahexaenoic acid levels in blood and metabolic syndrome in obese children: is there a link?

    OpenAIRE

    Lassandro, C.; Banderali, G.; Radaelli, G.; Borghi, E.; Moretti, F.; Verduci, E.

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DH...

  2. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  3. Combined application of eicosapentaenoic acid and docosahexaenoic acid on depression in women: a meta-analysis of double-blind randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Yang JR

    2015-08-01

    Full Text Available Jia-run Yang, Dong Han, Zheng-xue Qiao, Xue Tian, Dong Qi, Xiao-hui QiuDepartment of Medical Psychology, Public Health Institute of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of ChinaObjectives: Previous randomized controlled trials (RCTs suggest that depression can be effectively treated by omega-3 polyunsaturated fatty acids (PUFAs. Therefore, we conducted this meta-analysis to systematically evaluate the clinical applicability of the combination of docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, which are the two major bioactive types of PUFAs, in depressed women.Methods: RCTs that compared the combination of DHA and EPA to placebo for short-course treatment of depression in women were systematically reviewed up to March 2015. Outcome measurement was the standardized difference in means in clinical measure of depression severity. Random effect model was performed. Meta-regression analysis was performed to assess the effects of baseline depression scores.Results: Data were obtained from eight RCTs. In these RCTs, 182 patients received placebo and 185 patients received DHA and EPA. The pooled standardized difference in mean was 0.65 with 95% CI = [0.18, 1.12]. There was no relation between the efficacy and the baseline depression scores. The sensitivity analysis found that the combination of EPA and DHA as monotherapy yielded a standardized difference in means of 0.65 (95% CI =0.41, 0.90 without heterogeneity.Discussion: These results indicate a beneficial effect of the combination of EPA and DHA on depressed mood in women compared with placebo. The clinical applicability of EPA and DHA showed greater promise and should be further explored.Keywords: depression, omega-3 polyunsaturated fatty acids, PUFAs, docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA

  4. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-11-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.

  5. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression.

    Science.gov (United States)

    Newell, Marnie; Baker, Kristi; Postovit, Lynne M; Field, Catherine J

    2017-08-17

    Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

  6. Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Rosenberger, Thad A; Feddersen, Søren

    2007-01-01

    Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown...... and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-Co...

  7. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-06-01

    Full Text Available Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA. Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276, with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids.

  8. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice

    OpenAIRE

    Sugasini, Dhavamani; Thomas, Riya; Yalagala, Poorna C. R.; Tai, Leon M.; Subbaiah, Papasani V.

    2017-01-01

    Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysopho...

  9. A Taiwanese food frequency questionnaire correlates with plasma docosahexaenoic acid but not with plasma eicosapentaenoic acid levels: questionnaires and plasma biomarkers.

    Science.gov (United States)

    Chien, Kuo-Liong; Lee, Meei-Shyuan; Tsai, Yi-Tsen; Chen, Pey-Rong; Lin, Hung-Ju; Hsu, Hsiu-Ching; Lee, Yuan-The; Chen, Ming-Fong

    2013-02-16

    Little evidence is available for the validity of dietary fish and polyunsaturated fatty acid intake derived from interviewer-administered questionnaires and plasma docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentration. We estimated the correlation of DHA and EPA intake from both questionnaires and biochemical measurements. Ethnic Chinese adults with a mean (± SD) age of 59.8 (±12.8) years (n = 297) (47% women) who completed a 38-item semi-quantitative food-frequency questionnaire and provided a plasma sample were enrolled. Plasma fatty acids were analyzed by capillary gas chromatography. The Spearmen rank correlation coefficients between the intake of various types of fish and marine n-3 fatty acids as well as plasma DHA were significant, ranging from 0.20 to 0.33 (P food frequency questionnaire, were correlated with the percentages of these fatty acids in plasma, and in particular with plasma DHA. Plasma DHA levels were correlated to dietary intake of long-chain n-3 fatty acids.

  10. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain.

    Science.gov (United States)

    Chen, Chuck T; Kitson, Alex P; Hopperton, Kathryn E; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Lin, Lauren E; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P

    2015-10-29

    Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.

  11. Benefits of Docosahexaenoic Acid, Folic Acid, Vitamin D and Iodine on Foetal and Infant Brain Development and Function Following Maternal Supplementation during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Nancy L. Morse

    2012-07-01

    Full Text Available Scientific literature is increasingly reporting on dietary deficiencies in many populations of some nutrients critical for foetal and infant brain development and function. Purpose: To highlight the potential benefits of maternal supplementation with docosahexaenoic acid (DHA and other important complimentary nutrients, including vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or infant brain development and/or function. Methods: English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies were obtained through searches on MEDLINE and the Cochrane Register of Controlled Trials from January 2000 through to February 2012 and reference lists of retrieved articles. Reports were selected if they included benefits and harms of maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during pregnancy and/or lactation. Results: Maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function. Conclusion: Maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring.

  12. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    Science.gov (United States)

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  13. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes

    International Nuclear Information System (INIS)

    Aspenstroem-Fagerlund, Bitte; Ring, Linda; Aspenstroem, Pontus; Tallkvist, Jonas; Ilbaeck, Nils-Gunnar; Glynn, Anders W.

    2007-01-01

    Surface active compounds present in food possibly have the ability to enhance the absorption of water soluble toxic agents. Therefore, we investigated whether fatty acids such as oleic acid and docosahexaenoic acid (DHA), both commonly present in food, negatively affect the integrity of tight junctions (TJ) in the intestinal epithelium and thereby increase the absorption of poorly absorbed hydrophilic substances. Caco-2 cells, which are derived from human absorptive enterocytes, were grown on permeable filters for 20-25 days. Differentiated cell monolayers were apically exposed for 90 min to mannitol in emulsions of oleic acid (5, 15 or 30 mM) or DHA (5, 15 or 30 mM) in an experimental medium with or without Ca 2+ and Mg 2+ . Absorption of 14 C-mannitol increased and trans-epithelial electrical resistance (TEER) decreased in cell monolayers exposed to oleic acid and DHA, compared to controls. Cytotoxicity, measured as leakage of LDH, was higher in groups exposed to 30 mM oleic acid and all concentrations of DHA. Morphology of the cell monolayers was studied by using fluorescence microscopy. Exposure of cell monolayers to 5 mM DHA for 90 min resulted in a profound alteration of the cell-cell contacts as detected by staining the cells for β-catenin. Oleic acid (30 mM) treatment also induced dissolution of the cell-cell contacts but the effect was not as pronounced as with DHA. Cell monolayers were also exposed for 180 min to 250 nM cadmium (Cd) in emulsions of oleic acid (5 or 30 mM) or DHA (1 or 5 mM), in an experimental medium with Ca 2+ and Mg 2+ . Retention of Cd in Caco-2 cells was higher after exposure to 5 mM oleic acid but lower after exposure to 30 mM oleic acid and DHA. Absorption of Cd through the monolayers increased after DHA exposure but not after exposure to oleic acid. Our results indicate that fatty acids may compromise the integrity of the intestinal epithelium and that certain lipids in food may enhance the paracellular absorption of poorly

  14. Dietary choline and phospholipid supplementation enhanced docosahexaenoic acid enrichment in egg yolk of laying hens fed a 2% Schizochytrium powder-added diet.

    Science.gov (United States)

    Wang, H; Zhang, H J; Wang, X C; Wu, S G; Wang, J; Xu, L; Qi, G H

    2017-08-01

    The aim of this study was to evaluate the effect of dietary phospholipid supplementation on laying hen performance, egg quality, and the fatty acid profile of egg yolks from hens fed a 2% Schizochytrium powder diet. Three-hundred-sixty 28-wk-old Hy-line W-36 laying hens were randomly allocated to one of the 5 dietary treatments, each treatment with 6 replicates of 12 birds each. All diets included 2% Schizochytrium powder (docosahexaenoic acid [DHA], 137.09 mg/g). The control group was not supplemented with any additional phospholipids, whereas the other 4 experimental diets were supplemented with 1,000 mg/kg choline (CHO), 1,000 mg/kg monoethanolamine (MEA), 1,000 mg/kg lysophosphatidylcholine (LPC), or 500 mg/kg LPC + 500 mg/kg MEA (LPC + MEA). The experimental diets were isocaloric (metabolizable energy, 11.15 MJ/kg) and isonitrogenous (crude protein, 16.60%). The feeding trial lasted 28 days. Laying hen performance and egg quality were not affected (P > 0.05) by the diets used. The monounsaturated fatty acid (MUFA) level was reduced in the LPC group at d 28 (P egg yolks in the LPC group had a trend to increase in comparison to the control (P = 0.07). The CHO and LPC groups had higher omega-3 (n-3) PUFA and DHA levels and lower n-6/n-3 ratios than the other groups at d 28 (P egg yolk reached a plateau after the laying hens consumed the experimental diets for 14 days, and higher yolk DHA contents were observed in the CHO and LPC groups as compared with the other groups at d 14. It was concluded that dietary choline supplementation for more than 14 d enhanced egg yolk enrichment with n-3 PUFA and DHA when laying hen diets were supplemented with 2% Schizochytrium powder. All the diets had no adverse effect on hen performance, egg quality, or egg components under the experimental condition. © 2017 Poultry Science Association Inc.

  15. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Lin, Yu-Hong; Bazinet, Richard P

    2017-02-01

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

  16. Concentration of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA of Asian catfish oil by urea complexation: optimization of reaction conditions

    Directory of Open Access Journals (Sweden)

    Pornpisanu Thammapat

    2016-04-01

    Full Text Available Optimization of the concentrating conditions of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA extracted from Asian catfish oil was studied to obtain a maximum concentration. The crude fish oil was extracted from the belly flap and adipose tissue of Asian catfish, and the extracted oil was used as fresh crude oil. The EPA and DHA were concentrated by the urea complexation method. A hexagonal rotatable design was applied to examine the effects of crystallization temperature and urea-to-fatty acid ratio on the total content of EPA and DHA (Y1 and the liquid recovery yield (Y2 . The second order polynomial regression models for Y1 and Y2 were employed to generate the response surfaces. Under the optimum conditions of -20 °C and a urea-to-fatty acid ratio of 4 (w/w, the total concentration of EPA and DHA could be increased by up to 88%, while a liquid recovery yield of 26% was obtained.

  17. Docosahexaenoic acid is an independent predictor of all-cause mortality in hemodialysis patients.

    Science.gov (United States)

    Hamazaki, Kei; Terashima, Yoshihiro; Itomura, Miho; Sawazaki, Shigeki; Inagaki, Hitoshi; Kuroda, Masahiro; Tomita, Shin; Hirata, Hitoshi; Inadera, Hidekuni; Hamazaki, Tomohito

    2011-01-01

    Dietary n-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid have been shown to reduce cardiovascular mortality. Patients on hemodialysis (HD) have a very high mortality from cardiovascular disease. Fish consumption reduces all-cause mortality in patients on HD. Moreover, n-3 PUFAs, especially DHA levels in red blood cells (RBCs), are associated with arteriosclerosis in patients on HD. The aim of this study was to determine whether DHA levels in RBCs predict the mortality of patients on HD in a prospective cohort study. A cohort of 176 patients (64.1 ± 12.0 (mean ± SD) years of age, 96 men and 80 women) under HD treatment was studied. The fatty acid composition of their RBCs was analyzed by gas chromatography. During the study period of 5 years, 54 deaths occurred. After adjustment for 10 confounding factors, the Cox hazard ratio of all-cause mortality of the patients on HD in the highest DHA tertile (>8.1%, 15 deaths) was 0.43 (95% CI 0.21-0.88) compared with those patients in the lowest DHA tertile (HD. Copyright © 2010 S. Karger AG, Basel.

  18. Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats.

    Science.gov (United States)

    van Wijk, Nick; Balvers, Martin; Cansev, Mehmet; Maher, Timothy J; Sijben, John W C; Broersen, Laus M

    2016-07-01

    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.

  19. Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis

    Directory of Open Access Journals (Sweden)

    Ikuo Morita

    2013-08-01

    Full Text Available Polyunsaturated fatty acids (PUFAs, especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.

  20. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2015-10-01

    Full Text Available Arachidonic (AA and docosahexaenoic acid (DHA brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7, a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.

  1. Docosahexaenoic Acid (DHA: An Ancient Nutrient for the Modern Human Brain

    Directory of Open Access Journals (Sweden)

    Joanne Bradbury

    2011-05-01

    Full Text Available Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA, the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.

  2. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain.

    Science.gov (United States)

    Bradbury, Joanne

    2011-05-01

    Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.

  3. Considerations for incorporating eicosapentaenoic and docosahexaenoic omega-3 fatty acids into the military food supply chain.

    Science.gov (United States)

    Ismail, Adam; Rice, Harry B

    2014-11-01

    The U.S. military may consider exploring the inclusion of the long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the diets of active duty military personnel. To be successful, certain challenges must be overcome including determining appropriate dosage, ensuring cost efficiency, and optimizing stability. To increase EPA and DHA intake, the military should consider using one of three strategies, including mandates or recommendations on omega-3 supplement usage, contracts to purchase commercially available foods for distribution in the food supply chain, or direct addition of EPA and DHA into currently consumed foods. This review presents the challenges and strategies and provides potential suggestions to the military to increase the likelihood of success. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  4. Experience in the use of docosahexaenoic acid (BrudiPlus in patients with increased sperm DNA fragmentation index in Acad. V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology

    Directory of Open Access Journals (Sweden)

    A. Yu. Popova

    2015-01-01

    Full Text Available Male factor is the reason of infertility in almost half of marriages. Infertile men have the percentage of sperm with violations of DNA integrity of over 30 %; with that, healthy fertile men have that indicator of less than 15 %. Understanding of importance of damages of sperm DNA is growing with distribution ofauxiliary reproductive technologies. As of today, these consequences have not been studies yet, and the therapeutic effect of intake of antioxidants has not direct correlation with the sperm DNA fragmentation level. Docosahexaenoic acid is one of the most valuable omega-3 polyunsaturated fatty acids for human health. Docosahexaenoic acid is the main component of the brain gray matter, retina, testes, and sperm cell membranes. In connection with that, a study was held the purpose of which was to assess the effect of the nutraceutical enzymatic docosahexaenoic acid triglyceride (BrudiPlus in high concentrations on damaged sperm DNA of patients with idiopathic pathozoospermia. 40 patients with idiopathic pathozoospermia and the level of DNA fragmentation over the statutory value took part in this study. The following positive results were received: intake of BrudiPlus allowed decreasing sperm DNA damages and improving of antioxidant system of sperm. 

  5. Maternal Docosahexaenoic Acid Intake Levels during Pregnancy and Infant Performance on a Novel Object Search Task at 22 Months

    Science.gov (United States)

    Rees, Alison; Sirois, Sylvain; Wearden, Alison

    2014-01-01

    This study investigated maternal prenatal docosahexaenoic acid (DHA) intake and infant cognitive development at 22 months. Estimates for second- and third-trimester maternal DHA intake levels were obtained using a comprehensive Food Frequency Questionnaire. Infants (n = 67) were assessed at 22 months on a novel object search task. Mothers'…

  6. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Jin-Ping Zhao

    Full Text Available Arachidonic acid (AA; C20∶4 n-6 and docosahexaenoic acid (DHA; C22∶6 n-3 are important long-chain polyunsaturated fatty acids (LC-PUFA in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally "programming" this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies.In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration and beta-cell function (proinsulin-to-insulin ratio in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids were lower comparing newborns of gestational diabetic (n = 24 vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01. Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = -0.37, P <0.0001. The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity.Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in

  7. A dose response randomised controlled trial of docosahexaenoic acid (DHA) in preterm infants.

    Science.gov (United States)

    Collins, C T; Sullivan, T R; McPhee, A J; Stark, M J; Makrides, M; Gibson, R A

    2015-08-01

    Thirty one infants born less than 30 weeks׳ gestational age were randomised to receive either 40 (n=11), 80 (n=9) or 120 (n=11) mg/kg/day of docosahexaenoic acid (DHA) respectively as an emulsion, via the feeding tube, commenced within 4 days of the first enteral feed. Twenty three infants were enroled in non-randomised reference groups; n=11 who had no supplementary DHA and n=12 who had maternal DHA supplementation. All levels of DHA in the emulsion were well tolerated with no effect on number of days of interrupted feeds or days to full enteral feeds. DHA levels in diets were directly related to blood DHA levels but were unrelated to arachidonic acid (AA) levels. All randomised groups and the maternal supplementation reference group prevented the drop in DHA levels at study end that was evident in infants not receiving supplementation. Australian New Zealand Clinical Trials Registry: ACTRN12610000382077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Regulation of Ecto-5´-Nucleotidase by Docosahexaenoic Acid in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Vu Thi Thom

    2013-08-01

    Full Text Available Background/Aims: Modulation of extracellular adenine nucleotide and adenosine concentrations is one potential mechanism by which docosahexaenoic acid (DHA may exert beneficial effects in critically ill patients. This study assessed DHA effects on extracellular adenine purines. Methods: Experiments used human pulmonary endothelial cells (HPMEC and umbilical vein endothelial cells (HUVEC treated with DHA (48 h. mRNA level (real-time PCR, expression (western blot, flow cytometry and activities (hydrolysis of etheno(ε-purines and fluorescence HPLC of CD73 (ecto-5´-nucleotidase and CD39 (ecto-NTPDase-1 were quantified. Results: DHA elevated total CD73 membrane protein expression concentration-dependently but CD73 mRNA level did not change. Increased expression was paralleled by increased enzyme activity. Effects observed on membrane level were reversed in intact cells, in which ε-AMP hydrolysis decreased after DHA. In intact endothelial cells ATP release was enhanced and CD39 activity blunted following DHA treatment. Hence, extracellular ATP and ADP concentrations increased and this inhibited ε-AMP hydrolysis. Conclusion: In human endothelial cells DHA caused 1 up-regulation of CD73 protein content and increased AMP hydrolysis at the cell membrane level, 2 increased cellular ATP release, and 3 decreased extracellular ATP/ADP hydrolysis. Thus, reorganization of the extracellular adenine-nucleotide-adenosine axis in response to DHA resulted in an increased extracellular ATP/adenosine ratio.

  9. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  10. Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*

    Science.gov (United States)

    Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907

  11. Blood fatty acid composition of pregnant and nonpregnant Korean women: red cells may act as a reservoir of arachidonic acid and docosahexaenoic acid for utilization by the developing fetus.

    Science.gov (United States)

    Ghebremeskel, K; Min, Y; Crawford, M A; Nam, J H; Kim, A; Koo, J N; Suzuki, H

    2000-05-01

    Relative fatty acid composition of plasma and red blood cell (RBC) choline phosphoglycerides (CPG), and RBC ethanolamine phosphoglycerides (EPG) of pregnant (n = 40) and nonpregnant, nonlactating (n = 40), healthy Korean women was compared. The two groups were of the same ethnic origin and comparable in age and parity. Levels of arachidonic (AA) and docosahexaenoic (DHA) acids were lower (P mothers were mobilizing membrane AA and DHA to meet the high fetal requirement for these nutrients. It may also suggest that RBC play a role as a potential store of AA and DHA and as a vehicle for the transport of these fatty acids from maternal circulation to the placenta to be utilized by the developing fetus.

  12. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes.

    Science.gov (United States)

    Colombo, John; Jill Shaddy, D; Kerling, Elizabeth H; Gustafson, Kathleen M; Carlson, Susan E

    2017-06-01

    The DHA Intake and Measurement of Neural Development (DIAMOND) trial represents one of only a few studies of the long-term dose-response effects of LCPUFA-supplemented formula feeding during infancy. The trial contrasted the effects of four formulations: 0.00% docosahexaenoic acid (DHA)/0.00% arachidonic acid (ARA), 0.32% DHA/0.64% ARA, 0.64% DHA/0.64% ARA, and 0.96% DHA/0.64% ARA against a control condition (0.00% DHA/0.00% ARA). The results of this trial have been published elsewhere, and show improved cognitive outcomes for infants fed supplemented formulas, but a common finding among many of the outcomes show a reduction of benefit for the highest DHA dose (i.e., 0.96%DHA/0.64% ARA, that is, a DHA: ARA ratio 1.5:1.0). The current paper gathers and summarizes the evidence for the reduction of benefit at this dose, and in an attempt to account for this reduced benefit, presents for the first time data from infants' red blood cell (RBC) assays taken at 4 and 12 months of age. Those assays indicate that blood DHA levels generally rose with increased DHA supplementation, although those levels tended to plateau as the DHA-supplemented level exceeded 0.64%. Perhaps more importantly, ARA levels showed a strong inverted-U function in response to increased DHA supplementation; indeed, infants assigned to the formula with the highest dose of DHA (and highest DHA/ARA ratio) showed a reduction in blood ARA relative to more intermediate DHA doses. This finding raises the possibility that reduced ARA may be responsible for the reduction in benefit on cognitive outcomes seen at this dose. The findings implicate the DHA/ARA balance as an important variable in the contribution of LCPUFAs to cognitive and behavioral development in infancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  14. Low levels of docosahexaenoic acid identified in acute coronary syndrome patients with depression.

    Science.gov (United States)

    Parker, Gordon B; Heruc, Gabriella A; Hilton, Therese M; Olley, Amanda; Brotchie, Heather; Hadzi-Pavlovic, Dusan; Friend, Cheryl; Walsh, Warren F; Stocker, Roland

    2006-03-30

    As deficiencies in n-3 PUFAs have been linked separately to depression and to cardiovascular disease, they could act as a higher order variable contributing to the established link between depression and cardiovascular disease. We therefore examine the relationship between depression and omega-3 polyunsaturated fatty acids (n-3 PUFA), including total n-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in patients with acute coronary syndrome (ACS). Plasma phospholipid levels of n-3 PUFA were measured in 100 patients hospitalized with ACS. Current major depressive episode was assessed by the Composite International Diagnostic Interview (CIDI). Depression severity was assessed by the 18-item Depression in the Medically Ill (DMI-18) measure. Patients clinically diagnosed with current depression had significantly lower mean total n-3 PUFA and DHA levels. Higher DMI-18 depression severity scores were significantly associated with lower DHA levels, with similar but non-significant trends observed for EPA and total n-3 PUFA levels. The finding that low DHA levels were associated with depression variables in ACS patients may explain links demonstrated between cardiovascular health and depression, and may have prophylactic and treatment implications.

  15. Increased Erythrocyte Eicosapentaenoic Acid and Docosahexaenoic Acid Are Associated With Improved Attention and Behavior in Children With ADHD in a Randomized Controlled Three-Way Crossover Trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2015-11-01

    To investigate effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on attention, literacy, and behavior in children with ADHD. Ninety children were randomized to consume supplements high in EPA, DHA, or linoleic acid (control) for 4 months each in a crossover design. Erythrocyte fatty acids, attention, cognition, literacy, and Conners' Parent Rating Scales (CPRS) were measured at 0, 4, 8, 12 months. Fifty-three children completed the treatment. Outcome measures showed no significant differences between the three treatments. However, in children with blood samples (n = 76-46), increased erythrocyte EPA + DHA was associated with improved spelling (r = .365, p attention (r = -.540, p improve behavior, attention, and literacy in children with ADHD. © The Author(s) 2013.

  16. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review

    Science.gov (United States)

    Innes, Jacqueline K.; Calder, Philip C.

    2018-01-01

    A large body of evidence supports the cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). There is increasing interest in the independent effects of EPA and DHA in the modulation of cardiometabolic risk factors. This systematic review aims to appraise the latest available evidence of the differential effects of EPA and DHA on such risk factors. A systematic literature review was conducted up to May 2017. Randomised controlled trials were included if they met strict eligibility criteria, including EPA or DHA > 2 g/day and purity ≥ 90%. Eighteen identified articles were included, corresponding to six unique studies involving 527 participants. Both EPA and DHA lowered triglyceride concentration, with DHA having a greater triglyceride-lowering effect. Whilst total cholesterol levels were largely unchanged by EPA and DHA, DHA increased high-density lipoprotein (HDL) cholesterol concentration, particularly HDL2, and increased low-density lipoprotein (LDL) cholesterol concentration and LDL particle size. Both EPA and DHA inhibited platelet activity, whilst DHA improved vascular function and lowered heart rate and blood pressure to a greater extent than EPA. The effects of EPA and DHA on inflammatory markers and glycaemic control were inconclusive; however both lowered oxidative stress. Thus, EPA and DHA appear to have differential effects on cardiometabolic risk factors, but these need to be confirmed by larger clinical studies. PMID:29425187

  17. Targeting inflammation in the preterm infant: The role of the omega-3 fatty acid docosahexaenoic acid

    Directory of Open Access Journals (Sweden)

    Naomi H. Fink

    2016-09-01

    Full Text Available Long-chain polyunsaturated fatty acids are critical for the normal growth and development of preterm infants. Interest in these compounds rests in their anti-inflammatory properties. Clinical conditions with an inflammatory component such as bronchopulmonary dysplasia, necrotising enterocolitis and sepsis are risks to the survival of these infants. Dysregulation of inflammatory responses plays a central role in the aetiology of many of these neonatal disorders. There is evidence to suggest that the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA can down-regulate local and systemic inflammation in adults and animal models; however, very little is known about its protective effects in infants, especially preterm infants. Due to their immunological immaturity, preterm infants are particularly sensitive to diseases with an inflammatory aetiology in the early postnatal period. This makes DHA supplementation immediately after birth to combat neonatal inflammation an attractive therapy. Mechanistic data for DHA use in preterm infants are lacking and results from adult and animal studies may not be relevant to this population because of fundamental immune system differences. While there is increasing evidence from randomised controlled trials to support a beneficial effect of DHA for the preterm infant, more evidence is required to establish short and long-term effects of DHA on the immune status of preterm infants.

  18. Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation

    Directory of Open Access Journals (Sweden)

    Carla Busquets-Cortés

    2016-01-01

    Full Text Available Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA supplementation (1.14 g/day on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs from sportsmen. Subjects were assigned to an intervention (N=9 or placebo groups (N=7 in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1, and mitochondrial transcription factor A (Tfam were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.

  19. Should there be a target level of docosahexaenoic acid in breast milk?

    Science.gov (United States)

    Jackson, Kristina Harris; Harris, William S

    2016-03-01

    This article examines the evidence for and against establishing a target level of docosahexaenoic acid (DHA) in breast milk. Two target levels for milk DHA have been recently proposed. One (∼0.3% of milk fatty acids) was based on milk DHA levels achieved in women consuming the amount of DHA recommended by the American Academy of Pediatrics for pregnant and lactating women (at least 200 mg DHA/day). Another (∼1.0%) was based on biomarker studies of populations with differing lifelong intakes of fish. Populations or research cohorts with milk DHA levels of 1.0% are associated with intakes that allow both the mother and infant to maintain relatively high DHA levels throughout lactation. Lower milk DHA levels may signal suboptimal maternal stores and possibly suboptimal infant intakes. Based on the current data, a reasonable milk DHA target appears to be approximately 0.3%, which is about the worldwide average. Although this may not be the 'optimal' level (which remains to be defined), it is clearly an improvement over the currently low milk DHA levels (∼0.2%) seen in many Western populations.

  20. Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production.

    Science.gov (United States)

    Marchan, Loris Fossier; Lee Chang, Kim J; Nichols, Peter D; Polglase, Jane L; Mitchell, Wilfrid J; Gutierrez, Tony

    2017-01-01

    Thraustochytrids isolated from hot tropical and sub-tropical waters have been well studied for DHA and biodiesel production in the last decades. However, little research has been performed on the oils of cold water thraustochytrids, in particular from the North Sea region. In this study, thraustochytrid strains from British waters showed high relative levels of omega-3 long-chain (≥C 20 ) polyunsaturated fatty acids (LC-PUFA), including docosahexaenoic acid (DHA, 22:6ω3). The relative levels of DHA (as % of total fatty acids, TFA) in the different British strains are hitherto amongst the highest recorded from any thraustochytrid screening study, with strain TL18 reaching up to 67% DHA in modified Glucose-Yeast Extract-Peptone (GYP) medium. At this screening stage, low final biomass and fatty acid yield were observed in modified GYP and MarChiquita-Brain Heart Broth (MCBHB), while PUFA profiles (as % of PUFA) remained unaltered regardless of the culture medium used. Hence, optimizing the medium and culture conditions to improve growth and lipid content, without impacting the relative percentage of DHA, has the potential to increase the final DHA concentration. With this in mind, three strains were identified as promising organisms for the production of DHA. In the context of possible future industrial exploitation involving a winterization step, we investigated the recycling of the residual oil for biodiesel use. To do this, a mathematical model was used to assess the intrinsic properties of the by-product oil. The results showed the feasibility of producing primary DHA-rich oil, assuming optimized conditions, while using the by-product oil for biodiesel use.

  1. Prenatal docosahexaenoic acid supplementation and infant morbidity: randomized controlled trial.

    Science.gov (United States)

    Imhoff-Kunsch, Beth; Stein, Aryeh D; Martorell, Reynaldo; Parra-Cabrera, Socorro; Romieu, Isabelle; Ramakrishnan, Usha

    2011-09-01

    Long-chain polyunsaturated fatty acids such as docosahexaenoic acid (DHA) influence immune function and inflammation; however, the influence of maternal DHA supplementation on infant morbidity is unknown. We investigated the effects of prenatal DHA supplementation on infant morbidity. In a double-blind randomized controlled trial conducted in Mexico, pregnant women received daily supplementation with 400 mg of DHA or placebo from 18 to 22 weeks' gestation through parturition. In infants aged 1, 3, and 6 months, caregivers reported the occurrence of common illness symptoms in the preceding 15 days. Data were available at 1, 3, and 6 months for 849, 834, and 834 infants, respectively. The occurrence of specific illness symptoms did not differ between groups; however, the occurrence of a combined measure of cold symptoms was lower in the DHA group at 1 month (OR: 0.76; 95% CI: 0.58-1.00). At 1 month, the DHA group experienced 26%, 15%, and 30% shorter duration of cough, phlegm, and wheezing, respectively, but 22% longer duration of rash (all P ≤ .01). At 3 months, infants in the DHA group spent 14% less time ill (P DHA group experienced 20%, 13%, 54%, 23%, and 25% shorter duration of fever, nasal secretion, difficulty breathing, rash, and "other illness," respectively, but 74% longer duration of vomiting (all P DHA supplementation during pregnancy decreased the occurrence of colds in children at 1 month and influenced illness symptom duration at 1, 3, and 6 months.

  2. Expanding Awareness of Docosahexaenoic Acid during Pregnancy

    Directory of Open Access Journals (Sweden)

    Barbara J. Meyer

    2013-04-01

    Full Text Available Pregnant women do not currently meet the consensus recommendation for docosahexaenoic acid (DHA (≥200 mg/day. Pregnant women in Australia are not receiving information on the importance of DHA during pregnancy. DHA pregnancy education materials were developed using current scientific literature, and tested for readability and design aesthetics. The study aimed to evaluate their usefulness, the desire for pregnant women to receive these materials and whether a larger separate study (using a control group is warranted to evaluate the influence the materials may have on increasing DHA consumption in pregnant women in Australia. Pregnant women (N = 118 were recruited at antenatal clinics at two NSW hospitals. Participants completed a 16-item questionnaire and DHA educational materials (pamphlet and shopping card were provided. Participants were contacted via phone two weeks later and completed the second questionnaire (25-item, N = 74. Statistics were conducted in SPSS and qualitative data were analysed to identify common themes. Ninety three percent of women found the materials useful, with the main reason being it expanded their knowledge of DHA food sources. Only 34% of women had received prior information on DHA, yet 68% said they would like to receive information. Due to the small sample size and lack of a control group, this small study cannot provide a cause and effect relationship between the materials and nutrition related behaviours or knowledge, however the results indicate a potential positive influence towards increased fish consumption and awareness of DHA containing foods. This suggests a larger study, with a control group is warranted to identify the impact such materials could have on Australian pregnant women.

  3. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain?

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Bazinet, Richard P

    2015-07-01

    Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or synthesized in the body from α-linolenic acid (ALA). Debate exists as to whether DHA synthesized from ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is β-oxidation and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tracer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4-3.8 mg/day in humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA for the adult brain by examining work in humans and animals involving estimates of DHA synthesis and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is presented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Treatment of an adrenomyeloneuropathy patient with Lorenzo's oil and supplementation with docosahexaenoic acid-A case report

    Directory of Open Access Journals (Sweden)

    Bergh Jacobus J

    2011-08-01

    Full Text Available Abstract This is a case report of adrenomyeloneuropathy (AMN, the adult variant of adrenoleukodystryphy (ALD. The diagnoses in the patient, aged 34, was confirmed via increased serum very long chain fatty acid concentration (VLCFA. Treatment started with the cholesterol lowering drug, atorvastatin, followed by add-on therapy with Lorenzo's oil (LO and finally supplementation with docosahexaenoic acid (DHA. The magnetic resonance imaging (MRI scan of the AMN patient before DHA treatment, already showed abnormal white matter in the brain. Although the MRI showed no neurological improvement after 6 months of DHA treatment, no selective progression of demyelination was detected in the AMN patient. Contrary to what was expected, LO failed to sustain or normalize the VLCFA levels or improve clinical symptoms. It was however, shown that DHA supplementation in addition to LO, increased DHA levels in both plasma and red blood cells (RBC. Additionally, the study showed evidence that the elongase activity in the elongation of eicosapentaenoic acid (EPA to docosapentaenoic acid (DPA might have been significantly compromised, due to the increased DHA levels.

  5. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease.

    Science.gov (United States)

    Belkouch, Mounir; Hachem, Mayssa; Elgot, Abdeljalil; Lo Van, Amanda; Picq, Madeleine; Guichardant, Michel; Lagarde, Michel; Bernoud-Hubac, Nathalie

    2016-12-01

    Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  7. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice

    Directory of Open Access Journals (Sweden)

    Nikul K. Soni

    2016-09-01

    Full Text Available Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM. Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD with purified marine fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA (HFD-ED, a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4 protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  8. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols.

    Science.gov (United States)

    Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong

    2018-01-10

    Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.

  9. Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8-11-year-old danish children

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.

    2014-01-01

    ) investigated associations between EPA and DHA in whole blood and early cardiometabolic risk markers in 713 children aged 8-11 years and 2) explored potential mediation through waist circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal stage, 7......n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between eicosapentaenoic acid (EPA, 20∶5n-3) and docosahexaenoic acid (DHA, 22∶6n-3), but we lack evidence in children. Using baseline data from the OPUS School Meal Study we 1......-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory...

  10. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Science.gov (United States)

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  11. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  12. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  13. Early docosahexaenoic and arachidonic acid supplementation in extremely-low-birth-weight infants.

    Science.gov (United States)

    Robinson, Daniel T; Caplan, Michael; Carlson, Susan E; Yoder, Rachel; Murthy, Karna; Frost, Brandy

    2016-10-01

    Extremely-low-birth-weight (ELBW) infants accrue large deficits in docosahexaenoic acid (DHA) and arachidonic acid (ARA) and require improved supplementation strategies. We hypothesized that once daily DHA+ARA drops applied to buccal mucosa will increase blood levels. Thirty ELBW infants were randomized to receive DHA 20 mg/kg/d + ARA 40 or 60 mg/kg/d + ARA 120 mg/kg/d or placebo within 72 h of age for 8 wk duration. Red blood cell phospholipid levels of DHA (primary) and ARA (secondary) were measured at 2 and 8 wk of age. Twenty-eight survivors with a median birth weight of 806 g completed dosing and sampling. Red blood cell levels were similar between the three groups at 2 wk (DHA: 4.62 wt% (interquartile range (IQR) 4.1-5.5) for all, P = 0.29 between groups; ARA: 21.1 wt% (IQR 18.78-22.6) for all, P = 0.41 between groups) and 8 wk (DHA: 6.0 wt% (IQR 5.1-7.1) for all, P = 0.57 between groups; ARA: 20.1 wt% (IQR 18.3-23.1) for all, P = 0.63 between groups). DHA in all infants showed a median increase of 31% from 2 to 8 wk (P 0.6). Daily buccal DHA and ARA supplements did not affect fatty acid levels in ELBW infants.

  14. The significance of fructose and MSG in affecting lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium sp. SW1

    Science.gov (United States)

    Rahman, Shariffah Nurhidayah Syed Abdul; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2018-04-01

    Optimization of fermentation medium for the production of docosahexaenoic acid (DHA) by Aurantiochytrium sp. SW1 was carried out. In this study, levels of fructose, monosodium glutamate (MSG) and sea salt were optimized for enhanced lipid and DHA production using response surface methodology (RSM). The design contains a total of 20 runs with 6 central points replication. Cultivation was carried out in 500 mL flasks containing 100 mL nitrogen limited medium at 30°C for 96h. Sequential model sum of squares (SS) revealed that the system was adequately represented by a quadratic model (p<0.0001). ANOVA results showed that fructose and MSG as a single factor has significant positive effect on the DHA content of SW1. The estimated optimal levels of the factors were 100 g/L fructose, 8 g/L MSG and 47% sea salt. Subsequent cultivation employing the suggested values confirmed that the predicted response values were experimentally achievable and reproducible, where 8.82 g/L DHA (51.34% g/g lipid) was achieved.

  15. Adjunctive low-dose docosahexaenoic acid (DHA) for major depression: An open-label pilot trial.

    Science.gov (United States)

    Smith, Deidre J; Sarris, Jerome; Dowling, Nathan; O'Connor, Manjula; Ng, Chee H

    2018-04-01

    Whilst the majority of evidence supports the adjunctive use of eicosapentaenoic acid (EPA) in improving mood, to date no study exists using low-dose docosahexaenoic acid (DHA) alone as an adjunctive treatment in patients with mild to moderate major depressive disorder (MDD). A naturalistic 8-week open-label pilot trial of low-dose DHA, (260 mg or 520 mg/day) in 28 patients with MDD who were non-responsive to medication or psychotherapy, with a Hamilton Depression Rating Scale (HAM-D) score of greater than 17, was conducted. Primary outcomes of depression, clinical severity, and daytime sleepiness were measured. After 8 weeks, 54% of patients had a ≥50% reduction on the HAM-D, and 45% were in remission (HAM-D ≤ 7). The eta-squared statistic (0.59) indicated a large effect size for the reduction of depression (equivalent to Cohen's d of 2.4). However confidence in this effect size is tempered due to the lack of a placebo. The mean score for the Clinical Global Impression Severity Scale was significantly improved by 1.28 points (P depression.

  16. The use of docosahexaenoic acid supplementation to ameliorate the hyperactivity of rat pups induced by in utero ethanol exposure

    OpenAIRE

    Furuya, Hiroyuki; Aikawa, Hiroyuki; Yoshida, Takahiko; Okazaki, Isao

    2000-01-01

    It has been demonstrated thatin utero ethanol (EtOH) exposure induces hyperactive behavior and learning disturbances in offspring. In order to investigate the effects of docosahexaenoic acid (DHA) on these neurobehavioral dysfunctions of rat pups induced byin utero EtOH exposure, pregnant Wistar rats were divided into four treatment groups depending on the type of oil added to the diet and drinking water as follows; (a) 5% safflower oil with tap water (TW/n-6), (b) 3% safflower oil and 2% DHA...

  17. Enhanced production of polyunsaturated fatty acid docosahexaenoic acid by thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Chandramohan, D.

    , thraustochytrids are considered among the most promising. These marine eukaryotic, straminopilan protests have been extensively studied in recent years for DHA production. This paper examines methods to enhance DHA production in thraustochytrids. A cold shock...

  18. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  19. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degenerations⃞

    Science.gov (United States)

    Tanito, Masaki; Brush, Richard S.; Elliott, Michael H.; Wicker, Lea D.; Henry, Kimberly R.; Anderson, Robert E.

    2009-01-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138

  20. Docosahexaenoic acid in the goat kid diet: effects on immune system and meat quality.

    Science.gov (United States)

    Moreno-Indias, I; Morales-delaNuez, A; Hernández-Castellano, L E; Sánchez-Macías, D; Capote, J; Castro, N; Argüello, A

    2012-11-01

    The effect of dietary docosahexaenoic acid (C22:6n3; DHA) supplementation on meat quality and immunity in goat (Capra hircus) kids was examined. Goat kids (n = 30) were fed 1 of 3 experimental diets: goat milk (GM), cow (Bos taurus) milk (CM), and CM supplemented with DHA (CM-DHA). Animals were fed ad libitum twice daily and weighed twice each week. Blood samples were collected by jugular venipuncture daily during the first 10 d of life and were subsequently collected every 5 d until slaughter at a BW of 8 kg. Carcass size (linear measurements) and weight, as well as meat pH, color, tenderness, and chemical composition were determined. Fatty acid profiles of intramuscular, peri-renal, pelvic, subcutaneous, and intermuscular fats were analyzed. Blood IgG and IgM concentrations, complement system activity (classical and alternative pathways), and chitotriosidase activity were recorded. Results indicated that the diet containing DHA did not affect (P > 0.05) carcass linear measurements, meat quality characteristics, or proximate composition of the meat. However, C22:6n3 fatty acid levels, mainly in intramuscular fat, were enriched (P 0.05) in immune function were observed among groups. In conclusion, powdered whole CM is an effective option for feeding goat kids, and the inclusion of DHA to CM increases the quantity of this fatty acid in the meat.

  1. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  2. The Relationship of Docosahexaenoic Acid (DHA) with Learning and Behavior in Healthy Children: A Review

    Science.gov (United States)

    Kuratko, Connye N.; Barrett, Erin Cernkovich; Nelson, Edward B.; Norman, Salem

    2013-01-01

    Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA), is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance. PMID:23877090

  3. The Relationship of Docosahexaenoic Acid (DHA with Learning and Behavior in Healthy Children: A Review

    Directory of Open Access Journals (Sweden)

    Norman Salem

    2013-07-01

    Full Text Available Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA, is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance.

  4. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    Science.gov (United States)

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  5. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum).

    Science.gov (United States)

    Xu, Youqing; Ding, Zhaokun; Zhang, Haizhu; Liu, Liang; Wang, Shuqi; Gorge, John

    2009-12-01

    An experiment was performed to study the effect of different ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the growth, nucleic acid and fatty acids of cobia (Rachycentron canadum) juveniles. The juveniles were fed for 8 weeks using seven treatment diets (D-1-D-7) with the same amount of DHA and EPA (1.50 +/- 0.1% of dried diet), but varying ratios of DHA to EPA (0.90, 1.10, 1.30, 1.50, 1.70, 1.90, 2.10, respectively) and a control diet (D-0, DHA + EPA = 0.8% of dried diet, DHA/EPA = 1.30). At the end of the experiment, the mean body weight (BW) of juveniles fed D-0-D-7 increased significantly (from 6.86 +/- 1.64 in the week 0 to 58.52 +/- 16.45 g at the end of week 8, P cobia juveniles fed D-0-D-7 were significantly higher at the end of 8-week experiment than initially (P cobia juveniles increased with their growth and appeared an obvious positive relationship, especially in the muscle, based on regression analysis. The mean lipid content increased significantly in the liver (from 29.82 +/- 0.99 to 37.47 +/- 3.25% totally) and muscle (from 6.74 +/- 0.25 to 10.63 +/- 0.23% totally) of cobia juveniles (P 0.05). In the muscle and liver of juveniles, EPA decreased with its reduction in the diet; DHA, DHA/EPA ratio and poly unsaturated fatty acids (PUFAs) generally increased with their increment in the diet. The conclusion was drawn that the growth, nucleic acid and fatty acids of cobia juveniles were not significantly affected by different DHA/EPA ratios in our experiments.

  6. Inverse association between docosahexaenoic acid and mortality in patients on hemodialysis during over 10 years.

    Science.gov (United States)

    Terashima, Yoshihiro; Hamazaki, Kei; Itomura, Miho; Tomita, Shin; Kuroda, Masahiro; Hirata, Hitoshi; Hamazaki, Tomohito; Inadera, Hidekuni

    2014-07-01

    We have previously conducted a cohort study to investigate n-3 polyunsaturated fatty acids (PUFAs) in red blood cells (RBCs) and risk of all-cause mortality in hemodialysis (HD) patients over 5 years and found that n-3 PUFAs, especially docosahexaenoic acid (DHA), might be an independent predictor of all-cause mortality. In the present study, we extended the study for another 5 years to determine whether DHA levels in RBCs still predict the mortality of HD patients during a 10-year study period. The study cohort consisted of 176 patients (64.1 ± 12.0 [mean ± standard deviation] years of age, 96 men and 80 women) under HD treatment. The fatty acid composition of patients' RBCs was analyzed by gas chromatography. During the study period of 10 years, 97 deaths occurred. After adjustment for 10 confounding factors, the hazard ratio of all-cause mortality of the HD patients in the highest DHA tertile (>8.1%) was 0.52 (95% confidence interval 0.30-0.91) compared with those in the lowest DHA tertile (acid and docosapentaenoic acid (n-3) did not reveal any significant correlations. The level of DHA in RBCs could be an independent predictor of all-cause mortality in HD patients even during a long period of follow-up. © 2014 International Society for Hemodialysis.

  7. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid

    Science.gov (United States)

    Taha, Ameer Y.; Chang, Lisa; Chen, Mei

    2016-01-01

    Background This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) sufficient to maintain brain 14C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. Methods 18–21 day male Fischer-344 (CDF) rats were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% (“n-3 adequate”), 3.6%, 2.7%, 0.9% or 0.2% (“n-3 deficient”) α-LNA for 15 weeks. Rats were intravenously infused with 14C-DHA to steady state for 5 minutes, serial blood samples collected to obtain plasma and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, Jin. Results Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (Jin) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. Conclusion Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low. PMID:26869088

  8. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA......). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up...... to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2...

  9. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition

    Directory of Open Access Journals (Sweden)

    Lim Sun-Young

    2007-04-01

    Full Text Available Abstract Background Docosahexaenoic acid (22:6n-3, DHA and n-6 docosapentaenoic acid (22:5n-6, DPAn-6 are highly unsaturated fatty acids (HUFA, ≥ 20 carbons, ≥ 3 double bonds that differ by a single carbon-carbon double bond at the Δ19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. Results In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 ± 2.8 wt. % did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 ± 2.3 wt. % suggesting a specific preference/requirement for 22:6n-3 in red

  10. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study.

    Science.gov (United States)

    Amiano, P; Machón, M; Dorronsoro, M; Chirlaque, M Dolores; Barricarte, A; Sánchez, M-J; Navarro, C; Huerta, J M; Molina-Montes, E; Sánchez-Cantalejo, E; Urtizberea, M; Arriola, L; Larrañaga, N; Ardanaz, E; Quirós, J R; Moreno-Iribas, C; González, C A

    2014-03-01

    The evidence about the benefits of omega-3 fatty acid intake on coronary heart disease (CHD) is not consistent. We thus aimed to assess the relation between dietary intake of total omega-3 fatty acids (from plant and marine foods) and marine polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the risk of CHD in the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis included 41,091 men and women aged 20-69 years, recruited from 1992 to 1996 and followed-up until December 2004. Omega-3 fatty acid intake was estimated from a validated dietary questionnaire. Only participants with definite incident CHD event were considered as cases. Cox regression models were used to assess the association between the intake of total omega-3 fatty acids, EPA or DHA and CHD. A total of 609 participants (79% men) had a definite CHD event. Mean intakes of total omega-3 fatty acids, EPA and DHA were very similar in the cases and in the cohort, both in men and women. In the multivariate adjusted model, omega-3 fatty acids, EPA and DHA were not related to incident CHD in either men or women. The hazard ratios (HR) for omega-3 were 1.23 in men (95% CI 0.94-15.9, p = 0.20); and 0.77 in women (95% CI 0.46-1.30, p = 0.76). In the Spanish EPIC cohort, with a relatively high intake of fish, no association was found between EPA, DHA and total omega-3 fatty acid intake and risk of CHD. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes.

    Science.gov (United States)

    Manley, Brett J; Makrides, Maria; Collins, Carmel T; McPhee, Andrew J; Gibson, Robert A; Ryan, Philip; Sullivan, Thomas R; Davis, Peter G

    2011-07-01

    Docosahexaenoic acid (DHA) has been associated with downregulation of inflammatory responses. To report the effect of DHA supplementation on long-term atopic and respiratory outcomes in preterm infants. This study is a multicenter, randomized controlled trial comparing the outcomes for preterm infants DHA diet) or soy oil (standard-DHA) capsules. Data collected included incidence of bronchopulmonary dysplasia (BPD) and parental reporting of atopic conditions over the first 18 months of life. Six hundred fifty-seven infants were enrolled (322 to high-DHA diet, 335 to standard), and 93.5% completed the 18-month follow-up. There was a reduction in BPD in boys (relative risk [RR]: 0.67 [95% confidence interval (CI): 0.47-0.96]; P=.03) and in all infants with a birth weight of DHA group at either 12 or 18 months (RR: 0.41 [95% CI: 0.18-0.91]; P=.03) and at either 12 or 18 months in boys (RR: 0.15 [0.03-0.64]; P=.01). There was no effect on asthma, eczema, or food allergy. DHA supplementation for infants of Pediatrics.

  12. Dietary docosahexaenoic acid supplementation in children with autism.

    Science.gov (United States)

    Voigt, Robert G; Mellon, Michael W; Katusic, Slavica K; Weaver, Amy L; Matern, Dietrich; Mellon, Bryan; Jensen, Craig L; Barbaresi, William J

    2014-06-01

    The aim of the study was to determine whether docosahexaenoic acid (DHA) supplementation improves the behavior of children with autism. A group of 3- to 10-year-old children with autism were randomized in a double-blind fashion to receive a supplement containing 200 mg of DHA or a placebo for 6 months. The parents and the investigator completed the Clinical Global Impressions-Improvement scale to rate changes in core symptoms of autism after 3 and 6 months. The parents completed the Child Development Inventory and the Aberrant Behavior Checklist, and both parents and teachers completed the Behavior Assessment Scale for Children (BASC) at enrollment and after 6 months. A total of 48 children (40 [83%] boys, mean age [standard deviation] 6.1 [2.0] years) were enrolled; 24 received DHA and 24 placebo. Despite a median 431% increase in total plasma DHA levels after 6 months, the DHA group was not rated as improved in core symptoms of autism compared to the placebo group on the CGI-I. Based on the analysis of covariance models adjusted for the baseline rating scores, parents (but not teachers) provided a higher average rating of social skills on the BASC for the children in the placebo group compared to the DHA group (P = 0.04), and teachers (but not parents) provided a higher average rating of functional communication on the BASC for the children in the DHA group compared to the placebo group (P = 0.02). Dietary DHA supplementation of 200 mg/day for 6 months does not improve the core symptoms of autism. Our results may have been limited by inadequate sample size.

  13. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Karin Yurko-Mauro

    Full Text Available Subjective memory complaints are common with aging. Docosahexaenoic acid (DHA; 22:6 n-3 is a long-chain polyunsaturated fatty acid (LCPUFA and an integral part of neural membrane phospholipids that impacts brain structure and function. Past research demonstrates a positive association between DHA plasma status/dietary intake and cognitive function.The current meta-analysis was designed to determine the effect of DHA intake, alone or combined with eicosapentaenoic acid (EPA; 20:5 n-3, on specific memory domains: episodic, working, and semantic in healthy adults aged 18 years and older. A secondary objective was to systematically review/summarize the related observational epidemiologic literature.A systematic literature search of clinical trials and observational studies that examined the relationship between n-3 LCPUFA on memory outcomes in healthy adults was conducted in Ovid MEDLINE and EMBASE databases. Studies of subjects free of neurologic disease at baseline, with or without mild memory complaints (MMC, were included. Random effects meta-analyses were conducted to generate weighted group mean differences, standardized weighted group mean differences (Hedge's g, z-scores, and p-values for heterogeneity comparing DHA/EPA to a placebo. A priori sub-group analyses were conducted to evaluate the effect of age at enrollment, dose level, and memory type tested.Episodic memory outcomes of adults with MMC were significantly (P 1 g/day DHA/EPA improved episodic memory (P<.04. Semantic and working memory changes from baseline were significant with DHA but no between group differences were detected. Observational studies support a beneficial association between intake/blood levels of DHA/EPA and memory function in older adults.DHA, alone or combined with EPA, contributes to improved memory function in older adults with mild memory complaints.

  14. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  15. Effect of Docosahexaenoic Acid on Apoptosis and Proliferation in the Placenta: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ewa Wietrak

    2015-01-01

    Full Text Available Introduction. Observational studies confirm a higher incidence of preeclampsia in patients with low erythrocyte concentrations of omega-3 fatty acids. Observations point to an association of disorders of pregnancy, such as intrauterine growth restriction (IUGR and preeclampsia, with excessive apoptosis. One potential mechanism of action of docosahexaenoic acid (DHA promoting a reduction in the risk of pathological pregnancy may be by influencing these processes in the placenta. Materials and Methods. We investigated 28 pregnant women supplemented with a fish oil product containing 300 mg DHA starting from pregnancy week 20 until delivery (DHA group. The control group consisted of 50 women who did not receive such supplementation (control group. We determined the expression of Ki-67 and p21 as markers of proliferation and caspase 3 activity as a marker of apoptosis and DHA levels in umbilical cord blood. Results. Caspase 3 activity was significantly lower in the DHA group in comparison to the control group. Umbilical cord blood DHA concentration was higher in the DHA group. The expression of the proteins p21 and Ki-67 did not differ significantly between the groups. Conclusions. We observed an association between DHA supplementation and inhibition of placental apoptosis. We did not find an association between DHA and proliferation process in the placenta.

  16. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  17. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    Science.gov (United States)

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania) : targets for infant formulae close to our ancient diet?

    NARCIS (Netherlands)

    Kuipers, RS; Fokkema, MR; Smit, EN; van der Meulen, J; Boersma, ER; Muskiet, FAJ

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the

  19. Formulation of dark chocolate as a carrier to deliver eicosapentaenoic and docosahexaenoic acids: Effects on product quality.

    Science.gov (United States)

    Toker, Omer Said; Konar, Nevzat; Palabiyik, Ibrahim; Rasouli Pirouzian, Haniyeh; Oba, Sirin; Polat, Derya Genc; Poyrazoglu, Ender Sinan; Sagdic, Osman

    2018-07-15

    In this study, dark chocolate enriched with EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) was developed using various forms and origins. Quality characteristics such as physical, thermo-gravimetric, rheological, textural and sensory properties of chocolates were investigated. The highest EPA/DHA stability was determined in samples prepared by free-flowing powder and microencapsulated forms of omega-3 fatty acids (FA). The L ∗ and C ∗ values varied from 32.16-33.37 and 7.45-8.09, respectively for the all samples. Hardness values ranged between 6422 and 8367 N and the use of EPA/DHA in the triglyceride form caused softer chocolate whereas control sample was the hardest sample. Melting and rheological properties were not significantly affected by the studied EPA/DHA sources (P chocolate was the most preferred source whereas sample with algae oil showed the lowest acceptability. According to the results, dark chocolate can be used for delivering omega-3 FA by considering their origin and physical form. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    Science.gov (United States)

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  1. A novel therapeutic strategy for experimental stroke using docosahexaenoic acid complexed to human albumin

    Directory of Open Access Journals (Sweden)

    Belayev Ludmila

    2016-01-01

    Full Text Available Despite tremendous efforts in ischemic stroke research and significant improvements in patient care within the last decade, therapy is still insufficient. There is a compelling, urgent need for safe and effective neuroprotective strategies to limit brain injury, facilitate brain repair, and improve functional outcome. Recently, we reported that docosahexaenoic acid (DHA; 22:6, n-3 complexed to human albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo in young rats. This review highlights the potency of DHA-Alb therapy in permanent MCAo and aged rats and whether protection persists with chronic survival. We discovered that a novel therapy with DHA-Alb improved behavioral outcomes accompanied by attenuation of lesion volumes even when animals were allowed to survive three weeks after experimental stroke. This treatment might provide the basis for future therapeutics for patients suffering from ischemic stroke.

  2. Intravitreal docosahexaenoic acid in a rabbit model: preclinical safety assessment.

    Directory of Open Access Journals (Sweden)

    Rosa Dolz-Marco

    Full Text Available PURPOSE: The purpose of the present study was to evaluate the retinal toxicity of a single dose of intravitreal docosahexaenoic acid (DHA in rabbit eyes over a short-term period. METHODS: Sixteen New Zealand albino rabbits were selected for this pre-clinical study. Six concentrations of DHA (Brudy Laboratories, Barcelona, Spain were prepared: 10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µl, 50 µg/50 µl, 25 µg/50 µl, and 5 µg/50 µl. Each concentration was injected intravitreally in the right eye of two rabbits. As a control, the vehicle solution was injected in one eye of four animals. Retinal safety was studied by slit-lamp examination, and electroretinography. All the rabbits were euthanized one week after the intravitreal injection of DHA and the eyeballs were processed to morphologic and morphometric histological examination by light microscopy. At the same time aqueous and vitreous humor samples were taken to quantify the concentration of omega-3 acids by gas chromatography. Statistical analysis was performed by SPSS 21.0. RESULTS: Slit-lamp examination revealed an important inflammatory reaction on the anterior chamber of the rabbits injected with the higher concentrations of DHA (10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µ Lower concentrations showed no inflammation. Electroretinography and histological studies showed no significant difference between control and DHA-injected groups except for the group injected with 50 µg/50 µl. CONCLUSIONS: Our results indicate that administration of intravitreal DHA is safe in the albino rabbit model up to the maximum tolerated dose of 25 µg/50 µl. Further studies should be performed in order to evaluate the effect of intravitreal injection of DHA as a treatment, alone or in combination, of different retinal diseases.

  3. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists.

    Science.gov (United States)

    Liu, Ying; Tang, Jie; Li, Jingjing; Daroch, Maurycy; Cheng, Jay J

    2014-12-01

    Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ∼79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.

  4. [The effect of docosahexaenoic acid on the loss of appetite in pediatric patients with pneumonia].

    Science.gov (United States)

    López-Alarcón, Mardya; Furuya-Meguro, María Magdalena; García-Zúñiga, Pedro Alberto; Tadeo-Pulido, Irsa

    2006-01-01

    To evaluate the role of docosahexaenoic acid (DHA) administered during the acute phase of pneumonia in infants, on appetite, cytokines and leptin concentrations. Seventeen children between three months and 12 years of age were followed from hospitalization to discharge. Children were randomly assigned to receive DHA or placebo. The effect of treatment was evaluated on energy intake, cytokines, and leptin concentrations. Cytokine concentrations tended to decrease earlier in DHA children. By day 4, concentrations of IL-1beta and TNFalpha had decreased by 12%, while such concentrations increased by 12% and 250% in placebo children. Energy intake recovered in DHA children at discharge, but placebo children were still consuming only 60% of their requirements. Our results suggest that DHA administered in the acute phase of infection could modulate IL-1 and TNF production, and secondarily, decrease the effect of infection on appetite.

  5. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Science.gov (United States)

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-08-21

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  6. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Tun-Yun Hsueh

    2018-03-01

    Full Text Available Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA. After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed (P ≤ 0.05 compared with control cells. The expression of the genes related to myogenesis was significantly lower (P ≤ 0.05 in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher (P ≤ 0.05 expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower (P ≤ 0.05 gene expression and lower (P ≤ 0.05 mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher (P ≤ 0.05 in cells treated with fatty acids. Moreover, fatty-acid treatment reduced (P ≤ 0.05 oxygen consumption rate under oligomycin-inhibited (reflecting proton leak and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids

  7. The Effects of Fatty Acids on Retinoid Signaling in Human Mammary Epithelial Cells and Breast Cancer Cells

    National Research Council Canada - National Science Library

    Langton, Simne; Gudas, Lorraine J

    2005-01-01

    ...) and docosahexaenoic acid (DHA) are diet-derived fatty acids that bind to rexinoid X receptors (RXR). Therefore, we hypothesized that inhibitory effects on cell proliferation may be enhanced by the addition of PA and DHA to RA- treated cells...

  8. The Effects of Fatty Acids on Retinoid Signaling in Human Mammary Epithelial Cells and Breast Cancer Cells

    National Research Council Canada - National Science Library

    Langton, Simne; Gudas, Lorraine J

    2004-01-01

    ...) and docosahexaenoic acid (DHA) are diet-derived fatty acids that bind to rexinoid X receptors (RXR). Therefore, we hypothesized that inhibitory effects on cell proliferation may be enhanced by the addition of PA and DHA to RA-treated cells...

  9. Eicosapentaenoic and docosahexaenoic acids enriched polyunsaturated fatty acids from the coastal marine fish of Bay of Bengal and their therapeutic value.

    Science.gov (United States)

    Bera, Rabindranath; Dhara, Tushar K; Bhadra, Ranjan; Majumder, Gopal C; Sen, Parimal C

    2010-12-01

    Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) enriched polyunsaturated fatty acids (PUFA) significantly present in marine fish oil emerge as preventive agents for combating many health problems specially in chronic or metabolic disorders. The fish in the coastal area of Bay of Bengal has remained unexplored with respect to EPA/DHA enriched PUFA content in its oils, although it may be a potential source in harnessing the health benefit. In this study, seven varieties of the coastal fish were analysed for the content of EPA/DHA. The one locally known as lotte, (Harpadon nehereus) though has low content of total lipids, was found to have high EPA/DHA in its oil. The phospholipids rich fraction was extracted from the total fish oil. The EPA/DHA enriched PUFA was isolated to investigate the potential use for health benefits. EPA/DHA is found to act as protective agent against mercury poisoning studied in cell culture as well as in animal mode. It is found to be highly preventive in diabetes. The lotte is available in the coastal area of Bay of Bengal adjoining West Bengal, India in large scale and it is the first report showing EPA/DHA enriched PUFA in these fish oil that can be availed to harness in important health benefits.

  10. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    OpenAIRE

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expressi...

  11. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  12. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  13. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  14. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    Science.gov (United States)

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  15. Preliminary Validation of a High Docosahexaenoic Acid (DHA and -Linolenic Acid (ALA Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar Smolts.

    Directory of Open Access Journals (Sweden)

    Waldo G Nuez-Ortín

    Full Text Available Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA, a key omega-3 long-chain (≥C20 polyunsaturated fatty acid (n-3 LC-PUFA that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX with high DHA and ALA content using tuna oil (TO high in DHA and the flaxseed oil (FX high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO and a commercial-like oil blend diet (fish oil + poultry oil, FOPO over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  16. Randomized controlled trial of docosahexaenoic acid supplementation in midwestern U.S. human milk donors.

    Science.gov (United States)

    Valentine, Christina J; Morrow, Georgia; Pennell, Michael; Morrow, Ardythe L; Hodge, Amanda; Haban-Bartz, Annette; Collins, Kristin; Rogers, Lynette K

    2013-02-01

    Docosahexaenoic acid (DHA) is a long-chain polyunsaturated fatty acid important for neonatal neurodevelopment and immune homeostasis. Preterm infants fed donor milk from a Midwestern source receive only 20% of the intrauterine accretion of DHA. We tested the hypothesis that DHA supplementation of donor mothers would provide preterm infants with DHA intake equivalent to fetal accretion. After Institutional Review Board approval and informed consent, human milk donors to the Mother's Milk Bank of Ohio were randomized to receive 1 g of DHA (Martek(®) [now DSM Nutritional Lipids, Columbia, MD]) or placebo soy oil. Dietary intake data were collected and analyzed by a registered dietitian. Fatty acids were measured by gas chromatography/flame ionization detection. Statistical analysis used linear mixed models. Twenty-one mothers were randomly assigned to either the DHA group (n=10) or the placebo group (n=11). Donor age was a median of 31 years in both groups with a mean lactational stage of 19 weeks. Dietary intake of DHA at baseline in both groups was a median of 23 mg/day (range, 0-194 mg), significantly (p<0.0001) less than the minimum recommended intake of 200 mg/day. The DHA content of milk increased in the DHA-supplemented group (p<0.05). The women enrolled in this study had low dietary DHA intake. Supplementation with preformed DHA at 1 g/day resulted in increased DHA concentrations in the donor milk with no adverse outcomes. Infants fed donor milk from supplemented women receive dietary DHA levels that closely mimic normal intrauterine accretion during the third trimester.

  17. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  18. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  19. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    Science.gov (United States)

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    Directory of Open Access Journals (Sweden)

    Heidi N. Bagley

    2013-01-01

    Full Text Available Intrauterine growth restriction (IUGR predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2 in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA, a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI- induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1 normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2 increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  1. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    Science.gov (United States)

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  2. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    Science.gov (United States)

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  3. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  4. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of dietary gamma-linolenic acid and docosahexaenoic acid with paclitaxel on the treatment of mice mammary carcinoma

    Directory of Open Access Journals (Sweden)

    Kamran Rakhshan

    2013-08-01

    Full Text Available Background: Breast cancer is one of the most important causes of death in women. One of the various gene expression involved in breast cancer is human epidermal growth factor receptor 2 (HER2/neu gene expression increases. Factors of dietary affect on regulation of hormone secretion and the rate of breast cancer. One of these factors is amount and type of fats in diet. Gamma-linolenic acid (GLA and Docosah-exaenoic acid (DHA are members of poly unsaturated fatty acids. In this study, effects of dietary GLA and DHA alone or together with paclitaxel on treatment of mice mammary carcinoma has been evaluated.Methods: Thirty female balb/c mice were divided in six groups randomly. Carcinoma-tous mass induced by tumor implantation method. Spontaneous breast adenocarcinoma of mice were used as tumor stock. The tumors of these mice were removed aseptically, dissected into 0.5 cm3 pieces. These pieces were transplanted subcutaneously into their right flank. GLA and DHA added to the mice diet two week prior to tumor implanta-tion. At the end of intervention, tumors were removed and HER2 gene expression was measured. The weight of animal and tumor volume measured weekly.Results: It was not significant change in the weight of animals that consumed DHA and DHA with taxol. Tumor volume in those groups that received corn oil with taxol (P<0.01, DHA (P<0.05 and DHA with taxol (P<0.001 showed significant decrease in comparison with control group. HER2 gene expression in DHA with taxol decreased significantly in comparison with control group (P<0.05.Conclusion: Consumption of DHA oil with taxol causes decrease the volume of carcin-oma mass. The future studies with large number of sample is needed to support this finding.

  6. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    Science.gov (United States)

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Hopperton, Kathryn E; Stavro, P Mark; Bazinet, Richard P

    2017-01-01

    Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives. © 2017 American Society for Nutrition.

  8. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    Science.gov (United States)

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. In silico Screening and Evaluation of the Anticonvulsant Activity of Docosahexaenoic Acid-Like Molecules in Experimental Models of Seizures.

    Science.gov (United States)

    Gharibi Loron, Ali; Sardari, Soroush; Narenjkar, Jamshid; Sayyah, Mohammad

    2017-01-01

    Resistance to antiepileptic drugs and the intolerability in 20-30% of the patients raises demand for developing new drugs with improved efficacy and safety. Acceptable anticonvulsant activity, good tolerability, and inexpensiveness of docosahexaenoic acid (DHA) make it as a good candidate for designing and development of the new anticonvulsant medications. Ten DHA-based molecules were screened based on in silico screening of DHA-like molecules by root-mean-square deviation of atomic positions, the biological activity score of Professional Association for SQL Server, and structural requirements suggested by pharmacophore design. Anticonvulsant activity was tested against clonic seizures induced by pentylenetetrazole (PTZ, 60 mg/kg, i.p.) and tonic seizures induced by maximal electroshock (MES, 50 mA, 50 Hz, 1 ms duration) by intracerebroventricular (i.c.v.) injection of the screened compounds to mice. Among screened compounds, 4-Phenylbutyric acid, 4-Biphenylacetic acid, phenylacetic acid, and 2-Phenylbutyric acid showed significant protective activity in pentylenetetrazole test with ED50 values of 4, 5, 78, and 70 mM, respectively. In MES test, shikimic acid and 4-tert-Butylcyclo-hexanecarboxylic acid showed significant activity with ED50 values 29 and 637 mM, respectively. Effective compounds had no mortality in mice up to the maximum i.c.v. injectable dose of 1 mM. Common electrochemical features and three-dimensional spatial structures of the effective compounds suggest the involvement of the anticonvulsant mechanisms similar to the parent compound DHA.

  10. Docosahexaenoic acid (DHA) at the sn-2 position of triacylglycerols increases DHA incorporation in brown, but not in white adipose tissue, of hamsters.

    Science.gov (United States)

    Lopes, Paula A; Bandarra, Narcisa M; Martins, Susana V; Madeira, Marta S; Ferreira, Júlia; Guil-Guerrero, José L; Prates, José A M

    2018-06-01

    We hypothesised that the incorporation of docosahexaenoic acid (DHA) across adipose tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position. Ten-week old male hamsters were allocated to 4 dietary treatments (n = 10): linseed oil (LSO-control group), fish oil (FO), fish oil ethyl esters (FO-EE) and structured DHA at the sn-2 position of TAG (DHA-SL) during 12 weeks. In opposition to the large variations found for fatty acid composition in retroperitoneal white adipose tissue (WAT), brown adipose tissue (BAT) was less responsive to diets. DHA was not found in subcutaneous and retroperitoneal WAT depots but it was successfully incorporated in BAT reaching the highest percentage in DHA-SL. The PCA on plasma hormones (insulin, leptin, adiponectin) and fatty acids discriminated BAT from WATs pointing towards an individual signature on fatty acid deposition, but did not allow for full discrimination of dietary treatments within each adipose tissue.

  11. Docosahexaenoic acid (DHA) supplementation in pregnancy differentially modulates arachidonic acid and DHA status across FADS genotypes in pregnancy.

    Science.gov (United States)

    Scholtz, S A; Kerling, E H; Shaddy, D J; Li, S; Thodosoff, J M; Colombo, J; Carlson, S E

    2015-03-01

    Some FADS alleles are associated with lower DHA and ARA status assessed by the relative amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell (RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in a cohort of pregnant women and examined the relationship of FADS1rs174533 and FADS2rs174575 to DHA and ARA status before and after supplementation with 600mg per day of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and corn oil) (n=96) or 600mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-allele carriers (P=0.031), while in the DHA-supplemented group, all genotypes had higher DHA status compared to baseline (P=0.001) and status did not differ by genotype (P=0.941). Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele homozygotes of some FADS SNPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry.

    Science.gov (United States)

    Song, Xiaojin; Zang, Xiaonan; Zhang, Xuecheng

    2015-01-01

    The low-cost substrates from food industry, including maize starch hydrolysate and soybean meal hydrolysate, were used to produce docosahexaenoic acid (DHA) by Schizochytrium limacinum OUC88. Glucose derived from maize starch hydrolysate was used as the carbon source and soybean meal hydrolysate as the nitrogen sources. In 10L bioreactor fermentation, by using the soybean meal hydrolysate as the main nitrogen source, the biomass of Schizochytrium limacinum OUC88 reached 85.27 g L(-1), and the yields of DHA was 20.7g L(-1). As a comparison, when yeast extract was used as the main nitrogen source, the yields of biomass and DHA were 68.93 g L(-1) and 13.3 g L(-1), respectively. From the results of this study, these hydrolysates can provide all the nutrients required for high-density cultivation of S. limacinum OUC88 and DHA production, that will improve the economical and competitive efficiency of commercial DHA production.

  13. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  14. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  15. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study.

    Science.gov (United States)

    Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan

    2017-07-15

    Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer.

    Science.gov (United States)

    Molfino, Alessio; Amabile, Maria Ida; Monti, Massimo; Arcieri, Stefano; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2016-04-05

    Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.

  17. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation.

    Directory of Open Access Journals (Sweden)

    Atsushi Ishikado

    Full Text Available Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2(-/- mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1, and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2(-/- mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE, an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA rather than that in eicosapentaenoic acid (EPA. Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.

  18. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases.

    Science.gov (United States)

    Sun, Grace Y; Simonyi, Agnes; Fritsche, Kevin L; Chuang, Dennis Y; Hannink, Mark; Gu, Zezong; Greenlief, C Michael; Yao, Jeffrey K; Lee, James C; Beversdorf, David Q

    2017-03-10

    Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A 2 (cPLA 2 ), DHA is linked to action of the Ca 2+ -independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke

  19. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    International Nuclear Information System (INIS)

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-01-01

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using 3 H-labelled phenylalanine. Protein breakdown was measured using 3 H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion

  20. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kamolrat, Torkamol [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom); Gray, Stuart R., E-mail: s.r.gray@abdn.ac.uk [Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD (United Kingdom)

    2013-03-22

    Highlights: ► EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ► These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ► EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 μM EPA or 50 μM DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  1. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    Science.gov (United States)

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine

  2. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing

    Directory of Open Access Journals (Sweden)

    Rodrigo Valenzuela

    2015-08-01

    Full Text Available α-Linolenic acid (ALA is the precursor of docosahexaenoic acid (DHA in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L., a plant native to some Latin American countries, is high in ALA (up to 60% and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22–35 years old tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21 and a chia group (n = 19, which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA ingestion, no showing modification of arachidonic acid (AA, eicosapentaenoic acid (EPA and DHA; (ii a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA.

  3. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    OpenAIRE

    Schober, Michelle E.; Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimen...

  4. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    Science.gov (United States)

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  5. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression

    Directory of Open Access Journals (Sweden)

    Abdi Khosro

    2008-11-01

    Full Text Available Abstract Background Experimental studies indicate that gamma linolenic acid (GLA and docosahexaenoic acid (DHA may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA, DHA oil (DHAO; 73% DHA were fed to adult wistar rats (1 mL/rat/day starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid. Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7, epidermal growth factor receptor (EGFR, peroxisome proliferator activated receptor γ (PPAR-γ and retinoid × receptor-α (RXR-α were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.

  6. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor.

    Science.gov (United States)

    Hu, Zhimei; Qi, Haixia; Zhang, Ruixue; Zhang, Kun; Shi, Zhemin; Chang, Yanan; Chen, Linfeng; Esmaeili, Mohsen; Baniahmad, Aria; Hong, Wei

    2015-09-01

    Epidemiological and preclinical data have demonstrated the preventative effects of ω-3 polyunsaturated fatty acids, including docosahexaenoic acid (DHA), on prostate cancer. However, there are inconsistencies in these previous studies and the underlying mechanisms remain to be elucidated. In the present study, the androgen receptor (AR), which is a transcription factor involved in cell proliferation and prostate carcinogenesis, was identified as a target of DHA. It was revealed that DHA inhibited hormone‑dependent growth of LNCaP prostate cancer cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that treatment with DHA caused no alteration in the transcribed mRNA expression levels of the AR gene. However, immunoblotting revealed that this treatment reduces the protein expression level of the AR. The androgen‑induced genes were subsequently repressed by treatment with DHA. It was demonstrated that DHA exhibits no effect on the translation process of the AR, however, it promotes the proteasome‑mediated degradation of the AR. Therefore, the present study provided a novel mechanism by which DHA exhibits an inhibitory effect on growth of prostate cancer cells.

  7. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4).

    Science.gov (United States)

    Li, Xinzhi; Yu, Ying; Funk, Colin D

    2013-12-01

    Cyclooxygenase-2 (COX-2)-derived prostaglandins are implicated in numerous inflammatory disorders. The purpose of these studies was to examine previously unexplored interactions between COX-2 induction and docosahexaenoic acid (DHA) via the free fatty acid receptor 4 (FFA4) signaling pathway in murine RAW 264.7 cells and peritoneal macrophages challenged with lipopolysaccharide (LPS). DHA dose (IC50=18 μM)- and time-dependently reduced COX-2 expression, without affecting COX-1. DHA (25 μM for 24 h) decreased LPS-induced prostaglandin E2 (PGE2) synthesis by 81%, primarily through reducing COX-2 (60%), as well as down-regulating microsomal prostaglandin E synthase-1 (46%), but independently of peroxisome proliferator-activated receptors. FFA4 knockdown abrogated DHA effects on COX-2 induction, PGE2 production, and interleukin 6 (IL-6) gene expression. In the presence of inhibitors of eicosanoid metabolism via COX-2, 12/15-lipoxygenase and CYP450s (rofecoxib (1 μM), PD146176 (2 μM), or MS-PPOH (20 μM)), DHA was still effective in attenuating COX-2 induction. Moreover, Toll-like receptor 4 signaling via Akt/JNK phosphorylation and p65 nuclear translocation was repressed by DHA-activated FFA4 coupling with β-arrestin 2, which was reversed by FFA4 knockdown. These data support DHA modulation of COX-2 expression and activity, in part, via FFA4, which provides a new mechanistic explanation for some of the anti-inflammatory effects of DHA.

  8. Effect of docosahexaenoic acid on hippocampal neurons in high-glucose condition: involvement of PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways.

    Science.gov (United States)

    Yang, R-H; Lin, J; Hou, X-H; Cao, R; Yu, F; Liu, H-Q; Ji, A-L; Xu, X-N; Zhang, L; Wang, F

    2014-08-22

    Accumulating evidence suggested that hyperglycemia played a critical role in hippocampus dysfunction in patients with diabetes mellitus. However, the multifactorial pathogenesis of hyperglycemia-induced impairments of hippocampal neurons has not been fully elucidated. Docosahexaenoic acid (DHA) has been shown to enhance learning and memory and affect neural function in various experimental conditions. The present study investigated the effects of DHA on the lipid peroxidation, the level of inflammatory cytokines and neuron apoptosis in the hippocampal neurons in high-glucose condition. High-glucose administration increased the level of tumor necrosis factor α (TNF-α) and IL-6, induced oxidative stress and apoptosis of hippocampal neurons in vitro. DHA treatment reduced oxidative stress and TNF-α expression, protected the hippocampal neurons by increasing AKT phosphorylation and decreasing caspase-3 and caspase-9 expression. These results suggested that high-glucose exposure induced injury of hippocampal neurons in vitro, and the principle mechanisms involved in the neuroprotective effect of DHA were its antioxidant and anti-apoptotic potential. DHA may thus be of use in preventing or treating neuron-degeneration resulting from hyperglycemia. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial.

    Science.gov (United States)

    Milte, Catherine M; Parletta, Natalie; Buckley, Jonathan D; Coates, Alison M; Young, Ross M; Howe, Peter R C

    2012-06-01

    To determine the effects of an eicosapentaenoic acid (EPA)-rich oil and a docosahexaenoic acid (DHA)-rich oil versus an ω-6 polyunsaturated fatty acid-rich safflower oil (control) on literacy and behavior in children with attention-deficit/hyperactivity disorder (ADHD) in a randomized controlled trial. Supplements rich in EPA, DHA, or safflower oil were randomly allocated for 4 mo to 90 Australian children 7 to 12 y old with ADHD symptoms higher than the 90th percentile on the Conners Rating Scales. The effect of supplementation on cognition, literacy, and parent-rated behavior was assessed by linear mixed modeling. Pearson correlations determined associations between the changes in outcome measurements and the erythrocyte fatty acid content (percentage of total) from baseline to 4 mo. There were no significant differences between the supplement groups in the primary outcomes after 4 mo. However, the erythrocyte fatty acid profiles indicated that an increased proportion of DHA was associated with improved word reading (r = 0.394) and lower parent ratings of oppositional behavior (r = 0.392). These effects were more evident in a subgroup of 17 children with learning difficulties: an increased erythrocyte DHA was associated with improved word reading (r = 0.683), improved spelling (r = 0.556), an improved ability to divide attention (r = 0.676), and lower parent ratings of oppositional behavior (r = 0.777), hyperactivity (r = 0.702), restlessness (r = 0.705), and overall ADHD symptoms (r = 0.665). Increases in erythrocyte ω-3 polyunsaturated fatty acids, specifically DHA, may improve literacy and behavior in children with ADHD. The greatest benefit may be observed in children who have comorbid learning difficulties. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women.

    Science.gov (United States)

    Corder, Katherine E; Newsham, Katherine R; McDaniel, Jennifer L; Ezekiel, Uthayashanker R; Weiss, Edward P

    2016-03-01

    The omega-3 fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-nociceptive (pain inhibiting) effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS) that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m(-2)) were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS), swelling (arm circumference), muscle stiffness (active and passive elbow extension), skin temperature, and salivary C-reactive protein (CRP) concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02). Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006), indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78) or arm swelling (p = 0.75). Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby might

  11. Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action

    International Nuclear Information System (INIS)

    Tsujita-Kyutoku, Miki; Ogawa, Yutaka; Tsubura, Airo; Yuri, Takashi; Danbara, Naoyuki; Senzaki, Hideto; Kiyozuka, Yasuhiko; Uehara, Norihisa; Takada, Hideho; Hada, Takahiko; Miyazawa, Teruo

    2004-01-01

    The present study was conducted to examine the effect of conjugated docosahexaenoic acid (CDHA) on cell growth, cell cycle progression, mode of cell death, and expression of cell cycle regulatory and/or apoptosis-related proteins in KPL-1 human breast cancer cell line. This effect of CDHA was compared with that of docosahexaenoic acid (DHA). KPL-1 cell growth was assessed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; cell cycle progression and mode of cell death were examined by flow cytometry; and levels of expression of p53, p21 Cip1/Waf1 , cyclin D 1 , Bax, and Bcl-2 proteins were examined by Western blotting analysis. In vivo tumor growth was examined by injecting KPL-1 cells subcutaneously into the area of the right thoracic mammary fat pad of female athymic mice fed a CDHA diet. CDHA inhibited KPL-1 cells more effectively than did DHA (50% inhibitory concentration for 72 hours: 97 μmol/l and 270 μmol/l, respectively). With both CDHA and DHA growth inhibition was due to apoptosis, as indicated by the appearance of a sub-G 1 fraction. The apoptosis cascade involved downregulation of Bcl-2 protein; Bax expression was unchanged. Cell cycle progression was due to G 0 /G 1 arrest, which involved increased expression of p53 and p21 Cip1/Waf1 , and decreased expression of cyclin D 1 . CDHA modulated cell cycle regulatory proteins and apoptosis-related proteins in a manner similar to that of parent DHA. In the athymic mouse system 1.0% dietary CDHA, but not 0.2%, significantly suppressed growth of KPL-1 tumor cells; CDHA tended to decrease regional lymph node metastasis in a dose dependent manner. CDHA inhibited growth of KPL-1 human breast cancer cells in vitro more effectively than did DHA. The mechanisms of action involved modulation of apoptosis cascade and cell cycle progression. Dietary CDHA at 1.0% suppressed KPL-1 cell growth in the athymic mouse system

  12. Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly

    Directory of Open Access Journals (Sweden)

    Brenna J Thomas

    2011-01-01

    Full Text Available Abstract Background Higher fish or higher docosahexaenoic acid (DHA intake normally correlates positively with higher plasma DHA level, but recent evidence suggests that the positive relationship between intake and plasma levels of DHA is less clear in the elderly. Methods We compared the metabolism of 13C-DHA in six healthy elderly (mean - 77 y old and six young adults (mean - 27 y old. All participants were given a single oral dose of 50 mg of uniformly labelled 13C-DHA. Tracer incorporation into fatty acids of plasma triglycerides, free fatty acids, cholesteryl esters and phospholipids, as well as apparent retroconversion and β-oxidation of 13C-DHA were evaluated 4 h, 24 h, 7d and 28d later. Results Plasma incorporation and β-oxidation of 13C-DHA reached a maximum within 4 h in both groups, but 13C-DHA was transiently higher in all plasma lipids of the elderly 4 h to 28d later. At 4 h post-dose, 13C-DHA β-oxidation was 1.9 times higher in the elderly, but over 7d, cumulative β-oxidation of 13C-DHA was not different in the two groups (35% in the elderly and 38% in the young. Apparent retroconversion of 13C-DHA was well below 10% of 13C-DHA recovered in plasma at all time points, and was 2.1 times higher in the elderly 24 h and 7d after tracer intake. Conclusions We conclude that 13C-DHA metabolism changes significantly during healthy aging. Since DHA is a potentially important molecule in neuro-protection, these changes may be relevant to the higher vulnerability of the elderly to cognitive decline.

  13. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.

    Science.gov (United States)

    Sherratt, Samuel C R; Mason, R Preston

    2018-01-31

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Arachidonic acid-and docosahexaenoic acid-enriched formulas modulate antigen-specific T cell responses to influenza virus in neonatal piglets.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Noble, Alexis M; Reynolds, Kathryn A; King, Jennifer; Wood, Cynthia M; Ashby, Michael; Rai, Deshanie; Hontecillas, Raquel

    2007-03-01

    Whereas the immunomodulatory effects of feeding either arachidonic acid (AA) or docosahexaenoic acid (DHA) separately have been previously investigated, little is known about the immunomodulatory efficacy of AA or DHA when they are fed in combination as infant formula ingredients. The objective of this study was to investigate the ability of AA- and DHA(AA/DHA)-enriched infant formula to modulate immune responses in the neonate in response to an inactivated influenza virus vaccine. Neonatal piglets (n = 48) were weaned on day 2 of age and distributed into 16 blocks of 3 littermate piglets each. Within each block, piglets were randomly assigned to a control formula, AA/DHA-enriched formula (0.63% AA and 0.34% DHA), or sow milk for 30 d. On day 9, 8 blocks of piglets were immunized with an inactivated influenza virus vaccine. On days 0, 9, 16, 23, and 30 after weaning, we measured influenza virus-specific T cell proliferation and phenotype of T subsets in peripheral blood. A delayed-type hypersensitivity reaction test was administered on day 28. Cytokine messenger RNA expression was determined by quantitative real time reverse transcriptase-polymerase chain reaction on day 30. The influenza virus-specific CD4(+) and CD8(+) T cell ex vivo lymphoproliferative responses were significantly lower on day 23 after immunization in piglets receiving dietary AA/DHA supplementation and sow milk than in those receiving the unsupplemented control formula. The immunomodulatory effects of AA/DHA-enriched formulas were consistent with up-regulation of interleukin 10 in peripheral blood mononuclear cells. Overall, it appears that the AA/DHA-enriched formula modulated antigen-specific T cell responses in part through an interleukin 10-dependent mechanism.

  15. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    Science.gov (United States)

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  17. Developmental Outcomes at 24 Months of Age in Toddlers Supplemented with Arachidonic Acid and Docosahexaenoic Acid: Results of a Double Blind Randomized, Controlled Trial

    Science.gov (United States)

    Devlin, Angela M.; Chau, Cecil M. Y.; Matheson, Julie; McCarthy, Deanna; Yurko-Mauro, Karin; Innis, Sheila M.; Grunau, Ruth E.

    2017-01-01

    Little is known about arachidonic acid (ARA) and docosahexaenoic acid (DHA) requirements in toddlers. A longitudinal, double blind, controlled trial in toddlers (n = 133) age 13.4 ± 0.9 months (mean ± standard deviation), randomized to receive a DHA (200 mg/day) and ARA (200 mg/day) supplement (supplement) or a corn oil supplement (control) until age 24 months determined effects on neurodevelopment. We found no effect of the supplement on the Bayley Scales of Infant and Toddler Development 3rd Edition (Bayley-III) cognitive and language composites and Beery–Buktenica Developmental Test of Visual–Motor Integration (Beery VMI) at age 24 months. Supplemented toddlers had higher RBC phosphatidylcholine (PC), phosphatidylethanolamine (PE), and plasma DHA and ARA compared to placebo toddlers at age 24 months. A positive relationship between RBC PE ARA and Bayley III Cognitive composite (4.55 (0.21–9.00), B (95% CI), p = 0.045) in supplemented boys, but not in control boys, was observed in models adjusted for baseline fatty acid, maternal non-verbal intelligence, and BMI z-score at age 24 months. A similar positive relationship between RBC PE ARA and Bayley III Language composite was observed for supplemented boys (11.52 (5.10–17.94), p < 0.001) and girls (11.19 (4.69–17.68), p = 0.001). These findings suggest that increasing the ARA status in toddlers is associated with better neurodevelopment at age 24 months. PMID:28878181

  18. Developmental Outcomes at 24 Months of Age in Toddlers Supplemented with Arachidonic Acid and Docosahexaenoic Acid: Results of a Double Blind Randomized, Controlled Trial

    Directory of Open Access Journals (Sweden)

    Angela M. Devlin

    2017-09-01

    Full Text Available Little is known about arachidonic acid (ARA and docosahexaenoic acid (DHA requirements in toddlers. A longitudinal, double blind, controlled trial in toddlers (n = 133 age 13.4 ± 0.9 months (mean ± standard deviation, randomized to receive a DHA (200 mg/day and ARA (200 mg/day supplement (supplement or a corn oil supplement (control until age 24 months determined effects on neurodevelopment. We found no effect of the supplement on the Bayley Scales of Infant and Toddler Development 3rd Edition (Bayley-III cognitive and language composites and Beery–Buktenica Developmental Test of Visual–Motor Integration (Beery VMI at age 24 months. Supplemented toddlers had higher RBC phosphatidylcholine (PC, phosphatidylethanolamine (PE, and plasma DHA and ARA compared to placebo toddlers at age 24 months. A positive relationship between RBC PE ARA and Bayley III Cognitive composite (4.55 (0.21–9.00, B (95% CI, p = 0.045 in supplemented boys, but not in control boys, was observed in models adjusted for baseline fatty acid, maternal non-verbal intelligence, and BMI z-score at age 24 months. A similar positive relationship between RBC PE ARA and Bayley III Language composite was observed for supplemented boys (11.52 (5.10–17.94, p < 0.001 and girls (11.19 (4.69–17.68, p = 0.001. These findings suggest that increasing the ARA status in toddlers is associated with better neurodevelopment at age 24 months.

  19. Interaction of fructose with other medium components to affect bioproduction of docosahexaenoic acid (DHA) by Aurantiochytrium sp. SW1

    Science.gov (United States)

    Manikan, Vidyah; Kalil, Mohd. Sahaid; Shuib, Shuwahida; Hamid, Aidil Abdul

    2018-04-01

    Thraustochytrids are a group of marine fungus-like microheterotrophs of which some can accumulate considerable amounts of the high valued omega-3 oil, docosahexaenoic acid (DHA). In this study, a local thraustochytrid isolate, Aurantiochytrium sp. SW1, was cultivated in a medium containing fructose as the major carbon source. The effects of this carbon source in interaction with yeast extract, monosodium glutamate (MSG) and sea salt were studied using a software-based two level full factorial design. Results showed that fructose as a single factor, has significant positive effect on the volumetric DHA content of SW1. Similarly, its interaction with yeast extract has profound positive effect. However, interactions of fructose with MSG and sea salt were significant negative effects. These results indicate that manipulation of the concentration of fructose in the culture medium may serve as a simple and useful strategy to help achieve preferred amount of DHA.

  20. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  1. Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats.

    Science.gov (United States)

    Mitome, Kazuki; Takehana, Shiori; Oshima, Katsuo; Shimazu, Yoshihito; Takeda, Mamoru

    2018-02-23

    Although docosahexaenoic acid (DHA) administration suppresses sodium channels in primary afferent sensory neurons, the acute local effect of DHA on the trigeminal nociceptive reflex remains to be elucidated, in vivo. Therefore, the aim of the present study was to investigate whether local administration of DHA attenuates the nociceptive jaw-opening reflex (JOR) in vivo in the rat. The JOR evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1-5 x threshold). At 3 x threshold, local administration of DHA (0.1, 10 and 25 mM) dose-dependently inhibited the dEMG response, and lasted 40 min. Maximum inhibition of the dEMG signal amplitude was seen within approximately 10 min. The mean magnitude of inhibition of the dEMG signal amplitude by DHA (25 mM) was almost equal to the local anesthetic, 1% lidocaine (37 mM), a sodium channel blocker. These findings suggest that DHA attenuates the nociceptive JOR via possibly blocking sodium channels, and strongly support the idea that DHA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  2. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Science.gov (United States)

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (pbreve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (pbreve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (pbreve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (pbreve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (pbreve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  3. Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion.

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Chen, Chuck T; Metherel, Adam H; Lacombe, R J Scott; Thies, Frank; Masoodi, Mojgan; Bazinet, Richard P

    2017-10-01

    Recent studies suggest that at least two pools of plasma docosahexaenoic acid (DHA) can supply the brain: non-esterified DHA (NE-DHA) and lysophosphatidylcholine (lysoPtdCho)-DHA. In contrast to NE-DHA, brain uptake of lysoPtdCho-DHA appears to be mediated by a specific transporter, but whether both forms of DHA supply undergo the same metabolic fate, particularly with regards to enrichment of specific phospholipid (PL) subclasses, remains to be determined. This study aimed to evaluate brain uptake of NE-DHA and lysoPtdCho-DHA into brain PL classes. Fifteen-week-old rats were infused intravenously with radiolabelled NE- 14 C-DHA or lysoPtdCho- 14 C-DHA (n=4/group) over five mins to achieve a steady-state plasma level. PLs were extracted from the brain and separated by thin layer chromatography and radioactivity was quantified by liquid scintillation counting. The net rate of entry of lysoPtdCho-DHA into the brain was between 59% and 86% lower than the net rate of entry of NE-DHA, depending on the PL class. The proportion of total PL radioactivity in the lysoPtdCho- 14 C-DHA group compared to the NE- 14 C-DHA group was significantly higher in choline glycerophospholipids (ChoGpl) (48% vs 28%, respectively) but lower in ethanolamine glycerophospholipids (EtnGpl) (32% vs 46%, respectively). In both groups, radioactivity was disproportionally high in phosphatidylinositol and ChoGpl but low in phosphatidylserine and EtnGpl compared to the corresponding DHA pool size. This suggests that DHA undergoes extensive PL remodeling after entry into the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  5. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    International Nuclear Information System (INIS)

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg 2+ ) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg 2+ intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3

  6. Docosahexaenoic Acid Helps to Lessen Extinction Memory in Rats

    Directory of Open Access Journals (Sweden)

    Michio Hashimoto

    2018-02-01

    Full Text Available Abstract: Memory extinction is referred to as a learning process in which a conditioned response (CR progressively reduces over time as an animal learns to uncouple a response from a stimulus. Extinction occurs when the rat is placed into a context without shock after training. Docosahexaenoic acid (DHA, C22:6, n-3 is implicated in memory formation in mammalian brains. In a two-way active shuttle-avoidance apparatus, we examined whether DHA affects the extinction memory and the expression of brain cognition-related proteins, including gastrin-releasing peptide receptor (GRPR, brain-derived neurotrophic factor receptor (BDNFR tyrosine kinase receptor B (TrKB, and N-methyl-d-aspartate receptor (NMDAR subunits NR2A and NR2B. Also, the protein levels of GRP, BDNF, postsynaptic density protein-95 (PSD-95, and vesicular acetylcholine transporter (VAChT, and the antioxidative potentials, in terms of lipid peroxide (LPO and reactive oxygen species (ROS, were examined in the hippocampus. During the acquisition phase, the rats received a conditioned stimulus (CS-tone paired with an unconditioned stimulus (UCS foot shock for three consecutive days (Sessions S1, S2, and S3, each consisting of 30-trials after 12 weeks of oral administration of DHA. After a three-day interval, the rats were re-subjected to two extinction sessions (S4, S5, each comprising 30 trials of CS alone. During the acquisition training in S1, the shock-related avoidance frequency (acquisition memory was significantly higher in the DHA-administered rats compared with the control rats. The avoidance frequency, however, decreased with successive acquisition trainings in sessions S2 and S3. When the rats were subjected to the extinction sessions after a break for consolidation, the conditioned response (CR was also significantly higher in the DHA-administered rats. Interestingly, the freezing responses (frequency and time also significantly decreased in the DHA-administered rats, thus

  7. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  8. Prenatal Docosahexaenoic Acid Supplementation and Offspring Development at 18 Months: Randomized Controlled Trial

    Science.gov (United States)

    Ramakrishnan, Usha; Stinger, Amanda; DiGirolamo, Ann M.; Martorell, Reynaldo; Neufeld, Lynnette M.; Rivera, Juan A.; Schnaas, Lourdes; Stein, Aryeh D.; Wang, Meng

    2015-01-01

    Objective We evaluated the effects of prenatal docosahexaenoic acid (DHA) supplementation on offspring development at 18 months of age. Design Randomized placebo double-blind controlled trial. Settings Cuernavaca, Mexico. Participants and Methods We followed up offspring (n = 730; 75% of the birth cohort) of women in Mexico who participated in a trial of DHA supplementation during the latter half of pregnancy. We assessed the effect of the intervention on child development and the potential modifying effects of gravidity, gender, SES, and quality of the home environment. Interventions or Main Exposures 400 mg/day of algal DHA. Outcome Measures Child development at 18 months of age measured using the Spanish version of the Bayley Scales of Infant Development-II. We calculated standardized psychomotor and mental development indices, and behavior rating scale scores. Results Intent-to-treat differences (DHA-control) were: Psychomotor Developmental Index -0.90 (95% CI: -2.35, 0.56), Mental Developmental Index -0.26 (95% CI: -1.63, 1.10) and Behavior Rating Scale -0.01 (95% CI: -0.95, 0.94). Prenatal DHA intake attenuated the positive association between home environment and psychomotor development index observed in the control group (p for interaction = 0.03) suggesting potential benefits for children living in home environments characterized by reduced caregiver interactions and opportunities for early childhood stimulation. Conclusions Prenatal DHA supplementation in a population with low intakes of DHA had no effects on offspring development at 18 months of age although there may be some benefit for infants from poor quality home environments. Trial Registration Clinicaltrials.gov NCT00646360 PMID:26262896

  9. Maternal liver docosahexaenoic acid (DHA) stores are increased via higher serum unesterified DHA uptake in pregnant long Evans rats.

    Science.gov (United States)

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-08-01

    Maternal docosahexaenoic acid (DHA, 22:6n-3) supplies the developing fetus during pregnancy; however, the mechanisms are unclear. We utilized pregnant rats to determine rates of DHA accretion, tissue unesterified DHA uptake and whole-body DHA synthesis-secretion. Female rats maintained on a DHA-free, 2% α-linolenic acid diet were either:1) sacrificed at 56 days for baseline measures, 2) mated and sacrificed at 14-18 days of pregnancy or 3) or sacrificed at 14-18 days as age-matched virgin controls. Maternal brain, adipose, liver and whole body fatty acid concentrations was determined for balance analysis, and kinetic modeling was used to determine brain and liver plasma unesterified DHA uptake and whole-body DHA synthesis-secretion rates. Total liver DHA was significantly higher in pregnant (95±5 μmol) versus non-pregnant (49±5) rats with no differences in whole-body DHA synthesis-secretion rates. However, liver uptake of plasma unesterified DHA was 3.8-fold higher in pregnant animals compared to non-pregnant controls, and periuterine adipose DHA was lower in pregnant (0.89±0.09 μmol/g) versus non-pregnant (1.26±0.06) rats. In conclusion, higher liver DHA accretion during pregnancy appears to be driven by higher unesterified DHA uptake, potentially via DHA mobilization from periuterine adipose for delivery to the fetus during the brain growth spurt. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Omega-3 Fatty Acid Docosahexaenoic Acid Modulates Inflammatory Mediator Release in Human Alveolar Cells Exposed to Bronchoalveolar Lavage Fluid of ARDS Patients

    Directory of Open Access Journals (Sweden)

    Paolo Cotogni

    2015-01-01

    Full Text Available Background. This study investigated whether the 1 : 2 ω-3/ω-6 ratio may reduce proinflammatory response in human alveolar cells (A549 exposed to an ex vivo inflammatory stimulus (bronchoalveolar lavage fluid (BALF of acute respiratory distress syndrome (ARDS patients. Methods. We exposed A549 cells to the BALF collected from 12 ARDS patients. After 18 hours, fatty acids (FA were added as docosahexaenoic acid (DHA, ω-3 and arachidonic acid (AA, ω-6 in two ratios (1 : 2 or 1 : 7. 24 hours later, in culture supernatants were evaluated cytokines (TNF-α, IL-6, IL-8, and IL-10 and prostaglandins (PGE2 and PGE3 release. The FA percentage content in A549 membrane phospholipids, content of COX-2, level of PPARγ, and NF-κB binding activity were determined. Results. The 1 : 2 DHA/AA ratio reversed the baseline predominance of ω-6 over ω-3 in the cell membranes (P < 0.001. The proinflammatory cytokine release was reduced by the 1 : 2 ratio (P < 0.01 to <0.001 but was increased by the 1 : 7 ratio (P < 0.01. The 1 : 2 ratio reduced COX-2 and PGE2 (P < 0.001 as well as NF-κB translocation into the nucleus (P < 0.01, while it increased activation of PPARγ and IL-10 release (P < 0.001. Conclusion. This study demonstrated that shifting the FA supply from ω-6 to ω-3 decreased proinflammatory mediator release in human alveolar cells exposed to BALF of ARDS patients.

  11. Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Pilar Mancera

    2017-06-01

    Full Text Available Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS and Interferon-gamma (IFN-γ. TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE, 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.

  12. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study.

    Science.gov (United States)

    Freund Levi, Y; Vedin, I; Cederholm, T; Basun, H; Faxén Irving, G; Eriksdotter, M; Hjorth, E; Schultzberg, M; Vessby, B; Wahlund, L-O; Salem, N; Palmblad, J

    2014-04-01

    Little is known about the transfer of essential fatty acids (FAs) across the human blood-brain barrier (BBB) in adulthood. In this study, we investigated whether oral supplementation with omega-3 (n-3) FAs would change the FA profile of the cerebrospinal fluid (CSF). A total of 33 patients (18 receiving the n-3 FA supplement and 15 receiving placebo) were included in the study. These patients were participants in the double-blind, placebo-controlled randomized OmegAD study in which 204 patients with mild Alzheimer's disease (AD) received 2.3 g n-3 FA [high in docosahexaenoic acid (DHA)] or placebo daily for 6 months. CSF FA levels were related to changes in plasma FA and to CSF biomarkers of AD and inflammation. At 6 months, the n-3 FA supplement group displayed significant increases in CSF (and plasma) eicosapentaenoic acid (EPA), DHA and total n-3 FA levels (P acid were strongly correlated, in contrast to those of DHA. Changes in DHA levels in CSF were inversely correlated with CSF levels of total and phosphorylated tau, and directly correlated with soluble interleukin-1 receptor type II. Thus, the more DHA increased in CSF, the greater the change in CSF AD/inflammatory biomarkers. Oral supplementation with n-3 FAs conferred changes in the n-3 FA profile in CSF, suggesting transfer of these FAs across the BBB in adults. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  13. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.

    Science.gov (United States)

    Guihéneuf, Freddy; Ulmann, Lionel; Mimouni, Virginie; Tremblin, Gérard

    2013-06-01

    The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation

  14. Supra-Additive Interaction of Docosahexaenoic Acid and Naproxen and Gastric Safety on the Formalin Test in Rats.

    Science.gov (United States)

    Arroyo-Lira, Arlette Guadalupe; Rodríguez-Ramos, Fernando; Ortiz, Mario I; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2017-11-01

    Preclinical Research The aim of this work was to evaluate the effect of docosahexaenoic acid (DHA) on the pharmacokinetics and pharmacodynamics-nociception-of naproxen in rats, as well as to determine the gastric safety resulting from this combination versus naproxen alone. Female Wistar rats were orally administered DHA, naproxen or the DHA-naproxen mixture at fixed-ratio combination of 1:3. The antinociceptive effect was evaluated using the formalin test. The gastric injury was determined 3 h after naproxen administration. An isobolographic analysis was performed to characterize the antinociceptive interaction between DHA and naproxen. To determine the possibility of pharmacokinetic interactions, the oral bioavailability of naproxen was evaluated in presence and absence of oral DHA. The experimental effective dose ED 30 values (Zexp) were decreased from theoretical additive dose values (Zadd; P supra-additive interaction. The oral administration of DHA increased the pharmacokinetic parameter AUC 0- t of naproxen (P supra-additive antinociceptive effect in the formalin test so that this combination could be useful to management of inflammatory pain. Drug Dev Res 78 : 332-339, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Incorporation of eicosapentaenioic and docosahexaenoic acids into breast adipose tissue of women at high risk of breast cancer: a randomized clinical trial of dietary fish and n-3 fatty acid capsules.

    Science.gov (United States)

    Straka, Shana; Lester, Joanne L; Cole, Rachel M; Andridge, Rebecca R; Puchala, Sarah; Rose, Angela M; Clinton, Steven K; Belury, Martha A; Yee, Lisa D

    2015-09-01

    The fatty acid profile of dietary lipids is reflected in mammary adipose tissue and may influence mammary gland biology and cancer risk. To determine the effects of fish consumption on breast adipose tissue fatty acids, we conducted a study of fish versus n-3 PUFA supplements in women at increased risk of breast cancer. High risk women were randomized to comparable doses of marine n-3 PUFAs as canned salmon + albacore or capsules for 3 months. Pre- and posttreatment fatty acid profiles were obtained by GC. Dietary fish (n = 12) and n-3 PUFA capsules (n = 13) yielded increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in plasma (p breast fat (p Women taking capsules had higher plasma and erythrocyte membrane EPA changes (∼four versus twofold, p = 0.002), without significant differences in DHA. Increases in breast adipose EPA, DHA were similar for both groups. Higher BMI correlated with smaller changes in plasma, erythrocyte membrane EPA, and breast adipose EPA, DHA. Adherence was excellent at 93.9% overall and higher in the fish arm (p = 0.01). Fish provides an excellent source of n-3 PUFAs that increases breast adipose EPA, DHA similar to supplements and represents a well-tolerated intervention for future studies of the impact of n-3 PUFAs and dietary patterns on breast cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    International Nuclear Information System (INIS)

    Wang, Chao; Luo, Fei; Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling; Xu, Yong; Zhu, Yan; Hong, Wei; Zhang, Ju

    2016-01-01

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  17. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nobili, Valerio; Carpino, Guido; Alisi, Anna; De Vito, Rita; Franchitto, Antonio; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA), the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR)120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool. 20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters. GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i) the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii) the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii) the reduction of the number of inflammatory macrophages; iv) the increase of GPR120 expression in hepatocytes; v) the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB) nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines. DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  18. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA, the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool.20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters.GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii the reduction of the number of inflammatory macrophages; iv the increase of GPR120 expression in hepatocytes; v the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines.DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  19. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Luo, Fei [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Xu, Yong [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhu, Yan [Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193 (China); Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070 (China); Zhang, Ju, E-mail: zhangju@nankai.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China)

    2016-07-15

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  20. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  1. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  2. Effects of Docosahexaenoic Acid Supplementation on Blood Pressure, Heart Rate, and Serum Lipids in Scottish Men with Hypertension and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Miki Sagara

    2011-01-01

    Full Text Available To investigate the effects of daily supplementation with docosahexaenoic acid (DHA on coronary heart disease risks in 38 middle-aged men with hypertension and/or hypercholesterolemia in Scotland, a five-week double-blind placebo-controlled dietary supplementation with either 2 g of DHA or active placebo (1 g of olive oil was conducted. Percent composition of DHA in plasma phospholipids increased significantly in DHA group. Systolic and diastolic blood pressure and heart rate decreased significantly in DHA group, but not in placebo group. High-density lipoprotein cholesterol (HDL-C increased significantly, and total cholesterol (TC/HDL-C and non-HDL-C/HDL-C ratios decreased significantly in both groups. There was no change in TC and non-HDL-C. We conclude that 2 g/day of DHA supplementation reduced coronary heart disease risk factor level improving blood pressure, heart rate, and lipid profiles in hypertensive, hypercholesterolemic Scottish men who do not eat fish on a regular basis.

  3. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  4. Minimal food effect for eicosapentaenoic acid and docosahexaenoic acid bioavailability from omega-3-acid ethyl esters with an Advanced Lipid TechnologiesTM (ALT®)-based formulation.

    Science.gov (United States)

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed A; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    The absorption of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) omega-3-acid ethyl esters (EEs) is influenced by food. There is a need for a formulation of EE that is less impacted by food effect. SC401 is a novel Advanced Lipid Technologies-based formulation of EPA-EE and DHA-EE. In the presence of an aqueous medium, Advanced Lipid Technologies forms stable micelles in situ independent of bile salt secretion. This effect is hypothesized to improve EPA-EE and DHA-EE bioavailability while it helps mitigate the food effect associated with their consumption. The aim of the article was to assess the effect of food on the bioavailability of DHA and EPA after a single oral dose of 1530 mg omega-3 fatty acids EE (SC401) in 24 healthy subjects under fasted and low-fat (9% of total calories from fat) and high-fat (50% of total calories from fat) meal conditions. This was a randomized, open-label, single-dose, 3-period, 3-way crossover study. Blood samples for pharmacokinetic analyses were taken at predose and at 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10, 12 and 24 hours postdose. To assess the safety of the intervention, active monitoring of adverse events, physical examinations, vital signs, clinical laboratory assessments (chemistry, hematology, and urinalysis), and 12-lead electrocardiograms were conducted. SC401 showed high bioavailability of both EPA and DHA in fasted, low-fat meal, and high-fat meal conditions. No differences were found in SC401 DHA AUC 0-t (t = 24 hours) among the 3 conditions (91.69% high-fat/fasted, 97.12% low-fat/fasted, and 105.92% low-fat/high-fat; P > .05 in all cases). In contrast, SC401 EPA AUC 0-t was affected by food intake (179.06% high-fat/fasted, P food effect for DHA and partially ameliorated it for EPA. SC401 represents a convenient option for treatment of severe hypertriglyceridemia, especially for patients under a restricted intake of dietary fat. Copyright © 2017 National Lipid

  5. Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid.

    Directory of Open Access Journals (Sweden)

    Marta Correia

    Full Text Available H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8 production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.

  6. Docosahexaenoic acid (DHA, an essential fatty acid for the proper functioning of neuronal cells: their role in mood disorders

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The brain and the nervous system are tissues with high contents of two polyunsaturated fatty acids: arachidonic acid (20:4, omega-6, AA and docosahexaenoic acid (22:6, omega-3, DHA. Despite their abundance in these tissues, AA and DHA cannot be re-synthesized in mammals. However, the concentration of these fatty acids can be modulated by dietary intake. AA and DHA must be provided by the diet as such (preformed or through the respective omega-6 and omega-3 precursors from vegetable origin. Linoleic acid, the precursor of AA is very abundant in the western diet and therefore the formation of AA from linoleic acid is not restrictive. On the other hand, alpha linolenic acid, the precursor of DHA is less available in our diet and preformed DHA is highly restrictive in some populations. During the last period of gestation and during the early post natal period, neurodevelopment occurs exceptionally quickly, and significant amounts of omega-6 and omega-3 polyunsaturated fatty acids, especially DHA, are critical to allow neurite outgrowth and the proper brain and retina development and function. In this review various functions of DHA in the nervous system, its metabolism into phospholipids, and its involvement in different neurological and mood disorders, such as Alzheimer’s disease, depression, and others are revised.

    El cerebro y el sistema nervioso son tejidos con un alto contenido de dos ácidos grasos poliinsaturados: el ácido araquidónico (20:4, omega-6, AA y el ácido docosahexaenoico (22:6, omega-3, DHA. A pesar de la abundancia de estos ácidos grasos en dichos tejidos los mamíferos no los pueden sintetizar de novo. Sin embargo, la concentración de estos ácidos grasos puede ser modificada por la dieta. El AA y el DHA pueden ser aportados por la dieta como tales (preformados o a partir de los respectivos precursores de origen vegetal. El ácido linoleico, precursor del AA es muy abundante en la dieta occidental, por lo cual la

  7. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile.

    Science.gov (United States)

    Moran, Colm A; Morlacchini, Mauro; Keegan, Jason D; Fusconi, Giorgio

    2018-05-01

    The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. A total of 144 Pig Improvement Company (PIC)×Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (±13.1) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

  8. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yoo Kyung Jeong

    2017-10-01

    Full Text Available Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (C22:6n-3, exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.

  9. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    Science.gov (United States)

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance.

  10. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    Science.gov (United States)

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    Science.gov (United States)

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  12. Retroconversion is a minor contributor to increases in eicosapentaenoic acid following docosahexaenoic acid feeding as determined by compound specific isotope analysis in rat liver.

    Science.gov (United States)

    Metherel, Adam H; Chouinard-Watkins, Raphaël; Trépanier, Marc-Olivier; Lacombe, R J Scott; Bazinet, Richard P

    2017-01-01

    Dietary docosahexaenoic acid (DHA, 22:6n-3) not only increases blood and tissue levels of DHA, but also eicosapentaenoic acid (EPA, 20:5n-3). It is generally believed that this increase is due to DHA retroconversion to EPA, however, a slower conversion of α-linolenic acid (ALA, 18:3n-3) derived EPA to downstream metabolic products (i.e. slower turnover of EPA) is equally plausible. In this study, 21-day old Long Evans rats were weaned onto an ALA only or DHA + ALA diet for 12 weeks. Afterwards, livers were collected and the natural abundance 13 C-enrichment was determined by compound specific isotope analysis (CSIA) of liver EPA by isotope ratio mass-spectrometry and compared to dietary ALA and DHA 13 C-enrichment. Isotopic signatures (per mil, ‰) for liver EPA were not different ( p  > 0.05) between the ALA only diet (-25.89 ± 0.39 ‰, mean ± SEM) and the DHA + ALA diet (-26.26 ± 0.40 ‰), suggesting the relative contribution from dietary ALA and DHA to liver EPA did not change. However, with DHA feeding estimates of absolute EPA contribution from ALA increased 4.4-fold (147 ± 22 to 788 ± 153 nmol/g) compared to 3.2-fold from DHA (91 ± 14 to 382 ± 13 nmol/g), respectively. In conclusion, CSIA of liver EPA in rats following 12-weeks of dietary DHA suggests that retroconversion of DHA to EPA is a relatively small contributor to increases in EPA, and that this increase in EPA is largely coming from elongation/desaturation of ALA.

  13. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310.

    Science.gov (United States)

    Ling, Xueping; Guo, Jing; Liu, Xiaoting; Zhang, Xia; Wang, Nan; Lu, Yinghua; Ng, I-Son

    2015-05-01

    A new isolated Schizochytrium sp. LU310 from the mangrove forest of Wenzhou, China, was found as a high producing microalga of docosahexaenoic acid (DHA). In this study, the significant improvements for DHA fermentation by the batch mode in the baffled flasks (i.e. higher oxygen supply) were achieved. By applied the nitrogen-feeding strategy in 1000 mL baffled flasks, the biomass, DHA concentration and DHA productivity were increased by 110.4%, 117.9% and 110.4%, respectively. Moreover, DHA concentration of 21.06 g/L was obtained by feeding 15 g/L of glucose intermittently, which was an increase of 41.25% over that of the batch mode. Finally, an innovative strategy was carried out by intermittent feeding carbon and simultaneously feeding nitrogen. The maximum DHA concentration and DHA productivity in the fed-batch cultivation reached to 24.74 g/L and 241.5 mg/L/h, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dietary arachidonic acid in perinatal nutrition

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar lev...

  15. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows.

    Science.gov (United States)

    Klop, G; Hatew, B; Bannink, A; Dijkstra, J

    2016-02-01

    An experiment was conducted to study potential interaction between the effects of feeding nitrate and docosahexaenoic acid (DHA; C22:6 n-3) on enteric CH4 production and performance of lactating dairy cows. Twenty-eight lactating Holstein dairy cows were grouped into 7 blocks of 4 cows. Within blocks, cows were randomly assigned to 1 of 4 treatments: control (CON; urea as alternative nonprotein N source to nitrate), NO3 [21 g of nitrate/kg of dry matter (DM)], DHA (3 g of DHA/kg of DM and urea as alternative nonprotein N source to nitrate), or NO3 + DHA (21 g of nitrate/kg of DM and 3 g of DHA/kg of DM, respectively). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Feed additives were included in the concentrates. Cows assigned to a treatment including nitrate were gradually adapted to the treatment dose of nitrate over a period of 21 d during which no DHA was fed. The experimental period lasted 17 d, and CH4 production was measured during the last 5d in climate respiration chambers. Cows produced on average 363, 263, 369, and 298 g of CH4/d on CON, NO3, DHA, and NO3 + DHA treatments, respectively, and a tendency for a nitrate × DHA interaction effect was found where the CH4-mitigating effect of nitrate decreased when combined with DHA. This tendency was not obtained for CH4 production relative to dry matter intake (DMI) or to fat- and protein corrected milk (FPCM). The NO3 treatment decreased CH4 production irrespective of the unit in which it was expressed, whereas DHA did not affect CH4 production per kilogram of DMI, but resulted in a higher CH4 production per kilogram of fat- and protein-corrected milk (FPCM) production. The FPCM production (27.9, 24.7, 24.2, and 23. 8 kg/d for CON, NO3, DHA, and NO3 + DHA, respectively) was lower for DHA-fed cows because of decreased milk fat concentration. The proportion of saturated fatty acids in milk fat was decreased by DHA, and the proportion of

  16. Effect of Dietary Docosahexaenoic Acid Supplementation on the Participation of Vasodilator Factors in Aorta from Orchidectomized Rats.

    Directory of Open Access Journals (Sweden)

    Diva M Villalpando

    Full Text Available Benefits of n-3 polyunsaturated fatty acids (PUFAs against cardiovascular diseases have been reported. Vascular tone regulation is largely mediated by endothelial factors whose release is modulated by sex hormones. Since the incidence of cardiovascular pathologies has been correlated with decreased levels of sex hormones, the aim of this study was to analyze whether a diet supplemented with the specific PUFA docosahexaenoic acid (DHA could prevent vascular changes induced by an impaired gonadal function. For this purpose, control and orchidectomized rats were fed with a standard diet supplemented with 5% (w/w sunflower oil or with 3% (w/w sunflower oil plus 2% (w/w DHA. The lipid profile, the blood pressure, the production of prostanoids and nitric oxide (NO, and the redox status of biological samples from control and orchidectomized rats, fed control or DHA-supplemented diet, were analyzed. The vasodilator response and the contribution of NO, prostanoids and hyperpolarizing mechanisms were also studied. The results showed that orchidectomy negatively affected the lipid profile, increased the production of prostanoids and reactive oxygen species (ROS, and decreased NO production and the antioxidant capacity, as well as the participation of hyperpolarizing mechanisms in the vasodilator responses. The DHA-supplemented diet of the orchidectomized rats decreased the release of prostanoids and ROS, while increasing NO production and the antioxidant capacity, and it also improved the lipid profile. Additionally, it restored the participation of hyperpolarizing mechanisms by activating potassium. Since the modifications induced by the DHA-supplemented diet were observed in the orchidectomized, but not in the healthy group, DHA seems to exert cardioprotective effects in physiopathological situations in which vascular dysfunction exists.

  17. The validation & verification of an LC/MS method for the determination of total docosahexaenoic acid concentrations in canine blood serum.

    Science.gov (United States)

    Dillon, Gerald Patrick; Keegan, Jason D; Wallace, Geoff; Yiannikouris, Alexandros; Moran, Colm Anthony

    2018-06-01

    Docosahexaenoic acid (DHA), is an omega 3 fatty acid (n-3 FA) that has been shown to play a role in canine growth and physiological integrity and improvements in skin and coat condition. However, potential adverse effects of n-3 FA specifically, impaired cellular immunity has been observed in dogs fed diets with elevated levels of n-3 FA. As such, a safe upper limit (SUL) for total n-3 FAs (DHA and EPA) in dogs has been established. Considering this SUL, sensitive methods detecting DHA in blood serum as a biomarker when conducting n-3 FA supplementation trials involving dogs are required. In this study, an LC-ESI-MS/MS method of DHA detection in dog serum was validated and verified. Recovery of DHA was optimized and parallelism tests were conducted with spiked samples demonstrating that the serum matrix did not interfere with quantitation. The stability of DHA in serum was also investigated, with -80 °C considered suitable when storing samples for up to six months. The method was linear over a calibration range of 1-500 μg/mL and precision and accuracy were found to meet the requirements for validation. This method was verified in an alternative laboratory using a different analytical system and operator, with the results meeting the criteria for verification. Copyright © 2018. Published by Elsevier Inc.

  18. AceDoPC, a structured phospholipid to target the brain with docosahexaenoic acid

    Directory of Open Access Journals (Sweden)

    Lagarde Michel

    2016-01-01

    Full Text Available AceDoPC® is a structured phospholipid or acetyl-LysoPC-DHA made to prevent docosahexaenoic acyl migrating from the sn-2 to sn-1 position of the phospholipid, however keeping the main physical-chemical properties of LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPC® allows DHA crossing a re-constituted blood-brain barrier with higher efficiency than non-esterified DHA or PC-DHA. When injected to blood of rats, AceDoPC® is processed within the brain to deliver DHA to phosphatidyl-choline and -ethanolamine. When injected to rats following the induction of an ischemic stroke, AceDoPC® prevents the extension of brain lesions more efficiently than DHA. Overall, these properties make AceDoPC® a promising phospholipid carrier of DHA to the brain.

  19. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women

    Directory of Open Access Journals (Sweden)

    Katherine E. Corder, Katherine R. Newsham, Jennifer L. McDaniel, Uthayashanker R. Ezekiel, Edward P. Weiss

    2016-03-01

    Full Text Available The omega-3 fatty acid docosahexaenoic acid (DHA has anti-inflammatory and anti-nociceptive (pain inhibiting effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m-2 were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS, swelling (arm circumference, muscle stiffness (active and passive elbow extension, skin temperature, and salivary C-reactive protein (CRP concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02. Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006, indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78 or arm swelling (p = 0.75. Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby

  20. Docosahexaenoic acid (DHA, essentiality and requirements: why and how to provide supplementation

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    2006-06-01

    Full Text Available Lipids comprize from 50-60% of the structural matter of the brain and docosahexaenoic acid (C22:6, DHA is the most  important omega-3 long-chain polyunsaturated fatty acid in the brain phospholipids comprizing 25% of the total fatty acids of the grey matter. The majority of the DHA present in the human brain is incorporated during the brain growth spurt which starts at week 26 of gestation and imposes a high demand for the fatty acid until about 2 years of age. DHA is required during brain development when neuronal and glial differentiation and migration, and active myelination and synaptogenesis take place. The fatty acid must be incorporated into the brain lipids as preformed DHA because less than 5% of its precursor (alpha linolenic acid, LNA is converted to DHA. The human foetus has a limited ability to synthesize DHA from LNA, and therefore it must be largely supplied from maternal sources. Maternal DHA available for foetal nutrition can be provided from three main sources: adipose tissue, which is the main reservoir for the fatty acid; through biosynthesis from the precursor LNA, which occurs mainly in the liver; and as preformed DHA from dietary sources. In the postnatal period DHA is provided by the mother to the newborn through milk secretion. Western nutrition provides low LNA and DHA and Expert Nutrition Committees suggest that mothers should receive DHA supplementation during pregnancy and lactation. At present DHA supplementation can be provided from different sources: as purified free DHA, as an ethyl ester derivative, extracted from single-cell algae oils, from egg yolk phospholipids, or in the form of sn-2 DHA monoacylglycerol. In this review we revise and discuss the evidence of DHA requirements for the newborn, the need for maternal supplementation during pregnancy and nursing, and the alternatives at present for providing DHA supplementation.Los lípidos comprenden entre el 50-60% de la estructura del cerebro, y el

  1. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  2. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice.

    Science.gov (United States)

    Davis, Daniel J; Hecht, Patrick M; Jasarevic, Eldin; Beversdorf, David Q; Will, Matthew J; Fritsche, Kevin; Gillespie, Catherine H

    2017-01-01

    Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and

  3. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    Science.gov (United States)

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review

    Directory of Open Access Journals (Sweden)

    Undurti N. Das

    2018-05-01

    Full Text Available Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs: linoleic, α-linolenic, γ-linolenic (GLA, dihomo-GLA (DGLA, arachidonic (AA, eicosapentaenoic (EPA, and docosahexaenoic acids (DHA function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1 and prostaglandin A (PGA, derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by

  5. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    Science.gov (United States)

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  6. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.

    Science.gov (United States)

    Scorletti, Eleonora; Bhatia, Lokpal; McCormick, Keith G; Clough, Geraldine F; Nash, Kathryn; Hodson, Leanne; Moyses, Helen E; Calder, Philip C; Byrne, Christopher D

    2014-10-01

    There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).

  7. Enhancement of colposcopic image by sulphosalicylic acid.

    Directory of Open Access Journals (Sweden)

    Khilnani P

    1993-01-01

    Full Text Available Acetic acid is used conventionally for enhancement of the colposcopic image. We used sulphosalicylic acid instead of acetic acid in 50 normal cases. The normal appearance was enhanced in all cases. The image was also enhanced in 70% cases of cervical intraepithelial neoplasia and 90% cases of cervical condyloma accuminata. The image was not inferior to that with acetic acid in any of the cases.

  8. Eicosapentaenoic and Docosahexaenoic Acids Attenuate Progression of Albuminuria in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease.

    Science.gov (United States)

    Elajami, Tarec K; Alfaddagh, Abdulhamied; Lakshminarayan, Dharshan; Soliman, Michael; Chandnani, Madhuri; Welty, Francine K

    2017-07-14

    Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease. Two-hundred sixty-two subjects with stable coronary artery disease were randomized to either Lovaza (1.86 g of EPA and 1.5 g of DHA daily) or no Lovaza (control) for 1 year. Percent change in urine albumin-to-creatinine ratio (ACR) was compared. Mean (SD) age was 63.3 (7.6) years; 17% were women and 30% had type 2 diabetes mellitus. In nondiabetic subjects, no change in urine ACR occurred in either the Lovaza or control groups. In contrast, ACR increased 72.3% ( P diabetic subjects not receiving Lovaza, whereas those receiving Lovaza had no change. In diabetic subjects on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker, those receiving Lovaza had no change in urine ACR, whereas those not receiving Lovaza had a 64.2% increase ( P type 2 diabetes mellitus and coronary artery disease, most of whom were on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker. Thus, EPA and DHA supplementation should be considered as additional therapy to an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker in subjects with type 2 diabetes mellitus and coronary artery disease. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01624727. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Deficits in Docosahexaenoic Acid Accrual during Adolescence Reduce Rat Forebrain White Matter Microstructural Integrity: An in vivo Diffusion Tensor Imaging Study.

    Science.gov (United States)

    McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M

    2018-01-01

    Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.

  10. Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2017-01-01

    Full Text Available The aim of the research was to enrich eggs with n-3 polyunsaturated fatty acids by using plant oils and fish oil as dietary supplements in laying hens’ feed. The focus was put on the effect of the daily consumption of 100 g of egg yolk, i.e. 100 g of egg mass, on the human health. The 1st group of laying hens was fed a diet containing soybean and fish oil, and the 2nd group was given feed containing a combination of linseed, rapeseed, soybean, and fish oils. Eggs laid by the 2nd group contained 4.73% α-linolenic acid, 0.20% eicosapentaenoic acid and 2.37% docosahexaenoic acid (% of total fatty acids in yolk lipids, P < 0.001, which marks an increase of × 4.04 for α-linolenic acid, × 3.33 for eicosapentaenoic acid, and × 1.75 for docosahexaenoic acid compared to eggs laid by the 1st group. Total n-3 polyunsaturated fatty acids in eggs of the 2nd group were × 2.8 higher than in the 1st first group. Calculated per 100 g of eggs of the 2nd group, the intake for the human body corresponds to 435 mg α-linolenic acid, 18.43 mg eicosapentaenoic acid, and 218.2 mg docosahexaenoic acid.

  11. Eicosapentaenoic Acid and Docosahexaenoic Acid in Whole Blood Are Differentially and Sex-Specifically Associated with Cardiometabolic Risk Markers in 8–11-Year-Old Danish Children

    Science.gov (United States)

    Damsgaard, Camilla T.; Eidner, Maj B.; Stark, Ken D.; Hjorth, Mads F.; Sjödin, Anders; Andersen, Malene R.; Andersen, Rikke; Tetens, Inge; Astrup, Arne; Michaelsen, Kim F.; Lauritzen, Lotte

    2014-01-01

    n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between eicosapentaenoic acid (EPA, 20∶5n-3) and docosahexaenoic acid (DHA, 22∶6n-3), but we lack evidence in children. Using baseline data from the OPUS School Meal Study we 1) investigated associations between EPA and DHA in whole blood and early cardiometabolic risk markers in 713 children aged 8–11 years and 2) explored potential mediation through waist circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal stage, 7-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by the homeostatic model of assessment (HOMA-IR), and inflammatory markers. Whole blood EPA was associated with a 2.7 mmHg (95% CI 0.4; 5.1) higher diastolic blood pressure per weight% EPA, but only in boys. Heart rate was negatively associated with both EPA and DHA status (P = 0.02 and P = 0.002, respectively). Whole blood EPA was negatively associated with triacylglycerol (P = 0.003) and positively with total cholesterol, low density and high density lipoprotein (HDL) cholesterol and HDL:triacylglycerol (all P<0.01) whereas DHA was negatively associated with insulin and HOMA-IR (P = 0.003) and tended to be negatively associated with a metabolic syndrome-score (P = 0.05). Adjustment for waist circumference and physical activity did not change the associations. The association between DHA and HOMA-IR was attenuated but remained after adjustment for fiber intake and none of the other associations were confounded by dietary fat, protein, fiber or energy intake. This study showed that EPA status was negatively associated with triacylglycerol and positively with cholesterols whereas DHA was negatively associated with

  12. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice.

    Science.gov (United States)

    Li, Nan; Ma, Liya; Liu, Xueyan; Shaw, Lynn; Li Calzi, Sergio; Grant, Maria B; Neu, Josef

    2012-04-01

    Supplementation studies of glutamine, arginine, and docosahexaenoic acid (DHA) have established the safety of each of these nutrients in neonates; however, the potential for a more stable and soluble dipeptide, arginyl-glutamine (Arg-Gln) or DHA with anti-inflammatory properties, to exert benefits on hyperoxia-induced intestinal injury has not been investigated. Arg-Gln dipeptide has been shown to prevent retinal damage in a rodent model of oxygen-induced injury. The objective of the present study was to investigate whether Arg-Gln dipeptide or DHA could also attenuate markers of injury and inflammation to the small intestine in this same model. Seven-day-old mouse pups were placed with their dams in 75% oxygen for 5 days. After 5 days of hyperoxic exposure (P7-P12), pups were removed from hyperoxia and allowed to recover in atmospheric conditions for 5 days (P12-P17). Mouse pups received Arg-Gln (5g·kg·day) or DHA (5g·kg·day) or vehicle orally started on P12 through P17. Distal small intestine (DSI) histologic changes, myeloperoxidase (MPO), lactate dehydrogenase (LDH), inflammatory cytokines, and tissue apoptosis were evaluated. Hyperoxic mice showed a greater distortion of overall villus structure and with higher injury score (PDHA supplementation groups were more similar to the room air control group. Supplementation of Arg-Gln or DHA reduced hyperoxia-induced MPO activity (PDHA returned LDH activity to the levels of control. Hyperoxia induced apoptotic cell death in DSIs, and both Arg-Gln and DHA reversed this effect (PDHA may limit some inflammatory and apoptotic processes involved in hyperoxic-induced intestinal injury in neonatal mice.

  13. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    Science.gov (United States)

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  15. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    Directory of Open Access Journals (Sweden)

    Robert M. Badeau

    2017-02-01

    Full Text Available Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM or offspring of lean mothers (OLM. Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17 and elderly offspring from lean/normal weight mothers (OLM; n = 20 groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA was significantly lower in OOM (p = 0.015. DHA/FA associated significantly with skeletal muscle glucose uptake (GU (p = 0.031 and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value in the OLM group only (p = 0.050. Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  16. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia: the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial.

    Science.gov (United States)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey; Ezhov, Marat; Nordestgaard, Borge G; Machielse, Ben N; Kling, Douglas; Davidson, Michael H

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms. The aim was to evaluate the safety and lipid-altering efficacy in subjects with severe hypertriglyceridemia of an investigational pharmaceutical omega-3 free fatty acid (OM3-FFA) containing eicosapentaenoic acid and docosahexaenoic acid. This was a multinational, double-blind, randomized, out-patient study. Men and women with triglycerides (TGs) ≥ 500 mg/dL, but severe hypertriglyceridemia. This trial was registered at www.clinicaltrials.gov as NCT01242527. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  18. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  19. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation.

    Directory of Open Access Journals (Sweden)

    Ki Sung Kang

    Full Text Available BACKGROUND: The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA, with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively. CONCLUSIONS/SIGNIFICANCE: DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.

  20. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    Science.gov (United States)

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  2. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet?

    NARCIS (Netherlands)

    Weers, P.M.M.; Siewertsen, K.; Gulati, R.D.

    1997-01-01

    1. The fatty acid (FA) composition of Daphnia galeata and their algal food was analysed and showed many similarities, however, some significant differences were also found in the relative abundance of the FA C16:4 omega 3 and docosahexaenoic acid (DHA). Their relative abundances were much lower in

  3. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: A randomized controlled trial for replication (the DOLAB II study).

    Science.gov (United States)

    Montgomery, Paul; Spreckelsen, Thees F; Burton, Alice; Burton, Jennifer R; Richardson, Alexandra J

    2018-01-01

    Omega-3 fatty acids are central to brain-development of children. Evidence from clinical trials and systematic reviews demonstrates the potential of long-chain Omega-3 supplementation for learning and behavior. However, findings are inconclusive and in need of robust replication studies since such work is lacking. Replication of the 2012 DOLAB 1 study findings that a dietary supplementation with the long-chain omega-3 docosahexaenoic acid (DHA) had beneficial effects on the reading, working memory, and behavior of healthy schoolchildren. Parallel group, fixed-dose, randomized (minimization, 30% random element), double-blind, placebo-controlled trial (RCT). Mainstream primary schools (n = 84) from five counties in the UK in 2012-2015. Healthy children aged 7-9 underperforming in reading (reading, working memory, and behavior, parent-rated and as secondary outcome teacher-rated. 376 children were randomized. Reading, working memory, and behavior change scores showed no consistent differences between intervention and placebo group. Some behavioral subscales showed minor group differences. This RCT did not replicate results of the earlier DOLAB 1 study on the effectiveness of nutritional supplementation with DHA for learning and behavior. Possible reasons are discussed, particularly regarding the replication of complex interventions. www.controlled-trials.com (ISRCTN48803273) and protocols.io (https://dx.doi.org/10.17504/protocols.io.k8kczuw).

  4. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  5. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... (EPA, C20:5n-3) and docosahexaenoic acid (DHA,. C22:6n-3) present in ... is secreted in human serum, where it protects the skin from ultraviolet radiation ..... Omega-3 fatty acids from fish oils and cardiovascular disease. Mol.

  6. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention.

    Science.gov (United States)

    Ma, Qiu-Lan; Teter, Bruce; Ubeda, Oliver J; Morihara, Takashi; Dhoot, Dilsher; Nyby, Michael D; Tuck, Michael L; Frautschy, Sally A; Cole, Greg M

    2007-12-26

    Environmental and genetic factors, notably ApoE4, contribute to the etiology of late-onset Alzheimer's disease (LOAD). Reduced mRNA and protein for an apolipoprotein E (ApoE) receptor family member, SorLA (LR11) has been found in LOAD but not early-onset AD, suggesting that LR11 loss is not secondary to pathology. LR11 is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate beta-amyloid (Abeta). Genetic polymorphisms that reduce LR11 expression are associated with increased AD risk. However these polymorphisms account for only a fraction of cases with LR11 deficits, suggesting involvement of environmental factors. Because lipoprotein receptors are typically lipid-regulated, we postulated that LR11 is regulated by docosahexaenoic acid (DHA), an essential omega-3 fatty acid related to reduced AD risk and reduced Abeta accumulation. In this study, we report that DHA significantly increases LR11 in multiple systems, including primary rat neurons, aged non-Tg mice and an aged DHA-depleted APPsw AD mouse model. DHA also increased LR11 in a human neuronal line. In vivo elevation of LR11 was also observed with dietary fish oil in young rats with insulin resistance, a model for type II diabetes, another AD risk factor. These data argue that DHA induction of LR11 does not require DHA-depleting diets and is not age dependent. Because reduced LR11 is known to increase Abeta production and may be a significant genetic cause of LOAD, our results indicate that DHA increases in SorLA/LR11 levels may play an important role in preventing LOAD.

  7. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury.

    Science.gov (United States)

    Tian, Haibin; Lu, Yan; Shah, Shraddha P; Wang, Quansheng; Hong, Song

    2012-05-01

    Bone marrow mesenchymal stem cells (MSCs) have shown potential to improve treatment of renal failure. The prohealing functions of MSCs have been found to be enhanced by treatment with the lipid mediator, 14S,21R-dihydroxy-docosa4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA). In this article, using a murine model of renal ischemia/reperfusion (I/R) injury, we found that treatment with 14S,21R-diHDHA enhanced MSC amelioration of renal I/R injury. Treated MSCs more efficiently inhibited I/R-induced elevation of serum creatinine levels, reduced renal tubular cell death, and inhibited infiltration of neutrophils, macrophages, and dendritic cells in kidneys. Conditioned medium from treated MSCs reduced the generation of tumor necrosis factor-α and reactive oxygen species by macrophages under I/R conditions. Infusion of treated MSCs more efficiently reduced I/R-damage to renal histological structures compared with untreated MSCs (injury score: 7.9±0.4 vs. 10.5±0.5). Treated MSCs were resistant to apoptosis in vivo when transplanted under capsules of I/R-injured kidneys (active caspase-3+ MSCs: 4.2%±2.8% vs. 11.7%±2.4% of control) and in vitro when cultured under I/R conditions. Treatment with 14S,21R-diHDHA promoted viability of MSCs through a mechanism involving activation of the phosphoinositide 3-kinase -Akt signaling pathway. Additionally, treatment of MSCs with 14S,21R-diHDHA promoted secretion of renotrophic hepatocyte growth factor and insulin growth factor-1. Similar results were obtained when 14S,21RdiHDHA was used to inhibit apoptosis of human MSCs (hMSCs) and to increase the generation of renotrophic cytokines from hMSCs. These findings provide a lead for new strategies in the treatment of acute kidney injury with MSCs.

  8. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.

    Science.gov (United States)

    Sun, Dongzhe; Zhang, Zhao; Mao, Xuemei; Wu, Tao; Jiang, Yue; Liu, Jin; Chen, Feng

    2017-03-01

    In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg -1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  10. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA; C22:6 n-3).

    Science.gov (United States)

    Zarrouk, Amira; Nury, Thomas; Samadi, Mohammad; O'Callaghan, Yvonne; Hammami, Mohamed; O'Brien, Nora M; Lizard, Gérard; Mackrill, John J

    2015-07-01

    Some oxysterols are associated with neurodegenerative diseases. Their lipotoxicity is characterized by an oxidative stress and induction of apoptosis. To evaluate the capacity of these molecules to trigger cellular modifications involved in neurodegeneration, human neuronal cells SK-N-BE were treated with 7-ketocholesterol, 7α- and 7β-hydroxycholesterol, 6α- and 6β-hydroxycholesterol, 4α- and 4β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol (50-100μM, 24h) without or with docosahexaenoic acid (50μM). The effects of these compounds on mitochondrial activity, cell growth, production of reactive oxygen species (ROS) and superoxide anions (O2(-)), catalase and superoxide dismutase activities were determined. The ability of the oxysterols to induce increases in Ca(2+) was measured after 10min and 24h of treatment using fura-2 videomicroscopy and Von Kossa staining, respectively. Cholesterol, 7-ketocholesterol, 7β-hydroxycholesterol, and 24(S)-hydroxycholesterol (100μM) induced mitochondrial dysfunction, cell growth inhibition, ROS overproduction and cell death. A slight increase in the percentage of cells with condensed and/or fragmented nuclei, characteristic of apoptotic cells, was detected. With 27-hydroxycholesterol, a marked increase of O2(-) was observed. Increases in intracellular Ca(2+) were only found with 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol. Pre-treatment with docosahexaenoic acid showed some protective effects depending on the oxysterol considered. According to the present data, 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol could favor neurodegeneration by their abilities to induce mitochondrial dysfunctions, oxidative stress and/or cell death associated or not with increases in cytosolic calcium levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively ... docosahexaenoic acid (DHA) and the ratio of n–3/n–6 in enriched rotifers groups were higher (p < 0.05). The level of ...... acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis ...

  12. Safety of docosahexaenoic acid (DHA) administered as DHA ethyl ester in a 9-month toxicity study in dogs.

    Science.gov (United States)

    Dahms, Irina; Beilstein, Paul; Bonnette, Kimberly; Salem, Norman

    2016-06-01

    DHA Ethyl Ester (DHA-EE) is a 90% concentrated ethyl ester of docosahexaenoic acid manufactured from the microalgal oil. The objective of the 9-month study was to evaluate safety of DHA-EE administered to beagle dogs at dose levels 150, 1000 and 2000 mg/kg bw/day by oral gavage and to determine reversibility of any findings after a 2-month recovery period. DHA-EE was well tolerated at all doses. There were observations of dry flaky skin with occasional reddened areas at doses ≥1000 mg/kg bw/day. These findings lacked any microscopic correlate and were no longer present after the recovery period. There were no toxicologically relevant findings in body weights, body weight gains, food consumption, ophthalmological examinations, and ECG measurements. Test article-related changes in hematology parameters were limited to decreases in reticulocyte count in the high-dose males and considered non-adverse. In clinical chemistry parameters, dose-related decreases in cholesterol and triglycerides levels were observed at all doses in males and females and attributed to the known lipid-lowering effects of DHA. There were no effects on other clinical chemistry, urinalysis or coagulation parameters. There were no abnormal histopathology findings attributed to test article. The No-Observable-Adverse-Effect Level of DHA-EE was established at 2000 mg/kg bw/day for both genders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Intraperitoneal administration of docosahexaenoic acid for 14days increases serum unesterified DHA and seizure latency in the maximal pentylenetetrazol model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Lim, Joonbum; Lai, Terence K Y; Cho, Hye Jin; Domenichiello, Anthony F; Chen, Chuck T; Taha, Ameer Y; Bazinet, Richard P; Burnham, W M

    2014-04-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) which has been shown to raise seizure thresholds following acute administration in rats. The aims of the present experiment were the following: 1) to test whether subchronic DHA administration raises seizure threshold in the maximal pentylenetetrazol (PTZ) model 24h following the last injection and 2) to determine whether the increase in seizure threshold is correlated with an increase in serum and/or brain DHA. Animals received daily intraperitoneal (i.p.) injections of 50mg/kg of DHA, DHA ethyl ester (DHA EE), or volume-matched vehicle (albumin/saline) for 14days. On day 15, one subset of animals was seizure tested in the maximal PTZ model (Experiment 1). In a separate (non-seizure tested) subset of animals, blood was collected, and brains were excised following high-energy, head-focused microwave fixation. Lipid analysis was performed on serum and brain (Experiment 2). For data analysis, the DHA and DHA EE groups were combined since they did not differ significantly from each other. In the maximal PTZ model, DHA significantly increased seizure latency by approximately 3-fold as compared to vehicle-injected animals. This increase in seizure latency was associated with an increase in serum unesterified DHA. Total brain DHA and brain unesterified DHA concentrations, however, did not differ significantly in the treatment and control groups. An increase in serum unesterified DHA concentration reflecting increased flux of DHA to the brain appears to explain changes in seizure threshold, independent of changes in brain DHA concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The role of essential fatty acids in the control of coronary heart disease

    DEFF Research Database (Denmark)

    Vedtofte, Mia S.; Jakobsen, Marianne U; Lauritzen, Lotte

    2012-01-01

    Evidence from various research paradigms supports the cardiovascular benefits of a high intake of n-3 polyunsaturated fatty acids (PUFAs), especially the long-chain, marine-derived n-3 PUFA, eicosapentaenoic acids and docosahexaenoic acids. The effect of the plant-derived alpha-linolenic acid (ALA...

  15. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  16. Determination of the seasonal changes on total fatty acid ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... Docosahexaenoic acid (C22:6 ω3), linoleic acid (C18:2 ω6) and eicosapentaenoic acid. (C20:5 ω3) had the highest levels among the PUFAs. ... coronary artery disease, diabetes, hyper-tension and .... factors such as season, the type and amount of feed ..... composition of some Malaysian freswater fish.

  17. Evaluation of the impact of genetic polymorphisms in glutathione-related genes on the association between methylmercury or n-3 polyunsaturated long chain fatty acids and risk of myocardial infarction: a case-control study

    Directory of Open Access Journals (Sweden)

    Norberg Margareta

    2011-04-01

    Full Text Available Abstract Background The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction. Methods Polymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM or glutathione-conjugating (glutathione S-transferase P, GSTP1 genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls. The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration. Results There were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic+docosahexaenoic

  18. Selective remodeling of cardiolipin fatty acids in the aged rat heart

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I

    2006-01-01

    Full Text Available Abstract Background The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. Results The concentration (nmol/g of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD vs 4 month old rats (5525 ± 656, while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively. Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. Conclusion These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids.

  19. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening.

    Science.gov (United States)

    Zhao, Ben; Li, Yafei; Li, Changling; Yang, Hailin; Wang, Wu

    2018-03-01

    Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe 2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.

  20. Synthesis of Phosphatidylcholine Containing Highly Unsaturated Fatty Acid by Phospholipase A2 and Effect on Retinoic Acid Induced Differentiation of HL-60 Cells

    OpenAIRE

    細川, 雅史; 大島, 宏哲; 甲野, 裕之; 高橋, 是太郎; 羽田野, 六男; 小田島, 粛夫

    1993-01-01

    Phosphatidylcholine containing highly unsaturated fatty acid (HUFA-PC) was prepared by porcine pancreatic phospholipase A2, which catalyzed esterification between lysophosphatidylcholine (LPC) and highly unsaturated fatty acid (HUFA), under a scaled-up reaction system. Fatty acid mixture prepared from sardine oil, purified eicosapentaenoic acid (EPA), and purified docosahexaenoic acid (DHA) were used as the substrates of HUFA. The yield of HUFA-PC was 17.0-19.9%. Synthesized phosphatidylcholi...

  1. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    Science.gov (United States)

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  2. Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition

    Directory of Open Access Journals (Sweden)

    Nayeong Kim

    2015-01-01

    Full Text Available The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA, a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC cells. DHA-induced cell death was accompanied by AMP-activated protein kinase (AMPK activation and inactivated phosphatidylinositol 3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR signaling. Knocking down AMPK and overexpressing Akt increased mTOR activity and attenuated DHA-induced cell death, suggesting that DHA induces cell death via AMPK- and Akt-regulated mTOR inactivation. This was confirmed in Fat-1 transgenic mice, which produce ω3-PUFAs. Lewis lung cancer (LLC tumor cells implanted into Fat-1 mice showed slower growth, lower phospho-Akt levels, and higher levels of apoptosis and autophagy than cells implanted into wild-type mice. Taken together, these data suggest that DHA-induced apoptosis and autophagy in NSCLC cells are associated with AMPK activation and PI3K/Akt inhibition, which in turn lead to suppression of mTOR; thus ω3-PUFAs may be utilized as potential therapeutic agents for NSCLC treatment.

  3. The intramolecular position of docosahexaenoic acid in the triacylglycerol sources used for pediatric nutrition has a minimal effect on its metabolic use.

    Science.gov (United States)

    Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen

    2008-03-01

    Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.

  4. Feeding a Diet Enriched in Docosahexaenoic Acid to Lactating Dams Improves the Tolerance Response to Egg Protein in Suckled Pups

    Directory of Open Access Journals (Sweden)

    Caroline Richard

    2016-02-01

    Full Text Available The objective of this study was to determine the effect of feeding a maternal diet supplemented with docosahexaenoic acid (DHA during the suckling period on the development of the immune system and oral tolerance (OT in offspring. Dams were randomized to consume one of two nutritionally adequate diets throughout the suckling period: control (N = 12, 0% DHA or DHA (N = 8, 0.9% DHA diet. At 11 days, pups from each dam were randomly assigned to a mucosal OT challenge: the placebo or the ovalbumin (OVA treatment. At three weeks, plasma immunoglobulins and splenocyte cytokine production ex vivo were measured. OVA-tolerized pups had a lower Th2 (IL-13 response to OVA despite the presence of more activated T cells and memory cells (CD27+, all p < 0.05. Feeding a high DHA diet improved the ability of splenocytes to respond to mitogens toward a skewed Th1 response and led to a higher IL-10 and a lower TGF-β production after stimulation with OVA (all p < 0.05. Untolerized DHA-fed pups had lower plasma concentrations of OVA-specific immunoglobulin E (p for interaction < 0.05. Overall, feeding a high DHA maternal diet improves the tolerance response in untolerized suckled pups in a direction that is thought to be beneficial for the establishment of OT.

  5. Docosahexaenoic acid for reading, cognition and behavior in children aged 7-9 years: a randomized, controlled trial (the DOLAB Study.

    Directory of Open Access Journals (Sweden)

    Alexandra J Richardson

    Full Text Available Omega-3 fatty acids are dietary essentials, and the current low intakes in most modern developed countries are believed to contribute to a wide variety of physical and mental health problems. Evidence from clinical trials indicates that dietary supplementation with long-chain omega-3 may improve child behavior and learning, although most previous trials have involved children with neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD or developmental coordination disorder (DCD. Here we investigated whether such benefits might extend to the general child population.To determine the effects of dietary supplementation with the long-chain omega-3 docosahexaenoic acid (DHA on the reading, working memory, and behavior of healthy schoolchildren.Parallel group, fixed-dose, randomized, double-blind, placebo-controlled trial (RCT.Mainstream primary schools in Oxfordshire, UK (n = 74.Healthy children aged 7-9 years initially underperforming in reading (≤ 33(rd centile. 1376 invited, 362 met study criteria.600 mg/day DHA (from algal oil, or taste/color matched corn/soybean oil placebo.Age-standardized measures of reading, working memory, and parent- and teacher-rated behavior.ITT analyses showed no effect of DHA on reading in the full sample, but significant effects in the pre-planned subgroup of 224 children whose initial reading performance was ≤ 20(th centile (the target population in our original study design. Parent-rated behavior problems (ADHD-type symptoms were significantly reduced by active treatment, but little or no effects were seen for either teacher-rated behaviour or working memory.DHA supplementation appears to offer a safe and effective way to improve reading and behavior in healthy but underperforming children from mainstream schools. Replication studies are clearly warranted, as such children are known to be at risk of low educational and occupational outcomes in later life.ClinicalTrials.gov NCT01066182

  6. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  7. Role of Choline-Docosahexaenoic acid and Trigonella foenum graecum Seed Extract on Ovariectomy Induced Dyslipidemia and Oxidative Stress in Rat Model

    Directory of Open Access Journals (Sweden)

    Nagamma Takkella

    2018-01-01

    Full Text Available Background: Menopause is characterized by the deficiency of ovarian hormones, mainly estrogen. The decline in estrogen hormone is contributing the cardiovascular disorders in women. Hormone replacement therapy has disadvantages especially a higher risk of breast, ovarian and endometrial cancers upon chronic use. Phytoestrogens may be used as an alternative to hormone replacement therapy. Aim and Objectives: This study was designed to scientifically evaluate the role of Choline- Docosahexaenoic Acid (DHA and Trigonella foenum graecum (TFG seed extract on Ovariectomy (OVX induced dyslipidemia and oxidative stress in rat model. Material and Methods: Female Wistar rats were allocated into four groups (n=6:1 Sham control, 2 ovariectomized, 3 ovariectomized+ choline-DHA and 4 ovariectomized + choline-DHA+TFG. After 30 days of treatment, fasting blood samples and liver tissues were collected. Serum was analyzed for lipid profile and liver homogenates were used for assessment of oxidative stress and antioxidant activity. Results: Ovariectomized rats showed significantly increased (P<0.05 Total Cholesterol (TC, Low Density Lipoprotein (LDL levels and decreased High Density Lipoprotein (HDL levels. Treating ovariectomized rats with choline-DHA and TFG seed extract significantly lowered (P<0.05 total cholesterol, LDL and markedly increased the HDL. Significantly increased (P≤0.01 Thiobarbituric Acid Reactive Substances (TBARS and reduced (P<0.05 glutathione levels were observed in OVX group. The synergetic effect of choline-DHA and fenugreek showed a significant reduction ((P≤0.01 in TBARS levels. Conclusion: These results showed that choline-DHA with TFG supplementation have a favorable effect on OVX induced hyperlipidemia and oxidative stress. Therefore, these components may be a therapeutic agent for treating the menopause induced hyperlipidemia or oxidative stress.

  8. Acute treatment with docosahexaenoic acid complexed to albumin reduces injury after a permanent focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid complexed to albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo, but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270-330 g underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg, Alb (0.63 or 1.25 g/kg, DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7-10 per group. Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36-40% and moderate doses (by 34-42% of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.

  9. Assessment of essential fatty acid and ω3-fatty acid status by measurement of erythrocyte 20:3ω9 (Mead acid), 22:5ω6/20:4ω6 and 22:5ω6/22:6ω3

    NARCIS (Netherlands)

    Fokkema, M.R.; Smit, E.N.; Martini, I.A.; Woltil, H.A.; Boersma, E.R.; Muskiet, F.A.J.

    2002-01-01

    BACKGROUND: Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  10. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    2002-01-01

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  11. Assessment of essential fatty acid and omega 3-fatty acid status by measurement of erythrocyte 20 : 3 omega 9 (Mead acid), 22 : 5 omega 6/20 : 4 omega 6 and 22 : 5 omega 6/22 : 6 omega 3

    NARCIS (Netherlands)

    Smit, EN; Martini, IA; Woltil, HA; Boersma, ER; Muskiet, FAJ

    Background. Early suspicion of essential fatty acid deficiency (EFAD) or omega3-deficiency may rather focus on polyunsaturated fatty acid (PUFA) or long-chain PUFA (LCP) analyses than clinical symptoms. We determined cut-off values for biochemical EFAD, omega3-and omega3/22:6omega3 [docosahexaenoic

  12. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls.

    Science.gov (United States)

    Yamasaki, Takashi; Aki, Tsunehiro; Mori, Yuhsuke; Yamamoto, Takeki; Shinozaki, Masami; Kawamoto, Seiji; Ono, Kazuhisa

    2007-09-01

    In marine aquaculture, rotifers and Artemia nauplii employed as larval fish feed are often nutritionally enriched with forage such as yeast and algal cells supplemented with polyunsaturated fatty acids and xanthophylls, which are required for normal growth and a high survival ratio of fish larvae. To reduce the enrichment steps, we propose here the use of a marine thraustochytrid strain, Schizochytrium sp. KH105, producing docosahexaenoic acid, docosapentaenoic acid, canthaxanthin, and astaxanthin. The KH105 cells prepared by cultivation under optimized conditions were successfully incorporated by rotifers and Artemia nauplii. The contents of docosahexaenoic acid surpassed the levels required in feed for fish larvae, and the enriched Artemia showed an increased body length. The results demonstrate that we have developed an improved method of increasing the dietary value of larval fish feed.

  13. The content of docosahexaenoic acid in the suckling and the weaning diet beneficially modulates the ability of immune cells to response to stimuli.

    Science.gov (United States)

    Richard, Caroline; Lewis, Erin D; Goruk, Susan; Field, Catherine J

    2016-09-01

    The objective of the study was to isolate the effect of feeding a diet supplemented with docosahexaenoic acid (DHA) during the suckling and/or the weaning period on immune system development and function in offspring. Dams were randomized to one of two nutritionally adequate diets: control diet (N=12, 0% DHA) or DHA diet (N=8, 0.9% DHA). Diets were fed to dams throughout lactation, and then at weaning (21d), two pups per dam were randomly assigned to continue on the same diet as the dam or consume the other experimental diet for an additional 21d. At 6 weeks, splenocyte phenotypes and ex vivo cytokine production after stimulation with concanavalin A (ConA), lipopolysaccharide (LPS) or ovalbumin were assessed. Pups who received the control diet during both periods had the lowest production of IL-2 after ConA (Pdiet (Pdiet, resulted in a lower production of IL-1β and TNF-α in LPS-stimulated splenocytes and a higher proportion of total CD27+ cells (all Pdiet during weaning led to a lower TNF-α and IL-1β response to a bacterial antigen. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet.

    Science.gov (United States)

    Gao, Fei; Kim, Hyung-Wook; Igarashi, Miki; Kiesewetter, Dale; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2011-01-01

    The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(⁎) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans. Published by Elsevier B.V.

  15. Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: the Nutritional AMD Treatment 2 study.

    Science.gov (United States)

    Souied, Eric H; Delcourt, Cécile; Querques, Giuseppe; Bassols, Ana; Merle, Bénédicte; Zourdani, Alain; Smith, Theodore; Benlian, Pascale

    2013-08-01

    To evaluate the efficacy of docosahexaenoic acid (DHA)-enriched oral supplementation in preventing exudative age-related macular degeneration (AMD). The Nutritional AMD Treatment 2 study was a randomized, placebo-controlled, double-blind, parallel, comparative study. Two hundred sixty-three patients 55 years of age or older and younger than 85 years with early lesions of age-related maculopathy and visual acuity better than 0.4 logarithm of minimum angle of resolution units in the study eye and neovascular AMD in the fellow eye. Patients were assigned randomly to receive either 840 mg/day DHA and 270 mg/day eicosapentaenoic acid (EPA) from fish oil capsules or the placebo (olive oil capsules) for 3 years. The primary outcome measure was time to occurrence of choroidal neovascularization (CNV) in the study eye. Secondary outcome measures in the study eye were: incidence of CNV developing in patients, changes in visual acuity, occurrence and progression of drusen, and changes in EPA plus DHA level in red blood cell membrane (RBCM). Time to occurrence and incidence of CNV in the study eye were not significantly different between the DHA group (19.5±10.9 months and 28.4%, respectively) and the placebo group (18.7±10.6 months and 25.6%, respectively). In the DHA group, EPA plus DHA levels increased significantly in RBCM (+70%; P<0.001), suggesting that DHA easily penetrated cells, but this occurred unexpectedly also in the placebo group (+9%; P = 0.007). In the DHA-allocated group, patients steadily achieving the highest tertile of EPA plus DHA levels in RBCM had significantly lower risk (-68%; P = 0.047; hazard ratio, 0.32; 95% confidence interval, 0.10-0.99) of CNV developing over 3 years. No marked changes from baseline in best-corrected visual acuity, drusen progression, or geographic atrophy in the study eye were observed throughout the study in either group. In patients with unilateral exudative AMD, 3 years of oral DHA-enriched supplementation had the same

  16. Docosahexaenoic acid (DHA) accretion in the placenta but not the fetus is matched by plasma unesterified DHA uptake rates in pregnant Long Evans rats.

    Science.gov (United States)

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-10-01

    Maternal delivery of docosahexaenoic acid (DHA, 22:6n-3) to the developing fetus via the placenta is required for fetal neurodevelopment, and is the only mechanism by which DHA can be accreted in the fetus. The aim of the current study was to utilize a balance model of DHA accretion combined with kinetic measures of serum unesterified DHA uptake to better understand the mechanism by which maternal DHA is delivered to the fetus via the placenta. Female rats maintained on a 2% α-linolenic acid diet free of DHA for 56 days were mated, and for balance analysis, sacrificed at 18 days of pregnancy, and fetus, placenta and maternal carcass fatty acid concentration were determined. For tissue DHA uptake, pregnant dams (14-18 days) were infused for 5 min with radiolabeled 14 C-DHA and kinetic modeling was used to determine fetal and placental serum unesterified DHA uptake rates. DHA accretion rates in the fetus were determined to be 38 ± 2 nmol/d/g, 859 ± 100 nmol/d/litter and 74 ± 3 nmol/d/pup, which are all higher (P  0.05) in placental DHA accretion rates versus serum unesterified DHA uptake rates were observed as values varied only 6-35% between studies. No differences in placental accretion and uptake rates suggests that serum unesterified DHA is a significant pool for the maternal-placental transfer of DHA, and lower fetal DHA uptake compared to accretion supports remodeling of placental DHA for delivery to the fetus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dietary Linoleic and a-Linolenic Acid Affect Anxiety-Related Responses and Exploratory Activity in Growing Pigs

    NARCIS (Netherlands)

    Clouard, C.M.; Gerrits, W.J.J.; Kerkhof, van I.; Smink, W.; Bolhuis, J.E.

    2015-01-01

    Background: Growing evidence suggests that the dietary ratio of linoleic acid (LA) to a-linolenic acid (ALA), the precursors of arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively, may affect behavior in mammals. Objective: This study aimed at evaluating the impact of dietary LA and

  18. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2016-09-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

  19. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: A randomized controlled trial for replication (the DOLAB II study.

    Directory of Open Access Journals (Sweden)

    Paul Montgomery

    Full Text Available Omega-3 fatty acids are central to brain-development of children. Evidence from clinical trials and systematic reviews demonstrates the potential of long-chain Omega-3 supplementation for learning and behavior. However, findings are inconclusive and in need of robust replication studies since such work is lacking.Replication of the 2012 DOLAB 1 study findings that a dietary supplementation with the long-chain omega-3 docosahexaenoic acid (DHA had beneficial effects on the reading, working memory, and behavior of healthy schoolchildren.Parallel group, fixed-dose, randomized (minimization, 30% random element, double-blind, placebo-controlled trial (RCT.Mainstream primary schools (n = 84 from five counties in the UK in 2012-2015.Healthy children aged 7-9 underperforming in reading (<20th centile. 1230 invited, 376 met study criteria.600 mg/day DHA (from algal oil, placebo: taste/color matched corn/soybean oil; for 16 weeks.Age-standardized measures of reading, working memory, and behavior, parent-rated and as secondary outcome teacher-rated.376 children were randomized. Reading, working memory, and behavior change scores showed no consistent differences between intervention and placebo group. Some behavioral subscales showed minor group differences.This RCT did not replicate results of the earlier DOLAB 1 study on the effectiveness of nutritional supplementation with DHA for learning and behavior. Possible reasons are discussed, particularly regarding the replication of complex interventions.www.controlled-trials.com (ISRCTN48803273 and protocols.io (https://dx.doi.org/10.17504/protocols.io.k8kczuw.

  20. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves

    NARCIS (Netherlands)

    Hendriks, I.E.; Van Duren, L.A.; Herman, P.M.J.

    2003-01-01

    The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of

  1. Molecular Species of the Enzymatically Synthesized Polyunsaturated Fatty Acid Rich Triglyceride

    OpenAIRE

    長田, 恭一; 高橋, 是太郎; 羽田野, 六男; 細川, 雅史

    1991-01-01

    Enzymatic glyceride synthesis and acid interchange using icosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA), and EPA and DHA concentrated saponified fatty acid mixture obtained from sardine oil were carried out through the use of four kinds of microbial lipases. Lipase TOYO (Chromobacterium viscosum) was the most effective enzyme for glyceride synthesis as well as acid interchange of triglyceride (TG) rich in polyunsaturated fatty acids. There was a general tendenc...

  2. Effect of eicosapentaenoic acid/docosahexaenoic acid on coronary high-intensity plaques detected with non-contrast T1-weighted imaging (the AQUAMARINE EPA/DHA study): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nakao, Kazuhiro; Noguchi, Teruo; Asaumi, Yasuhide; Morita, Yoshiaki; Kanaya, Tomoaki; Fujino, Masashi; Hosoda, Hayato; Yoneda, Shuichi; Kawakami, Shoji; Nagai, Toshiyuki; Nishihira, Kensaku; Nakashima, Takahiro; Kumasaka, Reon; Arakawa, Tetsuo; Otsuka, Fumiyuki; Nakanishi, Michio; Kataoka, Yu; Tahara, Yoshio; Goto, Yoichi; Yamamoto, Haruko; Hamasaki, Toshimitsu; Yasuda, Satoshi

    2018-01-08

    Despite the success of HMG-CoA reductase inhibitor (statin) therapy in reducing atherosclerotic cardiovascular events, a residual risk for cardiovascular events in patients with coronary artery disease (CAD) remains. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are promising anti-atherosclerosis agents that might reduce the residual CAD risk. Non-contrast T1-weighted imaging (T1WI) with cardiac magnetic resonance (CMR) less invasively identifies high-risk coronary plaques as high-intensity signals. These high-intensity plaques (HIPs) are quantitatively assessed using the plaque-to-myocardium signal intensity ratio (PMR). Our goal is to assess the effect of EPA/DHA on coronary HIPs detected with T1WI in patients with CAD on statin treatment. This prospective, controlled, randomized, open-label study examines the effect of 12 months of EPA/DHA therapy and statin treatment on PMR of HIPs detected with CMR and computed tomography angiography (CTA) in patients with CAD. The primary endpoint is the change in PMR after EPA/DHA treatment. Secondary endpoints include changes in Hounsfield units, plaque volume, vessel area, and plaque area measured using CTA. Subjects are randomly assigned to either of three groups: the 2 g/day EPA/DHA group, the 4 g/day EPA/DHA group, or the no-treatment group. This trial will help assess whether EPA/DHA has an anti-atherosclerotic effect using PMR of HIPs detected by CMR. The trial outcomes will provide novel insights into the effect of EPA/DHA on high-risk coronary plaques and may provide new strategies for lowering the residual risk in patients with CAD on statin therapy. The University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000015316 . Registered on 2 October 2014.

  3. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  4. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.Rats underwent 2 h of middle cerebral artery occlusion (MCAo. DHA, neuroprotectin D1 (NPD1 or vehicle (saline was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

  5. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  6. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available The overexpression of urokinase-type plasminogen activator receptor (uPAR is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells.

  7. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    Science.gov (United States)

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  8. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice

    International Nuclear Information System (INIS)

    Siddiqui, Rafat A; Harvey, Kevin A; Walker, Candace; Altenburg, Jeffrey; Xu, Zhidong; Terry, Colin; Camarillo, Ignacio; Jones-Hall, Yava; Mariash, Cary

    2013-01-01

    The major obstacles to the successful use of individual nutritional compounds as preventive or therapeutic agents are their efficacy and bioavailability. One approach to overcoming this problem is to use combinations of nutrients to induce synergistic effects. The objective of this research was to investigate the synergistic effects of two dietary components: docosahexaenoic acid (DHA), an omega-3 fatty acid present in cold-water fish, and curcumin (CCM), an herbal nutrient present in turmeric, in an in vivo model of DMBA-induced mammary tumorigenesis in mice. We used the carcinogen DMBA to induce breast tumors in SENCAR mice on control, CCM, DHA, or DHA + CCM diets. Appearance and tumor progression were monitored daily. The tumors were harvested 15 days following their first appearance for morphological and immunohistological analysis. Western analysis was performed to determine expression of maspin and survivin in the tumor tissues. Characterization of tumor growth was analyzed using appropriate statistical methods. Otherwise all other results are reported as mean ± SD and analyzed with one-way ANOVA and Tukey’s post hoc procedure. Analysis of gene microarray data indicates that combined treatment with DHA + CCM altered the profile of “PAM50” genes in the SK-BR-3 cell line from an ER - /Her-2 + to that resembling a “normal-like” phenotype. The in vivo studies demonstrated that DHA + CCM treatment reduced the incidence of breast tumors, delayed tumor initiation, and reduced progression of tumor growth. Dietary treatment had no effect on breast size development, but tumors from mice on a control diet (untreated) were less differentiated than tumors from mice fed CCM or DHA + CCM diets. The synergistic effects also led to increased expression of the pro-apoptotic protein, maspin, but reduced expression of the anti-apoptotic protein, survivin. The SK-BR-3 cells and DMBA-induced tumors, both with an ER - and Her-2 + phenotype, were affected by the

  9. Proximate composition, amino acid and fatty acid composition of fish maws.

    Science.gov (United States)

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  10. Effects of Almond- and Olive Oil-Based Docosahexaenoic- and Vitamin E-Enriched Beverage Dietary Supplementation on Inflammation Associated to Exercise and Age

    Directory of Open Access Journals (Sweden)

    Xavier Capó

    2016-10-01

    Full Text Available n-3-polyunsaturated fatty acids and polyphenols are potential key factors for the treatment and prevention of chronic inflammation associated to ageing and non-communicable diseases. The aim was to analyse effects of an almond and olive oil beverage enriched with α-tocopherol and docosahexaenoic, exercise and age on inflammatory plasma markers, and immune gene expression in peripheral blood mononuclear cells (PBMCs. Five young and five senior athletes who were supplemented for five weeks with a functional beverage performed a stress test under controlled conditions before and after beverage supplementation. Blood samples were taken immediately before and 1 h after each test. Plasma, erythrocytes and PBMCs were isolated. Beverage supplementation increased plasmatic Tumour Necrosis Factor α (TNFα levels depending on age and exercise. Exercise increased plasma non esterified fatty acids (NEFAs, soluble Intercellular adhesion molecule 3 (sICAM3 and soluble L-selectin (sL-Selectin, and this increase was attenuated by the supplementation. Exercise increased PGE2 plasma levels in supplemented young and in senior placebo athletes. Exercise increased NFkβ-activated levels in PBMCs, which are primed to a pro-inflammatory response increasing pro-inflammatory genes expression after the exercise mainly in the young group after the supplementation. The functional beverage supplementation to young athletes enhances a pro-inflammatory circulating environment in response to the exercise that was less evident in the senior group.

  11. Influence of ionizing radiation on the fatty acid composition of herring fillets

    International Nuclear Information System (INIS)

    Adam, S.; Paul, G.; Ehlermann, D.

    1982-01-01

    The effect of γ-irradiation (absorbed dose: 50 kGy, dose-rate: 2.9 kGy/h) on the distribution of fatty acid components in herring fillets has been examined using high-resolution gas chromatographic methods. Radiolytic treatment at 0 0 C and exclusion of atmospheric oxygen caused no significant decrease in the relative amounts of the constituent saturated, monounsaturated and polyunsaturated fatty acid components. Specifically, eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6), which are of particular physiological interest were not affected by γ-rays, even after additional storage of the irradiated material at 0 0 C for 4 weeks. Irradiation of oil extracted from herring fillets or of herring oil/water emulsions under aerobic conditions, however, destroyed eicosapentaenoic acid and docosahexaenoic acid significantly. The loss of radio-resistance - as compared to the radiation-induced processes in the fillets - is explained by the absence of proteins, which effectively protect the lipid components from radiolytic decomposition. It is concluded that the commercial radiation processing of herring at the recommended dose levels (1 to 2 kGy) should not reduce the content of unsaturated fatty acid components. (author)

  12. Evaluation of the hepatic bioconversion of α-linolenic acid (ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in rats fed with oils from chia (Salvia hispánica or rosa mosqueta (Rosa rubiginosa

    Directory of Open Access Journals (Sweden)

    Tapia O., G.

    2012-03-01

    Full Text Available The high dietary intake of n-6 fatty acids in relation to n-3 fatty acids generates health disorders, such as cardiovascular diseases, inflammatory diseases and other chronic diseases. The consumption of fish, which is rich in n-3 fatty acids, is low in Latin America and it is necessary to seek other alternatives, such as chia oil (CO or rosa mosqueta oil (RMO, which are rich in α-linolenic acid (ALA, the precursor of the n -3 fatty acids, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This study evaluates the hepatic bioconversion of ALA to EPA and DHA and the damage to the liver (histology and transaminase in Sprague- Dawley rats fed different vegetable oils. Four experimental groups (n = 9 animals each group were fed the following dietary supplements for 21 days: a sunflower oil (SFO, b RMO, c CO d olive oil with fish oil added (EPA and DHA (OO/FO. RMO and CO increased the hepatic levels of ALA, EPA and DHA and decreased the n-6/n-3 ratio compared to SFO (p El elevado aporte en la dieta de ácidos grasos omega- 6, en relación a los ácidos grasos omega-3, genera alteraciones de la salud cardiovascular, inflamación y otras patologías crónicas no transmisibles. Por otro lado, el pescado rico en ácidos grasos omega-3 es de bajo consumo en Latinoamérica, siendo necesario buscar otras alternativas de aporte de ácidos grasos omega-3, como lo son el aceite de chía (CO o el de rosa mosqueta (RMO, ricos en ácido α-linolénico (ALA, que es el precursor de los ácidos grasos omega-3, eicosapentaenoico (EPA y docosahexaenoico (DHA. Este trabajo evaluó en forma preliminar la bioconversión hepática del ALA en EPA y DHA y el daño hepático (histología y transaminasas en ratas Sprague-Dawley alimentadas con diferentes aceites vegetales. Se conformaron cuatro grupos experimentales (n = 9 animales por grupo que recibieron durante 21 días: a aceite de girasol (SFO; b RMO, c CO y d aceite de oliva adicionado de aceite de pescado (EPA

  13. Early postnatal docosahexaenoic acid levels and improved preterm brain development

    OpenAIRE

    Tam, Emily W.Y.; Chau, Vann; Barkovich, A. James; Ferriero, Donna M.; Miller, Steven P.; Rogers, Elizabeth E.; Grunau, Ruth E.; Synnes, Anne R.; Xu, Duan; Foong, Justin; Brant, Rollin; Innis, Sheila M.

    2016-01-01

    Background Preterm birth has a dramatic impact on polyunsaturated fatty acid exposures for the developing brain. This study examined the association between postnatal fatty acid levels and measures of brain injury and development, as well as outcomes. Methods A cohort of 60 preterm newborns (24?32 weeks GA) was assessed using early and near-term MRI studies. Red blood cell fatty acid composition was analyzed coordinated with each scan. Outcome at a mean of 33 months corrected age was assessed...

  14. Effects of n-3 fatty acids on cognitive decline: A randomized double-blind, placebo-controlled trial in stable myocardial infarction patients

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Kromhout, D.

    2012-01-01

    Background Epidemiological studies suggest a protective effect of n-3 fatty acids derived from fish (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) against cognitive decline. For a-linolenic acid (ALA) obtained from vegetable sources, the effect on cognitive decline is unknown. We

  15. Maternal and cord blood fatty acid patterns with excessive gestational weight gain and neonatal macrosomia.

    Science.gov (United States)

    Liu, Kaiyong; Ye, Kui; Han, Yanping; Sheng, Jie; Jin, Zhongxiu; Bo, Qinli; Hu, Chunqiu; Hu, Chuanlai; Li, Li

    2017-03-01

    This study evaluated the association of maternal excessive gestational weight gain with saturated and polyunsaturated fatty acid concentrations in maternal and cord serum. We included 77 pairs of women and their newborns and classified them into three groups as follows: mothers with normal gestational weight gain and their babies with normal birth weight in group I (30 pairs), mothers with excessive gestational weight gain and their babies with normal birth weight in group II (30 pairs), and mothers with excessive gestational weight gain and their macrosomic babies in group III (17 pairs). Serum fatty acid concentrations were determined through gas chromatography-mass spectrometry. No remarkable difference in maternal dietary intake was observed among the three groups. C16:0, C18:0, eicosapentaenoic acid, and docosahexaenoic acid concentrations were significantly higher in group III mothers than in group I mothers. Compared with group I neonates, total saturated and polyunsaturated fatty acid concentrations were significantly lower but total n-3 polyunsaturated fatty acid and docosahexaenoic acid concentrations were significantly higher in group II neonates (ppattern.

  16. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells.

    Science.gov (United States)

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M M; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of "de novo" FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  17. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Graziela Rosa Ravacci

    2015-01-01

    Full Text Available In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36, transport (FABP4, and storage (DGAT of exogenous fatty acids (FA, as well as increased activation of “de novo” FA synthesis (FASN. We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4 in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  18. Therapeutic Efficacy of Fenugreek Extract or/and Choline with Docosahexaenoic Acid in Attenuating Learning and Memory Deficits in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Anjaneyulu K

    2018-04-01

    Full Text Available Background: Studies have demonstrated that estradiol influences cognitive functions. Phytoestrogens and many other estrogen-like compounds in plants have beneficial effects on cognitive performance in postmenopausal women. However, there is no evident report of fenugreek and choline-Docosahexaenoic Acid (DHA on cognition in ovariectomized rats. Aim and Objectives: The present study was aimed to evaluate the therapeutic efficacy of fenugreek extract or/and choline- DHA in attenuating ovariectomy-induced memory impairment, brain antioxidant status and hippocampal neural cell deficits in the rat model. Material and Methods: Female Wistar 9-10 months old rats were grouped (n=12/group as - (1 Normal Control (NC, (2 Ovariectomized (OVX, (3 OVX+FG (hydroalcoholic seed extract of fenugreek, (4 OVX+C-DHA,(5 OVX+FG+C-DHA and (6 OVX+Estradiol. Groups 2- 6 were bilaterally OVX. FG, C-DHA was supplemented orally for 30 days, 14 days after ovariectomy. Assessment of learning and memory was performed by passive avoidance test. Oxidative stress and antioxidant markers were assessed by standard methods. Nissl stained hippocampal sections were analyzed to determine alterations in neural cell numbers in CA1, CA3 and dentate gyrus. Results: Supplementation of FG or/and choline with DHA to OVX rats, caused significant improvement in learning and memory as well as decreased neural cell deficits compared to the same in OVX rats. Further, significantly reduced levels of brain Malondialdehyde (MDA and increased levels of Glutathione (GSH were observed. Conclusion: Therapeutic supplementation of FG with choline-DHA significantly attenuates ovariectomy-induced neurocognitive deficits in rats.

  19. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  20. Total Synthesis of Four Stereoisomers of (4Z,7Z,10Z,12E,16Z,18E)-14,20-Dihydroxy-4,7,10,12,16,18-docosahexaenoic Acid and Their Anti-inflammatory Activities.

    Science.gov (United States)

    Goto, Tomomi; Urabe, Daisuke; Masuda, Koji; Isobe, Yosuke; Arita, Makoto; Inoue, Masayuki

    2015-08-07

    A novel anti-inflammatory lipid mediator, (4Z,7Z,10Z,12E,14S,16Z,18E,20R)-14,20-dihydroxy-4,7,10,12,16,18-docosahexaenoic acid (1aa), and its three C14,C20 stereoisomers (1ab,ba,bb) were synthesized in a convergent fashion. The carbon backbone of the target compounds was assembled from seven simple fragments by employing two Sonogashira coupling and three SN2 alkynylation reactions. The thus constructed four internal alkynes were chemoselectively reduced to the corresponding (Z)-alkenes by applying a newly developed stepwise protocol: (i) hydrogenation of the three alkynes using Lindlar catalyst and (ii) formation of the dicobalt hexacarbonyl complex from the remaining alkyne and subsequent reductive decomplexation. The synthetic preparation of the stereochemically defined four isomers 1aa,ab,ba,bb permitted determination of the absolute structure of the isolated natural product to be 1aa. Biological testing of the four synthetic 14,20-dihydroxydocosahexaenoic acids disclosed similar anti-inflammatory activities of the non-natural isomers (1ab,ba,bb) and the natural form (1aa).

  1. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    Science.gov (United States)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  2. A randomized, placebo-controlled, double-blind trial of supplemental docosahexaenoic acid on cognitive processing speed and executive function in females of reproductive age with phenylketonuria: A pilot study☆, ☆☆

    Science.gov (United States)

    Yi, S.H.L.; Kable, J.A.; Evatt, M.L.; Singh, R.H.

    2014-01-01

    Low blood docosahexaenoic acid (DHA) is reported in patients with phenylketonuria (PKU); however, the functional implications in adolescents and adults are unknown. This pilot study investigated the effect of supplemental DHA on cognitive performance in 33 females with PKU ages 12–47 years. Participants were randomly assigned to receive DHA (10 mg/kg/day) or placebo for 4.5 months. Performance on cognitive processing speed and executive functioning tasks was evaluated at baseline and follow up. Intention-to-treat and per protocol analyses were performed. At follow up, biomarkers of DHA status were significantly higher in the DHA-supplemented group. Performance on the cognitive tasks and reported treatment-related adverse events did not differ. While no evidence of cognitive effect was seen, a larger sample size is needed to be conclusive, which may not be feasible in this population. Supplementation was a safe and effective way to increase biomarkers of DHA status (www.clinicaltrials.gov; Identifier: NCT00892554). PMID:22000478

  3. Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant's immune system early in life.

    Science.gov (United States)

    Richard, Caroline; Lewis, Erin D; Field, Catherine J

    2016-05-01

    Long-chain polyunsaturated fatty acids (LCPUFA), especially the balance between arachidonic (AA) and docosahexaenoic (DHA) acids are known to have important immunomodulatory roles during the postnatal period when the immune system is rapidly developing. AA and DHA are required in infant formula in many countries but are optional in North America. The rationale for adding these LCPUFA to full-term formula is based on their presence in breast milk and randomized controlled studies that suggest improved cognitive function in preterm infants, but results are more variable in full-term infants. Recently, the European Food Safety Authority has proposed, based on a lack of functional evidence, that AA is not required in infant formula for full-term infants during the first year of life but DHA should remain mandatory. The purpose of this review is to review the evidence from epidemiological and intervention studies regarding the essentiality of AA and DHA in the postnatal infant and maternal diet (breast-feeding) for the immune system development early in life. Although studies support the essentiality of DHA for the immune system development, more research is needed to rule out the essentiality of AA. Nevertheless, intervention studies have demonstrated improvement in many markers of immune function in infants fed formula supplemented with AA and DHA compared with unsupplemented formula, which appears to consistently result in beneficial health outcomes including reduction in the risk of developing allergic and atopic disease early in life.

  4. Effect of docosahexaenoic acid supplementation on inflammatory cytokine levels in infants at high genetic risk for type 1 diabetes.

    Science.gov (United States)

    Chase, H Peter; Boulware, David; Rodriguez, Henry; Donaldson, David; Chritton, Sonia; Rafkin-Mervis, Lisa; Krischer, Jeffrey; Skyler, Jay S; Clare-Salzler, Michael

    2015-06-01

    Type 1 diabetes (T1D) results from the inflammatory destruction of pancreatic β-cells. In this study, we investigated the effect of docosahexaenoic acid (DHA) supplementation on stimulated inflammatory cytokine production in white blood cells (WBC) from infants with a high genetic risk for T1D. This was a multicenter, two-arm, randomized, double-blind pilot trial of DHA supplementation, beginning either in the last trimester of pregnancy (41 infants) or in the first 5 months after birth (57 infants). Levels of DHA in infant and maternal red blood cell (RBC) membranes and in breast milk were analyzed by gas chromatography/mass spectrometry. Inflammatory cytokines were assayed from whole blood culture supernatants using the Luminex multiplex assay after stimulation with high dose lipopolysaccharide (LPS), 1 µg/mL. The levels of RBC DHA were increased by 61-100% in treated compared to control infants at ages 6-36 months. There were no statistically significant reductions in production of the inflammatory cytokines, IL-1β, TNFα, or IL-12p40 at any of the six timepoints measured. The inflammatory marker, high-sensitivity C-reactive protein (hsCRP), was significantly lower in breast-fed DHA-treated infants compared to all formula-fed infants at the age of 12 months. Three infants (two received DHA) were removed from the study as a result of developing ≥two persistently positive biochemical islet autoantibodies. This pilot trial showed that supplementation of infant diets with DHA is safe and fulfilled the pre-study goal of increasing infant RBC DHA levels by at least 20%. Inflammatory cytokine production was not consistently reduced. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effect of Docosahexaenoic Acid (DHA) Supplementation on Inflammatory Cytokine Levels in Infants at High Genetic Risk for Type 1 Diabetes

    Science.gov (United States)

    Chase, H. Peter; Boulware, David; Rodriguez, Henry; Donaldson, David; Chritton, Sonia; Rafkin-Mervis, Lisa; Krischer, Jeffrey; Skyler, Jay S.; Clare-Salzler, Michael

    2014-01-01

    OBJECTIVE Type 1 diabetes (T1D) results from the inflammatory destruction of pancreatic β-cells. In the present study, we investigated the effect of docosahexaenoic acid (DHA) supplementation on stimulated inflammatory cytokine production in white blood cells (WBC) from infants with a high genetic risk for T1D. RESEARCH DESIGN AND METHODS This was a multicenter, two-arm, randomized, double blind pilot trial of DHA supplementation, beginning either in the last trimester of pregnancy (41 infants) or in the first five months after birth (57 infants). Levels of DHA in infant and maternal red blood cell (RBC) membranes and in breast milk were analyzed by gas chromatography/mass spectrometry. Inflammatory cytokines were assayed from whole blood culture supernatants using the Luminex Multiplex assay after stimulation with high dose lipopolysaccharide (LPS), 1μg/mL. RESULTS The levels of RBC DHA were increased by 61–100% in treated compared to control infants at ages 6 to 36 months. There were no statistically significant reductions in production of the inflammatory cytokines, IL-1β, TNFα or IL-12p40 at any of the 6 time points measured. The inflammatory marker, hsCRP, was significantly lower in breast-fed DHA-treated infants compared to all formula-fed infants at age 12 months. Three infants (two received DHA) were removed from the study as a result of developing ≥ two persistently positive biochemical islet autoantibodies. CONCLUSIONS This pilot trial showed that supplementation of infant diets with DHA is safe and fulfilled the pre-study goal of increasing infant RBC DHA levels by at least 20%. Inflammatory cytokine production was not consistently reduced. PMID:25039804

  6. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF)

    DEFF Research Database (Denmark)

    Brenna, J Thomas; Akomo, Peter; Bahwere, Paluku

    2015-01-01

    with altered PUFA content and looked at the effects on circulating omega-3 docosahexaenoic acid (DHA) status as a measure of overall omega-3 status. Supplemental oral administration of omega-3 DHA or reduction of RUTF omega-6 linoleic acid using high oleic peanuts improved DHA status, whereas increasing omega...

  7. Dietary structured triacylglycerols containing docosahexaenoic acid given from birth affect visual and auditory performance and tissue fatty acid profiles of rats

    DEFF Research Database (Denmark)

    Christensen, M. M.; Lund, S. P.; Simonsen, L.

    1998-01-01

    To examine whether it is possible to enhance the level of 22:6(n-3) in the central nervous system, newborn rats were fed dietary supplements containing oils with either specific or random triacylglycerol structure, but similar concentrations of polyunsaturated fatty acids. In the specific structu...... in differences in learning ability, but caused changes in visual function, evidenced by higher latency of the b-wave and lower oscillatory potential, and in auditory brainstem response, evidenced by generally greater amplitude of wave la in the group fed specific structured oil....

  8. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    Science.gov (United States)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  9. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio

    NARCIS (Netherlands)

    van Goor, S. A.; Schaafsma, A.; Erwich, J. J. H. M.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between

  10. Differential partitioning of rumen-protected n-3 and n-6 fatty acids into muscles with different metabolism.

    Science.gov (United States)

    Wolf, C; Ulbrich, S E; Kreuzer, M; Berard, J; Giller, K

    2018-03-01

    Bioavailability of polyunsaturated fatty acids (PUFA) in ruminants is enhanced by their protection from ruminal biohydrogenation. Both n-3 and n-6 PUFA fulfil important physiological functions. We investigated potentially different incorporation patterns of these functional PUFA into three beef muscles with different activity characteristics. We supplemented 33 Angus heifers with rumen-protected oils characterized either by mainly C18:2 n-6 (linoleic acid (LA) in sunflower oil) or by C20:5 (eicosapentaenoic acid (EPA)) and C22:6 (docosahexaenoic acid (DHA)), both prevalent n-3 PUFA in fish oil. Contents and proportions of n-3 and n-6 PUFA of total fatty acids were elevated in the muscles of the respective diet group but they were partitioned differently into the muscles. For EPA and DHA, but not for LA, the diet effect was more distinct in the extensor carpi radialis compared to longissimus thoracis and biceps femoris. Partitioning of PUFA in metabolism could be related to muscle function. This has to be confirmed in other muscles, adipose tissues and organs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D; Bieberich, Andrew A; Terry, Colin; Harvey, Kevin A; VanHorn, Justin F; Xu, Zhidong; Jo Davisson, V; Siddiqui, Rafat A

    2011-01-01

    Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED 50 . Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER - PR - Her2 + ) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes

  12. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae.

    Science.gov (United States)

    Aussant, Justine; Guihéneuf, Freddy; Stengel, Dagmar B

    2018-04-25

    Microalgae are considered a sustainable source of high-value products with health benefits. Marine algae-derived omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are considered dietary elements with effects on mental health, cognition enhancement, and cardiovascular protection. This study investigated the temperature effect on omega-3 LC-PUFA production in eight species of microalgae from various taxonomic groups, with a focus on achieving an optimal balance between omega-3 accumulation and efficient growth performance. Samples were batch-cultivated at four different temperatures, with constant light, and fatty acid methyl esters (FAME) were analyzed by gas chromatography. Several nutritional indices were calculated to assess the potential value of biomass produced for human consumption. Two promising candidates were identified suitable for batch cultivation and large-scale production: Nannochloropsis oculata for EPA and Isochrysis galbana for DHA production, with optimum productivities obtained between 14 and 20 °C, and nutritional indices falling within the range required for nutritional benefit.

  13. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Kwong, Kei-Man; Domenichiello, Anthony F; Chen, Chuck T; Bazinet, Richard P; Burnham, W M

    2015-09-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in

  14. Effect of Oral Docosahexaenoic Acid (DHA) Supplementation on DHA Levels and Omega-3 Index in Red Blood Cell Membranes of Breast Cancer Patients.

    Science.gov (United States)

    Molfino, Alessio; Amabile, Maria I; Mazzucco, Sara; Biolo, Gianni; Farcomeni, Alessio; Ramaccini, Cesarina; Antonaroli, Simonetta; Monti, Massimo; Muscaritoli, Maurizio

    2017-01-01

    Rationale: Docosahexaenoic acid (DHA) in cell membrane may influence breast cancer (BC) patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability of DHA incorporation into cell membrane might help to treat this condition. Methods: We enrolled BC patients and healthy controls, recording their seafood dietary intake. DHA in form of algal oil was administered for 10 consecutive days (2 g/day). Blood samples were collected at baseline (T0) and after 10 days of supplementation (T1) to assess DHA, omega-3 index, as the sum of DHA + eicosapentaenoic acid (EPA), in red blood cells (RBC) membranes and plasma tumor necrosis factor-alpha and interleukin-6 levels. Pre- and post-treatment fatty acid profiles were obtained by gas-chromatography. Parametric and non-parametric tests were performed, as appropriate, and P -value DHA and omega-3 index increased from T0 to T1 in the 3 groups of BC patients and in controls ( P DHA incorporation between each group of BC patients and between patients and controls, except for M group, which incorporated higher DHA levels with respect to controls (β = 0.42; P = 0.03). No association was documented between cytokines levels and DHA and omega-3 index at baseline and after DHA supplementation. Independent of the presence of BC, women considered as "good seafood consumers" showed at baseline DHA and omega-3 index higher with respect to "low seafood consumers" ( P = 0.04; P = 0.007, respectively). After supplementation, the increase in DHA levels was greater in "low seafood consumers" with respect to "good seafood consumers" ( P DHA supplementation was associated with increased DHA levels and omega-3 index in RBC membranes of BC cancer patients, independent of the type of BC presentation, and in controls. BRCA1/2 mutation, as well as low seafood consuming habits in both BC patients and healthy

  15. Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer's disease.

    NARCIS (Netherlands)

    Rijpma, A.; Meulenbroek, O.V.; Hees, A.M. van; Sijben, J.W.; Vellas, B.; Shah, R.C.; Bennett, D.A.; Scheltens, P.; Olde Rikkert, M.G.M.

    2015-01-01

    INTRODUCTION: Circulating levels of uridine, selenium, vitamins B12, E and C, folate, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been shown to be lower in patients with Alzheimer's disease (AD) than in healthy individuals. These low levels may affect disease pathways involved in

  16. Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer's disease

    NARCIS (Netherlands)

    Rijpma, A.; Meulenbroek, O.; van Hees, A.M.J.; Sijben, J.W.C.; Vellas, B.; Shah, R.C.; Bennett, D.A.; Scheltens, P.; Rikkert, M.G.M.O.

    2015-01-01

    Introduction: Circulating levels of uridine, selenium, vitamins B12, E and C, folate, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been shown to be lower in patients with Alzheimer's disease (AD) than in healthy individuals. These low levels may affect disease pathways

  17. Eicosahexanoic Acid (EPA and Docosahexanoic Acid (DHA in Muscle Damage and Function

    Directory of Open Access Journals (Sweden)

    Eisuke Ochi

    2018-04-01

    Full Text Available Nutritional supplementation not only helps in improving and maintaining performance in sports and exercise, but also contributes in reducing exercise fatigue and in recovery from exhaustion. Fish oil contains large amounts of omega-3 fatty acids, eicosapentaenoic acid (EPA; 20:5 n-3 and docosahexaenoic acid (DHA; 22:6 n-3. It is widely known that omega-3 fatty acids are effective for improving cardiac function, depression, cognitive function, and blood as well as lowering blood pressure. In the relationship between omega-3 fatty acids and exercise performance, previous studies have been predicted improved endurance performance, antioxidant and anti-inflammatory responses, and effectivity against delayed-onset muscle soreness. However, the optimal dose, duration, and timing remain unclear. This review focuses on the effects of omega-3 fatty acid on muscle damage and function as evaluated by human and animal studies and summarizes its effects on muscle and nerve damage, and muscle mass and strength.

  18. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  19. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects

  20. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    OpenAIRE

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protei...

  1. Use of a novel docosahexaenoic acid formulation vs control in a neonatal porcine model of short bowel syndrome leads to greater intestinal absorption and higher systemic levels of DHA.

    Science.gov (United States)

    Martin, Camilia R; Stoll, Barbara; Cluette-Brown, Joanne; Akinkuotu, Adesola C; Olutoye, Oluyinka O; Gura, Kathleen M; Singh, Pratibha; Zaman, Munir M; Perillo, Michael C; Puder, Mark; Freedman, Steven D; Burrin, Doug

    2017-03-01

    Infants with short bowel syndrome (SBS) are at high risk for malabsorption, malnutrition, and failure to thrive. The objective of this study was to evaluate in a porcine model of SBS, the systemic absorption of a novel enteral Docosahexaenoic acid (DHA) formulation that forms micelles independent of bile salts (DHA-ALT®). We hypothesized that enteral delivery of DHA-ALT® would result in higher blood levels of DHA compared to a control DHA preparation due to improved intestinal absorption. SBS was induced in term piglets through a 75% mid-jejunoileal resection and the piglets randomized to either DHA-ALT® or control DHA formulation (N=5 per group) for 4 postoperative days. The median±IQR difference in final vs starting weight was 696±425 g in the DHA-ALT® group compared to 132±278 g in the controls (P=.08). Within 12 hours, median±IQR DHA and eicosapentaenoic acid plasma levels (mol%) were significantly higher in the DHA-ALT® vs control group (4.1±0.3 vs 2.5±0.5, P=.009; 0.7±0.3 vs 0.2±0.005, P=.009, respectively). There were lower fecal losses of DHA and greater ileal tissue incorporation with DHA-ALT® vs the control. Morphometric analyses demonstrated an increase in proximal jejunum and distal ileum villus height in the DHA-ALT® group compared to controls (P=.01). In a neonatal porcine model of SBS, enteral administration of a novel DHA preparation that forms micelles independent of bile salts resulted in increased fatty acid absorption, increased ileal tissue incorporation, and increased systemic levels of DHA. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Lewis acid enhanced switching of the 1,1-dicyanodihydroazulene/vinylheptafulvene photo/thermoswitch

    DEFF Research Database (Denmark)

    Parker, Christian Richard; Tortzen, Christian Gregers; Broman, Søren Lindbæk

    2011-01-01

    Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion.......Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion....

  3. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  4. Effects of dietary supplementation with docosahexaenoic acid (DHA on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice

    Directory of Open Access Journals (Sweden)

    Jency Thomas

    2015-08-01

    Full Text Available A body of evidence has accumulated indicating diabetes is associated with cognitive impairments. Effective strategies are therefore needed that will delay or prevent the onset of these diabetes-related deficits. In this regard, dietary modification with the naturally occurring compound, docosahexaenoic acid (DHA, holds significant promise as it has been shown to have anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The hippocampus, a limbic structure involved in cognitive functions such as memory formation, is particularly vulnerable to the neurotoxic effects related to diabetes, and we have previously shown that streptozotocin-induced diabetes alters hippocampal gene expression, including genes involved in synaptic plasticity and neurogenesis. In the present study, we explored the effects of dietary supplementation with DHA on hippocampal gene expression in C57Bl/6 diabetic mice. Diabetes was established using streptozotocin (STZ and once stable, the dietary intervention group received AIN93G diet supplemented with DHA (50 mg/kg/day for 6 weeks. Microarray based genome-wide expression analysis was carried out on the hippocampus of DHA supplemented diabetic mice and confirmed by real time polymerase chain reaction (RT-qPCR. Genome-wide analysis identified 353 differentially expressed genes compared to non-supplemented diabetic mice. For example, six weeks of dietary DHA supplementation resulted in increased hippocampal expression of Igf II and Sirt1 and decreased expression of Tnf-α, Il6, Mapkapk2 and ApoE, compared to non-supplemented diabetic mice. Overall, DHA supplementation appears to alter hippocampal gene expression in a way that is consistent with it being neuroprotective in the context of the metabolic and inflammatory insults associated with diabetes.

  5. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23-IL-17 signaling in macrophages

    NARCIS (Netherlands)

    Poland, Mieke; Ten Klooster, Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, Mark; Witkamp, Renger; Meijerink, Jocelijn

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  6. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program.

    Science.gov (United States)

    Carrero, Juan Jesús; Fonollá, Juristo; Marti, José Luis; Jiménez, Jesús; Boza, Julio J; López-Huertas, Eduardo

    2007-02-01

    Certain nutrients have been shown to be effective in preventing coronary heart disease. We hypothesized that a daily intake of low amounts of a number of these nutrients would exert beneficial effects on risk factors and clinical variables in patients that suffered from myocardial infarction (MI) and were following a cardiac rehabilitation program. Forty male MI patients were randomly allocated into 2 groups. The supplemented group consumed 500 mL/d of a fortified dairy product containing eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, and vitamins A, B-6, D, and E. The control group consumed 500 mL/d of semi-skimmed milk with added vitamins A and D. The patients received supervised exercise training, lifestyle and dietary recommendations, and they were instructed to consume the products in addition to their regular diet. Blood extractions and clinical examinations were performed after 0, 3, 6, 9, and 12 mo. Plasma concentrations of eicosapentaenoic acid, docosahexaenoic acid, oleic acid, folic acid, vitamin B-6, and vitamin E increased after supplementation (Preactive protein concentrations decreased in the supplemented group (Pprogram comprising regular exercise and the intake of a combination of dietary nutrients, reduced a variety of risk factors in MI patients, which supports the rationale for nutritional programs in the secondary prevention of coronary heart disease.

  7. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  8. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    Science.gov (United States)

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  10. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  11. Influence of goats feeding on the fatty acids content in milk

    Directory of Open Access Journals (Sweden)

    Željka Klir

    2012-12-01

    Full Text Available Numerous studies have demonstrated the possibility of modeling the content of fatty acids of milk fat, in order to increase the contents of desirable n-3 unsaturated fatty acids and decrease saturated fatty acid with adequate nutrition of goats. Previous studies showed that the milk of goats on pasture increased content of caproic (C6:0, caprylic (C8:0, conjugated linoleic acid (CLA, rumenic acid, cis-9, trans-11 C18:2, linolenic (C18:3, eicosapentaenoic (C20:5 and docosahexaenoic (C22:6 and total content of polyunsaturated fatty acids (PUFA. In the same group of goats lower content of palmitoleic (C16:1, linoleic (C18:2 and total n-6 unsaturated fatty acids was found, as well as lower n-6/n-3 ratio compared with group of goats kept indoors and fed with alfalfa hay. In milk of goats fed with diets supplemented with safflower oil, content of CLA significantly increased, while goats fed with diets supplement with linseed oil had significantly higher content of C18:3 in milk, compared with group of goats fed without addition of these oils. Goats fed with addition of protected fish oil had significant transfer of eicosapentaenoic-EPA and docosahexaenoic-DHA fatty acids in milk. Protected fish oil reduced the negative impact of long chain fatty acids on the activity of ruminal microorganisms, consumption and digestibility of fiber, as well as inhibition of synthesis of fatty acids in milk gland. When adding unprotected fish oil, increase of stearic (C18:0 and oleic (C18:1 fatty acids occurred, because of the biohydrogenation of polyunsaturated fatty acids in rumen.

  12. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23–IL-17 signaling in macrophages

    NARCIS (Netherlands)

    Poland, Mieke; Klooster, ten Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, Mark; Witkamp, Renger; Meijerink, Jocelijn

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  13. Docosahexaenoyl Serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate, has anti-inflammatory properties by attenuating IL23–IL17 signalling in macrophages

    NARCIS (Netherlands)

    Poland, M.C.R.; Klooster, ten Jean Paul; Wang, Zheng; Pieters, Raymond; Boekschoten, M.V.; Witkamp, R.F.; Meijerink, J.

    2016-01-01

    Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signalling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong

  14. Combined intervention with pioglitazone and n-3 fatty acids in metformin-treated type 2 diabetic patients: improvement of lipid metabolism

    Czech Academy of Sciences Publication Activity Database

    Veleba, J.; Kopecký Jr., J.; Janovská, Petra; Kuda, Ondřej; Horáková, Olga; Malínská, H.; Kazdová, L.; Oliyarnyk, O.; Škop, V.; Trnovská, J.; Hájek, M.; Škoch, A.; Flachs, Pavel; Bardová, Kristina; Rossmeisl, Martin; Olza, J.; de Castro, S. G.; Calder, P. C.; Gardlo, Alžběta; Fišerová, E.; Jensen, J.; Bryhn, M.; Kopecký, Jan; Pelikánová, T.

    2015-01-01

    Roč. 12, Dec 2 (2015), s. 52 ISSN 1743-7075 R&D Projects: GA MZd(CZ) NT13763 Institutional support: RVO:67985823 Keywords : eicosapentaenoic acid * docosahexaenoic acid * indirect calorimetry * meal test * humans * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.280, year: 2015

  15. Use of a novel docosahexaenoic acid (DHA) formulation versus control in a neonatal porcine model of short bowel syndrome leads to greater intestinal absorption and higher systemic levels of DHA

    Science.gov (United States)

    Martin, Camilia R.; Stoll, Barbara; Cluette-Brown, Joanne; Akinkuotu, Adesola C.; Olutoye, Oluyinka O.; Gura, Kathleen M.; Singh, Pratibha; Zaman, Munir M.; Perillo, Michael C.; Puder, Mark; Freedman, Steven D.; Burrin, Doug

    2017-01-01

    Infants with short bowel syndrome (SBS) are at high risk for malabsorption, malnutrition, and failure to thrive. The objective of this study was to evaluate in a porcine model of SBS, the systemic absorption of a novel enteral Docosahexaenoic acid (DHA) formulation that forms micelles independent of bile salts (DHA-ALT®). We hypothesized that enteral delivery of DHA-ALT® would result in higher blood levels of DHA compared to a control DHA preparation due to improved intestinal absorption. SBS was induced in term piglets through a 75% mid-jejunoileal resection and the piglets randomized to either DHA-ALT® or control DHA formulation (N=5 per group) for 4 postoperative days. The median ± IQR difference in final versus starting weight was 696 ± 425g in the DHA-ALT® group compared to 132 ± 278g in the controls (p=.08). Within 12 hours, median ± IQR DHA and eicosapentaenoic acid plasma levels (mol%) were significantly higher in the DHA-ALT® vs. control group (4.1 ± 0.3 vs 2.5 ± 0.5, p=0.009; 0.7 ± 0.3 vs 0.2 ± 0.005, p=0.009, respectively). There were lower fecal losses of DHA and greater ileal tissue incorporation with DHA-ALT® versus the control. Morphometric analyses demonstrated an increase in proximal jejunum and distal ileum villus height in the DHA-ALT® group compared to controls (p=0.01). In a neonatal porcine model of SBS, enteral administration of a novel DHA preparation that forms micelles independent of bile salts resulted in increased fatty acid absorption, increased ileal tissue incorporation, and increased systemic levels of DHA. PMID:28385289

  16. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study.

    Science.gov (United States)

    Allaire, Janie; Couture, Patrick; Leclerc, Myriam; Charest, Amélie; Marin, Johanne; Lépine, Marie-Claude; Talbot, Denis; Tchernof, André; Lamarche, Benoît

    2016-08-01

    To date, most studies on the anti-inflammatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans have used a mixture of the 2 fatty acids in various forms and proportions. We compared the effects of EPA supplementation with those of DHA supplementation (re-esterified triacylglycerol; 90% pure) on inflammation markers (primary outcome) and blood lipids (secondary outcome) in men and women at risk of cardiovascular disease. In a double-blind, randomized, crossover, controlled study, healthy men (n = 48) and women (n = 106) with abdominal obesity and low-grade systemic inflammation consumed 3 g/d of the following supplements for periods of 10 wk: 1) EPA (2.7 g/d), 2) DHA (2.7 g/d), and 3) corn oil as a control with each supplementation separated by a 9-wk washout period. Primary analyses assessed the difference in cardiometabolic outcomes between EPA and DHA. Supplementation with DHA compared with supplementation with EPA led to a greater reduction in interleukin-18 (IL-18) (-7.0% ± 2.8% compared with -0.5% ± 3.0%, respectively; P = 0.01) and a greater increase in adiponectin (3.1% ± 1.6% compared with -1.2% ± 1.7%, respectively; P DHA and EPA, changes in CRP (-7.9% ± 5.0% compared with -1.8% ± 6.5%, respectively; P = 0.25), IL-6 (-12.0% ± 7.0% compared with -13.4% ± 7.0%, respectively; P = 0.86), and tumor necrosis factor-α (-14.8% ± 5.1% compared with -7.6% ± 10.2%, respectively; P = 0.63) were NS. DHA compared with EPA led to more pronounced reductions in triglycerides (-13.3% ± 2.3% compared with -11.9% ± 2.2%, respectively; P = 0.005) and the cholesterol:HDL-cholesterol ratio (-2.5% ± 1.3% compared with 0.3% ± 1.1%, respectively; P = 0.006) and greater increases in HDL cholesterol (7.6% ± 1.4% compared with -0.7% ± 1.1%, respectively; P DHA compared with EPA was significant in men but not in women (P-treatment × sex interaction = 0.046). DHA is more effective than EPA in modulating specific markers of inflammation

  17. Effect of the preparation of canned "crumbled anchovy" (Engraulis ringens) on polyunsaturated omega 3 fatty acids

    OpenAIRE

    Ordoñez, Lenny R.; Hernánde, Eloisa M.

    2015-01-01

    The anchoveta (Engraulis ringens) is a major fishery resources exploited in Peru. It is rich source of proteins of high biological value and polyunsaturated fatty acids omega-3: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The objective was to determine the effect of the process of preparing the canned "crumbled anchovy" with emphasis on polyunsaturated omega-3 fatty acids and true content of them in canning. It was developed following the standardized technology by the Institu...

  18. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants.

    Science.gov (United States)

    Jensen, Craig L; Voigt, Robert G; Llorente, Antolin M; Peters, Sarika U; Prager, Thomas C; Zou, Yali L; Rozelle, Judith C; Turcich, Marie R; Fraley, J Kennard; Anderson, Robert E; Heird, William C

    2010-12-01

    We previously reported better psychomotor development at 30 months of age in infants whose mothers received a docosahexaenoic acid (DHA) (22:6n-3) supplement for the first 4 months of lactation. We now assess neuropsychological and visual function of the same children at 5 years of age. Breastfeeding women were assigned to receive identical capsules containing either a high-DHA algal oil (∼200 mg/d of DHA) or a vegetable oil (containing no DHA) from delivery until 4 months postpartum. Primary outcome variables at 5 years of age were measures of gross and fine motor function, perceptual/visual-motor function, attention, executive function, verbal skills, and visual function of the recipient children at 5 years of age. There were no differences in visual function as assessed by the Bailey-Lovie acuity chart, transient visual evoked potential or sweep visual evoked potential testing between children whose mothers received DHA versus placebo. Children whose mothers received DHA versus placebo performed significantly better on the Sustained Attention Subscale of the Leiter International Performance Scale (46.5 ± 8.9 vs 41.9 ± 9.3, P DHA supplementation versus placebo for the first 4 months of breastfeeding performed better on a test of sustained attention. This, along with the previously reported better performance of the children of DHA-supplemented mothers on a test of psychomotor development at 30 months of age, suggests that DHA intake during early infancy confers long-term benefits on specific aspects of neurodevelopment. Copyright © 2010 Mosby, Inc. All rights reserved.

  19. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    Science.gov (United States)

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  20. Lipid and fatty acid fractions in Lingula anatina (Brachiopoda): an intertidal benthic fauna in the West Bengal-Orissa coast, India

    OpenAIRE

    Samaresh Samanta; Tapas Kumar Das; Amalesh Choudhury; Susanta Kumar Chakraborty

    2014-01-01

    Objective: To record the fractional components of lipid and polyunsaturated fatty acids of Lingula anatina (L. anatina), a Precambrian intertidal benthic brachiopod, giving emphasis on -ω series group especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) alongside assessing their biotransformation within the population and mangrove-estuarine associated community. Methods: Different biological samples after being collected from three contrasting study sites viz. ...

  1. Efficient and specific analysis of red blood cell glycerophospholipid fatty acid composition.

    Directory of Open Access Journals (Sweden)

    Sabrina Klem

    Full Text Available BACKGROUND: Red blood cell (RBC n-3 fatty acid status is related to various health outcomes. Accepted biological markers for the fatty acid status determination are RBC phospholipids, phosphatidylcholine, and phosphatidyletholamine. The analysis of these lipid fractions is demanding and time consuming and total phospholipid n-3 fatty acid levels might be affected by changes of sphingomyelin contents in the RBC membrane during n-3 supplementation. AIM: We developed a method for the specific analysis of RBC glycerophospholipids. The application of the new method in a DHA supplementation trial and the comparison to established markers will determine the relevance of RBC GPL as a valid fatty acid status marker in humans. METHODS: Methyl esters of glycerophospholipid fatty acids are selectively generated by a two step procedure involving methanolic protein precipitation and base-catalysed methyl ester synthesis. RBC GPL solubilisation is facilitated by ultrasound treatment. Fatty acid status in RBC glycerophospholipids and other established markers were evaluated in thirteen subjects participating in a 30 days supplementation trial (510 mg DHA/d. OUTCOME: The intra-assay CV for GPL fatty acids ranged from 1.0 to 10.5% and the inter-assay CV from 1.3 to 10.9%. Docosahexaenoic acid supplementation significantly increased the docosahexaenoic acid contents in all analysed lipid fractions. High correlations were observed for most of the mono- and polyunsaturated fatty acids, and for the omega-3 index (r = 0.924 between RBC phospholipids and glycerophospholipids. The analysis of RBC glycerophospholipid fatty acids yields faster, easier and less costly results equivalent to the conventional analysis of RBC total phospholipids.

  2. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    OpenAIRE

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA...

  3. THE USE OF OMEGA-3 FATTY ACIDS FOR THE TREATMENT OF PATIENTS WITH CARDIAC ARRHYTHMIAS

    Directory of Open Access Journals (Sweden)

    A. O. Malygin

    2015-09-01

    Full Text Available Antiarrhythmic effect of omega-3 polyunsaturated fatty acids (ω-3 PUFA, eicosapentaenoic and docosahexaenoic acids in patients with recurrent atrial fibrillation and ventricular arrhythmias had been proven. The positive effect of the ω-3 PUFA on the risk of sudden arrhythmic death and overall mortality in the patients after myocardial infarction and patients with chronic heart failure had been also proven.

  4. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    International Nuclear Information System (INIS)

    Noda, Yoshifumi; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T.

    2016-01-01

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  5. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Kajita, Kimihiro [Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-11-15

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  6. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    OpenAIRE

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic ac...

  7. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Science.gov (United States)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  8. Light-enhanced acid catalysis over a metal-organic framework.

    Science.gov (United States)

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  9. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: Design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, J.M.; Giltay, E.J.; Schouten, E.G.; Goede, de J.; Oude Griep, L.M.; Teitsma-Jansen, A.M.; Katan, M.B.; Kromhout, D.

    2010-01-01

    Background Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  10. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4,837 post-myocardial infarction patients: design and baseline characteristics of the Alpha Omega Trial

    NARCIS (Netherlands)

    Geleijnse, Johanna M.; Giltay, Erik J.; Schouten, Evert G.; de Goede, Janette; Oude Griep, Linda M.; Teitsma-Jansen, Anna M.; Katan, Martijn B.; Kromhout, Daan; Kromhout, D.; Schouten, E. G.; Geleijnse, J. M.; Giltay, E. J.; de Goede, J.; Oude Griep, L. M.; Mulder, B. J. M.; Mulder, J. W.; Zock, P. L.; de Boer, M. J.; de Leeuw, H.; Boersma, E.; Jukema, J. W.; van Binsbergen, J. J.; van der Kuip, D. A. M.; Thomas, K.; Rivero-Ayerza, M.; Vollaard, A. M.; Fieren, C. J.; van Kempen, L. H. J.; Bakx, A.; Sedney, M. I.; Hertzberger, D. P.; Michels, H. R.; de Rotte, A. A.; van Rugge, R. P.; Klootwijk, A.; Verheul, J. A.; Nicastia, D. M.; Robles de Medina, R.; van Rossem, M.; Leenders, C. M.; van der Meer, P.; Uppal, S. C.; Blok, J. G.; Visser, R. F.; Mosterd, A.; Umans, V. A.; Reichert, C. L. A.; Louwerenburg, J. W.; Liem, A. H.; van Rees, C.

    2010-01-01

    BACKGROUND: Weekly fish consumption has been related to a lower risk of fatal coronary heart disease (CHD) and incident stroke in populations with a low fish intake. This relation has mainly been attributed to n-3 fatty acids in fish, that is, eicosapentaenoic acid (EPA) and docosahexaenoic acid

  11. Developmentally dependent and different roles of fatty acids OMEGA-6 and OMEGA-3

    DEFF Research Database (Denmark)

    Mourek, J; Mourek, J

    2011-01-01

    The developmentally-dependent differences in the biological significances and effects of PUFA-OMEGA-6 (namely of arachidonic acid) and PUFA-OMEGA-3 (namely of docosahexaenoic acid) are discussed. The clinical results as well as developmental experiences are indicating a hypothesis of the evolution...... that created mutual relationship between those two substances (with immunological basis and following recuperation). The anti-inflammatory actions of PUFA-OMEGA-3 are the most visible (and significant) contrasts as compared with the large affects of namely arachidonic acid and its metabolites....

  12. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    Science.gov (United States)

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  14. The effect of concentrated n-3 fatty acids versus gemfibrozil on plasma lipoproteins, low density lipoprotein heterogeneity and oxidizability in patients with hypertriglyceridemia

    NARCIS (Netherlands)

    Stalenhoef, A. F.; de Graaf, J.; Wittekoek, M. E.; Bredie, S. J.; Demacker, P. N.; Kastelein, J. J.

    2000-01-01

    We evaluated in a double-blind randomized trial with a double-dummy design in 28 patients with primary hypertriglyceridemia, the effect of gemfibrozil (1200 mg/day) versus Omacor (4 g/day), a drug containing the n-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), on lipid and

  15. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Directory of Open Access Journals (Sweden)

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  16. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  17. Baking Reduces Prostaglandin, Resolvin, and Hydroxy-Fatty Acid Content of Farm-Raised Atlantic Salmon (Salmo salar)

    OpenAIRE

    Raatz, Susan K.; Golovko, Mikhail Y.; Brose, Stephen A.; Rosenberger, Thad A.; Burr, Gary S.; Wolters, William R.; Picklo, Matthew J.

    2011-01-01

    Consumption of seafood enriched in n-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of cardiovascular disease. Several n-3 oxidation products from eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have known protective effects in the vasculature. It is not known whether consumption of cooked seafood enriched in n-3 PUFA causes appreciable consumption of lipid oxidation products. We tested the hypothesis that baking Atlantic salmon (Salmo sa...

  18. Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, S. [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Viswanathan, K.S., E-mail: vish@igcar.gov.in [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-09-15

    Trimesic acid (TMA) was shown to sensitize and enhance uranyl fluorescence in aqueous medium, with the enhancement being a maximum at pH 5.0. Fluorescence spectra and lifetime data together suggest that TMA complexes with uranyl (UO{sub 2}{sup 2+}). The fluorescence of UO{sub 2}{sup 2+} in its acid complex is further enhanced by more than two orders of magnitude following the addition of Y{sup 3+}; a process referred to as co-fluorescence, leading to the possibility of detecting uranium at sub ng/mL level. The present study demonstrates, for the first time, fluorescence enhancement of the uranyl species due to co-fluorescence. - Highlights: > Trimesic acid was shown to sensitize and enhance the fluorescence of uranium in aqueous medium. > This ligand also exhibited co-fluorescence of uranium with Y{sup 3+}. > To the best of our knowledge this is the first report of co-fluorescence in uranium. > The enhancement of uranium fluorescence, resulted in detection limits in the ng/mL regime.

  19. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    Science.gov (United States)

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  20. Arachidonic Acid, but Not Omega-3 Index, Relates to the Prevalence and Progression of Abdominal Aortic Aneurysm in a Population-Based Study of Danish Men

    DEFF Research Database (Denmark)

    Lindholt, Jes S; Kristensen, Katrine L; Burillo, Elena

    2018-01-01

    BACKGROUND: Animal models support dietary omega-3 fatty acids protection against abdominal aortic aneurysm (AAA), but clinical data are scarce. The sum of red blood cell proportions of the omega-3 eicosapentaenoic and docosahexaenoic acids, known as omega-3 index, is a valid surrogate for long-te...

  1. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    OpenAIRE

    Huss, Michael; V?lp, Andreas; Stauss-Grabo, Manuela

    2010-01-01

    Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsy...

  2. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-10-01

    Full Text Available Background: Distiller's dried grains with solubles (DDGS and soybean meal were used as the substrates for the production of polyunsaturated fatty acids (PUFA in solid-state fermentation (SSF by Mortierella alpine. These fermented products were fed to laying hens. PUFA enrichment from chicken breasts was studied. Methods: The maximum productivity of PUFA was achieved under optimized process condition, including 1% w/w yeast extract as additive, an incubation period of 5 days at 12°C, 10% v/w inoculum level, 75% moisture content, and pH 6.0. The hens were then fed with ration containing soybean DDGS, rapeseed oil, soybean oil, and peanut oil. The control group was fed with basal ration. Results: Under the optimal condition, M. alpine produced total fatty acids (TFA of 182.34 mg/g dry substrate. It has better mycelial growth when soybean meal was added to DDGS (SDDGS. PUFA in fermentation product increased with higher soybean meal content. The addition of 70% soybean meal to DDGS substrate yielded 175.16 mg of TFA, including 2.49 mg eicosapentaenoic acid (EPA and 5.26 mg docosahexaenoic acid (DHA. The ratios of ω-6/ω-3 found in chicken breasts fat were all lower than that found in control by 36.98, 31.51, 18.15, and 12.63% for SDDGS, rapeseed oil, soybean oil, and peanut oil, respectively. Conclusions: This study identified an optimized SSF process to maximize PUFA productivity by M. alpine as the strain. This PUFA-enriched feed increased the PUFA contents as well as the proportions of ω-6 and ω-3 in chicken breasts and liver.

  3. Lactic Acid Recovery in Electro-Enhanced Dialysis: Modelling and Validation

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2009-01-01

    and migration across the boundary layers and membranes. The model is validated for Donnan dialysis recovery of different monoprotic carboxylic acids. Simulations are used to evaluate the potential enhancement of lactate fluxes under current load conditions, referred as Electro-Enhanced Dialysis operation...

  4. DL- and PO-phosphatidylcholines as a promising learning and memory enhancer

    OpenAIRE

    Nagata, Tetsu; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2011-01-01

    Abstract In the water maze test, oral administration with 1,2-dilynoleoyl-sn-glycero-3-phosphocholine (DLPhtCho)(5 mg/kg) alone or DLPhtCho (5 mg/kg) plus 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPhtCho)(5 mg/kg) significantly shortened the prolonged acquisition latency for rats intraperitoneally injected with scopolamine, with more efficient effect than (POPhtCho)(5 mg/kg) alone, arachidonic acid (AA)(5 mg/kg) alone, docosahexaenoic acid (DHA)(5 mg/kg) alone, or 1-palmitoyl-2-lino...

  5. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    Science.gov (United States)

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  6. Simple amides of oleanolic acid as effective penetration enhancers.

    Science.gov (United States)

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.

  7. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Science.gov (United States)

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  8. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2016-01-01

    Full Text Available Valproic acid (VPA is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA- induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36, low-density lipoprotein receptor-related protein 1 (Lrp1, diacylglycerol acyltransferase 2 (Dgat2, and perilipin 2 (Plin2 were increased, that of carnitine palmitoyltransferase I a (Cpt1a was not affected, and those of acetyl-Co A carboxylase α (Acca and fatty acid synthase (Fasn were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation.

  9. Long chain poly-unsaturated fatty acids attenuate the IL-1?-induced pro-inflammatory response in human fetal intestinal epithelial cells

    OpenAIRE

    Wijendran, Vasuki; Brenna, JT; Wang, Dong Hao; Zhu, Weishu; Meng, Di; Ganguli, Kriston; Kothapalli, Kumar SD; Requena, Pilar; Innis, Sheila; Walker, WA

    2015-01-01

    Background Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. Methods Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate wit...

  10. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau.

    Science.gov (United States)

    Sun, Tao; Liu, Zhiyun; Qin, Liping; Long, Ruijun

    2012-08-30

    Meat safety and nutrition are major concerns of consumers. The development of distinctive poultry production methods based on locally available natural resources is important. Grasshoppers are rich in important nutrients and occur in dense concentrations in most rangelands of northern China. Foraging chickens could be used to suppress grasshopper infestations. However, knowledge of the fatty acid content of meat from free-range broilers reared on alpine rangeland is required. Rearing conditions and diet did not significantly (P > 0.05) affect concentrations of saturated fatty acid (SFA), arachidonic acid, docosahexaenoic acid or the ratio of total n-6 to total n-3 fatty acids. Breast muscle of chickens that had consumed grasshoppers contained significantly (P 0.05) higher than intensively reared birds. Compared with meat from intensively reared birds, meat from free-range broilers had less cholesterol and higher concentrations of total lipid and phospholipids. Chickens eating grasshoppers in rangeland produce superior quality meat and reduce the grasshopper populations that damage the pastures. This provides an economic system of enhanced poultry-meat production, which derives benefits from natural resources rather than artificial additives. Copyright © 2012 Society of Chemical Industry.

  11. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  12. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  13. Quantitative determination of fatty acids in marine fish and shellfish from warm water of Straits of Malacca for nutraceutical purposes.

    Science.gov (United States)

    Abd Aziz, Nurnadia; Azlan, Azrina; Ismail, Amin; Mohd Alinafiah, Suryati; Razman, Muhammad Rizal

    2013-01-01

    This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P < 0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2-944.1 mg/100 g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S = 0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω - 3/ω - 6 = 6.4, P/S = 1.7), moonfish (highest ALA, ω - 3/ω - 6 = 1.9, P/S = 1.0), and longtail shad (highest EPA, ω - 3/ω - 6 = 0.8, P/S = 0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.

  14. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection*

    Science.gov (United States)

    LoRicco, Josephine G.; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C.; Roan, Nadia R.; Makhatadze, George I.

    2016-01-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248–286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86–107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  15. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    Science.gov (United States)

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    Directory of Open Access Journals (Sweden)

    Bimal Prasanna Mohanty

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer’s disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  17. Effect of Oral Docosahexaenoic Acid (DHA Supplementation on DHA Levels and Omega-3 Index in Red Blood Cell Membranes of Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Alessio Molfino

    2017-07-01

    Full Text Available Rationale: Docosahexaenoic acid (DHA in cell membrane may influence breast cancer (BC patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability of DHA incorporation into cell membrane might help to treat this condition.Methods: We enrolled BC patients and healthy controls, recording their seafood dietary intake. DHA in form of algal oil was administered for 10 consecutive days (2 g/day. Blood samples were collected at baseline (T0 and after 10 days of supplementation (T1 to assess DHA, omega-3 index, as the sum of DHA + eicosapentaenoic acid (EPA, in red blood cells (RBC membranes and plasma tumor necrosis factor-alpha and interleukin-6 levels. Pre- and post-treatment fatty acid profiles were obtained by gas-chromatography. Parametric and non-parametric tests were performed, as appropriate, and P-value < 0.05 was considered statistically significant.Results: Forty-three women were studied, divided into 4 groups: 11 patients with BRCA1/2 gene mutation (M group, 12 patients with familiar positive history for BC (F group, 10 patients with sporadic BC (S group, and 10 healthy controls (C group. DHA and omega-3 index increased from T0 to T1 in the 3 groups of BC patients and in controls (P < 0.001. No difference was found in DHA incorporation between each group of BC patients and between patients and controls, except for M group, which incorporated higher DHA levels with respect to controls (β = 0.42; P = 0.03. No association was documented between cytokines levels and DHA and omega-3 index at baseline and after DHA supplementation. Independent of the presence of BC, women considered as “good seafood consumers” showed at baseline DHA and omega-3 index higher with respect to “low seafood consumers” (P = 0.04; P = 0.007, respectively. After supplementation, the increase in DHA levels was

  18. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    Science.gov (United States)

    Janssen, Carola I F; Kiliaan, Amanda J

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important components of neuronal membranes, while eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid also affect cardiovascular health and inflammation. In neural development, LCPUFA deficiency can lead to severe disorders like schizophrenia and attention deficit hyperactivity disorder. Perinatal LCPUFA supplementation demonstrated beneficial effects in neural development in humans and rodents resulting in improved cognition and sensorimotor integration. In normal aging, the effect of LCPUFA on prevention of cognitive impairment will be discussed. LCPUFA are important for neuronal membrane integrity and function, and also contribute in prevention of brain hypoperfusion. Cerebral perfusion can be compromised as result of obesity, cerebrovascular disease, hypertension, or diabetes mellitus type 2. Last, we will focus on the role of LCPUFA in most common neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. These disorders are characterized by impaired cognition and connectivity and both clinical and animal supplementation studies have shown the potential of LCPUFA to decrease neurodegeneration and inflammation. This review shows that LCPUFA are essential throughout life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fatty acid transformation in zooplankton: from seston to benthos

    DEFF Research Database (Denmark)

    Tiselius, Peter; Hansen, Benni Winding; Calliari, Danilo

    2012-01-01

    All organic matter, fatty acids (FA) in particular, is transformed in the pelagic plankton food web before reaching fishes or benthic organisms. Mesozooplankton (0.2 to 2 mm) is the main conduit for FA transfer, and FA profiles in sedimenting matter should therefore be significantly affected by its...... and MUFAs were enriched by 5 to 10% in sediment traps, while the proportion of the most important PUFA, docosahexaenoic acid, was reduced by up to 15% in summer and autumn. In conclusion, the periods of significant input of PUFAs to the sediment coincide with the period of highest transformation...

  20. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, A.; Nieto, S.; Sanhueza, J.; Morgado, N.; Rojas, I.; Zanartu, P.

    2010-07-01

    Docosahexaenoic acid (Dha) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHA containing lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily.), before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT) activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mothers plasma and increases the pups DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period. (Author) 66 refs.

  1. Influence of n-3 fatty acids on cardiac autonomic activity among Nunavik Inuit adults

    OpenAIRE

    Valera, Beatriz; Dewailly, Eric; Anassour-Laouan-Sidi, Elhadji; Poirier, Paul

    2012-01-01

    Objectives. Inuit from Nunavik (northern Quebec) consume large amounts of fish and marine mammals, which are important sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). These substances have a beneficial impact on heart rate (HR) and heart rate variability (HRV). However, it is unknown if this beneficial impact remains significant in populations with high mercury exposure. The study assessed the impact of n-3 PUFAs (Docosahexaenoic [DHA] and Eicosapentaenoic acid [EPA]) on resting HR an...

  2. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  3. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    Science.gov (United States)

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  4. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions

    OpenAIRE

    Walker, Celia G.; West, Annette L.; Browning, Lucy M.; Madden, Jackie; Gambell, Joanna M.; Jebb, Susan A.; Calder, Philip C.

    2015-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify...

  5. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  6. Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Slavík, J.; Ovesná, P.; Tylichová, Zuzana; Vondráček, Jan; Straková, Nicol; Vaculová, Alena; Cigánek, M.; Kozubík, Alois; Knopfová, L.; Šmarda, J.; Machala, M.

    2017-01-01

    Roč. 56, č. 4 (2017), s. 1493-1508 ISSN 1436-6207 R&D Projects: GA ČR GA13-09766S; GA MZd(CZ) NV15-30585A Institutional support: RVO:68081707 Keywords : docosahexaenoic acid * cancer-cells * epithelial-cells Subject RIV: FD - Oncology ; Hematology OBOR OECD: Oncology Impact factor: 4.370, year: 2016

  7. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Directory of Open Access Journals (Sweden)

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  8. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  9. Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arroniz-Crespo, M.; Nunez-Olivera, E. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Martinez-Abaigar, J. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain)], E-mail: javier.martinez@unirioja.es

    2008-01-15

    We examined, under laboratory conditions, the physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to artificially enhanced ultraviolet (UV) radiation for 82 days, especially considering the responses of five hydroxycinnamic acid derivatives. This species lives in mountain streams, where it is exposed to low temperatures and high UV levels, and this combination is believed to increase the adverse effects of UV. Enhanced UV radiation hardly caused any change in several physiological variables indicative of vitality, such as F{sub v}/F{sub m} and chlorophylls/phaeopigments ratio (OD430/OD410). Thus, this liverwort seemed to be tolerant to UV radiation, probably due to the accumulation of three UV-absorbing hydroxycinnamic acid derivatives: p-coumaroylmalic acid, 5''-(7'',8''-dihydroxycoumaroyl)-2-caffeoylmalic acid, and 5''-(7'',8''-dihydroxy-7-O-{beta}-glucosyl-coumaroyl)-2-caffeoylmalic acid. These compounds might serve as bioindicators of enhanced UV radiation. - Several hydroxycinnamic acid derivatives of an aquatic liverwort are induced by enhanced UV radiation and might serve as bioindicators of changes in UV levels.

  10. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Science.gov (United States)

    Straková, Nicol; Vaculová, Alena Hyršlová; Tylichová, Zuzana; Šafaříková, Barbora; Kozubík, Alois

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined. PMID:24876678

  11. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms.

    Science.gov (United States)

    Chang, Mengru; Zhang, Tiantian; Han, Xiuqing; Tang, Qingjuan; Yanagita, Teruyoshi; Xu, Jie; Xue, Changhu; Wang, Yuming

    2018-02-14

    Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.

  12. Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin

    Directory of Open Access Journals (Sweden)

    Li-Wen Zhang

    2011-03-01

    Full Text Available Photodynamic therapy (PDT is a popular technique for skin cancer treatment. Protoporphyrin IX, which is a photosensitizing agent, converted enzymatically from the prodrug 5-aminolevulinic acid (ALA, is used as a photosensitizer in PDT for cancer. However, ALA penetrates with difficulty through intact skin; therefore, improving delivery systems for ALA in the skin will play an important role in ALA-PDT. Enhancement of ALA skin penetration can be achieved by physical methods, such as iontophoresis, laser, microneedles, ultrasound, and by adding chemical penetration enhancers, such as, dimethyl sulfoxide, oleic acid, and others, whereas some researches used lipophilic ALA derivatives and different vehicles to improve the transdermal delivery of ALA. This review introduces several enhancement techniques for increasing ALA permeation through the skin.

  13. Perfluorodecanoic acid enhances the formation of oleic acid in rat liver.

    Science.gov (United States)

    Yamamoto, A; Kawashima, Y

    1997-01-01

    The feeding of perfluorodecanoic acid (PFDA) to male rats at a dietary concentration of 0.005% (w/w) for 7 days resulted in a marked increase in the activity of microsomal stearoyl-CoA desaturation in the liver. This increase in the overall desaturation activity was due to the induction of terminal desaturase among the components comprising the desaturation system. In contrast, PFDA inhibited desaturation in vitro, seemingly due to interference with electron transport through the desaturation system. Accordingly, PFDA can be an inducer and also an inhibitor of delta9-desaturation. PFDA feeding enhanced the conversion of radioactive stearic acid into oleic acid in the liver in vivo, indicating that the induction of delta9-desaturase by PFDA functions in vivo. PFDA feeding increased the mass of octadecenoic acid (C18:1) in the liver and the proportion of C18:1 in microsomal lipid. A highly significant linear correlation existed between the microsomal desaturase activity and the proportion of C18:1 in microsomal lipid when compared using rats in five different physiological states: control, PFDA-fed, p-chlorophenoxyisobutyric acid (clofibric acid)-fed, starved and starved/refed. These results suggest that the increase in the hepatic level of C18:1 caused by feeding of PFDA to rats can be explained by the common concept of regulation, i.e. the hepatic level of C18:1 is under the control of delta9-desaturase. The dietary administration of PFDA also increased the content of cytochrome P-450 and the activity of 7-ethoxycoumarin O-de-ethylase in the liver. PMID:9230124

  14. Quantitative Determination of Fatty Acids in Marine Fish and Shellfish from Warm Water of Straits of Malacca for Nutraceutical Purposes

    Directory of Open Access Journals (Sweden)

    Nurnadia Abd Aziz

    2013-01-01

    Full Text Available This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs, especially alpha-linolenic acid (ALA, C18:3 n3, eicosapentaenoic acid (EPA, C20:5 n3, and docosahexaenoic acid (DHA, C22:6 n3. Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P<0.05 amounts of eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA, and alpha-linolenic acid (ALA, respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2–944.1 mg/100g wet sample of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S ratios for most samples were higher than that of Menhaden oil (P/S=0.58, a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω-3/ω-6=6.4, P/S=1.7, moonfish (highest ALA, ω-3/ω-6=1.9, P/S=1.0, and longtail shad (highest EPA, ω-3/ω-6=0.8, P/S=0.4 were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.

  15. Polyunsaturated fatty acid content of mother's milk is associated with childhood body composition

    DEFF Research Database (Denmark)

    Pedersen, Louise; Lauritzen, Lotte; Brasholt, Martin

    2012-01-01

    The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate the rela...... the relationship between docosahexaenoic acid (DHA) content and n-6/n-3 polyunsaturated fatty acid ratio in breast milk, body composition, and timing of adiposity rebound in children.......The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate...

  16. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses.

    Science.gov (United States)

    Gramer, Gwendolyn; Förl, Birgit; Springer, Christina; Weimer, Petra; Haege, Gisela; Mackensen, Friederike; Müller, Edith; Völcker, Hans Eberhard; Hoffmann, Georg Friedrich; Lindner, Martin; Krastel, Hermann; Burgard, Peter

    2013-01-01

    In phenylketonuria presymptomatic treatment following newborn screening prevents severe mental and physical impairment. The reasons for subtle impairments of cerebral functions despite early treatment remain unclear. We assessed a broad spectrum of visual functions in early-treated patients with phenylketonuria and evaluated two hypotheses-the dopamine and the long-chain polyunsaturated fatty acids (LCPUFAs) depletion hypotheses. Contrast sensitivity, colour vision, electroretinography, frequency doubling technology campimetry (FDT), and their relation with blood phenylalanine and docosahexaenoic acid levels were assessed in 36 patients with phenylketonuria and 18 age-matched healthy controls. Contrast sensitivity was significantly lower and total error scores in colour vision significantly higher in patients than controls. Electroretinography results differed significantly between patients and controls. We found a trend for the effect of phenylalanine-levels on contrast sensitivity and a significant effect on colour vision/FDT results. Docosahexaenoic acid levels in erythrocytes were not associated with visual functions. This is the first evaluation of visual functions in phenylketonuria using a comprehensive ophthalmological test battery. We found no evidence supporting the long-chain polyunsaturated fatty acids depletion hypothesis. However, the effect of phenylalanine-levels on visual functions suggests that imbalance between phenylalanine and tyrosine may affect retinal dopamine levels in phenylketonuria. This is supported by the similar patterns of visual functions in patients with phenylketonuria observed in our study and patients with Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Characteristics of fatty acid composition of Gammarus lacustris inhabiting lakes with and without fish.

    Science.gov (United States)

    Makhutova, O N; Sharapova, T A; Kalachova, G S; Shulepina, S P; Gladyshev, M I

    2016-01-01

    The effect of a biotic factor--the presence of predatory fish in water--on the composition and content of fatty acids in crustaceans was studied in the populations of the lake amphipod Gammarus lacustris from two lakes with fish and three lakes without fish. It was found that, at an overall increase in the quantity and quality of food resources (namely, increase in the content of eicosapentaenoic acid and docosahexaenoic acid (DHA) in the biomass), the relative rate of DHA accumulation in gammarids in the lakes without fish is higher than in the lake with fish.

  18. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Fujing ePan

    2016-05-01

    Full Text Available In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM and causes nitrogen (N and/or phosphorus (P limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015 where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass C (MBC, and β-1,4-N-acetylglucosaminidase (NAG on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  19. Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in children - a workshop report

    NARCIS (Netherlands)

    Koletzko, B.; Uauy, R.; Palou, A.; Kok, F.J.; Hornstra, G.; Eilander, A.; Moretti, D.; Osendarp, S.J.M.; Zock, P.L.; Innis, S.

    2010-01-01

    There is controversy whether children should have a dietary supply of preformed long-chain polyunsaturated n-3 fatty acids EPA and DHA. The aims of the workshop were to review evidence for a possible benefit of a preformed EPA and/or DHA supply, of data required to set desirable intakes for children

  20. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    Science.gov (United States)

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-03-03

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  1. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  2. Marine n-3 fatty acids in adipose tissue and development of atrial fibrillation

    DEFF Research Database (Denmark)

    Rix, Thomas Andersen; Joensen, Albert Marni; Riahi, Sam

    2013-01-01

    OBJECTIVE: Consumption of fish and marine n-3 polyunsaturated fatty acids (PUFA) may be associated with a lower risk of atrial fibrillation (AF), but results have been inconsistent. The aim was to investigate this further by measurements of marine n-3 PUFA in adipose tissue. DESIGN: Cohort study.......77, 95% CI 0.53 to 1.10) of marine n-3 PUFA compared with the lowest tertile. Similar trends, but also not statistically significant, were found separately for eicosapentaenoic, docosahexaenoic and docosapentaenoic acids. CONCLUSIONS: There was no statistically significant association between the content...

  3. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  4. Plasma polyunsaturated fatty acids are directly associated with cognition in overweight children but not in normal weight children.

    Science.gov (United States)

    Haapala, E A; Viitasalo, A; Venäläinen, T; Eloranta, A-M; Ågren, J; Lindi, V; Lakka, T A

    2016-12-01

    Polyunsaturated fatty acids are essential nutrients for the normal development of the brain. We investigated the associations between plasma polyunsaturated fatty acids and cognition in normal weight and overweight children. The study recruited 386 normal weight children and 58 overweight children aged six to eight years and blood samples were drawn after a 12-hour fast. We assessed plasma polyunsaturated fatty acids using gas chromatography, cognition using Raven's Coloured Progressive Matrices, and overweight and obesity using the age-specific and sex-specific cut-offs from the International Obesity Task Force. The data were analysed by linear regression analyses adjusted for age and sex. Higher proportions of eicosapentaenoic acid in plasma triacylglycerols (β = 0.311, p = 0.020, p = 0.029 for interaction) and docosahexaenoic acid in plasma triacylglycerols (β = 0.281, p = 0.038, p = 0.049 for interaction) were both associated with higher Raven's scores in overweight children but not in normal weight children. Higher eicosapentaenoic acid to arachidonic acid ratios in triacylglycerols (β = 0.317, p = 0.019) and phospholipids (β = 0.273, p = 0.046) were directly associated with the Raven's score in overweight children but not in normal weight children. These findings suggest that increasing the consumption of fish and other sources of eicosapentaenoic acid and docosahexaenoic acid may improve cognition among overweight children. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain

    OpenAIRE

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently inc...

  6. Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK

    DEFF Research Database (Denmark)

    Pawongrat, Ratchapol; Xu, Xuebing; H-Kittikun, Aran

    2007-01-01

    The aim of this study was to produce monoacylglycerols (MAG) rich in polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by glycerolysis of tuna oil with lipase AK from Pseudomonas fluorescence immobilized on Accurel EP-100 (IM-AK). tert...... on tuna oil. The temperature was controlled at 45 degrees C. Under these conditions, with a 24 h reaction, the yield of MAG was 24.6%, but containing 56.0 wt% PUFA (EPA and DHA). Stability of the IM-AK was also studied. The hydrolytic activity of the enzyme remained at 88% and 80% of initial activity...

  7. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  8. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  9. Polymorphism in the fatty acid desaturase genes and diet are important determinants of infant n-3 fatty acid status

    DEFF Research Database (Denmark)

    Harsløf, L.B.S.; Larsen, L.H.; Ritz, C.

    and polymorphism in the genes that encodes the fatty acid desaturases (FADS) has little effect on DHA-status in adults. It is however unclear to what extent endogenous DHA-synthesis contributes to infant DHA-status. Aim: To investigate the role of diet and FADS polymorphism on DHA-status at 9 months and 3 years...... breastfeeding was obtained by questionnaires and fish intake was assessed by 7-day pre-coded food diaries. Results: FADS-genotype, breastfeeding, and fish intake were found to explain 25% of the variation in infant RBC DHA-status (mean±SD: 6.6±1.9% of the fatty acids (FA%)). Breastfeeding was the most important......Background and objectives: Tissue docosahexaenoic acid (DHA) accretion in early infancy has been shown to be supported by the DHA-content of breast-milk and thus may decrease once complementary feeding takes over. Endogenous synthesis of DHA from alpha-linolenic acid has been shown to be very low...

  10. Enhancement in extraction rates by addition of organic acids to aqueous phase in solvent extraction of rare earth metals in presence of diethylenetriaminepentaacetic acid

    International Nuclear Information System (INIS)

    Matsuyama, Hideto; Azis, A.; Fujita, Mamoru; Teramoto, Masaaki.

    1996-01-01

    It is well known that the selectivity of rare earth metals by solvent extraction is increased by the addition of a chelating agent such as diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase. One of the disadvantages of this method is the decrease in extraction rates due to complexation in the aqueous phase. In this paper, further addition of organic acids to the aqueous phase was examined for the purpose of enhancing the extraction rates in solvent extraction with DTPA. The addition of several kind of organic acids such as formic acid, acetic acid, malonic acid, lactic acid and citric acid was investigated for a Er/Y separation system. A remarkable enhancement in extraction rates was observed with a slight decrease in the selectivity by the addition of citric acid or lactic acid. Extraction rates in the presence of both DTPA and citric acid increased with the increase in citric acid concentration and with the increase in proton concentration. A 150 times enhancement in extraction rates was found in the low proton concentration condition. In order to analyze the extraction rates and selectivities obtained, mass transfer equations were presented by considering both the dissociation reaction of rare earth metal-DTPA complexes and the complex formation between rare earth metal and organic acid in the aqueous phase. The experimental data were analyzed by these equations. (author)

  11. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  12. Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK

    DEFF Research Database (Denmark)

    Nicastro, Raffaele; Tripodi, Farida; Guzzi, Cinzia

    2015-01-01

    when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells...... remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells....

  13. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.

    Science.gov (United States)

    Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda

    2018-02-21

    Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.

  14. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution

    Directory of Open Access Journals (Sweden)

    Pornsak Sriamornsak

    2015-04-01

    Full Text Available To enhance the dissolution of poorly soluble mefenamic acid, self-emulsifying formulation (SEF, composing of oil, surfactant and co-surfactant, was formulated. Among the oils and surfactants studied, Imwitor® 742, Tween® 60, Cremophore® EL and Transcutol® HP were selected as they showed maximal solubility to mefenamic acid. The ternary phase diagram was constructed to find optimal concentration that provided the highest drug loading. The droplet size after dispersion and drug dissolution of selected formulations were investigated. The results showed that the formulation containing Imwitor® 742, Tween® 60 and Transcutol® HP (10:30:60 can encapsulate high amount of mefenamic acid. The dissolution study demonstrated that, in the medium containing surfactant, nearly 100% of mefenamic acid were dissolved from SEF within 5 min while 80% of drugs were dissolved from the commercial product in 45 min. In phosphate buffer (without surfactant, 80% of drug were dissolved from the developed SEF within 5 min while only about 13% of drug were dissolved in 45 min, from the commercial product. The results suggested that the SEF can enhance the dissolution of poorly soluble drug and has a potential to enhance drug absorption and improve bioavailability of drug.

  15. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    Science.gov (United States)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  16. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2011-11-01

    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  17. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity

    OpenAIRE

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-01-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, mono-esterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeab...

  18. Maternal DHA levels and Toddler Free-Play Attention

    OpenAIRE

    Kannass, Kathleen N.; Colombo, John; Carlson, Susan E.

    2009-01-01

    We investigated the relationship between maternal docosahexaenoic acid (DHA) levels at birth and toddler free-play attention in the second year. Toddler free-play attention was assessed at 12 and 18 months, and maternal erythrocyte (red-blood cell; RBC) phospholipid DHA (percentage of total fatty acids) was measured from mothers at delivery. Overall, higher maternal DHA status at birth was associated with enhanced attentional functioning during the second year. Toddlers whose mothers had high...

  19. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    International Nuclear Information System (INIS)

    Bannas, Peter; Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A.; Motosugi, Utaroh; Nagle, Scott K.; Reeder, Scott B.

    2017-01-01

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  20. Combined gadoxetic acid and gadofosveset enhanced liver MRI for detection and characterization of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bannas, Peter [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University Medical Center Hamburg-Eppendorf, Department of Radiology, University Hospital, Hamburg (Germany); Bookwalter, Candice A.; Ziemlewicz, Tim; Munoz del Rio, Alejandro; Potretzke, Theodora A. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); Motosugi, Utaroh [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Yamanashi, Department of Radiology, Yamanashi (Japan); Nagle, Scott K. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Pediatrics, Madison, WI (United States); Reeder, Scott B. [University of Wisconsin-Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin-Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI (United States); University of Wisconsin-Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin-Madison, Department of Emergency Medicine, Madison, WI (United States)

    2017-01-15

    To compare gadoxetic acid alone and combined gadoxetic acid/gadofosveset trisodium-enhanced liver MRI for detection of metastases and differentiation of metastases from haemangiomas. Ninety-one patients underwent gadoxetic acid-enhanced liver MRI before and after additional injection of gadofosveset. First, two readers retrospectively identified metastases on gadoxetic acid alone enhanced delayed hepatobiliary phase T1-weighted images together with all other MR images (dynamic images, T2-weighted images, diffusion-weighted images). Second, readers assessed additional T1-weighted images obtained after administration of gadofosveset trisodium. For both interpretations, readers rated lesion conspicuity and confidence in differentiating metastases from haemangiomas. Results were compared using alternative free-response receiver-operating characteristic (AFROC) and conventional ROC methods. Histology and follow-up served as reference standard. There were 145 metastases and 16 haemangiomas. Both readers detected more metastases using combined gadoxetic acid/gadofosveset (reader 1 = 130; reader 2 = 124) compared to gadoxetic acid alone (reader 1 = 104; reader 2 = 103). Sensitivity of combined gadoxetic acid/gadofosveset (reader 1 = 90 %; reader 2 = 86 %) was higher than that of gadoxetic acid alone (reader 1 = 72 %; reader 2 = 71 %, both P < 0.01). AFROC-AUC was higher for the combined technique (0.92 vs. 0.86, P < 0.001). Sensitivity for correct differentiation of metastases from haemangiomas was higher for the combined technique (reader 1 = 98 %; reader 2 = 99 % vs. reader 1 = 86 %; reader 2 = 91 %, both P < 0.01). ROC-AUC was significantly higher for the combined technique (reader 1 = 1.00; reader 2 = 1.00 vs. reader 1 = 0.87; reader 2 = 0.92, both P < 0.01). Combined gadoxetic acid/gadofosveset-enhanced MRI improves detection and characterization of liver metastases compared to gadoxetic acid alone. (orig.)

  1. Identification of tocopherols, tocotrienols, and their fatty acid esters in residues and distillates of structured lipids purified by short-path distillation.

    Science.gov (United States)

    Zou, Long; Akoh, Casimir C

    2013-01-09

    The fate of endogenous vitamin E isomers during production and purification of structured lipids (SLs) was investigated. Two SLs involving tripalmitin, stearidonic acid soybean oil, and docosahexaenoic acid were synthesized by transesterification catalyzed by Novozym 435 (NSL) and acidolysis by Lipozyme TL IM (LDHA) and purified by short-path distillation (SPD). The electron impact and chemical ionization mass spectra of tocopheryl and tocotrienyl fatty acid esters in the distillates measured by GC-MS in synchronous scan/SIM mode demonstrated that these esters were formed during acidolysis as well as transesterification. The predominant esters were tocopheryl palmitate, tocopheryl oleate, and tocopheryl linoleate homologues, and no tocopheryl or tocotrienyl linolenate, stearidonate, or docosahexaenoate was found. Meanwhile, none of these esters were detected in the residues for either NSL or LDHA. Less than 50% of vitamin E isomers were present in residues after SPD. This loss played a major role in the rapid oxidative deterioration of SLs from previous studies with less contribution from the formation of tocopheryl and tocotrienyl esters. The lost tocopherols and tocotrienols present at high concentration in the distillates may be recovered and used to improve the oxidative stability of SLs.

  2. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.; Kurra, Narendra; Alshareef, Husam N.

    2015-01-01

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  3. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  4. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells

    International Nuclear Information System (INIS)

    Zhao Guixiang; Etherton, Terry D.; Martin, Keith R.; Vanden Heuvel, John P.; Gillies, Peter J.; West, Sheila G.; Kris-Etherton, Penny M.

    2005-01-01

    The effects of linoleic acid (LA), α-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNFα) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P 12,14 -prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1β, and TNFα gene expression (P < 0.05 for all) and nuclear factor (NF)-κB DNA-binding activity, whereas peroxisome proliferator-activated receptor-γ (PPARγ) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-κB activation via activation of PPARγ

  5. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Christian; Steffen, Ingo G.; Perez Fernandez, Carmen Maria; Hamm, Bernd; Denecke, Timm [Klinik fuer Radiologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Kramme, Incken-Birthe; Blaeker, Hendrik; Kilic, Ergin [Institut fuer Pathologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Seehofer, Daniel [Klinik fuer Allgemein, Viszeral- und Transplantationschirurgie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany); Schott, Eckart [Medizinische Klinik m.S. Hepatologie und Gastroenterologie, Campus Virchow-Klinikum, Charite - Universitaetsmedizin Berlin, Berlin (Germany)

    2014-06-15

    Evaluation of enhancement characteristics of histopathologically confirmed focal nodular hyperplasias (FNHs) and hepatocellular adenomas (HCAs) with gadoxetic acid-enhanced MRI. Sixty-eight patients with 115 histopathologically proven lesions (FNHs, n = 44; HCAs, n = 71) examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n = 53 patients (lesions: FNHs, n = 37; HCAs, n = 53); biopsy, n = 15 (lesions: FNHs, n = 7; HCAs, n = 18)). Two radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. For the hepatobiliary phase, relative enhancement of the lesions and lesion to liver enhancement were significantly lower for HCAs (mean, 48.7 (±48.4) % and 49.4 (±33.9) %) compared to FNHs (159.3 (±92.5) %; and 151.7 (±79) %; accuracy of 89 % and 90 %, respectively; P < 0.001). Visual strong uptake of FNHs vs. hypointensity of HCAs in the hepatobiliary phase resulted in an accuracy of 92 %. This parameter was superior to all other morphological and dynamic vascular criteria alone and in combination (accuracy, 54-85 %). For differentiation of FNHs and HCAs by means of MRI, gadoxetic acid uptake in the hepatobiliary phase was found to be superior to all other criteria alone and in combination. (orig.)

  6. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience

    International Nuclear Information System (INIS)

    Grieser, Christian; Steffen, Ingo G.; Perez Fernandez, Carmen Maria; Hamm, Bernd; Denecke, Timm; Kramme, Incken-Birthe; Blaeker, Hendrik; Kilic, Ergin; Seehofer, Daniel; Schott, Eckart

    2014-01-01

    Evaluation of enhancement characteristics of histopathologically confirmed focal nodular hyperplasias (FNHs) and hepatocellular adenomas (HCAs) with gadoxetic acid-enhanced MRI. Sixty-eight patients with 115 histopathologically proven lesions (FNHs, n = 44; HCAs, n = 71) examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n = 53 patients (lesions: FNHs, n = 37; HCAs, n = 53); biopsy, n = 15 (lesions: FNHs, n = 7; HCAs, n = 18)). Two radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. For the hepatobiliary phase, relative enhancement of the lesions and lesion to liver enhancement were significantly lower for HCAs (mean, 48.7 (±48.4) % and 49.4 (±33.9) %) compared to FNHs (159.3 (±92.5) %; and 151.7 (±79) %; accuracy of 89 % and 90 %, respectively; P < 0.001). Visual strong uptake of FNHs vs. hypointensity of HCAs in the hepatobiliary phase resulted in an accuracy of 92 %. This parameter was superior to all other morphological and dynamic vascular criteria alone and in combination (accuracy, 54-85 %). For differentiation of FNHs and HCAs by means of MRI, gadoxetic acid uptake in the hepatobiliary phase was found to be superior to all other criteria alone and in combination. (orig.)

  7. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, P.M.B.; Jensen, Benny

    2000-01-01

    Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food...... Chem. 1998a, 46, 3473-3479). Addition of each of the unsaturated fatty acids: palmitoleic acid (16:1, n - 7), linoleic acid (C18:2, it - 6), eicosapentaenoic acid (EPA; C20:5, it - 3) and docosahexaenoic acid (DHA; C22:6, n. - 3) to fresh minced salmon changed the sensory perception and increased...... the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid (similar to 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity...

  8. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    Science.gov (United States)

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  11. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism

    Czech Academy of Sciences Publication Activity Database

    Skender, Belma; Hofmanová, Jiřina; Slavík, J.; Jelínková, Iva; Machala, M.; Moyer, M.P.; Kozubík, Alois; Vaculová, Alena

    2014-01-01

    Roč. 1841, č. 9 (2014), s. 1308-1317 ISSN 1388-1981 R&D Projects: GA ČR(CZ) GAP301/11/1730; GA ČR(CZ) GA13-09766S Institutional support: RVO:68081707 Keywords : Docosahexaenoic acid * TRAIL * Apoptosis Subject RIV: BO - Biophysics Impact factor: 5.162, year: 2014

  13. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  14. Fatty acid composition of fish species with different feeding habits from an Arctic Lake.

    Science.gov (United States)

    Gladyshev, M I; Sushchik, N N; Glushchenko, L A; Zadelenov, V A; Rudchenko, A E; Dgebuadze, Y Y

    2017-05-01

    We compared the composition and content of fatty acids (FAs) in fish with different feeding habits (sardine (least) cisco Coregonus sardinella, goggle-eyed charr (pucheglazka) form of Salvelinus alpinus complex, humpback whitefish Coregonus pidschian, broad whitefish Coregonus nasus, boganid charr Salvelinus boganidae, and northern pike Esox lucius from an Arctic Lake. Feeding habits of the studied fish (planktivore, benthivore, or piscivore) significantly affected the composition of biomarker fatty acids and the ratio of stable isotopes of carbon and nitrogen in their biomass. The hypothesis on a higher content of eicosapentaenoic and docosahexaenoic acids in the fish of higher trophic level (piscivores) when compared within the same taxonomic group (order Salmoniformes) was confirmed.

  15. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    Science.gov (United States)

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    Science.gov (United States)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  18. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health.

    Science.gov (United States)

    Glaser, Claudia; Lattka, Eva; Rzehak, Peter; Steer, Colin; Koletzko, Berthold

    2011-04-01

    Blood and tissue contents of polyunsaturated fatty acid (PUFA) and long-chain PUFA (LC-PUFA) are related to numerous health outcomes including cardiovascular health, allergies, mental health and cognitive development. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA and LC-PUFA status. Recent results suggest that in addition to fatty acid desaturase 1 and fatty acid desaturase 2, the gene product of fatty acid desaturase 3 is associated with desaturating activity. New data have become available to show that FADS single nucleotide polymorphisms (SNPs) also modulate docosahexaenoic acid status in pregnancy as well as LC-PUFA levels in children and in human milk. There are indications that FADS SNPs modulate the risk for allergic disorders and eczema, and the effect of breastfeeding on later cognitive development. Mechanisms by which FADS SNPs modulate PUFA levels in blood, breast milk and tissues should be explored further. More studies are required to explore the effects of FADS gene variants in populations with different ethnic backgrounds, lifestyles and dietary habits, and to investigate in greater depth the interaction of gene variants, diet and clinical end points, including immune response and developmental outcomes. Analyses of FADS gene variants should be included into all sizeable cohort and intervention studies addressing biological effects of PUFA and LC-PUFA in order to consider these important confounders, and to enhance study sensitivity and precision. © 2011 Blackwell Publishing Ltd.

  20. Gadoxetic acid-enhanced magnetic resonance imaging characteristics of hepatocellular carcinoma occurring in liver transplants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mimi [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Hanyang University of Hospital, Department of Radiology, Seoul (Korea, Republic of); Kang, Tae Wook; Jeong, Woo Kyoung; Kim, Young Kon; Kim, Seong Hyun [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jong Man [Sungkyunkwan University School of Medicine, Department of Surgery, Samsung Medical Center, Seoul (Korea, Republic of); Sinn, Dong Hyun [Sungkyunkwan University School of Medicine, Division of hepatology, Department of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Min-Ji; Jung, Sin-ho [Samsung Medical Center, Biostatics and Clinical Epidemiology Center, Seoul (Korea, Republic of)

    2017-08-15

    Characteristics of hepatocellular carcinoma (HCC) on magnetic resonance (MR) images were compared in patients who did or did not undergo liver transplantation (LT), and we evaluated the relationship of these findings with overall survival (OS) and time-to-tumour recurrence (TTR) after transplantation. The enhancement pattern of gadoxetic acid-enhanced MR images of 25 patients with recurrent HCCs (LT group) and 25 surgically confirmed HCC patients in the non-transplanted (control) group were compared. Typical enhancement was defined as 1) arterial enhancement and delayed wash-out and 2) absence of typical features of cholangiocarcinoma consisting of arterial rim enhancement and target appearance on hepatobiliary phase images. OS and TTR were analyzed in the LT group according to these patterns using the log-rank test. HCCs in the LT group significantly more often had an atypical enhancement pattern (16/25, 64.0%) than those in the control group (5/25, 20.0%; p = 0.004). However, OS and TTR did not differ significantly according to these enhancement patterns of recurrent HCC (p > 0.05). Although enhancement patterns of recurrent HCC in transplanted liver did not affect OS and TTR, these HCCs that arise after LT frequently revealed atypical enhancement on gadoxetic acid-enhanced MR imaging. (orig.)

  1. Gadoxetic acid-enhanced magnetic resonance imaging characteristics of hepatocellular carcinoma occurring in liver transplants

    International Nuclear Information System (INIS)

    Kim, Mimi; Kang, Tae Wook; Jeong, Woo Kyoung; Kim, Young Kon; Kim, Seong Hyun; Kim, Jong Man; Sinn, Dong Hyun; Kim, Min-Ji; Jung, Sin-ho

    2017-01-01

    Characteristics of hepatocellular carcinoma (HCC) on magnetic resonance (MR) images were compared in patients who did or did not undergo liver transplantation (LT), and we evaluated the relationship of these findings with overall survival (OS) and time-to-tumour recurrence (TTR) after transplantation. The enhancement pattern of gadoxetic acid-enhanced MR images of 25 patients with recurrent HCCs (LT group) and 25 surgically confirmed HCC patients in the non-transplanted (control) group were compared. Typical enhancement was defined as 1) arterial enhancement and delayed wash-out and 2) absence of typical features of cholangiocarcinoma consisting of arterial rim enhancement and target appearance on hepatobiliary phase images. OS and TTR were analyzed in the LT group according to these patterns using the log-rank test. HCCs in the LT group significantly more often had an atypical enhancement pattern (16/25, 64.0%) than those in the control group (5/25, 20.0%; p = 0.004). However, OS and TTR did not differ significantly according to these enhancement patterns of recurrent HCC (p > 0.05). Although enhancement patterns of recurrent HCC in transplanted liver did not affect OS and TTR, these HCCs that arise after LT frequently revealed atypical enhancement on gadoxetic acid-enhanced MR imaging. (orig.)

  2. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  3. Incorporation and profile of fatty acids in tilapia fillets (Oreochromis niloticus fed with tung oil

    Directory of Open Access Journals (Sweden)

    Elton Guntendorfer Bonafé

    2013-02-01

    Full Text Available The acceptance of tung oil enriched diet and the incorporation of conjugated linolenic acid - CLnA into fillets of Genetically Improved Farmed Tilapia (GIFT were investigated. The diet was well accepted, and after 10 days CLnA was incorporated into the fillets with a 1.02% content of total fatty acids (FA. In addition, biosynthesis of the conjugated linoleic acid isomers - CLA (0.31% of fillet total FA content from CLnA, and the presence of alpha-linolenic acid - LNA (1.08% of fillet total FA content, eicosapentaenoic acid - EPA (2.85% of fillet total FA content and docosahexaenoic acid - DHA (3.08% of fillet total FA content were observed. Therefore, the consumption of this fish can increase the intake of different FA (CLnA, CLA, LNA, EPA and DHA, which play an important role in human metabolism.

  4. Studies on the preparation of Caro’s acid by ultrasonic enhanced electrochemistry

    Science.gov (United States)

    Li, Linbo; Yu, Zeli; Hong, Tao; Fang, Zhao; Peng, Jishi; Yang, Zhao

    2017-06-01

    Ultrasonic cavitation effects can generate hydroxyl radicals and high energy, which is widely applied in the field of oxidation currently. Ultrasound-enhanced electrochemical is used to prepare Caro’s acid, which improves the generate rate of Caro’s acid. In this article, the influences of ultrasonic frequency and ultrasonic power on the electrolysis voltage, electrolyte temperature, electrolyte concentration and the concentration of additive in the process of electrochemical preparation of Caro’s acid was studied. And the optimal production conditions were determined. The research results showed that ultrasonic can significantly improve the production of Caro’s acid and the product can increase by about 20 g/L under the best condition.

  5. Diffraction enhanced imaging of a rat model of gastric acid aspiration pneumonitis.

    Science.gov (United States)

    Connor, Dean M; Zhong, Zhong; Foda, Hussein D; Wiebe, Sheldon; Parham, Christopher A; Dilmanian, F Avraham; Cole, Elodia B; Pisano, Etta D

    2011-12-01

    Diffraction-enhanced imaging (DEI) is a type of phase contrast x-ray imaging that has improved image contrast at a lower dose than conventional radiography for many imaging applications, but no studies have been done to determine if DEI might be useful for diagnosing lung injury. The goals of this study were to determine if DEI could differentiate between healthy and injured lungs for a rat model of gastric aspiration and to compare diffraction-enhanced images with chest radiographs. Radiographs and diffraction-enhanced chest images of adult Sprague Dawley rats were obtained before and 4 hours after the aspiration of 0.4 mL/kg of 0.1 mol/L hydrochloric acid. Lung damage was confirmed with histopathology. The radiographs and diffraction-enhanced peak images revealed regions of atelectasis in the injured rat lung. The diffraction-enhanced peak images revealed the full extent of the lung with improved clarity relative to the chest radiographs, especially in the portion of the lower lobe that extended behind the diaphragm on the anteroposterior projection. For a rat model of gastric acid aspiration, DEI is capable of distinguishing between a healthy and an injured lung and more clearly than radiography reveals the full extent of the lung and the lung damage. Copyright © 2011 AUR. All rights reserved.

  6. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  7. Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative

    OpenAIRE

    Brayden, David J.; Walsh, Edwin

    2014-01-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to t...

  8. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    Science.gov (United States)

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  9. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    Directory of Open Access Journals (Sweden)

    van Keulen Herman

    2011-06-01

    Full Text Available Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum and two from tropical seas (Caulerpa taxifolia, Sargassum natans was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3 and omega-6 (n-6 polyunsaturated fatty acids (PUFAs, were in the concentration range of 2-14 mg/g dry matter (DM, while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6 and/or eicosapentaenoic acids (EPA, C20:5, n-3, the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3 at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6 FA: (n-3 FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3, while in S. natans also docosahexaenoic acid (DHA, C

  10. Postrigor citric acid enhancement can alter cooked color but not fresh color of dark-cutting beef.

    Science.gov (United States)

    Stackhouse, R J; Apple, J K; Yancey, J W S; Keys, C A; Johnson, T M; Mehall, L N

    2016-04-01

    In 2 experiments, dark-cutting (DC) beef strip loins were used to test the effects of citric acid-enhancement pH on visual and instrumental color of fresh and cooked steaks. In Exp. 1 and 2, each DC (mean pH = 6.57 and 6.65, respectively) and normal-pH, low USDA Choice (CH; mean pH = 5.48 and 5.51, respectively) strip loin was cut into 2 equal-length sections, and DC sections were injected to 111% of raw section weight with pH 3.5 to 5.0 (Exp. 1) or pH 2.0 to 3.5 (Exp. 2) solutions made by mixing citric acid in either 0.05% orthophosphate (PO) solution or tap water (HO) base solutions (Exp. 1) and 0.5% PO or 0.5% tripolyphosphate solution base solutions (Exp. 2). After enhancement, sections were cut into steaks, which were assigned to either 5 d of simulated retail display or cooked to 71°C for cooked color measurement. Postenhancement pH of DC steaks enhanced with pH 3.5 to 5.0 solutions did not ( ≥ 0.180) differ from that of nonenhanced DC steaks (Exp. 1) but linearly decreased ( citric acid enhancement over untreated DC steaks during the first 3 d of display, fresh steak color never ( citric acid enhancement solutions, regardless of base solution, were insufficient to improve the fresh color of DC beef; however, enhancement with pH 2.5 citric acid solutions effectively eliminated the persistent red cooked color typically associated with DC beef comparable with that of normal-pH beef.

  11. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  12. Methylated Fatty Acids from Heartwood and Bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua: Effect of Strong Acid Treatment

    Directory of Open Access Journals (Sweden)

    Mohamed Zidan Mohamed Salem

    2015-09-01

    Full Text Available Methylated fatty acid (FA compounds in the heartwood and bark of some softwood species, specifically Pinus sylvestris, Abies alba, Picea abies, and Larix decidua, grown in the Czech Republic were evaluated. Strong H2SO4 was used for methylation of the lipids. The highest content of lipid was found in P. abies bark (40.132 mg/g o.d. sample, and the lowest content was in A. alba wood (11.027 mg/g o.d. sample. The highest concentration of FAs was observed in L. decidua bark. The highest percentages of FAs in wood of P. sylvestris were arachidic acid and oleic acid. In bark, the highest percentages of FAs were stearic acid, palmitic acid, and oleic acid. The FAs with the highest concentrations in A. alba wood were arachidic acid, palmitic acid, pentadecanoic acid, and margarinic, and those in bark were behenic acid, lignoceric acid, and arachidic acid. P. abies wood FAs showed arachidic acid, palmitic acid, and margarinic acid, and the bark contained lignoceric acid and arachidic acid. The FAs of L. decidua wood were arachidic acid, palmitic acid, and stearic acid, and in bark they were pentacosylic acid, docosahexaenoic acid (DHA, lignoceric acid, arachidic acid, and behenic acid. The lack of typically dominant unsaturated fatty acids (e.g. 18:1, 18:2, compared to literature values were attributed to the application of strong acid for the hydrolysis.

  13. Effect of omega-3 fatty acids on canine atopic dermatitis.

    Science.gov (United States)

    Mueller, R S; Fieseler, K V; Fettman, M J; Zabel, S; Rosychuk, R A W; Ogilvie, G K; Greenwalt, T L

    2004-06-01

    Twenty-nine dogs were included in a double-blinded, placebo-controlled, randomised trial and were orally supplemented for 10 weeks with either flax oil (200 mg/kg/day), eicosapentaenoic acid (50 mg/kg/day) and docosahexaenoic acid (35 mg/kg/day) in a commercial preparation, or mineral oil as a placebo. For each dog, clinical scores were determined based on a scoring system developed prior to the trial. Total omega-6 and omega-3 intake and the ratio of omega-6:omega-3 (omega-6:3) were calculated before and after the trial. The dogs' clinical scores improved in those supplemented with flax oil and the commercial preparation, but not in the placebo group. No correlation was identified between total fatty acid intake or omega-6:3 ratio and clinical scores. Based on the results of this study, the total intake of fatty acids or the omega-6:3 ratio do not seem to be the main factors in determining the clinical response.

  14. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  15. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  16. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Science.gov (United States)

    Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.

    2018-01-01

    In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122

  17. Minoxidil Skin Delivery from Nanoemulsion Formulations Containing Eucalyptol or Oleic Acid: Enhanced Diffusivity and Follicular Targeting

    Directory of Open Access Journals (Sweden)

    Eman Abd

    2018-01-01

    Full Text Available In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL, containing minoxidil (2% and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC, hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids.

  18. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels.

    Science.gov (United States)

    Chen, Chuck T; Bazinet, Richard P

    2015-01-01

    The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Composicao quimica, perfil de acidos graxos e quantificacao dos acidos ƒ¿-linolenico, eicosapentaenoico e docosahexaenoico em visceras de tilapias (Oreochromis niloticus = Percentual composition, fatty acids and quantification of the LNA (Alfa-Linolenic, EPA (Eicosapentaenoic and DHA (Docosahexaenoic acids in visceras of Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Nilson Evelázio de Souza

    2005-01-01

    Full Text Available Foi avaliada a composição química de vísceras de tilápias (Oreochromis niloticus criadas em cativeiro Os teores de umidade, cinza, proteína bruta e lipídios totais foram de 64,4%; 1,3%; 6,3% e 18,0%, respectivamente, caracterizando alta concentração de lipídiostotais em relação a outros resíduos de peixes. Foram identificados 49 ácidos graxos, sendo majoritários os ácidos: oléico, (32,8%, seguido do palmítico, (19,9% e linoléico, (18,2%. As razões entre n-6/n-3 e ácidos poliinsaturados/saturados foram de 5,5 e 0,9, respectivamente. As quantificações dos ácidos graxos alfa-linolênico, eicosapentaenóico e docosahexaenóico, em mg/g de lipídios totais, foram de 10,4, 1,4 e 9,3, respectivamente. O elevado teor de lipídios totais das vísceras contribuiu significativamente para as quantidadesde ácidos graxos n-3. Todos os parâmetros analisados foram satisfatórios sob o ponto de vista nutricional e neste sentido as vísceras de tilápias poderão ser utilizadaa para alimentar peixes ou outros animais.The chemical composition was evaluated in visceras of tilapias raised in captivity. The moisture, ash, crude protein and total lipids contents were 64.4%; 1.3%; 6.3% and 18.0%, respectively, characterizing high total lipids concentration in relation other residues of fish. Forty nine fatty acids were detected, the major fatty acids were oleic (32.8%, palmitic (19.9% and linoleic-1 (18.2% and oleic (9.4%. The ratio n-6/n-3 and polyunsaturated/saturated fatty acids, showed the values 5.5 and 0.9, respectively. The quantifications of alfa-linolenic, eicosapentaenoic and docosahexaenoic acids (in mg/g of total lipids, were 10.4, 1.4 and 0.3, respectively. The higher contents of total lipids in visceras contributed significantly for amounts of n-3 fatty acids. All the parameters analyzed were shown nutritional value satisfactory in this sense visceras of tilapias can be used in the feed of fish and other animal.

  1. Update on the management of severe hypertriglyceridemia – focus on free fatty acid forms of omega-3

    Directory of Open Access Journals (Sweden)

    Pirillo A

    2015-04-01

    Full Text Available Angela Pirillo,1,2 Alberico Luigi Catapano2,3 1Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; 2IRCCS Multimedica, Milan, Italy; 3Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Abstract: High levels of plasma triglycerides (TG are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG, particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA. These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk

  2. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sailaja Polavarapu

    Full Text Available In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs tested on human neuroblastoma IMR-32 (0.5 × 10(4 cells/100 µl of IMR cells (EPA > DHA > ALA = GLA = AA > DGLA = LA: ∼ 60, 40, 30, 10-20% respectively at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF2α, and PGI2 and leukotrienes (LTD4 and LTE4 tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4, 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA and 10(S,17(S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S,17(SDiHDoHE, metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.

  3. Utilization of stable isotopes for the study of in vivo compartmental metabolism of poly-insaturate fatty acids

    International Nuclear Information System (INIS)

    Brossard, N.; Croset, M.; Lecerf, J.; Lagarde, M.; Pachiaudi, C.; Normand, S.; Riou, J.P.; Chirouze, V.; Tayot, J.L.

    1994-01-01

    In order to study the compartmental metabolism of the 22:6n-3 fatty acid, and particularly the role of the transport plasmatic forms for the tissue uptake (especially brain), a technique is developed using carbon 13 stable isotope and an isotopic mass spectrometry coupled to gaseous chromatography technique. This method has been validated in rat with docosahexaenoic acid enriched in 13 C and esterified in triglycerides. The compartmental metabolism is monitored by measuring the variation of 22:6n-3 isotopic enrichment in the various lipoprotein lipidic fractions, in blood globules and in the brain. 1 fig., 1 tab., 12 refs

  4. Acides gras oméga-3 et déclin cognitif : la controverse

    Directory of Open Access Journals (Sweden)

    Barberger-Gateau Pascale

    2013-03-01

    Full Text Available Basic research suggests a protective effect of the long-chain omega-3 polyunsaturated fatty acids – eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA – against brain aging. In humans, many epidemiological studies have found an inverse association between fish consumption or high blood levels of EPA and DHA, and cognitive decline or risk of dementia. However, most randomized controlled trials with EPA and/or DHA supplements have failed to show any impact on cognitive decline. This paper analyses several reasons for such inconsistent results, including the time and duration of the supplementation, the cognitive and dietary inclusion criteria, the optimal doses of EPA and DHA, the interaction with genetic polymorphisms, and the need to consider synergistic effects between nutrients as they are provided by healthy diets.

  5. Ethacrynic acid: a novel radiation enhancer in human carcinoma cells

    International Nuclear Information System (INIS)

    Khil, Mark S.; Sang, Hie Kim; Pinto, John T.; Jae, Ho Kim

    1996-01-01

    Purpose: Because agents that interfere with thiol metabolism and glutathione S-transferase (GST) functions have been shown to enhance antitumor effects of alkylating agents in vitro and in vivo, the present study was conceived on the basis that an inhibitor of GST would enhance the radiation response of some selected human carcinoma cells. Ethacrynic acid (EA) was chosen for the study because it is an effective inhibitor of GST and is a well known diuretic in humans. Methods and Materials: Experiments were carried out with well-established human tumor cells in culture growing in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum (FCS). Cell lines used were MCF-7, MCF-7 adriamycin resistant (AR) cells (breast carcinoma), HT-29 cells (colon carcinoma), DU-145 cells (prostate carcinoma), and U-373 cells (malignant glioma). Cell survival following the exposure of cells to drug alone, radiation alone, and a combined treatment was assayed by determining the colony-forming ability of single plated cells in culture to obtain dose-survival curves. The drug enhancement ratio was correlated with levels of GST. Results: The cytotoxicity of EA was most pronounced in MCF-7, U-373, and DU-145 cells compared to MCF-7 AR and HT-29 cells. The levels of GST activity were found to be lower in those EA-sensitive cells. A significant radiation enhancement was obtained with EA-sensitive cells exposed to nontoxic concentrations of the drug immediately before or after irradiation. The sensitizer enhancement ratio (SER) of MCF-7 cells was 1.55 with EA (20 μg/ml), while the SER of MCF-7 AR was less than 1.1. Based on five different human tumor cells, a clear inverse relationship was demonstrated between the magnitude of SER and GST levels of tumor cells prior to the combined treatment. Conclusion: The present results suggest that EA, which acts as both a reversible and irreversible inhibitor of GST activity, could significantly enhance the radiation response of

  6. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    Science.gov (United States)

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  7. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  8. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Science.gov (United States)

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  9. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  10. Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin.

    Science.gov (United States)

    Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping

    2014-08-15

    Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  12. Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity.

    Science.gov (United States)

    Korosh, Travis; Jordan, Kelsey D; Wu, Ja-Shin; Yarlett, Nigel; Upmacis, Rita K

    2016-01-01

    Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole-resistant T. vaginalis. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  13. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Vilgrain, Valerie; Ronot, Maxime [University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology, Assistance Publique - Hopitaux de Paris, Clichy, Hauts-de-Seine (France); University Paris Diderot, Sorbonne Paris Cite, Paris (France); INSERM U1149, Centre de Recherche Biomedicale Bichat-Beaujon, CRB3, Paris (France); Esvan, Maxime; Caumont-Prim, Aurore [Hopital europeen Georges-Pompidou, Unite d' Epidemiologie et de Recherche Clinique, Paris (France); INSERM, Centre d' Investigation Clinique 1418, module Epidemiologie Clinique, Paris (France); Aube, Christophe [CHU d' Angers, Department of Radiology, Angers (France); Universite d' Angers, Laboratoire HIFIH, LUNAM, Angers (France); Chatellier, Gilles [Hopital europeen Georges-Pompidou, Unite d' Epidemiologie et de Recherche Clinique, Paris (France); INSERM, Centre d' Investigation Clinique 1418, module Epidemiologie Clinique, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France)

    2016-12-15

    To obtain the diagnostic performance of diffusion-weighted (DW) and gadoxetic-enhanced magnetic resonance (MR) imaging in the detection of liver metastases. A comprehensive search (EMBASE, PubMed, Cochrane) was performed to identify relevant articles up to June 2015. Inclusion criteria were: liver metastases, DW-MR imaging and/or gadoxetic acid-enhanced MR imaging, and per-lesion statistics. The reference standard was histopathology, intraoperative observation and/or follow-up. Sources of bias were assessed using the QUADAS-2 tool. A linear mixed-effect regression model was used to obtain sensitivity estimates. Thirty-nine articles were included (1,989 patients, 3,854 metastases). Sensitivity estimates for DW-MR imaging, gadoxetic acid-enhanced MR imaging and the combined sequence for detecting liver metastases on a per-lesion basis was 87.1 %, 90.6 % and 95.5 %, respectively. Sensitivity estimates by gadoxetic acid-enhanced MR imaging and the combined sequence were significantly better than DW-MR imaging (p = 0.0001 and p < 0.0001, respectively), and the combined MR sequence was significantly more sensitive than gadoxetic acid-enhanced MR imaging (p < 0.0001). Similar results were observed in articles that compared the three techniques simultaneously, with only colorectal liver metastases and in liver metastases smaller than 1 cm. In patients with liver metastases, combined DW-MR and gadoxetic acid-enhanced MR imaging has the highest sensitivity for detecting liver metastases on a per-lesion basis. (orig.)

  14. Bioactive metabolites of docosahexaenoic acid

    Czech Academy of Sciences Publication Activity Database

    Kuda, Ondřej

    2017-01-01

    Roč. 136, May (2017), s. 12-20 ISSN 0300-9084 R&D Projects: GA ČR(CZ) GA16-04859S; GA MZd(CZ) NV16-29182A Institutional support: RVO:67985823 Keywords : DHA * specialized proresolving mediators * FAHFA * DHEA * N-acyl amides * omega-3 PUFA Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 3.112, year: 2016

  15. Effects of feeding omega-3-fatty acids on fatty acid composition and quality of bovine sperm and on antioxidative capacity of bovine seminal plasma.

    Science.gov (United States)

    Gürler, Hakan; Calisici, Oguz; Calisici, Duygu; Bollwein, Heinrich

    2015-09-01

    The aim of the present study was to examine the effects of feeding alpha-linolenic (ALA) acid on fatty acid composition and quality of bovine sperm and on antioxidative capacity of seminal plasma. Nine bulls (ALA bulls) were fed with 800 g rumen-resistant linseed oil with a content of 50% linolenic acid and eight bulls with 400 g palmitic acid (PA bulls). Sperm quality was evaluated for plasma membrane and acrosome intact sperm (PMAI), the amount of membrane lipid peroxidation (LPO), and the percentage of sperm with a high DNA fragmentation index (DFI). Fatty acid content of sperm was determined using gas chromatography. Total antioxidant capacity, glutathione peroxidase, and superoxide dismutase activity were determined in seminal plasma. Feeding ALA increased (P acid (DHA) content in bulls whereas in PA bulls did not change. PMAI increased after cryopreservation in ALA bulls as well as in PA bulls during the experiment period (P fatty acids affect the antioxidant levels in seminal plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm membranes increased only in ALA bulls. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Intraluminal duodenal diverticulum: CT and gadoxetic acid-enhanced MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Myeong; Lee, Nam Kyung; Kim, Suk; Kim, Dong Uk; Kim, Tae Un [Dept. of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of)

    2015-03-15

    Intraluminal duodenal diverticulum (IDD) is a rare congenital anomaly. IDD can become symptomatic in 20% to 25% of cases when complicated by intestinal obstruction, pancreatitis, or hemorrhage. We report the case of a 21-year-old female presenting with IDD mimicking duodenoduodenal intussusception. We describe the imaging features of IDD on the gadoxetic acid-enhanced magnetic resonance image as well as computed tomography.

  17. A possible role for ghrelin, leptin, brain-derived neurotrophic factor and docosahexaenoic acid in reducing the quality of life of coeliac disease patients following a gluten-free diet.

    Science.gov (United States)

    Russo, Francesco; Chimienti, Guglielmina; Clemente, Caterina; Ferreri, Carla; Orlando, Antonella; Riezzo, Giuseppe

    2017-03-01

    A gluten-free diet (GFD) has been reported to negatively impact the quality of life (QoL) of coeliac disease (CD) patients. The gut-brain axis hormones ghrelin and leptin, with the brain-derived neurotrophic factor (BDNF), may affect QoL of CD patients undergoing GFD. Our aims were to evaluate whether: (a) the circulating concentrations of leptin, ghrelin and BDNF in CD patients were different from those in healthy subjects; (b) GFD might induce changes in their levels; (c) BDNF Val66Met polymorphism variability might affect BDNF levels; and (d) serum BDNF levels were related to dietary docosahexaenoic acid (DHA) as a neurotrophin modulator. Nineteen adult coeliac patients and 21 healthy controls were included. A QoL questionnaire was administered, and serum concentrations of ghrelin, leptin, BDNF and red blood cell membrane DHA levels were determined at the enrolment and after 1 year of GFD. BDNF Val66Met polymorphism was analysed. Results from the questionnaire indicated a decline in QoL after GFD. Ghrelin and leptin levels were not significantly different between groups. BDNF levels were significantly (p = 0.0213) lower in patients after GFD (22.0 ± 2.4 ng/ml) compared to controls (31.2 ± 2.2 ng/ml) and patients at diagnosis (25.0 ± 2.5 ng/ml). BDNF levels correlated with DHA levels (p = 0.008, r = 0.341) and the questionnaire total score (p = 0.041, r = 0.334). Ghrelin and leptin seem to not be associated with changes in QoL of patients undergoing dietetic treatment. In contrast, a link between BDNF reduction and the vulnerability of CD patients to psychological distress could be proposed, with DHA representing a possible intermediate.

  18. Enhanced incorporation of fatty acid into phosphatidyl choline that parallels histamine discharge in mast cells

    International Nuclear Information System (INIS)

    Castle, J.D.; Castle, A.M.; Ma, A.K.; Stukenbrok, H.

    1984-01-01

    Purified rat peritoneal and pleural mast cells preincubated briefly with radioactively labeled fatty acid were treated with A23187, which bypasses primary receptors in stimulating exocytosis. An enhanced incorporation of fatty acid into phosphatidyl choline (PC) that occurred in parallel with histamine release at 24-25 degrees C was observed and was initially proportional to the total amount of histamine discharged. Enhanced PC labeling and histamine secretion were also proportional at temperatures ranging from 17-37 degrees C. Both radioactive linoleic and palmitic acids were incorporated selectively at the beta-position of the glycerol backbone of PC. PC labeling by [3H]choline was not detectably different in control and stimulated cells, and phosphatidic acid did not exhibit selectively enhanced beta-acylation. Thus, the stimulated labeling in A23187-treated cells may occur secondary to the action of a phospholipase A2 that favors PC as a substrate. Other peritoneal cell types exhibit a very similar A23187-stimulated selective labeling of PC. Therefore, autoradiography has been used to provide a direct demonstration that in purified preparations, mast cells are the principal cell type engaged in A23187-elicited incorporation of fatty acid into PC. The efficacy of this approach has relied on special procedures devised to obtain significantly different autoradiographic grain densities between control and stimulated preparations that can be attributed to differences in the level of [3H]palmitate-labeled PC. Preliminary tests using compound 48/80 as a secretory stimulus for mast cells have identified a similar selectively enhanced PC labeling. In either case, however, consideration of possible relationships between PC metabolism and the secretory process are premature since they have not been tested directly

  19. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies.

    Science.gov (United States)

    Assumpção, Renata P; Mucci, Daniela B; Fonseca, Fernanda C P; Marcondes, Henrique; Sardinha, Fátima L C; Citelli, Marta; Tavares do Carmo, Maria G

    2017-10-01

    Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    Science.gov (United States)

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.