Sample records for dns1-c-d-a2bu2 trp4 d-leu5enkephalin

  1. State-dependent variation in the inhibitory effect of [D-Ala2, D-Leu5]-enkephalin on hippocampal serotonin release in ground squirrels

    International Nuclear Information System (INIS)

    Kramarova, L.I.; Lee, T.F.; Cui, Y.; Wang, L.C.H.


    Accumulated evidence has suggested that increased endogenous opioid activities may facilitate the onset of hibernation either directly or possibly through modulation of other neurotransmitter systems. The seasonal change of [D-Ala 2 , D-Leu 5 ]-enkephalin (DADLE), a δ receptor agonist, in modulating K + -induced [ 3 H]-5-hydroxytryptamine (5-HT) release from the hippocampal and hypothalamic slices of euthermic and hibernating Richardsons' ground squirrels was therefore investigated. DADLE had no effect on 5-HT release in the hypothalamic slices but elicited a dose-related inhibition on [ 3 H]-5-HT release from the hippocampal slices of the euthermic ground squirrel. The inhibitory effect of DADLE was completely reversed by naloxone, but not by tetrodotoxin. In contrast, DADLE failed to alter the K + -induced 5-HT release from the hippocampal slices of the hibernating ground squirrel. This state-dependent reduction in responsiveness to an opioid is consistent with the hypothesis that enhanced endogenous opioid activity in the hibernating phase could lead to down regulation of the opioid receptors and minimize its inhibition on hippocampal serotonergic activity. A high 5-HT activity would inhibit midbrain reticular activating system indirectly through non-serotonergic fibers, which in turn facilitate the onset or maintenance of hibernation

  2. Visualization of μ1 opiate receptors in rat brain by using a computerized autoradiographic subtraction technique

    International Nuclear Information System (INIS)

    Goodman, R.R.; Pasternak, G.W.


    The authors have developed a quantitative computerized subtraction technique to demonstrate in rat brain the regional distribution of μ 1 sites, a common very-high-affinity binding site for both morphine and the enkephalins. Low concentrations of [D-Ala 2 , D-Leu 5 ]enkephalin selectively inhibit the μ 1 binding of [ 3 H]dihydromorphine, leaving μ 2 -sites, while low morphine concentrations eliminate the μ 1 binding of [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin, leaving sigma sites. Thus, quantitative differences between images of sections incubated in the presence and absence of these low concentrations of unlabeled opioid represent μ 1 binding sites. The regional distributions of μ 1 sites labeled with [ 3 H]dihydromorphine were quite similar to those determined by using [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin. High levels of μ 1 binding were observed in the periaqueductal gray, medial thalamus, and median raphe, consistent with the previously described role of μ 1 sites in analgesia. Other regions with high levels of μ 1 binding include the nucleus accumbens, the clusters and subcallosal streak of the striatum, hypothalamus, medial habenula, and the medial septum/diagonal band region. The proportion of total specific binding corresponding to μ 1 sites varied among the regions, ranging from 14% to 75% for [ 3 H][D-Ala 2 , D-Leu 5 ]enkephalin and 20% to 52% for [ 3 H]dihydromorphine

  3. The distribution of multiple opiate receptors in bovine brain

    International Nuclear Information System (INIS)

    Ninkovic, M.; Hunt, S.P.; Emson, P.C.; Iversen, L.L.


    The distribution of μ and delta opiate receptors in bovine brain has been investigated using the selective radioligands [ 3 H]morphine and D-[ 3 H]Ala 2 , D-Leu 5 -enkephalin. Their distributions were found to vary independently through different brain areas with up to a 10-fold difference between the ratio of μ to delta binding sites for the substantia nigra and the dentate gyrus of the hippocampus. (Auth.)

  4. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    James, I.F.; Goldstein, A.


    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [ 3 H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [ 3 H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  5. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.


    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.

  6. Change in the properties of the opiate receptors of the brain under conditions of habituation of rats to morphine

    International Nuclear Information System (INIS)

    Zaitsev, S.V.; Sergeeva, M.G.; Chichenkov, O.N.; Petrov, V.E.; Varfolomeev, S.D.


    The influence of prolonged administration of morphine on the properties of the opiate receptors of the rat brain was investigated. For this purpose they conducted an analysis of the isotherms of binding of labeled μ-, σ-, and chi-ligands: morphine, D-Ala 2 , D-Leu 5 -enkephalin, and ethylketocyclazocin, with membrane preparations of the brains of rats tolerant to morphine, as well as the control animals. For a quantitative determination of the dissociation constants of the ligand-receptor complexes (K) and the concentration of the reagents ([Q]), they used differential method and the method of simulation modeling. It was shown that the values of K and [Q] for individual animals are subjected to substantial dispersion, whereas the ratios [Q]/K undergo minor individual fluctuations, both in the control group and in the group of rats tolerant to morphine. This permits the ratio [Q]/K to be singled out as one of the main parameters for comparing the properties of opiate receptors of various groups of animals. Using this criterion, as well as the method of simulated modeling, it was shown that the development of tolerance is accompanied by a change in the properties of the δ-receptors (the ratio [Q]/K decreases by a factor of more than two). In contrast to the δ-receptors, no significant influence of the tolerance on the properties of the μ- and chi-receptors, as well as the ultrahigh-affinity ligand binding sites, was detected

  7. Comparison of effects of chronic administration of naloxone and naloxonazine upon food intake and maintainance of body weight in rats. (United States)

    Mann, P E; Pasternak, G W; Hahn, E F; Curreri, G; Lubin, E; Bodnar, R J


    A comparison of the effects of the short-acting opioid antagonist naloxone, with the irreversible and highly-specific mu-1 antagonist naloxonazine, has categorized the mediation of opioids in some forms of feeding into mu-1 and non-mu-1 components. The mu-1 sites have been implicated in free-feeding, deprivation-induced feeding and morphine-induced hyperphagia, based upon their sensitivity to both naloxone and naloxonazine. However, the ability of naloxone, but not naloxonazine to inhibit feeding, induced by either 2-deoxy-D-glucose glucoprivation, ethylketocyclazocine, dynorphin or (D-ala2., D-leu5.)-enkephalin implies the existence of non-mu-1 opioid receptor mechanisms in these responses. The present study compared the effects of the daily administration of naloxone and naloxonazine (10 mg/kg, i.v.) in rats in three different types of maturational or dietary situations. In adult rats, naloxonazine and naloxone significantly reduced body weight (7% and 4%, respectively) and food intake (21% and 13%, respectively) over 14 days. These effects were more pronounced in adolescent rats where naloxonazine and naloxone significantly reduced the gain in body-weight (53% and 33%, respectively) and food intake (24% and 15%, respectively) over 14 days. In the adolescent rats, the effects of naloxonazine were significantly greater than those of naloxone. In contrast, chronic treatment with neither naloxone nor naloxonazine altered body weight or food intake of rats made obese by dietary manipulations and left on that diet during treatment with antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Light microscopic autoradiographic localization of mu and delta opioid binding sites in the mouse central nervous system

    International Nuclear Information System (INIS)

    Moskowitz, A.S.; Goodman, R.R.


    Much work has been done on opioid systems in the rat CNS. Although the mouse is widely used in pharmacological studies of opioid action, little has been done to characterize opioid systems in this species. In the present study the distribution of mu and delta opioid binding sites in the mouse CNS was examined using a quantitative in vitro autoradiography procedure. Tritiated dihydromorphine was used to visualize mu sites and [3H-d-Ala2-d-Leu5]enkephalin with a low concentration of morphine was used to visualize delta sites. Mu and delta site localizations in the mouse are very similar to those previously described in the rat (Goodman, R.R., S.H. Snyder, M.J. Kuhar, and W.S. Young, 3d (1980) Proc. Natl. Acad. Sci. U.S.A. 77:6239-6243), with certain exceptions and additions. Mu and delta sites were observed in sensory processing areas, limbic system, extrapyramidal motor system, and cranial parasympathetic system. Differential distributions of mu and delta sites were noted in many areas. Mu sites were prominent in laminae I, IV, and VI of the neocortex, in patches in the striatum, and in the ventral pallidum, nucleus accumbens, medial and midline thalamic nuclei, medial habenular nucleus, interpeduncular nucleus, and laminae I and II of the spinal cord. In contrast, delta sites were prominent in all laminae of the neocortex, olfactory tubercle, diffusely throughout the striatum, and in the basal, lateral, and cortical nuclei of the amygdala. The determination of the differential distributions of opioid binding sites should prove useful in suggesting anatomical substrates for the actions of opiates and opioids

  9. Effects of casoxin 4 on morphine inhibition of small animal intestinal contractility and gut transit in the mouse

    Directory of Open Access Journals (Sweden)

    Glen S Patten


    Full Text Available Glen S Patten1,2, Richard J Head1, Mahinda Y Abeywardena1,21CSIRO Preventative Health National Research Flagship, Adelaide, Australia; 2CSIRO Food and Nutritional Sciences, Adelaide, AustraliaBackground and aims: Chronic opioid analgesia has the debilitating side-effect of constipation in human patients. The major aims of this study were to: 1 characterize the opioid-specific antagonism of morphine-induced inhibition of electrically driven contraction of the small intestine of mice, rats, and guinea pigs; and 2 test if the oral delivery of small milk-derived opioid antagonist peptides could block morphine-induced inhibition of intestinal transit in mice.Methods: Mouse, rat, and guinea pig intact ileal sections were electrically stimulated to contract and inhibited with morphine in vitro. Morphine inhibition was then blocked by opioid subtype antagonists in the mouse and guinea pig. Using a polymeric dye, Poly R-478, the opioid antagonists casoxin 4 and lactoferroxin A were tested orally for blocking activity of morphine inhibition of gut transit in vivo by single or double gavage techniques.Results: The guinea pig tissue was more sensitive to morphine inhibition compared with the mouse or the rat (IC50 [half maximal inhibitory concentration] values as nmol/L ± SEM were 34 ± 3, 230 ± 13, and 310 ± 14 respectively (P < 0.01. The inhibitory influence of opioid agonists (IC50 in electrically driven ileal mouse preparations were DADLE ([D-Ala2, D-Leu5]-enkephalin ≥ met-enkephalin ≥ dynorphin A ≥ DAMGO ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin > morphine > morphiceptin as nmol/L 13.9, 17.3, 19.5, 23.3, 230, and 403 respectively. The mouse demonstrated predominantly Κ- and δ-opioid receptor activity with a smaller µ-opioid receptor component. Both mouse and guinea pig tissue were sensitive to casoxin 4 antagonism of morphine inhibition of contraction. In contrast to naloxone, relatively high oral doses of the µ-opioid receptor antagonists

  10. Peptidergic modulation of efferent sympathetic neurons in intrathoracic ganglia regulating the canine heart. (United States)

    Armour, J A


    When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart

  11. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B


    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  12. Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography. (United States)

    Jin, Xiaoyun; Leclercq, Laurent; Cottet, Hervé


    The characterization of the hydrophobicity of polymer compounds in solution remains a challenging issue of importance, especially for biomedical or pharmaceutical applications. To our knowledge, there is no data of polymer hydrophobicity (log D) in the literature. In this work, for the first time, the log D distributions of cationic polymers were characterized using micellar or microemulsion electrokinetic chromatography at physiological pH. The log D distributions of the polymer samples were obtained from the electrophoretic/chromatographic retardation of the polymer derivatives in presence of neutral micelles (or neutral microemulsion), using small cationic molecules for calibration. Separating electrolytes were based on a TRIS–chloride buffer containing a neutral surfactant (polyoxyethyleneglycoldodecyl ether) for the formation of micelles (in water) or microemulsion (in water/n-pentanol mixture).The log D distributions obtained at pH 7.4 using this method were in good agreement with the chemical structures of cationic polypeptides: poly(lys, phe) 1:1 > poly(lys, tyr) 1:1 > poly(lys, trp) 4:1 > poly(lys, ser)3:1 > poly(l-lysine), where x:y represents the molar ratio of each amino acid in the copolymer. Weight average octanol–water log D values and the dispersion of the log D distribution were also defined and determined for each polymer sample.

  13. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. (United States)

    Knöll, Ralph; Kostin, Sawa; Klede, Stefanie; Savvatis, Kostas; Klinge, Lars; Stehle, Ina; Gunkel, Sylvia; Kötter, Sebastian; Babicz, Kamila; Sohns, Melanie; Miocic, Snjezana; Didié, Michael; Knöll, Gudrun; Zimmermann, Wolfram Hubertus; Thelen, Paul; Bickeböller, Heike; Maier, Lars S; Schaper, Wolfgang; Schaper, Jutta; Kraft, Theresia; Tschöpe, Carsten; Linke, Wolfgang A; Chien, Kenneth R


    We previously discovered the human 10T-->C (Trp4Arg) missense mutation in exon 2 of the muscle LIM protein (MLP, CSRP3) gene. We sought to study the effects of this single-nucleotide polymorphism in the in vivo situation. We now report the generation and detailed analysis of the corresponding Mlp(W4R/+) and Mlp(W4R/W4R) knock-in animals, which develop an age- and gene dosage-dependent hypertrophic cardiomyopathy and heart failure phenotype, characterized by almost complete loss of contractile reserve under catecholamine induced stress. In addition, evidence for skeletal muscle pathology, which might have implications for human mutation carriers, was observed. Importantly, we found significantly reduced MLP mRNA and MLP protein expression levels in hearts of heterozygous and homozygous W4R-MLP knock-in animals. We also detected a weaker in vitro interaction of telethonin with W4R-MLP than with wild-type MLP. These alterations may contribute to an increased nuclear localization of W4R-MLP, which was observed by immunohistochemistry. Given the well-known high frequency of this mutation in Caucasians of up to 1%, our data suggest that (W4R-MLP) might contribute significantly to human cardiovascular disease.

  14. Bromocontryphan: post-translational bromination of tryptophan. (United States)

    Jimenez, E C; Craig, A G; Watkins, M; Hillyard, D R; Gray, W R; Gulyas, J; Rivier, J E; Cruz, L J; Olivera, B M


    We demonstrate that post-translational bromination of a tryptophan residue occurs in the biologically active octapeptide bromocontryphan, purified and characterized from Conus radiatus venom. Clones encoding bromocontryphan were identified from a cDNA library made from C. radiatus venom ducts. The mRNA sequence obtained predicts a prepropeptide which has the mature peptide sequence at the C-terminal end, with the L-6-bromotryptophan residue encoded by UGG, the Trp codon. These data provide the first direct evidence for post-translational bromination of a polypeptide which is translated through the normal cellular machinery. In addition to bromination, the peptide, which induces a "stiff tail" syndrome in mice, has several other modifications as shown by the sequence [Formula: See Text] in which Hyp = hydroxyproline. Asterisks indicate post-translational modifications (left to right): proteolytic cleavage at the N-terminus; hydroxylation of Pro3; epimerization of Trp4; bromination of Trp7, and C-terminal amidation. Bromocontryphan appears to have the highest density of post-translational modifications known among gene-encoded polypeptides. The overall result is a molecule which closely resembles marine natural products produced through specialized biosynthetic pathways comprising many enzyme-catalyzed steps.

  15. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. (United States)

    Basmanav, F Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C


    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4*), c.652C>T (p.Arg218*), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218*) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Directory of Open Access Journals (Sweden)

    Hochhut Bianca


    Full Text Available Abstract Background A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs - including pathogenicity islands (PAIs - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT. Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K, an origin of transfer (oriTRP4 and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.

  17. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform. (United States)

    Gonçalves, Catarina; Bastos, Margarida; Pignatelli, Duarte; Borges, Teresa; Aragüés, José M; Fonseca, Fernando; Pereira, Bernardo D; Socorro, Sílvia; Lemos, Manuel C


    To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). Cross-sectional study. Multicentric. Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). None. Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.