WorldWideScience

Sample records for dns direct numerical

  1. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.; Arias, Paul G.; Chaudhuri, Swetaprovo; Uranakara, Harshavardhana A.

    2016-01-01

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms

  2. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  3. Direct numerical simulations of turbulent lean premixed combustion

    International Nuclear Information System (INIS)

    Sankaran, Ramanan; Hawkes, Evatt R; Chen, Jacqueline H; Lu Tianfeng; Law, Chung K

    2006-01-01

    In recent years, due to the advent of high-performance computers and advanced numerical algorithms, direct numerical simulation (DNS) of combustion has emerged as a valuable computational research tool, in concert with experimentation. The role of DNS in delivering new Scientific insight into turbulent combustion is illustrated using results from a recent 3D turbulent premixed flame simulation. To understand the influence of turbulence on the flame structure, a 3D fully-resolved DNS of a spatially-developing lean methane-air turbulent Bunsen flame was performed in the thin reaction zones regime. A reduced chemical model for methane-air chemistry consisting of 13 resolved species, 4 quasi-steady state species and 73 elementary reactions was developed specifically for the current simulation. The data is analyzed to study possible influences of turbulence on the flame thickness. The results show that the average flame thickness increases, in qualitative agreement with several experimental results

  4. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers

    Directory of Open Access Journals (Sweden)

    Roberto Alonso

    2016-08-01

    Full Text Available The Domain Name System (DNS is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS. The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  5. Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.

    Science.gov (United States)

    Alonso, Roberto; Monroy, Raúl; Trejo, Luis A

    2016-08-17

    The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.

  6. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data

    Science.gov (United States)

    Schmitt, François G.

    2007-10-01

    Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.

  7. Comparison of direct numerical simulation databases of turbulent channel flow at Re = 180

    NARCIS (Netherlands)

    Vreman, A.W.; Kuerten, J.G.M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Re t = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2%

  8. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  9. Comparison of direct numerical simulation databases of turbulent channel flow at $Re_{\\tau}$ = 180

    NARCIS (Netherlands)

    Vreman, A.W.; Kuerten, Johannes G.M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at $Re_{\\tau}$ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations

  10. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    Science.gov (United States)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  11. Numerical Analysis of the Primary Breakup Applying the Embedded DNS Approach to a Generic Prefilming Airblast Atomizer

    Directory of Open Access Journals (Sweden)

    Benjamin Sauer

    2014-09-01

    Full Text Available An improved understanding of the breakup processes of two-phase flows is essential to effectively control the fuel atomization for future aircraft engines. A detailed insight into the phenomena of primary breakup is a major limitation in gaining this knowledge. Aircraft engines use airblast atomizers to provide the fuel atomization. The geometries of airblast atomizers are complex, the operating conditions are characterized by high Reynolds- and Weber numbers. Direct Numerical Simulations (DNS of liquid breakup under realistic conditions and geometries are hardly possible. The embedded DNS (eDNS concept aims to fill this gap. The concept consists of three steps: a geometry simplification, the generation of realistic boundary conditions for the DNS and the DNS of the breakup region. The realistic annular airblast atomizer geometry is simplified to a planar geometry. Inside this domain the eDNS is located. The eDNS domain requires the generation of boundary conditions. A zonal Large Eddy Simulation (LES of the turbulent channel flow is performed prior to the DNS. The parameters are stored transiently on the “virtual” DNS inlet planes. These variables are then mapped to the DNS. The Volume of fluid (VOF method is used to solve for the two-phase flow. DNS are performed for a shear-driven liquid wall film and for a generic planar prefilming airblast atomizer. As the Reynolds and Weber number for the first operating point (OP are low (Reair = 5,333/Wefilm = 1.9, the liquid wall film as well as the liquid sheet show no surface waves. For the second case with Reair = 13,333 and We film = 11.9, the surface appears more wrinkled and streamwise waves are transported along the wall for the shear-driven wall film. Instantaneous snapshots in 2–D and 3–D illustrate the qualitative behavior of the liquid sheet in time. Leaving the prefilmer trailing edge, the liquid sheet starts to oscillate in a sinusoidal fashion. This oscillation appears crucial for

  12. Direct numerical simulation of particulate flow with heat transfer

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H; Kriebitzsch, S.H.L.; Hoef, van der M.A.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2013-01-01

    The Immersed Boundary (IB) method proposed by Uhlmann for Direct Numerical Simulation (DNS) of fluid flow through dense fluid-particle systems is extended to systems with interphase heat transport. A fixed Eulerian grid is employed to solve the momentum and energy equations by traditional

  13. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-01-01

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  14. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-12-12

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  15. Establishment of DNS database in a turbulent channel flow by large-scale simulations

    OpenAIRE

    Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋

    2008-01-01

    In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.

  16. DNS in Computer Forensics

    Directory of Open Access Journals (Sweden)

    Neil Fowler Wright

    2012-06-01

    Full Text Available The Domain Name Service (DNS is a critical core component of the global Internet and integral to the majority of corporate intranets. It provides resolution services between the human-readable name-based system addresses and the machine operable Internet Protocol (IP based addresses required for creating network level connections. Whilst structured as a globally dispersed resilient tree data structure, from the Global and Country Code Top Level Domains (gTLD/ccTLD down to the individual site and system leaf nodes, it is highly resilient although vulnerable to various attacks, exploits and systematic failures. This paper examines the history along with the rapid growth of DNS up to its current critical status. It then explores the often overlooked value of DNS query data; from packet traces, DNS cache data, and DNS logs, with its use in System Forensics and more frequently in Network Forensics, extrapolating examples and experiments that enhance knowledge.Continuing on, it details the common attacks that can be used directly against the DNS systems and services, before following on with the malicious uses of DNS in direct system attacks, Distributed Denial of Service (DDoS, traditional Denial of Service (DOS attacks and malware. It explores both cyber-criminal activities and cyber-warfare based attacks, and also extrapolates from a number of more recent attacks the possible methods for data exfiltration. It explores some of the potential analytical methodologies including; common uses in Intrusion Detection Systems (IDS, as well as infection and activity tracking in malware traffic analysis, and covers some of the associated methods around technology designed to defend against, mitigate, and/or manage these and other risks, plus the effect that ISP and nation states can have by direct manipulation of DNS queries and return traffic.This paper also investigates potential behavioural analysis and time-lining, which can then be used for the

  17. PDF turbulence modeling and DNS

    Science.gov (United States)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  18. Direct numerical simulation of turbulent Rayleigh-Bénard convection in a vertical thin disk

    Science.gov (United States)

    Xu, Wei; Wang, Yin; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in a thin vertical disk with a high-order spectral element method code NEK5000. An unstructured mesh is used to adapt the turbulent flow in the thin disk and to ensure that the mesh sizes satisfy the refined Groetzbach criterion and a new criterion for thin boundary layers proposed by Shishkina et al. The DNS results for the mean and variance temperature profiles in the thermal boundary layer region are found to be in good agreement with the predictions of the new boundary layer models proposed by Shishkina et al. and Wang et al.. Furthermore, we numerically calculate the five budget terms in the boundary layer equation, which are difficult to measure in experiment. The DNS results agree well with the theoretical predictions by Wang et al. Our numerical work thus provides a strong support for the development of a common framework for understanding the effect of boundary layer fluctuations. This work was supported in part by Hong Kong Research Grants Council.

  19. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    Science.gov (United States)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  20. Investigation on convective mixing of triple-jet. Evaluation of turbulent quantities using particle image velocimetry and direct numerical simulation

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Igarashi, Minoru; Kamide, Hideki

    2002-01-01

    We performed a water experiment on parallel triple-jet and a calculation using a direct numerical simulation (DNS) for a quantification of thermal striping. The local temperatures and velocities were measured by using thermocouples and the particle image velocimetry (PIV), respectively. The calculation was carried out using the quasi-DNS code, DINUS-3, which was based on the finite difference method. The oscillation of the jets obtained from the flow visualization was related to the movements of the twin vortices between the jets by using the PIV. The experimental temperatures/velocities results were close to the numerical results. The heat transportation among the jets was evaluated by using the turbulent heat fluxes obtained from the quasi-DNS. (author)

  1. The validity of multiphase DNS initialized on the basis of single--point statistics

    Science.gov (United States)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  2. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    Science.gov (United States)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  3. DNS for Flow Separation Control Around Airfoil by Steady and Pulsed Jets

    National Research Council Canada - National Science Library

    Deng, Shutian; Jiang, Li; Liu, Chaoqun

    2004-01-01

    This work consists of two parts. The first part is direct numerical simulation (DNS) for flow separation and transition around a NACA 0012 airfoil with an attack angle of 4 degrees and Reynolds number of 100,000...

  4. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models

    International Nuclear Information System (INIS)

    Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H

    2005-01-01

    The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space

  5. Direct Numerical Simulation of heat transfer in a turbulent flume

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2001-01-01

    Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)

  6. Computational Flame Diagnostics for Direct Numerical Simulations with Detailed Chemistry of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)

    2017-02-16

    The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.

  7. DNS and the theory of receptivity of a supersonic boundary layer to free-stream disturbances

    International Nuclear Information System (INIS)

    Soudakov, Vitaly; Fedorov, Alexander; Ryzhov, Alexander

    2011-01-01

    Direct numerical simulation (DNS) of receptivity of a boundary layer over flat plate is carried out. The free stream Mach number is equal to 6. The following two-dimensional disturbances are introduced into the free-stream flow: fast and slow acoustic waves, temperature spottiness. A theoretical model describing the excitation of unstable waves in the boundary layer is developed using the biorthogonal eigenfunction decomposition method. The DNS results agree with the theoretical predictions.

  8. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  9. DNS security management

    CERN Document Server

    Dooley, Michael

    2017-01-01

    An advanced Domain Name System (DNS) security resource that explores the operation of DNS, its vulnerabilities, basic security approaches, and mitigation strategies DNS Security Management offers an overall role-based security approach and discusses the various threats to the Domain Name Systems (DNS). This vital resource is filled with proven strategies for detecting and mitigating these all too frequent threats. The authors—noted experts on the topic—offer an introduction to the role of DNS and explore the operation of DNS. They cover a myriad of DNS vulnerabilities and include preventative strategies that can be implemented. Comprehensive in scope, the text shows how to secure DNS resolution with the Domain Name System Security Extensions (DNSSEC), DNS firewall, server controls, and much more. In addition, the text includes discussions on security applications facilitated by DNS, such as anti-spam, SFP, and DANE.

  10. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  11. Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method

    NARCIS (Netherlands)

    Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.

  12. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  13. Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

    KAUST Repository

    Herná ndez Pé rez, Francisco E.; Mukhadiyev, Nurzhan; Xu, Xiao; Sow, Aliou; Lee, Bok Jik; Sankaran, Ramanan; Im, Hong G.

    2018-01-01

    A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.

  14. Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

    KAUST Repository

    Hernández Pérez, Francisco E.

    2018-03-29

    A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.

  15. Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

    Directory of Open Access Journals (Sweden)

    Ben Magolan

    2017-09-01

    Full Text Available Direct Numerical Simulation (DNS serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ = 400 and Lu–Tryggvason (Reτ = 150, examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu is also observed at wall-normal distances of y+ = 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data.

  16. Direct numerical simulation of stable and unstable turbulent thermal boundary layers

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Houra, Tomoya; Nagano, Yasutaka

    2007-01-01

    This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence

  17. Test Program for the Performance Analysis of DNS64 Servers

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2015-09-01

    Full Text Available In our earlier research papers, bash shell scripts using the host Linux command were applied for testing the performance and stability of different DNS64 server imple­mentations. Because of their inefficiency, a small multi-threaded C/C++ program (named dns64perf was written which can directly send DNS AAAA record queries. After the introduction to the essential theoretical background about the structure of DNS messages and TCP/IP socket interface programming, the design decisions and implementation details of our DNS64 performance test program are disclosed. The efficiency of dns64perf is compared to that of the old method using bash shell scripts. The result is convincing: dns64perf can send at least 95 times more DNS AAAA record queries per second. The source code of dns64perf is published under the GNU GPLv3 license to support the work of other researchers in the field of testing the performance of DNS64 servers.

  18. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds

    Science.gov (United States)

    Kumar, Bipin; Bera, Sudarsan; Prabha, Thara V.; Grabowski, Wojceich W.

    2017-03-01

    A direct numerical simulation (DNS) with the decaying turbulence setup has been carried out to study cloud-edge mixing and its impact on the droplet size distribution (DSD) applying thermodynamic conditions observed in monsoon convective clouds over Indian subcontinent during the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX). Evaporation at the cloud-edges initiates mixing at small scale and gradually introduces larger-scale fluctuations of the temperature, moisture, and vertical velocity due to droplet evaporation. Our focus is on early evolution of simulated fields that show intriguing similarities to the CAIPEEX cloud observations. A strong dilution at the cloud edge, accompanied by significant spatial variations of the droplet concentration, mean radius, and spectral width, are found in both the DNS and in observations. In DNS, fluctuations of the mean radius and spectral width come from the impact of small-scale turbulence on the motion and evaporation of inertial droplets. These fluctuations decrease with the increase of the volume over which DNS data are averaged, as one might expect. In cloud observations, these fluctuations also come from other processes, such as entrainment/mixing below the observation level, secondary CCN activation, or variations of CCN activation at the cloud base. Despite large differences in the spatial and temporal scales, the mixing diagram often used in entrainment/mixing studies with aircraft data is remarkably similar for both DNS and cloud observations. We argue that the similarity questions applicability of heuristic ideas based on mixing between two air parcels (that the mixing diagram is designed to properly represent) to the evolution of microphysical properties during turbulent mixing between a cloud and its environment.

  19. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  20. Scalar Dissipation Modeling for Passive and Active Scalars: a priori Study Using Direct Numerical Simulation

    Science.gov (United States)

    Selle, L. C.; Bellan, Josette

    2006-01-01

    Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate

  1. Direct Numerical Simulations of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Livescu, D; Wei, T; Petersen, M R

    2011-01-01

    The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.

  2. Near-field local flame extinction of Oxy-Syngas non-premixed jet flames : a DNS study

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Oijen, van J.A.; Luo, Kai; Jiang, X.

    2014-01-01

    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify

  3. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  4. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  5. Demonstration of two-phase Direct Numerical Simulation (DNS) methods potentiality to give information to averaged models: application to bubbles column

    International Nuclear Information System (INIS)

    Magdeleine, S.

    2009-11-01

    This work is a part of a long term project that aims at using two-phase Direct Numerical Simulation (DNS) in order to give information to averaged models. For now, it is limited to isothermal bubbly flows with no phase change. It could be subdivided in two parts: Firstly, theoretical developments are made in order to build an equivalent of Large Eddy Simulation (LES) for two phase flows called Interfaces and Sub-grid Scales (ISS). After the implementation of the ISS model in our code called Trio U , a set of various cases is used to validate this model. Then, special test are made in order to optimize the model for our particular bubbly flows. Thus we showed the capacity of the ISS model to produce a cheap pertinent solution. Secondly, we use the ISS model to perform simulations of bubbly flows in column. Results of these simulations are averaged to obtain quantities that appear in mass, momentum and interfacial area density balances. Thus, we processed to an a priori test of a complete one dimensional averaged model.We showed that this model predicts well the simplest flows (laminar and monodisperse). Moreover, the hypothesis of one pressure, which is often made in averaged model like CATHARE, NEPTUNE and RELAP5, is satisfied in such flows. At the opposite, without a polydisperse model, the drag is over-predicted and the uncorrelated A i flux needs a closure law. Finally, we showed that in turbulent flows, fluctuations of velocity and pressure in the liquid phase are not represented by the tested averaged model. (author)

  6. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    Science.gov (United States)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  7. Validation of an LES Model for Soot Evolution against DNS Data in Turbulent Jet Flames

    Science.gov (United States)

    Mueller, Michael

    2012-11-01

    An integrated modeling approach for soot evolution in turbulent reacting flows is validated against three-dimensional Direct Numerical Simulation (DNS) data in a set of n-heptane nonpremixed temporal jet flames. As in the DNS study, the evolution of the soot population is described statistically with the Hybrid Method of Moments (HMOM). The oxidation of the fuel and formation of soot precursors are described with the Radiation Flamelet/Progress Variable (RFPV) model that includes an additional transport equation for Polycyclic Aromatic Hydrocarbons (PAH) to account for the slow chemistry governing these species. In addition, the small-scale interactions between soot, chemistry, and turbulence are described with a presumed subfilter PDF approach that accounts for the very large spatial intermittency characterizing soot in turbulent reacting flows. The DNS dataset includes flames at three different Damköhler numbers to study the influence of global mixing rates on the evolution of PAH and soot. In this work, the ability of the model to capture these trends quantitatively as Damköhler number varies is investigated. In order to reliably assess the LES approach, the LES is initialized from the filtered DNS data after an initial transitional period in an effort to minimize the hydrodynamic differences between the DNS and the LES.

  8. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  9. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  10. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  11. DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines

    Science.gov (United States)

    vonTerzi, Dominic; Bauer, H.-J.

    2010-01-01

    DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.

  12. Proxy support for service discovery using mDNS/DNS-SD in low power networks

    NARCIS (Netherlands)

    Stolikj, M.; Verhoeven, R.; Cuijpers, P.J.L.; Lukkien, J.J.

    2014-01-01

    We present a solution for service discovery of resource constrained devices based on mDNS/DNS-SD. We extend the mDNS/DNS-SD service discovery protocol with support for proxy servers. Proxy servers temporarily store information about services offered on resource constrained devices and respond on

  13. Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: ► Quasi direct numerical simulations (q-DNS) of a pebble bed configuration has been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS and covariance of velocity field are extensively reported in this paper. -- Abstract: High temperature reactors (HTR) are being considered for deployment around the world because of their excellent safety features. The fuel is embedded in a graphite moderator and can sustain very high temperatures. However, the appearance of hot spots in the pebble bed cores of HTR's may affect the integrity of the pebbles. A good prediction of the flow and heat transport in such a pebble bed core is a challenge for available turbulence models and such models need to be validated. In the present article, quasi direct numerical simulations (q-DNS) of a pebble bed configuration are reported, which may serve as a reference for the validation of different turbulence modeling approaches. Such approaches can be used in order to perform calculations for a randomly arranged pebble bed. Simulations are performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Detailed flow analyses have shown complex physics flow behavior and make this case challenging for turbulence model validation. Hence, a wide range of qualitative and quantitative data for velocity and temperature field have been extracted for this benchmark. In the present article (part I), results related to the flow field (mean, RMS and covariance of velocity) are documented and discussed in detail. Moreover, the discussion regarding the temperature field will be published in a separate article

  14. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  15. Direct numerical simulation of particle laden flow in a human airway bifurcation model

    International Nuclear Information System (INIS)

    Stylianou, Fotos S.; Sznitman, Josué; Kassinos, Stavros C.

    2016-01-01

    Highlights: • An anatomically realistic model of a human airway bifurcation is constructed. • Direct numerical simulations are used to study laminar and turbulent airflow. • Aerosol deposition in the bifurcation is studied with lagrangian particle tracking. • Carinal vortices forming during steady expiration are reported for the first time. • Stokes number determines deposition differences between inspiration and expiration. - Abstract: During the delivery of inhaled medicines, and depending on the size distribution of the particles in the formulation, airway bifurcations are areas of preferential deposition. Previous studies of laminar flow through airway bifurcations point to an interplay of inertial and centrifugal forces that leads to rich flow phenomena and controls particle deposition patterns. However, recent computational studies have shown that the airflow in the upper human airways is turbulent during much of the respiratory cycle. The question of how the presence of turbulence modifies these effects remains open. In this study, we perform for the first time Direct Numerical Simulations (DNS) of fully developed turbulent flow through a single human airway bifurcation model, emulating steady prolonged inspiration and expiration. We use the rich information obtained from the DNS in order to identify key structures in the flow field and scrutinize their role in determining deposition patterns in the bifurcation. We find that the vortical structures present in the bifurcation during expiration differ from those identified during inspiration. While Dean vortices are present in both cases, a set of three dimensional “carinal vortices” are identified only during expiration. A set of laminar simulations in the same geometries, but at lower Reynolds numbers, allow us to identify key differences in aerosol deposition patterns between laminar and turbulent respiration. We also report deposition fractions for representative Stokes numbers for both

  16. DNS of droplet motion in a turbulent flow

    Science.gov (United States)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  17. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  18. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  19. High Performance Computation of a Jet in Crossflow by Lattice Boltzmann Based Parallel Direct Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jiang Lei

    2015-01-01

    Full Text Available Direct numerical simulation (DNS of a round jet in crossflow based on lattice Boltzmann method (LBM is carried out on multi-GPU cluster. Data parallel SIMT (single instruction multiple thread characteristic of GPU matches the parallelism of LBM well, which leads to the high efficiency of GPU on the LBM solver. With present GPU settings (6 Nvidia Tesla K20M, the present DNS simulation can be completed in several hours. A grid system of 1.5 × 108 is adopted and largest jet Reynolds number reaches 3000. The jet-to-free-stream velocity ratio is set as 3.3. The jet is orthogonal to the mainstream flow direction. The validated code shows good agreement with experiments. Vortical structures of CRVP, shear-layer vortices and horseshoe vortices, are presented and analyzed based on velocity fields and vorticity distributions. Turbulent statistical quantities of Reynolds stress are also displayed. Coherent structures are revealed in a very fine resolution based on the second invariant of the velocity gradients.

  20. Verification of bubble tracking method and DNS examinations of single- and two-phase turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Tryggvason, Gretar [Univ. of Notre Dame, IN (United States); Bolotnov, Igor [North Carolina State Univ., Raleigh, NC (United States); Fang, Jun [North Carolina State Univ., Raleigh, NC (United States); Lu, Jiacai [Univ. of Notre Dame, IN (United States)

    2017-03-30

    Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challenging engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.

  1. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  2. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  3. Direct numerical simulations of mack-mode damping on porous coated cones

    Science.gov (United States)

    Lüdeke, H.; Wartemann, V.

    2013-06-01

    The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.

  4. Closure of connection to off-site DNS services from within CERN

    CERN Multimedia

    IT Department

    2008-01-01

    The internet Domain Name System (DNS) service is a mechanism which translates the names of computers into IP addresses (a sort of telephone book). For reasons of security, users of computers on the CERN site are required to use only the DNS services supported centrally by IT. This is in order to avoid possible breaches of the CERN Central Firewall as well as assorted vulnerabilities which have recently been exploited in DNS code by criminals. The DNS service uses IP port 53, which is already blocked coming into CERN, and which will be blocked in the outward direction from 28 October. For correctly configured CERN machines or any portable using automatic configuration (via the DHCP protocol), this change will be transparent. However, portable machines brought onto the CERN site which are not set up to use DHCP will need to have the IP address of the CERN DNS services correctly set in their configuration. How to do this is explained in http://cern.ch/dns. In case of questions...

  5. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  6. The Internet of Names: A DNS Big Dataset - Actively Measuring 50% of the Entire DNS Name Space, Every Day

    OpenAIRE

    van Rijswijk, Roland M.; Jonker, Mattijs; Sperotto, Anna; Pras, Aiko

    2015-01-01

    The Domain Name System (DNS) is part of the core infrastructure of the Internet. Tracking changes in the DNS over time provides valuable information about the evolution of the Internet’s infrastructure. Until now, only one large-scale approach to perform these kinds of measurements existed, passive DNS (pDNS). While pDNS is useful for applications like tracing security incidents, it does not provide sufficient information to reliably track DNS changes over time. We use a complementary approac...

  7. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    Science.gov (United States)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  8. Direct numerical simulation of heat transfer to CO2 at supercritical pressure in a vertical tube

    International Nuclear Information System (INIS)

    Bae, Joong-Hun; Yoo, Jung-Yul; Choi, Hae-Cheon

    2003-01-01

    In the present study, the turbulent heat transfer to CO 2 at supercritical pressure in a vertical tube is investigated using Direct Numerical Simulation (DNS), where no turbulence model is adopted. Heat transfer to the supercritical pressure fluids is characterized by rapid variation of thermodynamic/ thermo-physical properties in the fluids. This change in properties occurs within a very narrow range of temperature across the so-called pseudo-critical temperature, causing a peculiar behavior of heat transfer characteristics. The buoyancy effects associated with very large changes in density proved to play a major role in turbulent heat transfer to supercritical pressure fluids. Depending on the degree of buoyancy effects, turbulent heat transfer may increase or significantly decrease, resulting in a local hot spot along the wall. Based on the results of the present DNS study combined with theoretical considerations for turbulent mixed convection heat transfer, the basic mechanism of this local heat transfer deterioration is explained

  9. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    Science.gov (United States)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE

  10. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  11. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  12. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    Science.gov (United States)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  13. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2015-01-01

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study

  14. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)

    2015-01-15

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.

  15. Detekce útoku DNS Amplification z pasivní analýzy DNS provozu

    OpenAIRE

    Míšaný, Daniel

    2014-01-01

    Táto práce je zaměřená na analýzu a detekci útoku DNS amplification, který patří mezi útoky typu DoS. Úvod práce je zaměřený na základní teorii zahrnující počítačové sítě, službu DNS a útoky typu DoS. Větší část práce se zabývá analýzou útoku DNS amplification, návrhem a implementací nástroje pro detekci v jazyce C++. Závěr je věnovaný analýze výsledků detekčního nástroje. This thesis is focused on the analysis and detection of DNS Amplification attack which is type of the DoS attack. Intr...

  16. Direct numerical simulation of vector-controlled free jets

    International Nuclear Information System (INIS)

    Tsujimoto, K; Ao, K; Shakouchi, T; Ando, T

    2011-01-01

    We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.

  17. Direct numerical simulation of stratified gas-liquid flow

    International Nuclear Information System (INIS)

    Lombardi, P.; De Angelis, V.; Banerjee, S.

    1996-01-01

    Interactions through an interface between two turbulent flows play an important role in many environmental and industrial problems, e.g. in determining the coupling fluxes of heat mass and momentum, between the ocean and atmosphere, and in the design of gas-liquid contractors for the chemical industry, as well as in determining interactions between phases in nuclear transients that are accompanied by system voiding e.g. LOCAs. Here, the Direct Numerical Simulation (DNS) of the interaction of two turbulent fluids through a flat interface has been simulated. The flow and the temperature fields are computed using a pseudospectral method. This study shows that shear stress at the interface correlates well with the heat flux. Extensive analysis of the near interface turbulence structure has been performed using quadrant analysis. From this it is clear that gas-side sweeps dominate over the high shear stress regions. This suggests that simple parameterizations based on sweep frequency may be adequate for predictions of scalar transport rates

  18. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  19. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  20. Detuned resonances of Tollmien-Schlichting waves in an airfoil boundary layer: Experiment, theory, and direct numerical simulation

    Science.gov (United States)

    Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.

    2012-09-01

    Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the

  1. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  2. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  3. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2006-04-15

    The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)

  4. Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2005-01-01

    During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)

  5. Enc-DNS-HTTP: Utilising DNS Infrastructure to Secure Web Browsing

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulridha Hussain

    2017-01-01

    Full Text Available Online information security is a major concern for both users and companies, since data transferred via the Internet is becoming increasingly sensitive. The World Wide Web uses Hypertext Transfer Protocol (HTTP to transfer information and Secure Sockets Layer (SSL to secure the connection between clients and servers. However, Hypertext Transfer Protocol Secure (HTTPS is vulnerable to attacks that threaten the privacy of information sent between clients and servers. In this paper, we propose Enc-DNS-HTTP for securing client requests, protecting server responses, and withstanding HTTPS attacks. Enc-DNS-HTTP is based on the distribution of a web server public key, which is transferred via a secure communication between client and a Domain Name System (DNS server. This key is used to encrypt client-server communication. The scheme is implemented in the C programming language and tested on a Linux platform. In comparison with Apache HTTPS, this scheme is shown to have more effective resistance to attacks and improved performance since it does not involve a high number of time-consuming operations.

  6. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    Energy Technology Data Exchange (ETDEWEB)

    Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  7. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    International Nuclear Information System (INIS)

    Tiselj, Iztok; Cizelj, Leon

    2012-01-01

    Highlights: ► DNS database for turbulent channel flow at Prandtl number 0.01 and various Re τ . ► Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. ► DNS database with conjugate heat transfer for liquid sodium–steel contact. ► Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium–steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  8. Direct Numerical Simulations of Particle-Laden Turbulent Channel Flow

    Science.gov (United States)

    Jebakumar, Anand Samuel; Premnath, Kannan; Abraham, John

    2017-11-01

    In a recent experimental study, Lau and Nathan (2014) reported that the distribution of particles in a turbulent pipe flow is strongly influenced by the Stokes number (St). At St lower than 1, particles migrate toward the wall and at St greater than 10 they tend to migrate toward the axis. It was suggested that this preferential migration of particles is due to two forces, the Saffman lift force and the turbophoretic force. Saffman lift force represents a force acting on the particle as a result of a velocity gradient across the particle when it leads or lags the fluid flow. Turbophoretic force is induced by turbulence which tends to move the particle in the direction of decreasing turbulent kinetic energy. In this study, the Lattice Boltzmann Method (LBM) is employed to simulate a particle-laden turbulent channel flow through Direct Numerical Simulations (DNS). We find that the preferential migration is a function of particle size in addition to the St. We explain the effect of the particle size and St on the Saffman lift force and turbophoresis and present how this affects particle concentration at different conditions.

  9. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  10. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    International Nuclear Information System (INIS)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi; Hayase, Toshiyuki

    2008-01-01

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  11. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Hayase, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)], E-mail: nagata@nagoya-u.jp, E-mail: hsuzuki@nagoya-u.jp, E-mail: ysakai@mech.nagoya-u.ac.jp, E-mail: t-kubo@nagoya-u.jp, E-mail: hayase@ifs.tohoku.ac.jp

    2008-12-15

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  12. DNS of flows over superhydrophobic surfaces with small texture

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2015-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces with small texture sizes, comparable to those of practical application. Textures studied with DNS are usually much larger, as the cost of the simulations would otherwise be prohibitive. For this reason, a multi-block code that allows for finer resolution near the walls has been developed. We focus particularly on the pressure distribution at the wall. This distribution can cause the deformation of the gas pockets, which can ultimately lead to their loss and that of the drag reduction effect. The layout of the texture causes stagnation pressures which can contribute substantially to the wall pressure signal (Seo et al. JFM, under review). We study a range of different textures and their influence on these pressures.

  13. Improving DNS security : a measurement-based approach

    NARCIS (Netherlands)

    van Rijswijk-Deij, Roland

    2017-01-01

    The Domain Name System (DNS) is a vital part of the core infrastructure of the Internet. It maps human readable names (such as www.example.com) to machine readable information (such as 93.184.216.34). This thesis studies two aspects of the DNS. First, it studies problems in the DNS Security

  14. Multi-dimensional Aggregation for DNS Monitoring

    OpenAIRE

    Dolberg , Lautaro; François , Jérôme; Engel , Thomas

    2013-01-01

    International audience; DNS is an essential service in the Internet as it allows to translate human language based domain names into IP addresses. DNS traffic reflects the user activities and behaviors. It is thus a helpful source of information in the context of large scale network monitoring. In particular, passive DNS monitoring garnered much interest for the security perspectives by highlighting the services the machines want to access. In this paper, we propose a new method for assessing...

  15. DNS Lame delegations: A case-study of public reverse DNS records in the African Region

    CSIR Research Space (South Africa)

    Phokeer, A

    2016-12-01

    Full Text Available The DNS, as one of the oldest components of the modern Internet, has been studied multiple times. It is a known fact that operational issues such as mis-configured name servers affect the responsiveness of the DNS service which could lead to delayed...

  16. Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame via DNS

    Directory of Open Access Journals (Sweden)

    Haiou Wang

    2013-09-01

    Full Text Available A fully compressible 3D solver for reacting flows has been developed and applied to investigate a turbulent lifted jet flame in a vitiated coflow by means of direct numerical simulation (DNS to validate the solver and analyze the flame characteristics. An eighth-order central differencing scheme is used for spatial discretization and a fourth-order Runge-Kutta method is employed for time integration. The DNS results agree well with the experimental measurements for the conditional means of reactive scalars. However, the lift-off height is under predicted. The mean axial velocity develops into a self-similar profile after x/D = 6. The normalized flame index is employed to characterize the combustion regime. It is found that at the flame base the gradients of the reactants are opposed and diffusion combustion is dominant. Further downstream, the contribution of premixed combustion increases and peaks at x/D = 8. Finally, the stabilization process is examined. The turbulent lifted flame is proved to stabilize in the lean mixtures and low scalar dissipation rate regions.

  17. DNS of Low-Pressure Turbine Cascade Flows with Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method

    Science.gov (United States)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.

  18. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  19. From the direct numerical simulation to system codes-perspective for the multi-scale analysis of LWR thermal hydraulics

    International Nuclear Information System (INIS)

    Bestion, D.

    2010-01-01

    A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given

  20. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan; Missouri Univ of Sci; Tech Team; NASA Langley Research Center Team

    2017-11-01

    Direct numerical simulations (DNS) are used to examine the acoustic noise generation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube. The emphasis is on characterizing the freestream acoustic pressure disturbances radiated from the nozzle-wall turbulent boundary layer and comparing it with acoustic noise generated from a single, flat wall in an unconfined setting at a similar freestream Mach number to assess the effects of noise reverberation. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the boundary-layer parameters as well as to understand the acoustic source mechanisms. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Air Force Office of Scientific Research Award No. FA9550-14-1-0170.

  1. Direct numerical simulation of free and forced square jets

    International Nuclear Information System (INIS)

    Gohil, Trushar B.; Saha, Arun K.; Muralidhar, K.

    2015-01-01

    Highlights: • Free square jet at Re = 500–2000 is studied using DNS. • Forced square jet at Re = 1000 subjected to varicose perturbation is also investigated at various forcing frequencies. • Vortex interactions within the jet and jet spreading are affected both for free and forced jets. • Perturbation at higher frequency shows axis-switching. - Abstract: Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones

  2. Review of blockchain-based DNS alternatives

    Institute of Scientific and Technical Information of China (English)

    HU Wei-hong; AO Meng; SHI Lin; XIE Jia-gui; LIU Yang

    2017-01-01

    DNS Protocol was originally designed with no security protection in place.Subsequent DNSSEC added a layer of trust on top of DNS by providing authentication,but it still did not address issues such as DoS/DDoS attacks and deployment difficulties.Blockchain technology offers an innovative perspective to tackle those challenges.By reviewing and analyzing two prevail blockchain-based DNS alternatives (Namecoin and Blockstack),it is concluded that although blockchain presently have problems that have to be solved,it is a promising approach to build decentralized,secure and human-friendly naming systems.

  3. Direct numerical simulation of vacillation in convection induced by centrifugal buoyancy

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John W.

    2017-11-01

    Flows induced by centrifugal buoyancy occur in industrial systems, such as in the compressor cavities of gas turbines, as well as in flows of geophysical interest. In this numerical study we use direct numerical simulation (DNS) to investigate the transition between the steady waves regime, which is characterized by great regularity, to the vacillation regime, which is critical to understand transition to the fully turbulent regime. From previous work it is known that the onset of convection occurs in the form of pairs of nearly-circular rolls which span the entire axial length of the cavity, with small deviations near the parallel, no-slip end walls. When non-linearity sets in triadic interactions occur and, depending on the value of the centrifugal Rayleigh number, the flow is dominated by either a single mode and its harmonics or by broadband effects if turbulence develops. In this study we increase the centrifugal Rayleigh number progressively and investigate mode interactions during the vacillation regime which eventually lead to chaotic motion. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  4. Flow-Based Detection of DNS Tunnels

    NARCIS (Netherlands)

    Ellens, W.; Żuraniewski, P.; Sperotto, A.; Schotanus, H.; Mandjes, M.; Meeuwissen, E.

    2013-01-01

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  5. Flow-based detection of DNS tunnels

    NARCIS (Netherlands)

    Ellens, W.; Zuraniewski, P.; Schotanus, H.; Mandjes, M.R.H.; Meeuwissen, E.; Doyen, Guillaume; Waldburger, Martin; Celeda, Pavel; Sperotto, Anna; Stiller, Burkhard

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  6. Flow-based detection of DNS tunnels

    NARCIS (Netherlands)

    Ellens, W.; Zuraniewski, P.W.; Sperotto, A.; Schotanus, H.A.; Mandjes, M.; Meeuwissen, H.B.

    2013-01-01

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  7. Comparison of one-dimensional probabilistic finite element method with direct numerical simulation of dynamically loaded heterogeneous materials

    Science.gov (United States)

    Robbins, Joshua; Voth, Thomas

    2011-06-01

    Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Direct numerical simulation of combustion at high Reynolds numbers; Direkte Numerische Simulation der Verbrennung bei hoeheren Reynoldszahlen

    Energy Technology Data Exchange (ETDEWEB)

    Frouzakis, C. E.; Boulouchos, K.

    2005-12-15

    This comprehensive illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the work done at the Swiss Federal Institute of Technology in Zurich on the numerical simulation of combustion processes at high Reynolds numbers. The authors note that with appropriate extensive calculation effort, results can be obtained that demonstrate a high degree of accuracy. It is noted that a large part of the project work was devoted to the development of algorithms for the simulation of the combustion processes. Application work is also discussed with research on combustion stability being carried on. The direct numerical simulation (DNS) methods used are described and co-operation with other institutes is noted. The results of experimental work are compared with those provided by simulation and are discussed in detail. Conclusions and an outlook round off the report.

  9. UMA ANÁLISE DO PROTOCOLO DNS E SUAS EXTENSÕES

    Directory of Open Access Journals (Sweden)

    Paulo Renato Lopes Seixas

    2010-08-01

    Full Text Available O estudo do protocolo DNS (Domain Name System faz se necessário devido a sua grande importância para a estabilidade e confiança da internet que hoje conhecemos. O protocolo DNS nativo traz algumas vulnerabilidades intrínsecas em seu protocolo, tais como envenenamento de cache e impersonificação de servidores DNS. Hoje, temos uma extensão segura do protocolo DNS, denominado DNSSEC (Domain Name System Security Extensions, capaz de prover autenticidade nas requisições de DNS, garantindo assim a integridade dos pacotes DNS. Além desta extensão segura, existe outra denominada DNSCurve bem mais robusta porém consome mais recursos, devido todos os pacotes DNS utilizarem criptografia, desde sua origem até o destino.

  10. Direct numerical simulation of turbulent mixing at very low Schmidt number with a uniform mean gradient

    Science.gov (United States)

    Yeung, P. K.; Sreenivasan, K. R.

    2014-01-01

    In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.

  11. DNS and BIND on IPv6

    CERN Document Server

    Liu, Cricket

    2011-01-01

    If you're preparing to roll out IPv6 on your network, this concise book provides the essentials you need to support this protocol with DNS. You'll learn how DNS was extended to accommodate IPv6 addresses, and how you can configure a BIND name server to run on the network. This book also features methods for troubleshooting problems with IPv6 forward- and reverse-mapping, and techniques for helping islands of IPv6 clients communicate with IPv4 resources. Topics include: DNS and IPv6-Learn the structure and representation of IPv6 addresses, and the syntaxes of AAAA and PTR records in the ip6.a

  12. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  13. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  14. Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    1998-01-01

    Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)

  15. Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations

    Science.gov (United States)

    Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz

    2016-11-01

    The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.

  16. Effects of non-adiabatic walls on shock/boundary-layer interaction using direct numerical simulations

    Science.gov (United States)

    Volpiani, Pedro S.; Bernardini, Matteo; Larsson, Johan

    2017-11-01

    The influence of wall thermal conditions on the properties of an impinging shock wave interacting with a turbulent supersonic boundary layer is a research topic that still remains underexplored. In the present study, direct numerical simulations (DNS) are employed to investigate the flow properties of a shock wave interacting with a turbulent boundary layer at free-stream Mach number M∞ = 2.28 with distinct wall thermal conditions and shock strengths. Instantaneous and mean flow fields, wall quantities and the low-frequency unsteadiness are analyzed. While heating contributes to increase the extent of the interaction zone, wall cooling turns out to be a good candidate for flow control. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. Numerical results indicate that the changes in the interaction length are mainly linked to the incoming boundary layer as suggested in previous studies (Souverein et al., 2013 and Jaunet et al., 2014). This work was supported by the Air Force Office of Scientific Research, Grant FA95501610385.

  17. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  18. Large-scale DNS and DNSSEC data sets for network security research

    NARCIS (Netherlands)

    van Rijswijk, Roland M.; Sperotto, Anna; Pras, Aiko

    The Domain Name System protocol is often abused to perform denial-of-service attacks. These attacks, called DNS amplification, rely on two properties of the DNS. Firstly, DNS is vulnerable to source address spoofing because it relies on the asynchronous connectionless UDP protocol. Secondly, DNS

  19. A new algorithm for DNS of turbulent polymer solutions using the FENE-P model

    Science.gov (United States)

    Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James

    2004-11-01

    Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.

  20. Analysis and modeling of subgrid scalar mixing using numerical data

    Science.gov (United States)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  1. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2005-10-01

    A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)

  2. The Internet of Names: A DNS Big Dataset - Actively Measuring 50% of the Entire DNS Name Space, Every Day

    NARCIS (Netherlands)

    van Rijswijk, Roland M.; Jonker, Mattijs; Sperotto, Anna; Pras, Aiko

    2015-01-01

    The Domain Name System (DNS) is part of the core infrastructure of the Internet. Tracking changes in the DNS over time provides valuable information about the evolution of the Internet’s infrastructure. Until now, only one large-scale approach to perform these kinds of measurements existed, passive

  3. A Global Reference Model of the DNS

    NARCIS (Netherlands)

    Koc, Y.; Jamakovic, A.; Gijsen, B.M.M.

    2011-01-01

    The Domain Name System (DNS) is a crucial component of today’s Internet. At this point in time the DNS is facing major changes such as the introduction of DNSSEC and Internationalized Domain Name extensions (IDNs), the adoption of IPv6 and the upcoming extension of new generic Top-Level Domains.

  4. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  5. DNSSM: A Large Scale Passive DNS Security Monitoring Framework

    OpenAIRE

    Marchal , Samuel; François , Jérôme; Wagner , Cynthia; State , Radu; Dulaunoy , Alexandre; Engel , Thomas; Festor , Olivier

    2012-01-01

    International audience; We present a monitoring approach and the supporting software architecture for passive DNS traffic. Monitoring DNS traffic can reveal essential network and system level activity profiles. Worm infected and botnet participating hosts can be identified and malicious backdoor communications can be detected. Any passive DNS monitoring solution needs to address several challenges that range from architectural approaches for dealing with large volumes of data up to specific D...

  6. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.

  7. Computer Security: DNS to the rescue!

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2016-01-01

    Why you should be grateful to the Domain Name System at CERN.   Incidents involving so-called “drive-by” infections and “ransomware” are on the rise. Whilst an up-to-date and fully patched operating system is essential; whilst running anti-virus software with current virus signature files is a must; whilst “stop --- think --- don’t click” surely helps, we can still go one step further in better protecting your computers: DNS to the rescue. The DNS, short for Domain Name System, translates the web address you want to visit (like “http://cern.ch”) to a machine-readable format (the IP address, here: “188.184.9.234”). For years, we have automatically monitored the DNS translation requests made by your favourite web browser (actually by your operating system, but that doesn’t matter here), and we have automatically informed you if your computer tried to access a website known to hos...

  8. Evaluation of turbulent transport and flame surface dissipation using direct numerical simulation of turbulent combustion; Evaluation des termes de transport et de dissipation de surface de flamme par simulation numerique directe de la combustion turbulente

    Energy Technology Data Exchange (ETDEWEB)

    Boughanem, H.

    1998-03-24

    The assumption of gradient transport for the mean reaction progress variable has a limited domain of validity in premixed turbulent combustion. The existence of two turbulent transport regimes, gradient and counter-gradient, is demonstrated in the present work using Direct Numerical Simulations (DNS) of plane flame configurations. The DNS data base describes the influence of the heat release factor, of the turbulence-to-flame velocity ratio, and of an external pressure gradient. The simulations reveal a strong correlation between the regime of turbulent transport and the turbulent flame speed and turbulent flame thickness. These effects re not well described by current turbulent combustion models. A conditional approach `fresh gases / burnt gases` is proposed to overcome these difficulties. Furthermore, he development of flame instabilities in turbulent configurations is also observed in the simulations. A criterion is derived that determines the domain of occurrence of these instabilities (Darrieus- Landau instabilities, Rayleigh- Taylor instabilities, thermo-diffusive instabilities). This criterion suggests that the domain of occurrence of flame instabilities is not limited to small Reynolds numbers. (author) 98 refs.

  9. Numerical Simulation of Complex Multi-Fluid Flows using a Combined Immersed Boundary and Volume of Fluid Approach

    NARCIS (Netherlands)

    Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.

  10. Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations

    International Nuclear Information System (INIS)

    Li Feng-Chen; Cai Wei-Hua; Zhang Hong-Na; Wang Yue

    2012-01-01

    Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case

  11. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas

  12. Numerical simulations of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    International Nuclear Information System (INIS)

    Castiglioni, G.; Domaradzki, J.A.; Pasquariello, V.; Hickel, S.; Grilli, M.

    2014-01-01

    Highlights: • The present study evaluate LES techniques and IB method to simulate separated flows. • Simulations have been performed with an IB code and a commercial code. • The benchmark flow is a laminar separation bubble around an airfoil. • It is concluded that IB methods are appropriate only for high resolution DNS and LES. • High fidelity LES with 1% of DNS resolution can be performed. - Abstract: Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical RANS turbulence models are inadequate for such flows. Direct numerical simulation (DNS) is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of Immersed Boundary (IB) methods and Large Eddy Simulations (LES) to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Re c =5×10 4 at 5° of incidence have been performed with an IB code and a commercial code using body fitted grids. Several Subgrid Scale (SGS) models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the IB method the results show good agreement with DNS benchmark data for the pressure coefficient C p and the friction coefficient C f but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the IB. For the three-dimensional simulations the results show a good prediction of the separation point, but inaccurate prediction of the reattachment point unless full DNS resolution is used. The commercial code shows good agreement

  13. DNS load balancing in the CERN cloud

    Science.gov (United States)

    Reguero Naredo, Ignacio; Lobato Pardavila, Lorena

    2017-10-01

    Load Balancing is one of the technologies enabling deployment of large-scale applications on cloud resources. A DNS Load Balancer Daemon (LBD) has been developed at CERN as a cost-effective way to balance applications accepting DNS timing dynamics and not requiring persistence. It currently serves over 450 load-balanced aliases with two small VMs acting as master and slave. The aliases are mapped to DNS subdomains. These subdomains are managed with DDNS according to a load metric, which is collected from the alias member nodes with SNMP. During the last years, several improvements were brought to the software, for instance: support for IPv6, parallelization of the status requests, implementing the client in Python to allow for multiple aliases with differentiated states on the same machine or support for application state. The configuration of the Load Balancer is currently managed by a Puppet type. It discovers the alias member nodes and gets the alias definitions from the Ermis REST service. The Aiermis self-service GUI for the management of the LB aliases has been produced and is based on the Ermis service above that implements a form of Load Balancing as a Service (LBaaS). The Ermis REST API has authorisation based in Foreman hostgroups. The CERN DNS LBD is Open Software with Apache 2 license.

  14. Re-understanding the law-of-the-wall for wall-bounded turbulence based on in-depth investigation of DNS data

    Science.gov (United States)

    Cao, Bochao; Xu, Hongyi

    2018-05-01

    Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.

  15. Wavelet Analysis on Turbulent Structure in Drag-Reducing Channel Flow Based on Direct Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2013-01-01

    Full Text Available Direct numerical simulation has been performed to study a polymer drag-reducing channel flow by using a discrete-element model. And then, wavelet analyses are employed to investigate the multiresolution characteristics of velocity components based on DNS data. Wavelet decomposition is applied to decompose velocity fluctuation time series into ten different frequency components including approximate component and detailed components, which show more regular intermittency and burst events in drag-reducing flow. The energy contribution, intermittent factor, and intermittent energy are calculated to investigate characteristics of different frequency components. The results indicate that energy contributions of different frequency components are redistributed by polymer additives. The energy contribution of streamwise approximate component in drag-reducing flow is up to 82%, much more than 25% in the Newtonian flow. Feature of turbulent multiscale structures is shown intuitively by continuous wavelet transform, verifying that turbulent structures become much more regular in drag-reducing flow.

  16. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  17. SFCSD: A Self-Feedback Correction System for DNS Based on Active and Passive Measurement

    OpenAIRE

    Huang, Caiyun; Zhang, Peng; Liu, Junpeng; Sun, Yong; Zou, Xueqiang

    2017-01-01

    Domain Name System (DNS), one of the important infrastructure in the Internet, was vulnerable to attacks, for the DNS designer didn't take security issues into consideration at the beginning. The defects of DNS may lead to users' failure of access to the websites, what's worse, users might suffer a huge economic loss. In order to correct the DNS wrong resource records, we propose a Self-Feedback Correction System for DNS (SFCSD), which can find and track a large number of common websites' dom...

  18. A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krisman, Alexander; Hawkes, Evatt Robert.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.

    2016-11-11

    In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel, DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.

  19. Quasi-DNS capabilities of OpenFOAM for different mesh types

    NARCIS (Netherlands)

    Komen, E.M.J.; Shams, A.; Camilo, L.; Koren, B.

    2014-01-01

    Experimental limitations for certain nuclear reactor safety applications have pushed forward the demand for high fidelity DNS reference solutions for complex geometric configurations such as a T-junction or a spherical pebble bed. The application of traditional high-order DNS codes is limited to

  20. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  1. Entropy Based Analysis of DNS Query Traffic in the Campus Network

    Directory of Open Access Journals (Sweden)

    Dennis Arturo Ludeña Romaña

    2008-10-01

    Full Text Available We carried out the entropy based study on the DNS query traffic from the campus network in a university through January 1st, 2006 to March 31st, 2007. The results are summarized, as follows: (1 The source IP addresses- and query keyword-based entropies change symmetrically in the DNS query traffic from the outside of the campus network when detecting the spam bot activity on the campus network. On the other hand (2, the source IP addresses- and query keywordbased entropies change similarly each other when detecting big DNS query traffic caused by prescanning or distributed denial of service (DDoS attack from the campus network. Therefore, we can detect the spam bot and/or DDoS attack bot by only watching DNS query access traffic.

  2. Study on convective mixing for thermal striping phenomena. Thermal-hydraulic analyses on mixing process in parallel triple-jet and comparisons between numerical methods

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki

    2000-03-01

    A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets imposes thermal fatigue on structural components, is of importance for reactor safety. In the present study, a water experiment was performed on parallel triple-jet: cold jet at the center and hot jets in both sides. Three kinds of numerical analyses based on the finite difference method were carried out to compare the similarity with the experiment by use of respective different handling of turbulence such as a k-ε two equation turbulence model (k-ε Model), a low Reynolds number stress and heat flux equation model (LRSFM) and a direct numerical simulation (DNS). In the experiment, the jets were mainly mixed due to the coherent oscillation. The numerical result using k-ε Model could not reproduce the coherent oscillating motion of jets due to rolling-up fluid. The oscillations of the jets predicted by LRSFM and DNS were in good agreements with the experiment. The comparison between the coherent and random components in experimental temperature fluctuation obtained by using the phase-averaging shows that k-ε Model and LRSFM overestimated the random component and the coherent component respectively. The ratios of coherent to random components in total temperature fluctuation obtained from DNS were in good agreements with the experiment. The numerical analysis using DNS can reproduce the coherent oscillation of the jets and the coherent / random components in temperature fluctuation. The analysis using LRSFM could simulate the mixing process of the jets with the low frequency. (author)

  3. Immunologic proof of DNS irradiation damages and their repair in stationary yeast cells

    International Nuclear Information System (INIS)

    Waller, H.

    1980-08-01

    In rabbits an antiserum was produced by injecting UV-irradiated denaturated calf-thymus DNS; after inhibiting unspecific bindings, a specific serological reaction with UV-induced irradiation damages could be taken as present in this antiserum. By the ammonium sulphate precipitation as immunologic method of detection, after UV-irradiation the genesis of damages at certain sites in the DNS of different yeast lineages and their repair was observed. The elemination of UV-induced DNS damages was observed after an incubation in a nutrien medium, after photo-reactivation and after combining both therapeutic treatments. The following results were obtained: the detected DNS damage (number of induced dimeres/yeast genomes) had the same degree in the four yeast lineages. Apart from the excision-negative mutante 2094 for all yeast lineages a repair efficiency of 60% could be detected. All yeast lineages presented themselves as photographically to be reactivated; however, in all cases a DNS damage of 40 to 50% remained. The examinations for the specificity of antiserum against roentgenologically irradiated DNS led to the conclusion that the antibody population of the serum consisted mainly of immunoglobulines against unchanged DNS areas. A specific immunological reaction of only about 10% could be achieved. (orig./MG) [de

  4. File list: DNS.Neu.20.AllAg.Cerebellum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellum mm9 DNase-seq Neural Cerebellum SRX191026,SRX191022,SRX...685872,SRX685874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellum.bed ...

  5. File list: DNS.Neu.50.AllAg.Cerebellum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellum mm9 DNase-seq Neural Cerebellum SRX191022,SRX191026,SRX685874,SRX685872 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellum.bed ...

  6. File list: DNS.Neu.05.AllAg.Cerebellum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Cerebellum mm9 DNase-seq Neural Cerebellum SRX191026,SRX191022,SRX...685872,SRX685874,SRX685876 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Cerebellum.bed ...

  7. File list: DNS.Neu.10.AllAg.Cerebellum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellum mm9 DNase-seq Neural Cerebellum SRX191026,SRX191022,SRX...685872,SRX685874,SRX685876 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellum.bed ...

  8. DNS: Diffuse scattering neutron time-of-flight spectrometer

    Directory of Open Access Journals (Sweden)

    Yixi Su

    2015-08-01

    Full Text Available DNS is a versatile diffuse scattering instrument with polarisation analysis operated by the Jülich Centre for Neutron Science (JCNS, Forschungszentrum Jülich GmbH, outstation at the Heinz Maier-Leibnitz Zentrum (MLZ. Compact design, a large double-focusing PG monochromator and a highly efficient supermirror-based polarizer provide a polarized neutron flux of about 107 n cm-2 s-1. DNS is used for the studies of highly frustrated spin systems, strongly correlated electrons, emergent functional materials and soft condensed matter.

  9. File list: DNS.Myo.05.AllAg.HSMM [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.05.AllAg.HSMM hg19 DNase-seq Muscle HSMM SRX069146,SRX193586,SRX201298,SRX0...69153,SRX069123 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.05.AllAg.HSMM.bed ...

  10. File list: DNS.Myo.50.AllAg.HSMM [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.50.AllAg.HSMM hg19 DNase-seq Muscle HSMM SRX193586,SRX201298,SRX069146,SRX0...69153,SRX069123 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.50.AllAg.HSMM.bed ...

  11. File list: DNS.Myo.10.AllAg.HSMM [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.10.AllAg.HSMM hg19 DNase-seq Muscle HSMM SRX069146,SRX193586,SRX201298,SRX0...69153,SRX069123 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.10.AllAg.HSMM.bed ...

  12. File list: DNS.Myo.20.AllAg.HSMM [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.20.AllAg.HSMM hg19 DNase-seq Muscle HSMM SRX069146,SRX193586,SRX201298,SRX0...69153,SRX069123 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.20.AllAg.HSMM.bed ...

  13. Context based service discovery in unmanaged networks using MDNS/DNS-SD

    NARCIS (Netherlands)

    Stolikj, M.; Cuijpers, P.J.L.; Lukkien, J.J.; Buchina, N.; Bellido, F.J.; Vun, N.C.H.; Dolar, C.; Diaz-Sanchez, D.; Ling, W.-K.

    2016-01-01

    We propose an extension of the mDNS/DNS-SD service discovery protocol, which enables service clients to discover and select services based on their context. The extension improves scalability in large networks, which is of particular importance in future Internet of Things deployments.

  14. File list: DNS.CDV.05.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Endocardial_cells.bed ...

  15. File list: DNS.CDV.20.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Endocardial_cells.bed ...

  16. File list: DNS.CDV.10.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Endocardial_cells.bed ...

  17. File list: DNS.CDV.50.AllAg.Endocardial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Endocardial_cells hg19 DNase-seq Cardiovascular Endocardial cells ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Endocardial_cells.bed ...

  18. File list: DNS.Kid.05.AllAg.Nephrectomy_sample [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.05.AllAg.Nephrectomy_sample hg19 DNase-seq Kidney Nephrectomy sample http:/.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.05.AllAg.Nephrectomy_sample.bed ...

  19. File list: DNS.Kid.50.AllAg.Nephrectomy_sample [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.50.AllAg.Nephrectomy_sample hg19 DNase-seq Kidney Nephrectomy sample http:/.../dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.50.AllAg.Nephrectomy_sample.bed ...

  20. File list: DNS.Lng.20.AllAg.Lung_adenocarcinoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Lung_adenocarcinoma mm9 DNase-seq Lung Lung adenocarcinoma http://...dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.20.AllAg.Lung_adenocarcinoma.bed ...

  1. File list: DNS.Bld.50.AllAg.Polymorphonuclear_leukocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Polymorphonuclear_leukocytes hg19 DNase-seq Blood Polymorphonuclear... leukocytes http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Polymorphonuclear_leukocytes.bed ...

  2. File list: DNS.Bld.20.AllAg.Polymorphonuclear_leukocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Polymorphonuclear_leukocytes hg19 DNase-seq Blood Polymorphonuclear... leukocytes http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Polymorphonuclear_leukocytes.bed ...

  3. File list: DNS.Bld.10.AllAg.Polymorphonuclear_leukocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Polymorphonuclear_leukocytes hg19 DNase-seq Blood Polymorphonuclear... leukocytes http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Polymorphonuclear_leukocytes.bed ...

  4. File list: DNS.Bld.05.AllAg.Polymorphonuclear_leukocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Polymorphonuclear_leukocytes hg19 DNase-seq Blood Polymorphonuclear... leukocytes http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Polymorphonuclear_leukocytes.bed ...

  5. File list: DNS.Adl.05.AllAg.Octopaminergic_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.05.AllAg.Octopaminergic_neurons dm3 DNase-seq Adult Octopaminergic neurons ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.05.AllAg.Octopaminergic_neurons.bed ...

  6. File list: DNS.Adl.10.AllAg.Octopaminergic_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.10.AllAg.Octopaminergic_neurons dm3 DNase-seq Adult Octopaminergic neurons ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.10.AllAg.Octopaminergic_neurons.bed ...

  7. File list: DNS.Adl.20.AllAg.Octopaminergic_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.20.AllAg.Octopaminergic_neurons dm3 DNase-seq Adult Octopaminergic neurons ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.20.AllAg.Octopaminergic_neurons.bed ...

  8. File list: DNS.Adl.50.AllAg.Octopaminergic_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adl.50.AllAg.Octopaminergic_neurons dm3 DNase-seq Adult Octopaminergic neurons ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Adl.50.AllAg.Octopaminergic_neurons.bed ...

  9. File list: DNS.CDV.50.AllAg.Atrioventicular_canals [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Atrioventicular_canals mm9 DNase-seq Cardiovascular Atrioventicular canals... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.CDV.50.AllAg.Atrioventicular_canals.bed ...

  10. File list: DNS.CDV.05.AllAg.Atrioventicular_canals [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Atrioventicular_canals mm9 DNase-seq Cardiovascular Atrioventicular canals... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.CDV.05.AllAg.Atrioventicular_canals.bed ...

  11. File list: DNS.CDV.10.AllAg.Atrioventicular_canals [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Atrioventicular_canals mm9 DNase-seq Cardiovascular Atrioventicular canals... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.CDV.10.AllAg.Atrioventicular_canals.bed ...

  12. File list: DNS.CDV.20.AllAg.Atrioventicular_canals [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Atrioventicular_canals mm9 DNase-seq Cardiovascular Atrioventicular canals... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.CDV.20.AllAg.Atrioventicular_canals.bed ...

  13. File list: DNS.Liv.05.AllAg.Carcinoma,_Hepatocellular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.05.AllAg.Carcinoma,_Hepatocellular mm9 DNase-seq Liver Carcinoma, Hepatocel...lular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Liv.05.AllAg.Carcinoma,_Hepatocellular.bed ...

  14. File list: DNS.Liv.50.AllAg.Carcinoma,_Hepatocellular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.50.AllAg.Carcinoma,_Hepatocellular mm9 DNase-seq Liver Carcinoma, Hepatocel...lular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Liv.50.AllAg.Carcinoma,_Hepatocellular.bed ...

  15. File list: DNS.Liv.20.AllAg.Carcinoma,_Hepatocellular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.20.AllAg.Carcinoma,_Hepatocellular mm9 DNase-seq Liver Carcinoma, Hepatocel...lular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Liv.20.AllAg.Carcinoma,_Hepatocellular.bed ...

  16. File list: DNS.CDV.05.AllAg.Carotid_Arteries [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Carotid_Arteries hg19 DNase-seq Cardiovascular Carotid Arteries ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Carotid_Arteries.bed ...

  17. File list: DNS.CDV.50.AllAg.Carotid_Arteries [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Carotid_Arteries hg19 DNase-seq Cardiovascular Carotid Arteries ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Carotid_Arteries.bed ...

  18. File list: DNS.CDV.10.AllAg.Carotid_Arteries [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Carotid_Arteries hg19 DNase-seq Cardiovascular Carotid Arteries ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Carotid_Arteries.bed ...

  19. File list: DNS.CDV.20.AllAg.Carotid_Arteries [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Carotid_Arteries hg19 DNase-seq Cardiovascular Carotid Arteries ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Carotid_Arteries.bed ...

  20. File list: DNS.Oth.05.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Olfactory_epithelium.bed ...

  1. File list: DNS.Oth.50.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Olfactory_epithelium.bed ...

  2. File list: DNS.Oth.20.AllAg.Olfactory_epithelium [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Olfactory_epithelium mm9 DNase-seq Others Olfactory epithelium SRX...378537 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Olfactory_epithelium.bed ...

  3. File list: DNS.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.20.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.20.AllAg.Intestine,_Small.bed ...

  4. File list: DNS.Emb.20.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryonic_testis mm9 DNase-seq Embryo Embryonic testis SRX1156635 ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryonic_testis.bed ...

  5. File list: DNS.Dig.20.AllAg.Intestinal_adenoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.20.AllAg.Intestinal_adenoma mm9 DNase-seq Digestive tract Intestinal adenom...a http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.20.AllAg.Intestinal_adenoma.bed ...

  6. File list: DNS.Dig.50.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.50.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.50.AllAg.Intestine,_Small.bed ...

  7. File list: DNS.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.10.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.10.AllAg.Intestine,_Small.bed ...

  8. File list: DNS.Neu.10.AllAg.Olf_neurosphere [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Olf_neurosphere hg19 DNase-seq Neural Olf neurosphere SRX189414 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Olf_neurosphere.bed ...

  9. File list: DNS.Neu.20.AllAg.Olf_neurosphere [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Olf_neurosphere hg19 DNase-seq Neural Olf neurosphere SRX189414 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Olf_neurosphere.bed ...

  10. File list: DNS.Neu.50.AllAg.Olf_neurosphere [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Olf_neurosphere hg19 DNase-seq Neural Olf neurosphere SRX189414 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Olf_neurosphere.bed ...

  11. File list: DNS.Neu.05.AllAg.Olf_neurosphere [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Olf_neurosphere hg19 DNase-seq Neural Olf neurosphere SRX189414 ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Olf_neurosphere.bed ...

  12. File list: DNS.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.Embryoid_Bodies.bed ...

  13. File list: DNS.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.Embryoid_Bodies.bed ...

  14. File list: DNS.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.Embryoid_Bodies.bed ...

  15. File list: DNS.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.Embryoid_Bodies.bed ...

  16. File list: DNS.Emb.20.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryonic_trunk mm9 DNase-seq Embryo Embryonic trunk SRX191030 htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryonic_trunk.bed ...

  17. File list: DNS.Neu.05.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Adult_brains.bed ...

  18. File list: DNS.Neu.10.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Adult_brains.bed ...

  19. File list: DNS.Neu.50.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Adult_brains.bed ...

  20. File list: DNS.Neu.20.AllAg.Adult_brains [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Adult_brains hg19 DNase-seq Neural Adult brains SRX189408,SRX18941...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Adult_brains.bed ...

  1. File list: DNS.Emb.10.AllAg.Embryonic_limb [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Embryonic_limb mm9 DNase-seq Embryo Embryonic limb SRX191032,SRX19...1037 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.10.AllAg.Embryonic_limb.bed ...

  2. PENERAPAN DIGITAL NERVOUS SYSTEMS (DNS : SEBUAH USAHA UNTUK MENINGKATKAN BISNIS DI ERA EKONOMI DIGITAL

    Directory of Open Access Journals (Sweden)

    Sri Maharsi

    2001-01-01

    Full Text Available In digital economy era%2C business organizations should create an effective computerized based information system%2C which not only provide the information quick%2C relevant and reliable%2C but also make the information flow quickly and smoothly so that it could response the problems and opportunities quickly. Therefore%2C the business organizations should implement the artificial intelligence such as Digital Nervous Systems (DNS as its strategic need. DNS is an ideal vission of the information s flows that connecting all of the business organization s parts%2C that allow the organization to act%2C respone and adapt quickly and better. To realize the vission of DNS%2C the business organizations should implement the business internet’s concepts%2C which has four related parts and build five components of technology. There are three steps to develop the DNS. Moreover%2C the implementation of the DNS cause to be brought in some advantages and threats as well for the business organizations. Abstract in Bahasa Indonesia : Dalam era ekonomi digital%2C organisasi bisnis harus menciptakan sebuah sistem informasi berbasis komputer yang efektif%2C yang bukan hanya menghasilkan informasi dengan cepat%2C relevan%2C dan reliable%2C tetapi juga dapat membuat informasi mengalir dengan cepat dan lancar%2C sehingga dapat bereaksi lebih cepat atas masalah dan peluang yang ada. Oleh karena itu%2C organisasi bisnis harus menerapkan artificial intelligence%2C seperti Digital Nervous Systems (DNS sebagai sebuah kebutuhan strategisnya. DNS adalah visi ideal aliran informasi yang menghubungkan semua bagian organisasi sehingga memungkinkan organisasi bertindak%2C memberi reaksi dan beradaptasi lebih cepat dan lebih baik. Untuk merealisasikan visi DNS%2C setiap organisasi bisnis harus menerapkan konsep The Business Internets yang mencakup empat bidang yang saling berhubungan dan membangun lima komponen teknologi sebagai prasyarat yang harus dipenuhi. Selain itu%2C ada

  3. File list: DNS.Brs.50.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.50.AllAg.Breast_cells.bed ...

  4. File list: DNS.Brs.20.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.20.AllAg.Breast_cells.bed ...

  5. File list: DNS.Epd.50.AllAg.RPMI-7951 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Epd.50.AllAg.RPMI-7951 hg19 DNase-seq Epidermis RPMI-7951 SRX193607,SRX201303,S...RX201289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Epd.50.AllAg.RPMI-7951.bed ...

  6. File list: DNS.Epd.05.AllAg.RPMI-7951 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Epd.05.AllAg.RPMI-7951 hg19 DNase-seq Epidermis RPMI-7951 SRX193607,SRX201303,S...RX201289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Epd.05.AllAg.RPMI-7951.bed ...

  7. File list: DNS.Epd.10.AllAg.RPMI-7951 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Epd.10.AllAg.RPMI-7951 hg19 DNase-seq Epidermis RPMI-7951 SRX193607,SRX201303,S...RX201289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Epd.10.AllAg.RPMI-7951.bed ...

  8. File list: DNS.Epd.20.AllAg.RPMI-7951 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Epd.20.AllAg.RPMI-7951 hg19 DNase-seq Epidermis RPMI-7951 SRX193607,SRX201303,S...RX201289 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Epd.20.AllAg.RPMI-7951.bed ...

  9. File list: DNS.Neu.50.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_brain.bed ...

  10. File list: DNS.Neu.20.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_brain.bed ...

  11. File list: DNS.Neu.10.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_brain.bed ...

  12. File list: DNS.Brs.10.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081374,SRX08137...3,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.10.AllAg.Breast_cells.bed ...

  13. File list: DNS.Brs.05.AllAg.Breast_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Breast_cells hg19 DNase-seq Breast Breast cells SRX081373,SRX08137...4,SRX201197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Brs.05.AllAg.Breast_cells.bed ...

  14. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  15. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    Science.gov (United States)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  16. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    Science.gov (United States)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  17. 75 FR 11939 - DNS Electronics, Chandler, AZ; Notice of Termination of Investigation

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,654] DNS Electronics, Chandler, AZ; Notice of Termination of Investigation Pursuant to Section 223 of the Trade Act of 1974, as... on behalf of workers of DNS Electronics, Chandler, Arizona. The petitioning group of workers is...

  18. File list: DNS.Myo.10.AllAg.Fetal_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.10.AllAg.Fetal_muscle hg19 DNase-seq Muscle Fetal muscle SRX100979,SRX10098...RX214044,SRX055170,SRX055186,SRX055169 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.10.AllAg.Fetal_muscle.bed ...

  19. File list: DNS.Myo.05.AllAg.Fetal_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.05.AllAg.Fetal_muscle hg19 DNase-seq Muscle Fetal muscle SRX100979,SRX10098...RX121279,SRX055186,SRX214044,SRX214045 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.05.AllAg.Fetal_muscle.bed ...

  20. File list: DNS.Myo.50.AllAg.Fetal_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Myo.50.AllAg.Fetal_muscle hg19 DNase-seq Muscle Fetal muscle SRX100979,SRX10098...RX214044,SRX055170,SRX055186,SRX055169 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Myo.50.AllAg.Fetal_muscle.bed ...

  1. In rDNS We Trust : Revisiting a Common Data-Source’s Reliability

    NARCIS (Netherlands)

    Fiebig, T.; Borgolte, Kevin; Hao, Shuang; Kruegel, Christopher; Vigna, Giovanny; Feldmann, Anja; Beverly, Robert; Smaragdakis, Georgios; Feldmann, Anja

    2018-01-01

    Reverse DNS (rDNS) is regularly used as a data source in Internet measurement research. However, existing work is polarized on its reliability, and new techniques to collect active IPv6 datasets have not yet been sufficiently evaluated. In this paper, we investigate active and passive data

  2. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors

    Science.gov (United States)

    2015-09-28

    malicious behavior found in our dataset and (ii) to create ground truth to evaluate the system proposed in Section V. We begin by removing those cases that...2011. [10] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the Initial DNS Behavior of Malicious Domains,” in ACM IMC , 2011. [11] R. Perdisci et...distribution is unlimited. Leveraging Client-Side DNS Failure Patterns to Identify Malicious Behaviors The views, opinions and/or findings contained in

  3. File list: DNS.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  4. File list: DNS.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  5. File list: DNS.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  6. File list: DNS.Neu.10.AllAg.Nerve_Sheath_Neoplasms [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Nerve_Sheath_Neoplasms mm9 DNase-seq Neural Nerve Sheath Neoplasms... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Nerve_Sheath_Neoplasms.bed ...

  7. File list: DNS.Neu.05.AllAg.Nerve_Sheath_Neoplasms [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Nerve_Sheath_Neoplasms mm9 DNase-seq Neural Nerve Sheath Neoplasms... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Nerve_Sheath_Neoplasms.bed ...

  8. File list: DNS.Neu.50.AllAg.Nerve_Sheath_Neoplasms [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Nerve_Sheath_Neoplasms mm9 DNase-seq Neural Nerve Sheath Neoplasms... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Nerve_Sheath_Neoplasms.bed ...

  9. File list: DNS.Neu.20.AllAg.Nerve_Sheath_Neoplasms [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Nerve_Sheath_Neoplasms mm9 DNase-seq Neural Nerve Sheath Neoplasms... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Nerve_Sheath_Neoplasms.bed ...

  10. File list: DNS.Emb.50.AllAg.Embryobic_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.50.AllAg.Embryobic_liver mm9 DNase-seq Embryo Embryobic liver SRX191019,SRX...191014,SRX191015,SRX191041,SRX191020,SRX191016,SRX191013 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.50.AllAg.Embryobic_liver.bed ...

  11. File list: DNS.Emb.10.AllAg.Embryobic_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Embryobic_liver mm9 DNase-seq Embryo Embryobic liver SRX191019,SRX...191013,SRX191016,SRX191014,SRX191015,SRX191020,SRX191041 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.10.AllAg.Embryobic_liver.bed ...

  12. File list: DNS.Emb.05.AllAg.Embryobic_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Embryobic_liver mm9 DNase-seq Embryo Embryobic liver SRX191013,SRX...191041,SRX191019,SRX191020,SRX191014,SRX191016,SRX191015 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.05.AllAg.Embryobic_liver.bed ...

  13. File list: DNS.Emb.20.AllAg.Embryobic_liver [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryobic_liver mm9 DNase-seq Embryo Embryobic liver SRX191019,SRX...191020,SRX191041,SRX191014,SRX191015,SRX191016,SRX191013 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryobic_liver.bed ...

  14. File list: DNS.Kid.05.AllAg.Kidney_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.05.AllAg.Kidney_Cortex hg19 DNase-seq Kidney Kidney Cortex SRX100986,SRX100...01801,SRX101007,SRX055175,SRX201810,SRX201803,SRX055193 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.05.AllAg.Kidney_Cortex.bed ...

  15. File list: DNS.Kid.10.AllAg.Kidney_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.10.AllAg.Kidney_Cortex hg19 DNase-seq Kidney Kidney Cortex SRX100986,SRX100...01007,SRX055175,SRX201801,SRX100999,SRX201803,SRX055193 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.10.AllAg.Kidney_Cortex.bed ...

  16. File list: DNS.Kid.20.AllAg.Kidney_Pelvis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.20.AllAg.Kidney_Pelvis hg19 DNase-seq Kidney Kidney Pelvis SRX055174,SRX100...01004,SRX089275,SRX101000,SRX201804,SRX201802,SRX101001 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.20.AllAg.Kidney_Pelvis.bed ...

  17. File list: DNS.Kid.20.AllAg.Kidney_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.20.AllAg.Kidney_Cortex hg19 DNase-seq Kidney Kidney Cortex SRX100986,SRX100...55166,SRX055181,SRX201803,SRX201801,SRX100999,SRX055193 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.20.AllAg.Kidney_Cortex.bed ...

  18. File list: DNS.Kid.50.AllAg.Kidney_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Kid.50.AllAg.Kidney_Cortex hg19 DNase-seq Kidney Kidney Cortex SRX100986,SRX100...01803,SRX201801,SRX055196,SRX055193,SRX055181,SRX100999 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Kid.50.AllAg.Kidney_Cortex.bed ...

  19. File list: DNS.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.10.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  20. File list: DNS.Emb.10.AllAg.Pre-somitic_mesoderm [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Pre-somitic_mesoderm mm9 DNase-seq Embryo Pre-somitic mesoderm htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.10.AllAg.Pre-somitic_mesoderm.bed ...

  1. File list: DNS.Emb.20.AllAg.Pre-somitic_mesoderm [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Pre-somitic_mesoderm mm9 DNase-seq Embryo Pre-somitic mesoderm htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Pre-somitic_mesoderm.bed ...

  2. File list: DNS.Emb.50.AllAg.Pre-somitic_mesoderm [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.50.AllAg.Pre-somitic_mesoderm mm9 DNase-seq Embryo Pre-somitic mesoderm htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.50.AllAg.Pre-somitic_mesoderm.bed ...

  3. File list: DNS.Emb.05.AllAg.Pre-somitic_mesoderm [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Pre-somitic_mesoderm mm9 DNase-seq Embryo Pre-somitic mesoderm htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.05.AllAg.Pre-somitic_mesoderm.bed ...

  4. File list: DNS.Neu.10.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Induced_neural_progenitors.bed ...

  5. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: DNS.Oth.05.AllAg.Multipotent_otic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Multipotent_otic_progenitor mm9 DNase-seq Others Multipotent otic progeni...tor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Multipotent_otic_progenitor.bed ...

  8. File list: DNS.Neu.50.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural progeni...tors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Induced_neural_progenitors.bed ...

  9. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: DNS.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.20.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  11. File list: DNS.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.50.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  12. File list: DNS.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  13. File list: DNS.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.10.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  14. File list: DNS.Gon.05.AllAg.Testicular_germ_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_germ_cells mm9 DNase-seq Gonad Testicular germ cells ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_germ_cells.bed ...

  15. File list: DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  16. File list: DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. File list: DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung.bed ...

  19. File list: DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Carcinoma,_Squamous_Cell.bed ...

  20. File list: DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung.bed ...

  1. File list: DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell mm9 DNase-seq Blood Carcinoma, Squamous C...ell http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Carcinoma,_Squamous_Cell.bed ...

  2. File list: DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung.bed ...

  3. File list: DNS.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.05.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  4. File list: DNS.Adp.05.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose_Tissue,_White.bed ...

  5. File list: DNS.Adp.10.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose_Tissue,_White.bed ...

  6. File list: DNS.Adp.50.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose_Tissue,_White.bed ...

  7. File list: DNS.Adp.20.AllAg.Adipose_Tissue,_White [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_Tissue,_White hg19 DNase-seq Adipocyte Adipose Tissue, Whi...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose_Tissue,_White.bed ...

  8. File list: DNS.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_cancer_cells mm9 DNase-seq Pancreas Pancreatic cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  9. File list: DNS.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  10. File list: DNS.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  11. File list: DNS.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  12. File list: DNS.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  13. File list: DNS.Neu.05.AllAg.Induced_neural_progenitors [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Induced_neural_progenitors mm9 DNase-seq Neural Induced neural pro...genitors http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Induced_neural_progenitors.bed ...

  14. File list: DNS.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.20.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  15. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    Science.gov (United States)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  16. File list: DNS.PSC.20.AllAg.iPSC_intermediates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.iPSC_intermediates mm9 DNase-seq Pluripotent stem cell iPSC intermediates... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.iPSC_intermediates.bed ...

  17. File list: DNS.PSC.10.AllAg.iPSC_intermediates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPSC_intermediates mm9 DNase-seq Pluripotent stem cell iPSC intermediates... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.iPSC_intermediates.bed ...

  18. File list: DNS.PSC.05.AllAg.iPSC_intermediates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.iPSC_intermediates mm9 DNase-seq Pluripotent stem cell iPSC intermediates... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.iPSC_intermediates.bed ...

  19. File list: DNS.PSC.50.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESCs,_differentiated mm9 DNase-seq Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESCs,_differentiated.bed ...

  20. File list: DNS.PSC.05.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.mESCs,_differentiated mm9 DNase-seq Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.mESCs,_differentiated.bed ...

  1. File list: DNS.PSC.10.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.mESCs,_differentiated mm9 DNase-seq Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.mESCs,_differentiated.bed ...

  2. File list: DNS.PSC.20.AllAg.mESCs,_differentiated [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESCs,_differentiated mm9 DNase-seq Pluripotent stem cell mESCs, differentia...ted http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESCs,_differentiated.bed ...

  3. Decay of passive scalar fluctuations in axisymmetric turbulence

    Science.gov (United States)

    Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio

    2016-11-01

    Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.

  4. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  5. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  6. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  7. File list: DNS.Neu.50.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Cerebellar_granule_neurons.bed ...

  8. File list: DNS.Neu.20.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685885,SRX685882,SRX685880 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Cerebellar_granule_neurons.bed ...

  9. Design, Implementation and Testing of a Tiny Multi-Threaded DNS64 Server

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-03-01

    Full Text Available DNS64 is going to be an important service (together with NAT64 in the upcoming years of the IPv6 transition enabling the clients having only IPv6 addresses to reach the servers having only IPv4 addresses (the majority of the servers on the Internet today. This paper describes the design, implementation and functional testing of MTD64, a flexible, easy to use, multi-threaded DNS64 proxy published as a free software under the GPLv2 license. All the theoretical background is introduced including the DNS message format, the operation of the DNS64 plus NAT64 solution and the construction of the IPv4-embedded IPv6 addresses. Our design decisions are fully disclosed from the high level ones to the details. Implementation is introduced at high level only as the details can be found in the developer documentation. The most important parts of a through functional testing are included as well as the results of some basic performance comparison with BIND.

  10. Detekce spamu pomocí DNS MX záznamů

    OpenAIRE

    Plotěný, Ondřej

    2016-01-01

    Předmětem této práce je detekce stanic v síti rozesílající nevyžádanou poštu pomocí pasivní analýzy zachyceného DNS provozu. Představuje návrh a implementaci systému, který realizuje detekci DNS anomálií na základě vysokého počtu MX dotazů a poměru obdržených NXDomain odpovědí.     Systém byl testován na DNS datech získaných z reálného provozu a jeho testováním a analýzou výsledků byla ověřena funkčnost implementovaných detektorů. The aim of this thesis is the detection of malicious spamme...

  11. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Science.gov (United States)

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  12. File list: DNS.Neu.10.AllAg.Cerebellar_granule_neurons [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Cerebellar_granule_neurons mm9 DNase-seq Neural Cerebellar granule neurons... SRX685882,SRX685880,SRX685883,SRX685885,SRX685877,SRX685878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Cerebellar_granule_neurons.bed ...

  13. Using DNS amplification DDoS attack for hiding data

    Science.gov (United States)

    Mehić, M.; Voznak, M.; Safarik, J.; Partila, P.; Mikulec, M.

    2014-05-01

    This paper concerns available steganographic techniques that can be used for sending hidden data through public network. Typically, in steganographic communication it is advised to use popular/often used method for sending hidden data and amount of that data need to be high as much as possible. We confirmed this by choosing a Domain Name System (DNS) as a vital protocol of each network and choosing Distributed denial of service (DDoS) attacks that are most popular network attacks currently represented in the world. Apart from characterizing existing steganographic methods we provide new insights by presenting two new techniques. The first one is network steganography solution which exploits free/unused protocols fields and is known for IP, UDP or TCP protocols, but has never been applied to DNS (Domain Name Server) which are the fundamental part of network communications. The second explains the usage of DNS Amplification DDoS Attack to send seamlessly data through public network. The calculation that was performed to estimate the total amount of data that can be covertly transferred by using these technique, regardless of steganalysis, is included in this paper.

  14. Direct and large eddy simulations of a bottom Ekman layer under an external stratification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, John R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego La Jolla, CA 92093 (United States); Sarkar, Sutanu [Department of Mechanical and Aerospace Engineering, University of California, San Diego La Jolla, CA 92093 (United States)], E-mail: sarkar@ucsd.edu

    2008-06-15

    A steady Ekman layer with a thermally stratified outer flow and an adiabatic boundary condition at the lower wall is studied using direct numerical simulation (DNS) and large eddy simulation (LES). An initially linear temperature profile is mixed by turbulence near the wall, and a stable thermocline forms above the mixed layer. The thickness of the mixed layer is reduced by the outer layer stratification. Observations from the DNS are used to evaluate the performance of the LES model and to examine the resolution requirements. A resolved LES and a near-wall model LES (NWM-LES) both compare reasonably well with the DNS when the thermal field is treated as a passive scalar. When buoyancy effects are included, the LES mean velocity and temperature profiles also agree well with the DNS. However, the NWM-LES does not sufficiently account for the overturning scales responsible for entrainment at the top of the mixed layer. As a result, the turbulent heat flux and the rate of change of the mixed layer temperature are significantly underestimated in the NWM-LES. In order to accurately simulate the boundary layer growth, the motions responsible for entrainment must either be resolved or more accurately represented in improved subgrid-scale models.

  15. Direct and large eddy simulations of a bottom Ekman layer under an external stratification

    International Nuclear Information System (INIS)

    Taylor, John R.; Sarkar, Sutanu

    2008-01-01

    A steady Ekman layer with a thermally stratified outer flow and an adiabatic boundary condition at the lower wall is studied using direct numerical simulation (DNS) and large eddy simulation (LES). An initially linear temperature profile is mixed by turbulence near the wall, and a stable thermocline forms above the mixed layer. The thickness of the mixed layer is reduced by the outer layer stratification. Observations from the DNS are used to evaluate the performance of the LES model and to examine the resolution requirements. A resolved LES and a near-wall model LES (NWM-LES) both compare reasonably well with the DNS when the thermal field is treated as a passive scalar. When buoyancy effects are included, the LES mean velocity and temperature profiles also agree well with the DNS. However, the NWM-LES does not sufficiently account for the overturning scales responsible for entrainment at the top of the mixed layer. As a result, the turbulent heat flux and the rate of change of the mixed layer temperature are significantly underestimated in the NWM-LES. In order to accurately simulate the boundary layer growth, the motions responsible for entrainment must either be resolved or more accurately represented in improved subgrid-scale models

  16. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.; Lee, Bok Jik; Im, Hong G.

    2014-01-01

    are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  17. File list: DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  18. File list: DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  19. File list: DNS.Bld.20.AllAg.Follicular_helper_T_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Follicular_helper_T_cells mm9 DNase-seq Blood Follicular helper T ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Follicular_helper_T_cells.bed ...

  20. File list: DNS.Bld.50.AllAg.Follicular_helper_T_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Follicular_helper_T_cells mm9 DNase-seq Blood Follicular helper T ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.Follicular_helper_T_cells.bed ...

  1. File list: DNS.Bld.10.AllAg.Follicular_helper_T_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Follicular_helper_T_cells mm9 DNase-seq Blood Follicular helper T ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Follicular_helper_T_cells.bed ...

  2. File list: DNS.Bld.05.AllAg.Follicular_helper_T_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Follicular_helper_T_cells mm9 DNase-seq Blood Follicular helper T ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Follicular_helper_T_cells.bed ...

  3. File list: DNS.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  4. File list: DNS.Emb.10.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.10.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.10.AllAg.Mitotic_cycle_12-14.bed ...

  5. File list: DNS.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 DNase-seq Embryo Mitotic cycle 11-13 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  6. File list: DNS.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 DNase-seq Embryo Mitotic cycle 11-13 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  7. File list: DNS.Emb.05.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.05.AllAg.Mitotic_cycle_12-14 dm3 DNase-seq Embryo Mitotic cycle 12-14 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/DNS.Emb.05.AllAg.Mitotic_cycle_12-14.bed ...

  8. Sistem Pencegahan UDP DNS Flood Dengan Filter Firewall Pada Router Mikrotik

    Directory of Open Access Journals (Sweden)

    Doni Aprilianto

    2017-05-01

    Full Text Available Serangan terhadap server jaringan dapat terjadi kapan saja,  jenis serangan yang dapat menyebabkan efek yang signifikan pada sebuah router adalah UDP-Flooding. UDP (User Datagram Protocol-Flooding adalah jenis serangan yang memanfaatkan protokol UDP dengan mengurangi sambungan (connectionless untuk menyerang target. Dalam analisis ini menggunakan metode penelitian deskriptif untuk memperoleh data secara langsung dengan melakukan teknik flooding serta teknik pencegahannya terhadap server yang telah dirancang. Dengan menggunakan Filter Rules yang telah dibuat, packet yang melalui port DNS selain IP Address yang telah di allow jika mencoba melakukan request atau flood DNS ke IP Public ISP pada router mikrotik, maka packet tersebut akan langsung di drop oleh pengaturan rules tersebut. kesimpulan yang dapat diambil yaitu penerapan filter firewall pada router mikrotik dapat mengurangi jumlah paket data UDP yang dikirimkan oleh attacker melalui port DNS sebanyak 60% dari jumlah paket yang masuk jika tanpa firewall.

  9. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, C.D. [James Madison Univ., Harrisonburg, VA (United States). Dept. of Math. and Comput. Sci.; Chang Chau-Lyan [High Technology Corporation, Hampton, VA 23666 (United States)

    1998-03-01

    The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. (orig.) With 20 figs., 28 refs.

  10. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  11. File list: DNS.PSC.50.AllAg.iPS_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.iPS_cells hg19 DNase-seq Pluripotent stem cell iPS cells SRX040379...,SRX040378,SRX135563,SRX040376,SRX040377,SRX189427,SRX189400,SRX189399 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.iPS_cells.bed ...

  12. File list: DNS.Bld.20.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Peripheral_blood_stem_cells.bed ...

  13. File list: DNS.Bld.10.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Peripheral_blood_stem_cells.bed ...

  14. File list: DNS.Bld.50.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838174,SRX838173 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Peripheral_blood_stem_cells.bed ...

  15. File list: DNS.Bld.05.AllAg.Peripheral_blood_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Peripheral_blood_stem_cells hg19 DNase-seq Blood Peripheral blood ...stem cells SRX838173,SRX838174 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Peripheral_blood_stem_cells.bed ...

  16. File list: DNS.Bld.20.AllAg.RAW_264PERIOD7 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.RAW_264PERIOD7 mm9 DNase-seq Blood RAW 264.7 SRX434625,SRX434626 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.RAW_264PERIOD7.bed ...

  17. File list: DNS.Bld.50.AllAg.RAW_264PERIOD7 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.RAW_264PERIOD7 mm9 DNase-seq Blood RAW 264.7 SRX434626,SRX434625 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.50.AllAg.RAW_264PERIOD7.bed ...

  18. File list: DNS.Bld.10.AllAg.RAW_264PERIOD7 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.RAW_264PERIOD7 mm9 DNase-seq Blood RAW 264.7 SRX434626,SRX434625 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.RAW_264PERIOD7.bed ...

  19. File list: DNS.Bld.05.AllAg.RAW_264PERIOD7 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.RAW_264PERIOD7 mm9 DNase-seq Blood RAW 264.7 SRX434625,SRX434626 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.RAW_264PERIOD7.bed ...

  20. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  1. Detekce škodlivých domén za pomoci analýzy pasivního DNS provozu

    OpenAIRE

    Doležal, Jiří

    2014-01-01

    Tato diplomová práce se zabývá detekcí škodlivých domén za pomoci analýzy pasivního DNS provozu, návrhem a implementací vlastního systému detekce. Provoz DNS se stává terčem mnoha útočníků, kteří využívají toho, že služba DNS je nezbytná pro fungování Internetu. Téměř každá internetová komunikace totiž začíná DNS dotazem a odpovědí. Zneužívání služby DNS nebo využívání slabin této služby se projevuje anomálním chováním DNS provozu. Tato práce obsahuje popis různých metod používaných pro odhal...

  2. IPv6-specific misconfigurations in the DNS

    NARCIS (Netherlands)

    Hendriks, Luuk; de Boer, Pieter-Tjerk; Pras, Aiko

    2017-01-01

    With the Internet transitioning from IPv4 to IPv6, the number of IPv6-specific DNS records (AAAA) increases. Misconfigurations in these records often go unnoticed, as most systems are provided with connectivity over both IPv4 and IPv6, and automatically fall back to IPv4 in case of connection

  3. File list: DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: DNS.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  8. File list: DNS.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  9. File list: DNS.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  10. Identifying APT Malware Domain Based on Mobile DNS Logging

    Directory of Open Access Journals (Sweden)

    Weina Niu

    2017-01-01

    Full Text Available Advanced Persistent Threat (APT is a serious threat against sensitive information. Current detection approaches are time-consuming since they detect APT attack by in-depth analysis of massive amounts of data after data breaches. Specifically, APT attackers make use of DNS to locate their command and control (C&C servers and victims’ machines. In this paper, we propose an efficient approach to detect APT malware C&C domain with high accuracy by analyzing DNS logs. We first extract 15 features from DNS logs of mobile devices. According to Alexa ranking and the VirusTotal’s judgement result, we give each domain a score. Then, we select the most normal domains by the score metric. Finally, we utilize our anomaly detection algorithm, called Global Abnormal Forest (GAF, to identify malware C&C domains. We conduct a performance analysis to demonstrate that our approach is more efficient than other existing works in terms of calculation efficiency and recognition accuracy. Compared with Local Outlier Factor (LOF, k-Nearest Neighbor (KNN, and Isolation Forest (iForest, our approach obtains more than 99% F-M and R for the detection of C&C domains. Our approach not only can reduce data volume that needs to be recorded and analyzed but also can be applicable to unsupervised learning.

  11. Direct numerical simulation of an isothermal reacting turbulent wall-jet

    Science.gov (United States)

    Pouransari, Zeinab; Brethouwer, Geert; Johansson, Arne V.

    2011-08-01

    In the present investigation, Direct Numerical Simulation (DNS) is used to study a binary irreversible and isothermal reaction in a plane turbulent wall-jet. The flow is compressible and a single-step global reaction between an oxidizer and a fuel species is solved. The inlet based Reynolds, Schmidt, and Mach numbers of the wall-jet are Re = 2000, Sc = 0.72, and M = 0.5, respectively, and a constant coflow velocity is applied above the jet. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The turbulent structures of the velocity field show the common streaky patterns near the wall, while a somewhat patchy or spotty pattern is observed for the scalars and the reaction rate fluctuations in the near-wall region. The reaction mainly occurs in the upper shear layer in thin highly convoluted reaction zones, but it also takes place close to the wall. Analysis of turbulence and reaction statistics confirms the observations in the instantaneous snapshots, regarding the intermittent character of the reaction rate near the wall. A detailed study of the probability density functions of the reacting scalars and comparison to that of the passive scalar throughout the domain reveals the significance of the reaction influence as well as the wall effects on the scalar distributions. The higher order moments of both the velocities and the scalar concentrations are analyzed and show a satisfactory agreement with experiments. The simulations show that the reaction can both enhance and reduce the dissipation of fuel scalar, since there are two competing effects; on the one hand, the reaction causes sharper scalar gradients and thus a higher dissipation rate, on the other hand, the reaction consumes the fuel scalar thereby reducing the scalar dissipation.

  12. Anticonvulsant activity of DNS II fraction in the acute seizure models.

    Science.gov (United States)

    Raza, Muhammad Liaquat; Zeeshan, Mohammad; Ahmad, Manzoor; Shaheen, Farzana; Simjee, Shabana U

    2010-04-21

    Delphinium nordhagenii belongs to family Ranunculaceae, it is widely found in tropical areas of Pakistan. Other species of Delphinium are reported as anticonvulsant and are traditionally used in the treatment of epilepsy. Delphinium nordhagenii is used by local healer in Pakistan but never used for scientific investigation as anticonvulsant. Thus, Delphinium nordhagenii was subjected to bioassay-guided fractionation and the most active fraction, i.e. DNS II acetone was chosen for further testing in the acute seizure models of epilepsy to study the antiepileptic potential in male mice. Different doses (60, 65 and 70mg/kg, i.p.) of DNS II acetone fraction of Delphinium nordhagenii was administered 30min prior the chemoconvulsant's injection in the male mice. Convulsive doses of chemoconvulsants (pentylenetetrazole 90mg/kg, s.c. and picrotoxin 3.15mg/kg, s.c.) were used. The mice were observed 45-90min for the presence of seizures. Moreover, four different doses of DNS II (60, 65, 70 and 100mg/kg, i.p.) were tested in the MES test. The DNS II acetone fraction of Delphinium nordhagenii has exhibited the anticonvulsant actions by preventing the seizures against PTZ- and picrotoxin-induced seizure as well as 100% seizure protection in MES test. The results are comparable with standard AEDs (diazepam 7.5mg/kg, i.p. and phenytoin 20mg/kg, i.p.). These findings suggest that the Delphinium nordhagenii possesses the anticonvulsant activity. Further analysis is needed to confirm the structure and target the extended activity profile. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  14. Practical Evaluation of Stateful NAT64/DNS64 Translation

    Directory of Open Access Journals (Sweden)

    SKOBERNE, N.

    2011-08-01

    Full Text Available It is often suggested that the approach to IPv6 transition is dual-stack deployment; however, it is not feasible in certain environments. As Network Address Translation -- Protocol Translation (NAT-PT has been deprecated, stateful NAT64 and DNS64 RFCs have been published, supporting only IPv6-to-IPv4 translation scenario. Now the question of usability in the real world arises. In this paper, we systematically test a number of widely used application-layer network protocols to find out how well they traverse Ecdysis, the first open source stateful NAT64 and DNS64 implementation. We practically evaluated 18 popular protocols, among them HTTP, RDP, MSNP, and IMAP, and discuss the shortcomings of such translations that might not be apparent at first sight.

  15. File list: DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells.bed ...

  16. File list: DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  17. File list: DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells.bed ...

  18. File list: DNS.PSC.05.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.mESC_derived_pancreatic_cells.bed ...

  19. File list: DNS.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  20. File list: DNS.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  1. File list: DNS.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived neural... cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  2. Performance Estimation of the Mtd64-ng DNS64 implementation

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-12-01

    Full Text Available DNS64 and NAT64 are IPv6 transition technologies enabling IPv6 only clients to communicate with IPv4 only servers. Mtd64-ng is a novel DNS64 implementation, being a successor of MTD64. In this paper, the performance of mtd64-ng is compared with that of MTD64 and BIND. The details of the measurements are fully disclosed. It is found that under heavy load conditions mtd64-ng can answer six times as many “AAAA” record requests per second than BIND. Mtd64-ng fixed two issues of MTD64 and also outperformed its predecessor by answering 46% more “AAAA” record requests per second under heavy load conditions.

  3. TIDE – Threat Identification using Active DNS Measurements

    NARCIS (Netherlands)

    Sperotto, Anna; van der Toorn, Olivier; van Rijswijk, Roland

    2017-01-01

    The Domain Name System contains a wealth of information about the security, stability and health of the Internet. Most research that leverages the DNS for detection of malicious activities does so by using passive measurements. The limitation of this approach, however, is that it is effective only

  4. Thermal-hydraulic numerical simulation of fuel sub-assembly for Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Saxena, Aakanksha

    2014-01-01

    The thesis focuses on the numerical simulation of sodium flow in wire wrapped sub-assembly of Sodium-cooled Fast Reactor (SFR). First calculations were carried out by a time averaging approach called RANS (Reynolds- Averaged Navier-Stokes equations) using industrial code STAR-CCM+. This study gives a clear understanding of heat transfer between the fuel pin and sodium. The main variables of the macroscopic flow are in agreement with correlations used hitherto. However, to obtain a detailed description of temperature fluctuations around the spacer wire, more accurate approaches like LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation) are clearly needed. For LES approach, the code TRIO U was used and for the DNS approach, a research code was used. These approaches require a considerable long calculation time which leads to the need of representative but simplified geometry. The DNS approach enables us to study the thermal hydraulics of sodium that has very low Prandtl number inducing a very different behavior of thermal field in comparison to the hydraulic field. The LES approach is used to study the local region of sub-assembly. This study shows that spacer wire generates the local hot spots (∼20 C) on the wake side of spacer wire with respect to the sodium flow at the region of contact with the fuel pin. Temperature fluctuations around the spacer wire are low (∼1 C-2 C). Under nominal operation, the spectral analysis shows the absence of any dominant peak for temperature oscillations at low frequency (2-10 Hz). The obtained spectra of temperature oscillations can be used as an input for further mechanical studies to determine its impact on the solid structures. (author) [fr

  5. DNS of a spatially developing turbulent boundary layer with passive scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)], E-mail: qiang@mech.kth.se; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S. [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)

    2009-10-15

    A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U{sub {infinity}} and momentum thickness {theta} is Re{sub {theta}}=830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.

  6. DNS of a spatially developing turbulent boundary layer with passive scalar transport

    International Nuclear Information System (INIS)

    Li Qiang; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S.

    2009-01-01

    A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U ∞ and momentum thickness θ is Re θ =830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.

  7. Direct numerical simulation of open channel flow over smooth-to-rough and rough-to-smooth step changes

    Science.gov (United States)

    Rouhi, Amirreza; Chung, Daniel; Hutchins, Nicholas

    2017-11-01

    Direct numerical simulations (DNSs) are reported for open channel flow over streamwise-alternating patches of smooth and fully rough walls. Owing to the streamwise periodicity, the flow configuration is composed of a step change from smooth to rough, and a step change from rough to smooth. The friction Reynolds number varies from 443 over the smooth patch to 715 over the rough patch. The flow is thoroughly studied by mean and fluctuation profiles, and spectrograms. The detailed flow from DNS reveals discrepancies of up to 50% among the various definitions of the internal-layer thickness, with apparent power-law exponents differing by up to 60%. The definition based on the logarithmic slope of the velocity profile, as proposed by Chamorro et al. (Boundary-Layer Meteorol., vol. 130, 2009, pp. 29-41), is most consistent with the physical notion of the internal layer; this is supported by the defect similarity based on this internal-layer thickness, and the streamwise homogeneity of the dissipation length-scale within this internal layer. The statistics inside this internal-layer, and the growth of the internal layer itself, are minimally affected by the streamwise periodicity when the patch length is at least six times the channel height.

  8. Development of a numerical experimentation method for thermal hydraulics design and evaluation of high burn-up and innovative fuel pins

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Misawa, Takeharu; Baglietto, Emilio; Sorokin, A.P.; Maekawa, Isamu; Ohshima, Hiroyuki; Yamaguchi, Akira

    2003-03-01

    A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces as well as detailed coolant velocity and temperature distributions inside subchannels under various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in design-by-analysis approaches. The method will facilitate thermal hydraulic design of high performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and safe performances, easiness of operation and maintenance, minimization of radio active wastes, without much relying on such empirical approach as hot spot factor and sub-factors, and above all the high cost mock up experiments. A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield correct physical quantities by carrying out computations and comparisons with experimental data with respect to the distributions of various physical quantities and turbulence statistics for fluid flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared with available detailed experimental data. In parallel similar calculations are carried out using a commercial code STAR-CD to cross-check the DNS performances. As a results, the pseudo DNS showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of the secondary flow influences is emphasized on the momentum

  9. Direct Numerical Simulation and Experimental Validation of Hypersonic Boundary-Layer Receptivity and Instability

    National Research Council Canada - National Science Library

    Zhong, Xiaolin

    2007-01-01

    .... During the three-year period, we have conducted extensive DNS studies on the receptivity of hypersonic boundary layer flows over a sharp wedge, a flat plate, a blunt cone, and the FRESH aeroshell...

  10. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: models of terms in the Reynolds stress budgets

    International Nuclear Information System (INIS)

    Dritselis, Chris D

    2017-01-01

    In the first part of this study (Dritselis 2016 Fluid Dyn. Res. 48 015507), the Reynolds stress budgets were evaluated through point-particle direct numerical simulations (pp-DNSs) for the particle-laden turbulent flow in a vertical channel with two- and four-way coupling effects. Here several turbulence models are assessed by direct comparison of the particle contribution terms to the budgets, the dissipation rate, the pressure-strain rate, and the transport rate with the model expressions using the pp-DNS data. It is found that the models of the particle sources to the equations of fluid turbulent kinetic energy and dissipation rate cannot represent correctly the physics of the complex interaction between turbulence and particles. A relatively poor performance of the pressure-strain term models is revealed in the particulate flows, while the algebraic models for the dissipation rate of the fluid turbulence kinetic energy and the transport rate terms can adequately reproduce the main trends due to the presence of particles. Further work is generally needed to improve the models in order to account properly for the momentum exchange between the two phases and the effects of particle inertia, gravity and inter-particle collisions. (paper)

  11. Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: models of terms in the Reynolds stress budgets

    Energy Technology Data Exchange (ETDEWEB)

    Dritselis, Chris D, E-mail: dritseli@mie.uth.gr [Mechanical Engineering Department, University of Thessaly, Pedion Areos, 38334 Volos (Greece)

    2017-04-15

    In the first part of this study (Dritselis 2016 Fluid Dyn. Res. 48 015507), the Reynolds stress budgets were evaluated through point-particle direct numerical simulations (pp-DNSs) for the particle-laden turbulent flow in a vertical channel with two- and four-way coupling effects. Here several turbulence models are assessed by direct comparison of the particle contribution terms to the budgets, the dissipation rate, the pressure-strain rate, and the transport rate with the model expressions using the pp-DNS data. It is found that the models of the particle sources to the equations of fluid turbulent kinetic energy and dissipation rate cannot represent correctly the physics of the complex interaction between turbulence and particles. A relatively poor performance of the pressure-strain term models is revealed in the particulate flows, while the algebraic models for the dissipation rate of the fluid turbulence kinetic energy and the transport rate terms can adequately reproduce the main trends due to the presence of particles. Further work is generally needed to improve the models in order to account properly for the momentum exchange between the two phases and the effects of particle inertia, gravity and inter-particle collisions. (paper)

  12. Direct numerical simulation of MHD flow with electrically conducting wall

    International Nuclear Information System (INIS)

    Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.

    2006-01-01

    The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget

  13. Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2017-01-01

    Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.

  14. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  15. Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling

    International Nuclear Information System (INIS)

    Lal, Sreeyuth; Sato, Yohei; Niceno, Bojan

    2015-01-01

    Highlights: • We simulate convective nucleate pool boiling with a novel phase-change model. • We simulate four cases at different sub-cooling and wall superheat levels. • We investigate the flow structures around the growing bubble and analyze the accompanying physics. • We accurately simulate bubble shape elongation and enhanced wall cooling due to the sliding and slanting motions of bubbles. • Bubble cycle durations show good agreement with experimental observations. - Abstract: With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low

  16. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    Science.gov (United States)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  17. An additional DNS feature for different routing of electronic mail inside and outside of a campus network

    International Nuclear Information System (INIS)

    Bobyshev, A.; Ernst, M.

    2001-01-01

    Several years ago DESY faced the need to change the Electronic Mail Service to support it on a central cluster of servers. The centralized architecture was necessary for deployment of unified internal E-Mail standards, better quality of service and security. To implement a new policy for Electronic Mail Service and avoid huge modifications to a few hundreds network nodes, an additional DNS feature has been added to ISC's (Internet Software Consortium) software bind-4.9.7. The DNS servers running at DESY are capable of distinguishing between DNS queries coming from inside and outside of the campus network and reply with different list of MX (Mail Exchanger) records. The external hosts always get a list of MX records pointing to the central mail servers while the internal hosts may use different paths for mail exchange within the campus network. A modified version of DNS software has been used at DESY since 1997. It is fully compliant with the original goal of the project and shows good operational performance and reliability

  18. Dabīgo polifenolu un karotinoīdu spēja pasargāt DNS no bojājumiem

    OpenAIRE

    Koteloviča, Irēna

    2014-01-01

    Brīvie radikāļi ietekmē DNS dubultspirāli un izraisa vienpavediena pārrāvumus, kā arī citus DNS bojājumus. No šādiem bojājumiem DNS spēj pasargāt antioksidanti: flavonoīdi un karotinoīdi. Flavonoīdi un karotinoīdi ir dabīgie savienojumi, kuriem ir pierādīta labvēlīga ietekme uz veselību. Tiem piemīt antioksidantu īpašības, pretiekaisuma, pretalerģiju, kā arī pretvēža iedarbības. Pierādīts, ka visas izpētītās vielas, baikaleīns, kemferols, luteolīns un likopēns, spēj pasargāt DNS no oksi...

  19. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    Science.gov (United States)

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  20. Performance Analysis of MTD64, our Tiny Multi-Threaded DNS64 Server Implementation: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-07-01

    In this paper, the performance of MTD64 is measured and compared to that of the industry standard BIND in order to check the correctness of the design concepts of MTD64, especially of the one that we use a new thread for each request. For the performance measurements, our earlier proposed dns64perf program is enhanced as dns64perf2, which one is also documented in this paper. We found that MTD64 seriously outperformed BIND and hence our design principles may be useful for the design of a high performance production class DNS64 server. As an additional test, we have also examined the effect of dynamic CPU frequency scaling to the performance of the implementations.

  1. Direct Numerical Simulation of a Compressible Reacting Boundary Layer using a Temporal Slow Growth Homogenization

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert

    2013-11-01

    A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  2. Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity

    KAUST Repository

    Luca, Stefano

    2017-01-05

    Direct Numerical Simulation of three-dimensional spatially developing turbulent methane/air flames are performed. Four flames are simulated; they differ for the level of premixing of the fuel inlet: one has a fully premixed inlet, the other three have a partially premixed inlet that mimic a common injection strategy in stationary gas turbines. The jet consist of a methane/air mixture with global equivalence ratio ɸ = 0.7 and temperature of 800 K. The simulations are performed at 4 atm. The inlet velocity field and the fuel/air fields were extracted from a fully developed turbulent channel simulation. Chemistry is treated with a new skeletal chemical mechanism consisting of 33 species developed specifically for the DNS. The data are analyzed to study possible influences of partial premixing on the flame structure and the combustion efficiency. The results show that increasing the level of partial premixing, the fluctuations of heat release rate increase, due to the richer and leaner pockets of mixture in the flame, while the conditional mean decreases. Increasing the level of partial premixing, the peak of NO and the range of NO values for a given temperature increase. An analysis of NO production is performed categorizing the different initiation steps in the Ndecomposition through four pathways: thermal, prompt, NNH and NO. Different behaviour with respect to laminar flames is found for the NNH pathway suggesting that turbulence influences this pathway of formation of NO.

  3. On the ground truth problem of malicious DNS traffic analysis

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup; D’Alconzo, Alessandro

    2015-01-01

    algorithms at their core. These methods require accurate ground truth of both malicious and benign DNS traffic for model training as well as for the performance evaluation. This paper elaborates on the problem of obtaining such a ground truth and evaluates practices employed by contemporary detection methods...

  4. DNS Studies of Transitional Hypersonic Reacting Flows Over 3-D Hypersonic Vehicles

    National Research Council Canada - National Science Library

    Zhong, Xiaolin

    2003-01-01

    The objectives of this research project are to develop CFD techniques and to conduct DNS studies of fundamental flow physics leading to boundary-layer instability and transition in hypersonic flows...

  5. DNS of non-premixed combustion in a compressible mixing layer

    NARCIS (Netherlands)

    Bastiaans, R.J.M.; Somers, L.M.T.; Lange, de H.C.; Geurts, B.J.

    2001-01-01

    The non-premixed reaction of fuel with air in a mixing layer is studied using DNS. The situation is a model for the mixing-controlled combustion in a Diesel engine. We show that the combustion region can be comparably passive with respect to relatively large scale aerodynamic instabilities. However

  6. Cognitive Mechanisms Underlying Directional and Non-directional Spatial-Numerical Associations across the Lifespan

    Directory of Open Access Journals (Sweden)

    Manuel Ninaus

    2017-08-01

    Full Text Available There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1 the SNARC (spatial-numerical association of response codes effect, reflecting a directional SNA; and (2 the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias.

  7. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-09-01

    Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  8. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    Science.gov (United States)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  9. A method for identifying compromised clients based on DNS traffic analysis

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup; D’Alconzo, Alessandro

    2017-01-01

    DNS is widely abused by Internet criminals in order to provide reliable communication within malicious network infrastructure as well as flexible and resilient hosting of malicious content. This paper presents a novel detection method that can be used for identifying potentially compromised clien...

  10. One-equation near-wall turbulence modeling with the aid of direct simulation data

    Science.gov (United States)

    Rodi, W.; Mansour, N. N.; Michelassi, V.

    1993-01-01

    The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.

  11. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2011-12-22

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  12. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    Science.gov (United States)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  13. Direct Numerical Simulation of Turbulent Couette-Poiseuille Flow With Zero Skin Friction

    Science.gov (United States)

    Coleman, Gary N.; Spalart, Philippe R.

    2015-01-01

    The near-wall scaling of mean velocity U(yw) is addressed for the case of zero skin friction on one wall of a fully turbulent channel flow. The present DNS results can be added to the evidence in support of the conjecture that U is proportional to the square root of yw in the region just above the wall at which the mean shear dU=dy = 0.

  14. Numerical simulation of turbulent flow through a straight square duct using a near wall linear k – ε model.

    Directory of Open Access Journals (Sweden)

    Ahmed Rechia

    2007-09-01

    Full Text Available The aim of this work is to predict numerically the turbulent flow through a straight square duct using Reynolds Average Navier-Stokes equations (RANS by the widely used k – ε and a near wall turbulence k – ε − fμ models. To handle wall proximity and no-equilibrium effects, the first model is modified by incorporating damping functions fμ via the eddy viscosity relation. The predicted results for the streamwise, spanwise velocities and the Reynolds stress components are compared to those given by the k – ε model and by the direct numerical simulation (DNS data of Gavrilakis (J. Fluid Mech., 1992. In light of these results, the proposed k – ε − fμ model is found to be generally satisfactory for predicting the considered flow.

  15. Direct numerical simulations of premixed turbulent flames with flamelet-generated manifolds

    NARCIS (Netherlands)

    Oijen, van J.A.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the thin reaction zone regime and in the broken reaction zone regime are

  16. The simulation of multidimensional multiphase flows

    International Nuclear Information System (INIS)

    Lahey, Richard T.

    2005-01-01

    This paper presents an assessment of various models which can be used for the multidimensional simulation of multiphase flows, such as may occur in nuclear reactors. In particular, a model appropriate for the direct numerical simulation (DNS) of multiphase flows and a mechanistically based, three-dimensional, four-field, turbulent, two-fluid computational multiphase fluid dynamics (CMFD) model are discussed. A two-fluid bubbly flow model, which was derived using potential flow theory, can be extended to other flow regimes, but this will normally involve ensemble-averaging the results from direct numerical simulations (DNS) of various flow regimes to provide the detailed numerical data necessary for the development of flow-regime-specific interfacial and wall closure laws

  17. Reimplementing the LBD DNS Load Balancer with concurrency in GO

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Using the current configuration with 430 aliases, today’s implementation of the LBD DNS Load Balancer does one cycle through all aliases in around 240 seconds. We have a scalability limit of 300 seconds - that is the update period of most aliases. This talk will present a PoC showing how the time could be reduced to just 12 seconds.

  18. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    Science.gov (United States)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  19. Turbulence Generation Using Localized Sources of Energy: Direct Numerical Simulations and the Effects of Thermal Non-Equilibrium

    Science.gov (United States)

    Maqui, Agustin Francisco

    Turbulence in high-speed flows is an important problem in aerospace applications, yet extremely difficult from a theoretical, computational and experimental perspective. A main reason for the lack of complete understanding is the difficulty of generating turbulence in the lab at a range of speeds which can also include hypersonic effects such as thermal non-equilibrium. This work studies the feasibility of a new approach to generate turbulence based on laser-induced photo-excitation/dissociation of seeded molecules. A large database of incompressible and compressible direct numerical simulations (DNS) has been generated to systematically study the development and evolution of the flow towards realistic turbulence. Governing parameters and the conditions necessary for the establishment of turbulence, as well as the length and time scales associated with such process, are identified. For both the compressible and incompressible experiments a minimum Reynolds number is found to be needed for the flow to evolve towards fully developed turbulence. Additionally, for incompressible cases a minimum time scale is required, while for compressible cases a minimum distance from the grid and limit on the maximum temperature introduced are required. Through an extensive analysis of single and two point statistics, as well as spectral dynamics, the primary mechanisms leading to turbulence are shown. As commonly done in compressible turbulence, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Finally, a large database of forced isotropic turbulence has been generated to study the effect of internal degrees of freedom on the evolution of turbulence.

  20. Direct Numerical Simulation of Driven Cavity Flows

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.

    Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been

  1. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  2. Numerical simulation of flow in De-NOx catalyst honeycomb with NOx reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Makino, H. [Electric Power Industry, Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R.; Komori, S. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    The effect of flow behavior in a De-NOx honeycomb with NOx reduction reaction is investigated by direct numerical simulation (DNS). As the inlet flow, fully developed turbulent or laminar flow is given. The results show that the surface reaction is strongly affected by inner flow behavior. The surface reaction rate for the turbulent flow is higher than that for the laminar flow. This is due to the difference of inner flow behavior that the diffusion of NOx in the vicinity of the wall is dominated only by molecular diffusion for the laminar flow, whereas it is enhanced by turbulent motions for the turbulent flow. Moreover, surface reaction is suppressed towards downstream even though inlet flow is turbulent. This is due to the flow transition from turbulent to laminar.

  3. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.

    2011-01-01

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  4. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  5. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption

    Science.gov (United States)

    Korucu, Ayse; Miller, Richard

    2016-11-01

    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  6. Direct numerical simulation of two-phases turbulent combustion: application to study of propagation and structure of flames; Simulation numerique directe de la combustion turbulente diphasique: application a l'etude de la propagation et de la structure des flammes

    Energy Technology Data Exchange (ETDEWEB)

    Canneviere, K.

    2003-12-15

    This work is devoted to the study of the propagation and the structure of two-phases turbulent flames. To this end, Direct Numerical Simulations (DNS) are used. First, numerical systems for two-phases flow simulations is presented along with a specific chemical model. Then, a study of laminar spray flames is carried out. An analytical study related to the dynamics of evaporation of droplets is first proposed where the influence on the equivalence ratio of the ratio between the heating delay of the droplet and the evaporation delay is detailed. The simulation of a propagating flame through a cloud of droplets is carried out and a pulsating behavior is highlighted. A study of these flames according to the topology of liquid fuel enabled us to characterize a double flame structure composed of a premixed flame and a diffusion flame. Our last study is devoted to spray turbulent flames. Two-phase combustion of turbulent jets has been simulated. By varying the spray injection parameters (density, equivalence ratio), a database has been generated. This database allowed us to describe local and global flame regimes appearing in the combustion of sprays. They have been categorized in four main structures: open and closed external regime, group combustion and mixed combustion. Eventually, a combustion diagram has been developed. It involves the spray vaporization time, the mean inter-space between droplets or group of droplets and eventually the injected equivalence ratio. (author)

  7. Some Insights on Roughness Induced Transition and Control from DNS and Experiments

    Science.gov (United States)

    Suryanarayanan, Saikishan; Ibitayo, Ifeoluwa; Goldstein, David; Brown, Garry

    2016-11-01

    We study the receptivity and subsequent evolution of an initially laminar flat boundary layer on a flat plate to single and multiple discrete roughness elements (DRE) using a combination of immersed boundary DNS and water channel flow visualization experiments. We examine the transition caused by a single DRE and demonstrate the possibility of suppressing it by an appropriately designed second DRE in both DNS and experiments. The different phases of transition are identified and the roles of Reynolds numbers based on roughness height and boundary layer thickness are investigated. The underlying mechanisms in the observed transition and its control are understood by examining detailed vorticity flux balances. Connections are also made to recent developments in transient growth and streak instability. A unified picture is sought from a parametric study of different DRE dimensions and orientations. The potential applicability of the observations and understanding derived from this study to controlling transition caused by design and environmental roughness over aircraft wings is discussed. Supported by AFOSR # FA9550-15-1-0345.

  8. A numerical study of scalar dispersion downstream of a wall-mounted cube using direct simulations and algebraic flux models

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R., E-mail: riccardo.rossi12@unibo.i [Laboratorio di Termofluidodinamica Computazionale Seconda Facolta di Ingegneria di Forli, Universita di Bologna Via Fontanelle 40, 47100 Forli (Italy); Center for Turbulence Research Department of Mechanical Engineering Stanford University, CA 94305 (United States); Philips, D.A.; Iaccarino, G. [Center for Turbulence Research Department of Mechanical Engineering Stanford University, CA 94305 (United States)

    2010-10-15

    Research highlights: {yields} The computed DNS statistics indicate that a gradient-transport scheme can be applied to the vertical and spanwise scalar flux components. {yields} The streamwise scalar flux is characterized by a counter-gradient transport mechanism in the wake region close to the obstacle. {yields} The wake profiles of scalar fluctuations and the shape of probability density functions do not suggest a significant flapping movement of the scalar plume. {yields} The evaluation of scalar dispersion models must include a careful assessment of the computed mean velocity field and Reynolds stress tensor. {yields} Algebraic models provide an improved prediction of the mean concentration field as compared to the standard eddy-diffusivity model. -- Abstract: The dispersion of a passive scalar downstream of a wall-mounted cube is examined using direct numerical simulations and turbulence models applied to the Reynolds equations. The scalar is released from a circular source located on top of the obstacle, which is immersed in a developing boundary-layer flow. Direct simulations are performed to give insight into the mixing process and to provide a reference database for turbulence closures. Algebraic flux models are evaluated against the standard eddy-diffusivity representation. Coherent structures periodically released from the cube top are responsible for a counter-diffusion mechanism appearing in the streamwise scalar flux. Alternating vortex pairs form from the lateral edges of the cube, but the intensity profiles and probability density functions of scalar fluctuations suggest that they do not cause a significant flapping movement of the scalar plume. The gradient-transport scheme is consistent with the vertical and spanwise scalar flux components. From the comparative study with our direct simulations, we further stress that Reynolds stress predictions must be carefully evaluated along with scalar flux closures in order to establish the reliability of

  9. A numerical study of scalar dispersion downstream of a wall-mounted cube using direct simulations and algebraic flux models

    International Nuclear Information System (INIS)

    Rossi, R.; Philips, D.A.; Iaccarino, G.

    2010-01-01

    Research highlights: → The computed DNS statistics indicate that a gradient-transport scheme can be applied to the vertical and spanwise scalar flux components. → The streamwise scalar flux is characterized by a counter-gradient transport mechanism in the wake region close to the obstacle. → The wake profiles of scalar fluctuations and the shape of probability density functions do not suggest a significant flapping movement of the scalar plume. → The evaluation of scalar dispersion models must include a careful assessment of the computed mean velocity field and Reynolds stress tensor. → Algebraic models provide an improved prediction of the mean concentration field as compared to the standard eddy-diffusivity model. -- Abstract: The dispersion of a passive scalar downstream of a wall-mounted cube is examined using direct numerical simulations and turbulence models applied to the Reynolds equations. The scalar is released from a circular source located on top of the obstacle, which is immersed in a developing boundary-layer flow. Direct simulations are performed to give insight into the mixing process and to provide a reference database for turbulence closures. Algebraic flux models are evaluated against the standard eddy-diffusivity representation. Coherent structures periodically released from the cube top are responsible for a counter-diffusion mechanism appearing in the streamwise scalar flux. Alternating vortex pairs form from the lateral edges of the cube, but the intensity profiles and probability density functions of scalar fluctuations suggest that they do not cause a significant flapping movement of the scalar plume. The gradient-transport scheme is consistent with the vertical and spanwise scalar flux components. From the comparative study with our direct simulations, we further stress that Reynolds stress predictions must be carefully evaluated along with scalar flux closures in order to establish the reliability of Reynolds

  10. Design, Implementation and Performance Estimation of mtd64-ng, a New Tiny DNS64 Proxy

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2017-01-01

    Full Text Available In the current phase of the IPv6 transition, it is a typical situation that IPv6 only clients should be enabled to communicate with IPv4 only servers. The DNS64+NAT64 tool suite is an excellent solution to this problem. Although several free software DNS64 implementations exist, we point out that there is room for further high performance and computation efficient multithreaded DNS64 implementations. MTD64 was designed to be able to utilize several CPU cores. Whereas MTD64 outperformed BIND more than five times, two critical issues (memory leaking and potential vulnerability to DoS attacks were identified. Therefore MTD64 was redesigned under a new name: mtd64-ng (not capitalized. This paper is about the design, implementation and initial performance estimation of mtd64-ng. The usage of object oriented decomposition and the RAII (Resource Acquisition Is Initialization idiom ensures that raw, sensitive resources (e.g. memory, sockets are always released and it greatly simplifies exception handling. Using the new features of the C++11 standard enabled us to write more efficient and better readable code. The performance of mtd64-ng is compared to that of BIND and MTD64 and it is found that mtd64-ng outperforms even its predecessor, MTD64.

  11. On the role of the smallest scales of a passive scalar field in a near-wall turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Bergant; Iztok, Tiselj [Jozef Stefan Institute, Ljubljana (Slovenia)

    2006-03-01

    Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re{sub {tau}}=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer. (orig.)

  12. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  13. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  14. The smallest thermal scales in a turbulent channel flow at Prandtl number

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2004-01-01

    For describing the turbulent heat transfer from a wall to a fluid at low Reynolds (Re < 10000) and low Prandtl numbers (Pr < 20) a direct numerical simulation (DNS) can be used, which describes all the length and time scales of the phenomenon. The object of this paper is to find out the influence of the smallest temperature scales on the largest ones, which are responsible for the macro behavior of the near-wall heat transfer. Simulation, performed at Re = 2650 and Pr = 1, was calculated for velocity field with the DNS accuracy and for three different temperature fields. First temperature field, calculated with the DNS accuracy, was used as a reference to the second and third temperature fields where the highest Fourier coefficients in streamwise and spanwise directions were filtered and damped. It means, that the smallest temperature scales were not described with DNS accuracy anymore. New approach shows that results, for at least first and second order statistics, are comparable to the DNS ones without filtering and damping. (author)

  15. Vortex locking in direct numerical simulations of quantum turbulence.

    Science.gov (United States)

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  16. Simulation of Supersonic Base Flows: Numerical Investigations Using DNS, LES, and URANS

    Science.gov (United States)

    2006-10-01

    global instabilities were found for a two-dimensional bluff body with a blunt base by Hannemann & Oertel (1989). Oertel (1990) found that the... Hannemann , K. & Oertel, H. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 55–88. Harris, P. J. 1997

  17. Filtered Mass Density Function for Subgrid Scale Modeling of Turbulent Diffusion Flames

    National Research Council Canada - National Science Library

    Givi, Peyman

    2002-01-01

    .... These equations were solved with a new Lagrangian Monte Carlo scheme. The model predictions were compared with results obtained via conventional LES closures and with direct numerical simulation (DNS...

  18. Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe

    Science.gov (United States)

    Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.

    2017-04-01

    A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.

  19. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    International Nuclear Information System (INIS)

    Nemkovski, K; Ioffe, A; Su, Y; Babcock, E; Schweika, W; Brückel, Th

    2017-01-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed. (paper)

  20. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    Science.gov (United States)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  1. Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study

    International Nuclear Information System (INIS)

    Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.

    2013-01-01

    Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large

  2. Numerical Investigation on the Directionality of Nonlinear Indicial Responses

    International Nuclear Information System (INIS)

    Yee, Kwan Jung; Hong, Sang Won; Lee, Dong Ho

    2007-01-01

    An unsteady Euler solver is modified to investigate the directionality of nonlinear indicial response to a step change in the angle of attack. An impulsive change in the angle of attack is incorporated by using the field velocity approach, which is known to decouple the step change in the angle of attack from a pitch rate. Numerical results are thoroughly compared against analytical results for two-dimensional indicial responses. The same method is applied to investigate the directionality of nonlinear indicial responses. It is found that directionality is mainly due to the asymmetry of initial shock locations. Since the directionality of the pitching moment responses is significant in the critical Mach number region, it is also shown that consideration of the directionality is crucial for accurate modeling of the nonlinear indicial functions

  3. Turbulent pattern formation in plane Couette flow: modelling and investigation of mechanisms

    International Nuclear Information System (INIS)

    Rolland, Joran; Manneville, Paul

    2011-01-01

    In the transitional range of Reynolds number, plane Couette flow exhibits oblique turbulent bands. We focus on a Kelvin-Helmholtz instability occurring in the intermediate area between turbulent and laminar flow. The instability is characterised by means of Direct Numerical Simulations (DNS): a short wavelength instability, localised and advected in the spanwise direction. The coherent background flow on which the instability develops is extracted from DNS data, and an analytical formulation for the background flow is proposed. Linear stability analysis is performed to investigate its main mechanisms and its convective or absolute nature, depending on the location in the flow. Both DNS and linear stability analysis indicate that the instability takes place in a confined area 'inside' turbulent streaks. This proceeding sums up the results from an article in preparation (Rolland, 2011).

  4. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  5. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  6. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  7. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  8. Influence of turbulence on the drop growth in warm clouds, Part I: comparison of numerically and experimentally determined collision kernels

    Directory of Open Access Journals (Sweden)

    Christoph Siewert

    2014-09-01

    Full Text Available This study deals with the comparison of numerically and experimentally determined collision kernels of water drops in air turbulence. The numerical and experimental setups are matched as closely as possible. However, due to the individual numerical and experimental restrictions, it could not be avoided that the turbulent kinetic energy dissipation rate of the measurement and the simulations differ. Direct numerical simulations (DNS are performed resulting in a very large database concerning geometric collision kernels with 1470 individual entries. Based on this database a fit function for the turbulent enhancement of the collision kernel is developed. In the experiments, the collision rates of large drops (radius >7.5μm$> 7.5\\,\\text{\\textmu{}m}$ are measured. These collision rates are compared with the developed fit, evaluated at the measurement conditions. Since the total collision rates match well for all occurring dissipation rates the distribution information of the fit could be used to enhance the statistical reliability and for the first time an experimental collision kernel could be constructed. In addition to the collision rates, the drop size distributions at three consecutive streamwise positions are measured. The drop size distributions contain mainly small drops (radius <7.5μm$< 7.5\\,\\text{\\textmu{}m}$. The measured evolution of the drop size distribution is confronted with model calculations based on the newly derived fit of the collision kernel. It turns out that the observed fast evolution of the drop size distribution can only be modeled if the collision kernel for small drops is drastically increased. A physical argument for this amplification is missing since for such small drops, neither DNSs nor experiments have been performed. For large drops, for which a good agreement of the collision rates was found in the DNS and the experiment, the time for the evolution of the spectrum in the wind tunnel is too short to draw

  9. Compressibility effect on thermal coherent structures in spatially-developing turbulent boundary layers via DNS

    Science.gov (United States)

    Araya, Guillermo; Jansen, Kenneth

    2017-11-01

    DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.

  10. Direct numerical simulation of annular flows

    Science.gov (United States)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  11. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  12. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  13. Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion

    Science.gov (United States)

    Andrade, João Rodrigo; Martins, Ramon Silva; Thompson, Roney Leon; Mompean, Gilmar; da Silveira Neto, Aristeu

    2018-04-01

    The present paper provides an analysis of the statistical uncertainties associated with direct numerical simulation (DNS) results and experimental data for turbulent channel and pipe flows, showing a new physically based quantification of these errors, to improve the determination of the statistical deviations between DNSs and experiments. The analysis is carried out using a recently proposed criterion by Thompson et al. ["A methodology to evaluate statistical errors in DNS data of plane channel flows," Comput. Fluids 130, 1-7 (2016)] for fully turbulent plane channel flows, where the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of the mean force equation. It also presents how the residual error evolves in time for a DNS of a plane channel flow, and the influence of the Reynolds number on its convergence rate. The root mean square of the residual error is shown in order to capture a single quantitative value of the error associated with the dimensionless averaging time. The evolution in time of the error norm is compared with the final error provided by DNS data of similar Reynolds numbers available in the literature. A direct consequence of this approach is that it was possible to compare different numerical results and experimental data, providing an improved understanding of the convergence of the statistical quantities in turbulent wall-bounded flows.

  14. Direct numerical simulation of turbulent flow with an impedance condition

    Science.gov (United States)

    Olivetti, Simone; Sandberg, Richard D.; Tester, Brian J.

    2015-05-01

    DNS solutions for a pipe/jet configuration are re-computed with the pipe alone to investigate suppression of previously identified internal noise source(s) with an acoustic liner, using a time domain acoustic liner model developed by Tam and Auriault (AIAA Journal, 34 (1996) 913-917). Liner design parameters are chosen to achieve up to 30 dB attenuation of the broadband pressure field over the pipe length without affecting the velocity field statistics. To understand the effect of the liner on the acoustic and turbulent components of the unsteady wall pressure, an azimuthal/axial Fourier transform is applied and the acoustic and turbulent wavenumber regimes clearly identified. It is found that the spectral component occupying the turbulent wavenumber range is unaffected by the liner whereas the acoustic wavenumber components are strongly attenuated, with individual radial modes being evident as each cuts on with increasing Strouhal number.

  15. Direct numerical methods of mathematical modeling in mechanical structural design

    International Nuclear Information System (INIS)

    Sahili, Jihad; Verchery, Georges; Ghaddar, Ahmad; Zoaeter, Mohamed

    2002-01-01

    Full text.Structural design and numerical methods are generally interactive; requiring optimization procedures as the structure is analyzed. This analysis leads to define some mathematical terms, as the stiffness matrix, which are resulting from the modeling and then used in numerical techniques during the dimensioning procedure. These techniques and many others involve the calculation of the generalized inverse of the stiffness matrix, called also the 'compliance matrix'. The aim of this paper is to introduce first, some different existing mathematical procedures, used to calculate the compliance matrix from the stiffness matrix, then apply direct numerical methods to solve the obtained system with the lowest computational time, and to compare the obtained results. The results show a big difference of the computational time between the different procedures

  16. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    Science.gov (United States)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  17. An Efficient Hierarchical Multiscale Finite Element Method for Stokes Equations in Slowly Varying Media

    KAUST Repository

    Brown, Donald L.; Efendiev, Yalchin; Hoang, Viet Ha

    2013-01-01

    Direct numerical simulation (DNS) of fluid flow in porous media with many scales is often not feasible, and an effective or homogenized description is more desirable. To construct the homogenized equations, effective properties must be computed

  18. Verification of Heat and Mass Transfer Closures in Industrial Scale Packed Bed Reactor Simulations

    Directory of Open Access Journals (Sweden)

    Arpit Singhal

    2018-03-01

    Full Text Available Particle-resolved direct numerical simulation (PR-DNS is known to provide an accurate detailed insight into the local flow phenomena in static particle arrays. Most PR-DNS studies in literature do not account for reactions taking place inside the porous particles. In this study, PR-DNS is performed for catalytic reactions inside the particles using the multifluid approach where all heat and mass transfer phenomena are directly resolved both inside and outside the particles. These simulation results are then used to verify existing 1D model closures from literature over a number of different reaction parameters including different reaction orders, multiple reactions and reactants, interacting reactions, and reactions involving gas volume generation/consumption inside the particle. Results clearly showed that several modifications to existing 1D model closures are required to reproduce PR-DNS results. The resulting enhanced 1D model was then used to accurately simulate steam methane reforming, which includes all of the aforementioned reaction complexities. The effect of multiple reactants was found to be the most influential in this case.

  19. Direct numerical simulation of fractal-generated turbulence

    International Nuclear Information System (INIS)

    Suzuki, H; Hasegawa, Y; Ushijima, T; Nagata, K; Sakai, Y; Hayase, T

    2013-01-01

    We simulate fractal-generated turbulence (Hurst and Vassilicos 2007 Phys. Fluids 19 035103)) by means of a direct numerical simulation and address its fundamental characteristics. We examine whether the fractal-generated turbulence in the upstream region has a nature similar to that of a wake. We propose an equation for predicting peak values of the velocity fluctuation intensity and devise a method for formulating the functional form of the quantity of interest by focusing on the time scale of decaying turbulence, and we examine those forms for the turbulent kinetic energy and rms of pressure fluctuation through this method. By using the method, both of these functional forms are found to be power-law functions in the downstream region, even though these profiles follow exponential functions around these peaks. In addition, decay exponents of these quantities are estimated. The integral length scales of velocity fluctuations for transverse as well as streamwise directions are essentially constant in the downstream direction. Decaying turbulence having both these characteristics conflicts with decaying turbulence described by the theory predicting exponential decay. We discuss a factor causing the difference by focusing on the functional form of the transfer function of homogeneous, isotropic turbulence. (paper)

  20. Investigation of turbulent boundary layer over forward-facing step via direct numerical simulation

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Nagano, Yasutaka

    2010-01-01

    This paper presents observations and investigations of the detailed turbulent structure of a boundary layer over a forward-facing step. The present DNSs are conducted under conditions with three Reynolds numbers based on step height, or three Reynolds numbers based on momentum thickness so as to investigate the effects of step height and inlet boundary layer thickness. DNS results show the quantitative turbulent statistics and structures of boundary layers over a forward-facing step, where pronounced counter-gradient diffusion phenomena (CDP) are especially observed on the step near the wall. Also, a quadrant analysis is conducted in which the results indicate in detail the turbulence motion around the step.

  1. Development of a low Reynolds number turbulence stress and heat flux equation model. A new type wall boundary condition for dissipation rate of turbulent kinetic energy aided by DNS data base

    International Nuclear Information System (INIS)

    Nishimura, M.

    1998-04-01

    To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)

  2. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.

    2014-01-28

    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  3. Application of HPCN to direct numerical simulation of turbulent flow

    NARCIS (Netherlands)

    Verstappen, RWCP; Veldman, AEP; van Waveren, GM; Hertzberger, B; Sloot, P

    1997-01-01

    This poster shows how HPCN can be used as a path-finding tool for turbulence research. The parallelization of direct numerical simulation of turbulent flow using the data-parallel model and Fortran 95 constructs is treated, both on a shared memory and a distributed memory computer.

  4. A three–step discretization scheme for direct numerical solution of ...

    African Journals Online (AJOL)

    In this paper, a three-step discretization (numerical) formula is developed for direct integration of second-order initial value problems in ordinary differential equations. The development of the method and analysis of its basic properties adopt Taylor series expansion and Dahlquist stability test methods. The results show that ...

  5. Direct numerical simulation of human phonation

    Science.gov (United States)

    Bodony, Daniel; Saurabh, Shakti

    2017-11-01

    The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).

  6. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  7. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi

    2017-11-25

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline so that this method can be a potentially efficient and safe technology of pipe healing. However, the real application needs full knowledge of healing details. Numerical simulation is an effective method. Thus, in this research, we first established a numerical model for noninvasive channel healing technology to represent fluid–particle interaction. The iron particles can be attached to a cracking area by external electrostatic forces or can also be detached by mechanical forces from the fluid. When enough particles are permanently attached on the cracking area, the pipe wall can be healed. The numerical criterion of the permanent attachment is discussed. A fully three-dimensional finite difference framework of direct numerical simulation is established and applied to different cases to simulate the full process of channel healing. The impact of Reynolds number and particle concentration on the healing process is discussed. This numerical investigation provides valuable reference and tools for further simulation of real pipe healing in engineering.

  8. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi

    2015-01-01

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10

  9. Direct numerical simulations of nucleate boiling flows of binary mixtures

    International Nuclear Information System (INIS)

    Didier Jamet; Celia Fouillet

    2005-01-01

    Full text of publication follows: Better understand the origin and characteristics of boiling crisis is still a scientific challenge despite many years of valuable studies. One of the reasons why boiling crisis is so difficult to understand is that local and coupled physical phenomena are believed to play a key role in the trigger of instabilities which lead to the dry out of large portions of the heated solid phase. Nucleate boiling of a single bubble is fairly well understood compared to boiling crisis. Therefore, the numerical simulation of a single bubble growth during nucleate boiling is a good candidate to evaluate the capabilities of a numerical method to deal with complex liquid-vapor phenomena with phase-change and eventually to tackle the boiling crisis problem. In this paper, we present results of direct numerical simulations of nucleate boiling. The numerical method used is the second gradient method, which is a diffuse interface method dedicated to liquid vapor flows with phase-change. This study is not intended to provide quantitative results, partly because all the simulations are two-dimensional. However, particular attention is paid to the influence of some parameters on the main features of nucleate boiling, i.e. the radius of departure and the frequency of detachment of bubbles. In particular, we show that, as the contact angle increases, the radius of departure increases whereas the frequency of detachment decreases. Moreover, the influence of the existence of quasi non-condensable gas is studied. Numerical results show an important decrease of the heat exchange coefficient when a small amount of a quasi non-condensable gas is added to the pure liquid-vapor water system. This result is in agreement with experimental observations. Beyond these qualitative results, this numerical study allows to get insight into some important physical phenomena and to confirm that during nucleate boiling, large scale quantities are influenced by small scale

  10. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane

    2011-01-01

    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  11. Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics

    International Nuclear Information System (INIS)

    Bernard, J.P.; Haapalehto, T.

    1996-01-01

    The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)

  12. Simulation of heat and mass transfer in turbulent channel flow using the spectral-element method: effect of spatial resolution

    Science.gov (United States)

    Ryzhenkov, V.; Ivashchenko, V.; Vinuesa, R.; Mullyadzhanov, R.

    2016-10-01

    We use the open-source code nek5000 to assess the accuracy of high-order spectral element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800 is considered based on the bulk velocity and half-width of the channel. The filtered governing equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux. The results show very good agreement between LES and DNS for time-averaged velocity and temperature profiles and their fluctuations. Even the coarse LES grid which contains around 30 times less points than the DNS one provided predictions of the friction velocity within 2.0% accuracy interval.

  13. Direct numerical solution of Poisson's equation in cylindrical (r, z) coordinates

    International Nuclear Information System (INIS)

    Chao, E.H.; Paul, S.F.; Davidson, R.C.; Fine, K.S.

    1997-01-01

    A direct solver method is developed for solving Poisson's equation numerically for the electrostatic potential φ(r,z) in a cylindrical region (r wall , 0 wall , z) are specified, and ∂φ/∂z = 0 at the axial boundaries (z = 0, L)

  14. Direct design of LPV feedback controllers: technical details and numerical examples

    OpenAIRE

    Novara, Carlo

    2014-01-01

    The paper contains technical details of recent results developed by the author, regarding the design of LPV controllers directly from experimental data. Two numerical examples are also presented, about control of the Duffing oscillator and control of a two-degree-of-freedom manipulator.

  15. Molecular mixing in turbulent flow

    International Nuclear Information System (INIS)

    Kerstein, A.R.

    1993-01-01

    The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence

  16. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  17. Disintegration of fluids under supercritical conditions from mixing layer studies

    Science.gov (United States)

    Okong'o, N.; Bellan, J.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.

  18. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  19. Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: Application to lead–bismuth flows

    International Nuclear Information System (INIS)

    Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.

    2012-01-01

    Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.

  20. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Moutassem El Rafei

    2017-12-01

    Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum

  1. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  2. Study on mixing phenomena in T-pipe junction. Experimental analysis using DNS and investigation of mixing process

    International Nuclear Information System (INIS)

    Igarashi, Minoru; Tanaka, Masaaki; Kimura, Nobuyuki; Kamide, Hideki

    2003-02-01

    In the place where hot and cold fluids are mixed, a time and spatial temperature fluctuation occurs. When this temperature fluctuation amplitude is large, it causes high cycle thermal fatigue in surrounding structure (thermal striping phenomena). Mixing area of high and low temperature fluid exists not only in an atomic power plant but also in a general plant, then, it is significant to investigate this phenomena and also to establish an evaluation rule. In Japan Nuclear Cycle Development Institute, several experiments and the improvement of the analysis methods have been carried out to understand thermal striping phenomena and also to construct an evaluation rule, which can be applied to design. Water Experiment on Fluid Mixing in T-pipe with Long Cycle Fluctuation (WATLON), aiming at examining thermal striping phenomena in a mixing tee, is performed to investigate key factors of mixing phenomena. In this study, in order to investigate the fluid mixing phenomena, temperature and flow velocity distribution were measured by movable thermocouple tree and particle image velocimetry (PIV). And the analysis using a in-house direct numerical simulation (DNS) code, DINUS-3 was performed to understand applicability of the analytical method in mixing tee. The temperature and velocity fields obtained from the DINUS-3 were in good agreement with the experimental results. And the prominent frequency of temperature fluctuation was also in good agreement. The DINUS-3 calculation simulated vortex structure in the wake region behind the branch pipe jet. The results of analysis showed that a Karman vortex generated in the wake region behind the branch pipe jet influenced the temperature fluctuation behavior in the mixing tee. And the analytical results revealed that the vortex generated in the wake region behind the branch pipe jet showed the 3-dimensional behavior. (author)

  3. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  4. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  5. The problem of future users: how constructing the DNS shaped internet governance

    Directory of Open Access Journals (Sweden)

    Steven Malcic

    2016-09-01

    Full Text Available Before the emergence of internet governance bodies like the Internet Corporation for Assigned Names and Numbers (ICANN, early network designers learned how to govern the internet in their work building the Domain Name System (DNS. Using original archival research, this article follows conversations among network designers in their daily struggle to keep the Advanced Research Project Agency Network (ARPANET and early internet in working order. Drawing from social constructivism and path dependence theory, this history helps to conceive “internet governance” beyond its institutional focus, considering how the work of ordering the internet necessarily exceeds the parameters of governance authorities.

  6. Single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3. Input data description

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-08-01

    This report explains the numerical methods and the set-up method of input data for a single-phase multi-dimensional thermohydraulics direct numerical simulation code DINUS-3 (Direct Numerical Simulation using a 3rd-order upwind scheme). The code was developed to simulate non-stationary temperature fluctuation phenomena related to thermal striping phenomena, developed at Power Reactor and Nuclear Fuel Development Corporation (PNC). The DINUS-3 code was characterized by the use of a third-order upwind scheme for convection terms in instantaneous Navier-Stokes and energy equations, and an adaptive control system based on the Fuzzy theory to control time step sizes. Author expect this report is very useful to utilize the DINUS-3 code for the evaluation of various non-stationary thermohydraulic phenomena in reactor applications. (author)

  7. Isolating Numerical Error Effects in LES Using DNS-Derived Sub-Grid Closures

    Science.gov (United States)

    Edoh, Ayaboe; Karagozian, Ann

    2017-11-01

    The prospect of employing an explicitly-defined filter in Large-Eddy Simulations (LES) provides the opportunity to reduce the interaction of numerical/modeling errors and offers the chance to carry out grid-converged assessments, important for model development. By utilizing a quasi a priori evaluation method - wherein the LES is assisted by closures derived from a fully-resolved computation - it then becomes possible to understand the combined impacts of filter construction (e.g., filter width, spectral sharpness) and discretization choice on the solution accuracy. The present work looks at calculations of the compressible LES Navier-Stokes system and considers discrete filtering formulations in conjunction with high-order finite differencing schemes. Accuracy of the overall method construction is compared to a consistently-filtered exact solution, and lessons are extended to a posteriori (i.e., non-assisted) evaluations. Supported by ERC, Inc. (PS150006) and AFOSR (Dr. Chiping Li).

  8. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    Science.gov (United States)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  9. Retrieval of collision kernels from the change of droplet size distributions with linear inversion

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Ryo; Takahashi, Keiko [Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama Kanagawa 236-0001 (Japan); Matsuda, Keigo; Kurose, Ryoichi; Komori, Satoru [Department of Mechanical Engineering and Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: onishi.ryo@jamstec.go.jp, E-mail: matsuda.keigo@t03.mbox.media.kyoto-u.ac.jp, E-mail: takahasi@jamstec.go.jp, E-mail: kurose@mech.kyoto-u.ac.jp, E-mail: komori@mech.kyoto-u.ac.jp

    2008-12-15

    We have developed a new simple inversion scheme for retrieving collision kernels from the change of droplet size distribution due to collision growth. Three-dimensional direct numerical simulations (DNS) of steady isotropic turbulence with colliding droplets are carried out in order to investigate the validity of the developed inversion scheme. In the DNS, air turbulence is calculated using a quasi-spectral method; droplet motions are tracked in a Lagrangian manner. The initial droplet size distribution is set to be equivalent to that obtained in a wind tunnel experiment. Collision kernels retrieved by the developed inversion scheme are compared to those obtained by the DNS. The comparison shows that the collision kernels can be retrieved within 15% error. This verifies the feasibility of retrieving collision kernels using the present inversion scheme.

  10. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  11. Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence

    NARCIS (Netherlands)

    Tsinober, A.; Vedula, P.; Yeung, P.K.

    2001-01-01

    The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions

  12. Nitric oxide formation in H2/CO syngas non-premixed jet flames

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Richardson, E.S.; van Oijen, J.A.; Luo, K.H.; Jiang, X.

    2015-01-01

    Direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames have been carried out to study the nitric oxide (NO) formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds

  13. Dynamics and statistics of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Cencini, M.; Bec, J.; Biferale, L.; Boffetta, G.; Celani, A.; Lanotte, A.; Musacchio, S.; Toschi, F.

    2006-01-01

    We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Reynolds number is Re¿~ 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical

  14. Intermittency in the relative separations of tracers and of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Lanotte, A.S.; Scatamacchia, R.; Toschi, F.

    2014-01-01

    Results from direct numerical simulations (DNS) of particle relative dispersion in three-dimensional homogeneous and isotropic turbulence at Reynolds number Re_¿ ~ 300 are presented. We study point-like passive tracers and heavy particles, at Stokes number St = 0.6, 1 and 5. Particles are emitted

  15. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, Bernardus J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier–Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  16. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, B.J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier-Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  17. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  18. An improved mixing model providing joint statistics of scalar and scalar dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Daniel W. [Department of Energy Resources Engineering, Stanford University, Stanford, CA (United States); Jenny, Patrick [Institute of Fluid Dynamics, ETH Zurich (Switzerland)

    2008-11-15

    For the calculation of nonpremixed turbulent flames with thin reaction zones the joint probability density function (PDF) of the mixture fraction and its dissipation rate plays an important role. The corresponding PDF transport equation involves a mixing model for the closure of the molecular mixing term. Here, the parameterized scalar profile (PSP) mixing model is extended to provide the required joint statistics. Model predictions are validated using direct numerical simulation (DNS) data of a passive scalar mixing in a statistically homogeneous turbulent flow. Comparisons between the DNS and the model predictions are provided, which involve different initial scalar-field lengthscales. (author)

  19. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  20. Wave-Breaking Turbulence in the Ocean Surface Layer

    Science.gov (United States)

    2016-06-01

    2004) used direct numerical simulation ( DNS ) to show that a single breaking wave can energize the surface layer for more than 50 wave periods, and...1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSR, 30, 301–305. Kukulka, T., and K. Brunner, 2015: Passive

  1. Hydrodynamic Drag Force Measurement Of A Functionalized Surface Exhibiting Superhydrophobic Properties

    Science.gov (United States)

    2016-12-01

    hydrodynamic skin friction is greatly reduced and the water is said to slip over the air layer [12]. A number of direct numerical simulations ( DNS ) [13...practical means of reducing drag. It is therefore important to investigate materials where in the passive state exhibit the desired qualities of

  2. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    Science.gov (United States)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  3. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)

    2017-05-15

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  4. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.; Arias, Paul G.; Roy, Somesh P.; Luo, Zhaoyu; Haworth, Daniel C.; Im, Hong G.; Lu, Tianfeng; Trouvé , Arnaud C.

    2014-01-01

    difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration

  5. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  6. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  7. Direct numerical simulation of turbulent, chemically reacting flows

    Science.gov (United States)

    Doom, Jeffrey Joseph

    This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke

  8. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  9. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  10. Simulations of the near-wall heat transfer at medium prandtl numbers

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2003-01-01

    A heat transfer from a wall to a fluid at low Reynolds and Prandtl numbers can be described by means of Direct Numerical Simulation (DNS). At higher Prandtl numbers (Pr > 20) so-called under-resolved DNS can be performed to carry out turbulent heat transfer. Three different under-resolved DNSs of the fully developed turbulent flow in the channel at Reynolds number Re = 4580 and at Prandtl numbers Pr = 100, Pr = 200 and Pr 500 are presented in this paper. These simulations describe all velocity scales, but they are not capable to describe smallest temperature scales. However, very good agreement of heat transfer coefficients was achieved with the correlation of Hasegawa [1] or with the correlation of Papavassiliou [2], who performed DNS by means of Lagrangian method instead of Eulerian method, which was applied in our simulations. We estimate that under resolved DNS simulations based on Eulerian method are useful up to approximately Pr = 200, whereas at Pr = 500 instabilities appear due to the unresolved smallest thermal scales. (author)

  11. Numerical simulation of multi-directional random wave transformation in a yacht port

    Science.gov (United States)

    Ji, Qiaoling; Dong, Sheng; Zhao, Xizeng; Zhang, Guowei

    2012-09-01

    This paper extends a prediction model for multi-directional random wave transformation based on an energy balance equation by Mase with the consideration of wave shoaling, refraction, diffraction, reflection and breaking. This numerical model is improved by 1) introducing Wen's frequency spectrum and Mitsuyasu's directional function, which are more suitable to the coastal area of China; 2) considering energy dissipation caused by bottom friction, which ensures more accurate results for large-scale and shallow water areas; 3) taking into account a non-linear dispersion relation. Predictions using the extended wave model are carried out to study the feasibility of constructing the Ai Hua yacht port in Qingdao, China, with a comparison between two port layouts in design. Wave fields inside the port for different incident wave directions, water levels and return periods are simulated, and then two kinds of parameters are calculated to evaluate the wave conditions for the two layouts. Analyses show that Layout I is better than Layout II. Calculation results also show that the harbor will be calm for different wave directions under the design water level. On the contrary, the wave conditions do not wholly meet the requirements of a yacht port for ship berthing under the extreme water level. For safety consideration, the elevation of the breakwater might need to be properly increased to prevent wave overtopping under such water level. The extended numerical simulation model may provide an effective approach to computing wave heights in a harbor.

  12. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number Ta = 1010. The dimensionless torque Nuω shows an effective scaling of Nuω ∝ Ta0.42±0.01, which is steeper than the ultimate regime

  13. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  14. Direct numerical simulation of granular flows with fluid; Simulation numerique directe d'ecoulements granulaires en presence de fluide

    Energy Technology Data Exchange (ETDEWEB)

    Komiwes, V.

    1999-09-01

    Numerical models applied to simulation of granular flow with fluid are developed. The physical model selected to describe particles flow is a discrete approach. Particle trajectories are calculated by the Newton law and collision is describe by a soft-sphere approach. The fluid flow is modelled by Navier-Stokes equations. The modelling of the momentum transfer depends on the resolution scale: for a scale of the order of the particle diameter, it is modelled by a drag-law and for a scale smaller than the particle diameter, it is directly calculated by stress tensor computation around particles. The direct model is used to find representative elementary volume and prove the local character of the Ergun's law. This application shows the numerical (mesh size), physical (Reynolds number) and computational (CPU time and memory consumptions) limitations. The drag law model and the direct model are validated with analytical and empirical solutions and compared. For the two models, the CPU time and the memory consumptions are discussed. The drag law model is applied to the simulation of gas-solid dense fluidized-beds. In the case of uniform gas distribution, the fluidized-bed simulation heights are compared to experimental data for particle of group A and B of the Geldart classification. (author)

  15. Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results: “Towards an accurate description of compressibility effects in supersonic free shear flows”

    International Nuclear Information System (INIS)

    Barre, S.; Bonnet, J.P.

    2015-01-01

    Highlights: • We performed a careful experiment on a highly compressible mixing layer. • We validated the most recent DNS with the present results. • We discuss some aspects of the thermodynamics of the turbulent flow. • We performed a comparison between a computed and a measured turbulent kinetic energy budget. - Abstract: A compressible supersonic mixing layer at convective Mach number (Mc) equal to 1 has been studied experimentally in a dual stream supersonic/subsonic wind-tunnel. Laser Doppler Velocimetry (L.D.V.) measurements were performed making possible a full estimation of the mean and turbulent 3D velocity fields in the mixing layer. The Reynolds stress tensor was described. In particular, some anisotropy coefficients were obtained. It appears that the structure of the Reynolds tensor is almost not affected by compressibility at least up to Mc = 1. The turbulent kinetic energy budget was also experimentally estimated. Reynolds analogies assumptions were used to obtain density/velocity correlations in order to build the turbulent kinetic energy budget from LDV measurements. Results have been compared to other experimental and numerical results. Compressibility effects on the turbulent kinetic energy budget have been detected and commented. A study about thermodynamics flow properties was also performed using most recent DNS results experimentally validated by the present data. A non-dimensional number is then introduced in order to quantify the real effect of pressure fluctuations on the thermodynamics quantities fluctuations

  16. Direct numerical simulation of bubbles with parallelized adaptive mesh refinement

    International Nuclear Information System (INIS)

    Talpaert, A.

    2015-01-01

    The study of two-phase Thermal-Hydraulics is a major topic for Nuclear Engineering for both security and efficiency of nuclear facilities. In addition to experiments, numerical modeling helps to knowing precisely where bubbles appear and how they behave, in the core as well as in the steam generators. This work presents the finest scale of representation of two-phase flows, Direct Numerical Simulation of bubbles. We use the 'Di-phasic Low Mach Number' equation model. It is particularly adapted to low-Mach number flows, that is to say flows which velocity is much slower than the speed of sound; this is very typical of nuclear thermal-hydraulics conditions. Because we study bubbles, we capture the front between vapor and liquid phases thanks to a downward flux limiting numerical scheme. The specific discrete analysis technique this work introduces is well-balanced parallel Adaptive Mesh Refinement (AMR). With AMR, we refined the coarse grid on a batch of patches in order to locally increase precision in areas which matter more, and capture fine changes in the front location and its topology. We show that patch-based AMR is very adapted for parallel computing. We use a variety of physical examples: forced advection, heat transfer, phase changes represented by a Stefan model, as well as the combination of all those models. We will present the results of those numerical simulations, as well as the speed up compared to equivalent non-AMR simulation and to serial computation of the same problems. This document is made up of an abstract and the slides of the presentation. (author)

  17. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Direct numerical simulation (DNS) of flow past a square cylinder at a Reynolds number of 100 has been carried out to explore the effect of blowing in the form of jet(s) on vortex shedding. Higher order spatial as well as temporal discretization has been employed for the discretization of governing equations. The varying ...

  18. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  19. From DNS to RANS: A Multi-model workflow to understand the Influence of Hurricanes on Generating Turbidity Currents in the Gulf of Mexico

    Science.gov (United States)

    Syvitski, J. P.; Arango, H.; Harris, C. K.; Meiburg, E. H.; Jenkins, C. J.; Auad, G.; Hutton, E.; Kniskern, T. A.; Radhakrishnan, S.

    2016-12-01

    A loosely coupled numerical workflow is developed to address land-sea pathways for sediment routing from terrestrial and coastal sources, across the continental shelf and ultimately down the continental slope canyon system of the northern Gulf of Mexico (GOM). Model simulations represent a range of environmental conditions that might lead to the generation of turbidity-currents. The workflow comprises: 1) A simulator for the water and sediment discharged from rivers into the GOM with WMBsedv2 with calibration using USGS and USACE gauged river data; 2) Domain grids and bathymetry (ETOPO2) for the ocean models and realistic seabed sediment texture grids (dbSEABED) for the sediment transport models; 3) A spectral wave action simulator (10 km resolution) (WaveWatch III) driven by GFDL - GFS winds; 4) A simulator for ocean dynamics (ROMS) forced with ECMWF ERA winds; 5) A simulator for seafloor resuspension and transport (CSTMS); 6) Simulators (HurriSlip) of seafloor failure and flow ignition locations for boundary input to a turbidity current model; and 7) A RANS turbidity current model (TURBINS) to route sediment flows down GOM canyons, providing estimates of bottom shear stresses. TURBINS was developed first as a DNS model and then converted to an LES model wherein a dynamic turbulence closure scheme was employed. Like most DNS to LES model comparisons (these being done by the UCSB team), turbulence scaling allowed for higher Re applications but were found still not capable of simulating field scale (GOM continental canyons) environments. The LES model was next converted to a non-hydrostatic RANS model capable of field scale applications but only with a daisy-chain approach to multiple model runs along the simulated canyon floor. These model adaptations allowed the workflow to be tested for the year 1-Oct-2007 to 30-Sep-2008 that included two domain Hurricanes (Ike and Gustav). The RANS-TURBINS employed further boundary simplifications on both sediment erosion and

  20. Nonlinear optimal perturbations in a curved pipe

    Science.gov (United States)

    Rinaldi, Enrico; Canton, Jacopo; Marin, Oana; Schanen, Michel; Schlatter, Philipp

    2017-11-01

    We investigate the effect of curvature on transition to turbulence in pipes by comparing optimal perturbations of finite amplitude that maximise their energy growth in a toroidal geometry to the ones calculated in the absence of curvature. Our interest is motivated by the fact that even small curvatures, of the order of d =Rpipe /Rtorus art numerical algorithms, capable of tackling the optimisation problem on large computational domains, coupled to a high-order spectral-element code, which is used to perform direct numerical simulations (DNS) of the full Navier-Stokes and their adjoint equations. Results are compared to the corresponding states in straight pipes and differences in their structure and evolution are discussed. Furthermore, the newly calculated initial conditions are used to identify coherent flow structures that are compared to the ones observed in recent DNS of weakly turbulent and relaminarising flows in the same toroidal geometry.

  1. Probability density function of a puff dispersing from the wall of a turbulent channel

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2015-11-01

    Study of dispersion of passive contaminants in turbulence has proved to be helpful in understanding fundamental heat and mass transfer phenomena. Many simulation and experimental works have been carried out to locate and track motions of scalar markers in a flow. One method is to combine Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) to record locations of markers. While this has proved to be useful, high computational cost remains a concern. In this study, we develop a model that could reproduce results obtained by DNS and LST for turbulent flow. Puffs of markers with different Schmidt numbers were released into a flow field at a frictional Reynolds number of 150. The point of release was at the channel wall, so that both diffusion and convection contribute to the puff dispersion pattern, defining different stages of dispersion. Based on outputs from DNS and LST, we seek the most suitable and feasible probability density function (PDF) that represents distribution of markers in the flow field. The PDF would play a significant role in predicting heat and mass transfer in wall turbulence, and would prove to be helpful where DNS and LST are not always available.

  2. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  3. Conditional dissipation of scalars in homogeneous turbulence: Closure for MMC modelling

    Science.gov (United States)

    Wandel, Andrew P.

    2013-08-01

    While the mean and unconditional variance are to be predicted well by any reasonable turbulent combustion model, these are generally not sufficient for the accurate modelling of complex phenomena such as extinction/reignition. An additional criterion has been recently introduced: accurate modelling of the dissipation timescales associated with fluctuations of scalars about their conditional mean (conditional dissipation timescales). Analysis of Direct Numerical Simulation (DNS) results for a passive scalar shows that the conditional dissipation timescale is of the order of the integral timescale and smaller than the unconditional dissipation timescale. A model is proposed: the conditional dissipation timescale is proportional to the integral timescale. This model is used in Multiple Mapping Conditioning (MMC) modelling for a passive scalar case and a reactive scalar case, comparing to DNS results for both. The results show that this model improves the accuracy of MMC predictions so as to match the DNS results more closely using a relatively-coarse spatial resolution compared to other turbulent combustion models.

  4. Direct Numerical Simulation of Fingering Instabilities in Coating Flows

    Science.gov (United States)

    Eres, Murat H.; Schwartz, Leonard W.

    1998-11-01

    We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.

  5. Nonlinear effects and vortical structures in homogeneous rotating turbulence under stable density stratification; Antei seisoka ni aru kaiten ichiyo ranryu no hisenkei koka to uzu kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Iida, O.; Nagano, Y. [Nagoya Institute of Technology, Nagoya (Japan)

    2000-02-25

    The generation mechanism of the vertical vortices associated with the baroclinic instability and the effects of nonlinear term on the vortices are investigated by using both direct numerical simulation (DNS) and rapid distortion theory (RDT). Two kinds of the anisotropic flow fields are used as initial conditions. As a result, the initial anisotropy of Reynolds stresses is found to affect asymmetry of the vertical vortices. In the cases where the initial vertical velocity is set to be zero, the p. d. f. of the vertical vorticity tends to incline toward the anticyclonic side. When the vertical component of initial velocity is larger than the horizontal one, the cyclonic vortices are more enhanced. By comparing DNS and RDT, it is found that in both cases of the initial conditions the enhanced vortices of DNS are stretched in the vertical direction, which is not observed in the RDT results. This should be because the nonlinear vortex-stretching term intensifies and elongates vertical vortices in the vertical direction. The anticyclones are markedly augmented in low Prandtl number fluids, while the cyclones become dominant in the high Prandtl number case. In particular, the flow field becomes almost two-dimensionalized and Taylor columns are formed in the vertical direction in the low Prandtl number case. However, neither two-dimensionalization nor Taylor column is observed in the RDT analysis which neglects the nonlinear terms. (author)

  6. Low-Mach number simulations of transcritical flows

    KAUST Repository

    Lapenna, Pasquale E.

    2018-01-08

    A numerical framework for the direct simulation, in the low-Mach number limit, of reacting and non-reacting transcritical flows is presented. The key feature are an efficient and detailed representation of the real fluid properties and an high-order spatial discretization. The latter is of fundamental importance to correctly resolve the largely non-linear behavior of the fluid in the proximity of the pseudo-boiling. The validity of the low-Mach number assumptions is assessed for a previously developed non-reacting DNS database of transcritical and supercritical mixing. Fully resolved DNS data employing high-fidelity thermodynamical models are also used to investigate the spectral characteristic as well as the differences between transcritical and supercritical jets.

  7. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific

  8. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  9. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  10. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  11. Fast pressure-correction method for incompressible Navier-Stokes equations in curvilinear coordinates

    Science.gov (United States)

    Aithal, Abhiram; Ferrante, Antonino

    2017-11-01

    In order to perform direct numerical simulations (DNS) of turbulent flows over curved surfaces and axisymmetric bodies, we have developed the numerical methodology to solve the incompressible Navier-Stokes (NS) equations in curvilinear coordinates for orthogonal meshes. The orthogonal meshes are generated by solving a coupled system of non-linear Poisson equations. The NS equations in orthogonal curvilinear coordinates are discretized in space on a staggered mesh using second-order central-difference scheme and are solved with an FFT-based pressure-correction method. The momentum equation is integrated in time using the second-order Adams-Bashforth scheme. The velocity field is advanced in time by applying the pressure correction to the approximate velocity such that it satisfies the divergence free condition. The novelty of the method stands in solving the variable coefficient Poisson equation for pressure using an FFT-based Poisson solver rather than the slower multigrid methods. We present the verification and validation results of the new numerical method and the DNS results of transitional flow over a curved axisymmetric body.

  12. Morphing continuum theory for turbulence: Theory, computation, and visualization

    Science.gov (United States)

    Chen, James

    2017-10-01

    A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.

  13. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  14. A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves

    Directory of Open Access Journals (Sweden)

    Justin R. Davis

    2014-02-01

    Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.

  15. Direct numerical simulation of non-isothermal flow through dense bidisperse random arrays of spheres

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2017-01-01

    Extensive direct numerical simulations were performed to obtain the heat transfer coefficients (HTC) of bidisperse random arrays of spheres. We have calculated the HTC for a range of compositions and solids volume fractions for mixtures of spheres with a size ratio of 1:2. The Reynolds numbers are

  16. Harmonic/inter-harmonic detection based on DNS-MUSIC function%基于噪声子空间分解MUSIC函数的谐波/间谐波检测算法

    Institute of Scientific and Technical Information of China (English)

    孟玲玲; 孙常栋; 王晓东

    2012-01-01

    A detection method based on DNS-MUSIC(Decomposition of Noise Subspace in MUSIC) is presented for the harmonic/inter-harmonic of power system. According to the eigenvalue decomposition theory,the signal self-correlation matrix is decomposed into the signal subspace and the noise subspace. The noise subspace is further decomposed based on their orthogonality,and then transformed to construct its DNS-MUSIC function. The estimated frequencies of fundamental and harmonics are obtained by solving the polynomial of DNS-MUSIC. Combined with the estimated frequency components of power system signal,the extended Prony algorithm is then applied to detect its amplitude and phase of power system signal. Simulation proves the feasibility .efficiency and stability of the proposed algorithm in comparison with other classical algorithms.%针对电力系统中存在的谐波和间谐波问题,提出了基于噪声子空间分解MUSIC (DNS-MUSIC)函数的谐波/间谐波检测方法.利用信号自相关矩阵的特征值分解理论,将信号的自相关矩阵分解为信号子空间和噪声子空间,利用2个子空间的正交性进一步分解噪声子空间,对其进行变换,构造出基于噪声子空间分解的特征多项式(DNS-MUSIC函数),求解该多项式得到信号基波和谐波频率预估计,结合消噪思想检测电力系统信号频率成分,然后利用扩展Prony法检测信号的幅值和相位.通过仿真实验与其他经典算法比较,结果证明了所提算法的可行性、高效性和稳定性.

  17. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  18. Toward topology-based characterization of small-scale mixing in compressible turbulence

    Science.gov (United States)

    Suman, Sawan; Girimaji, Sharath

    2011-11-01

    Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.

  19. Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000

    NARCIS (Netherlands)

    Vidya, Mahening Citra; Beishuizen, N.A.; van der Meer, Theodorus H.

    2016-01-01

    Unsteady direct numerical simulations of the flow around a circular cylinder have been performed at Re = 2000. Both two-dimensional and three-dimensional simulations were validated with laminar cold flow simulations and experiments. Heat transfer simulations were carried out and the time-averaged

  20. Direct numerical simulations of fluid flow, heat transfer and phase changes

    Science.gov (United States)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-01-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.