WorldWideScience

Sample records for dna vaccines induce

  1. DNA Vaccines

    Indian Academy of Sciences (India)

    DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ARTICLE. DNA Vaccines. P N Rangarajan. History of Vaccine Development. The year 1996 marked the 200th anniversary of the first vaccine developed against smallpox by Edward Jenner. In the now- famous 1796 experiment, Jenner scratched ...

  2. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...... in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non......DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...

  3. Immune response induced by candidate Sarcoptes scabiei var. cuniculi DNA vaccine encoding paramyosin in mice.

    Science.gov (United States)

    Gu, Xiaobin; Xie, Yue; Wang, Shuxian; Peng, Xuerong; Lai, Songjia; Yang, Guangyou

    2014-07-01

    Sarcoptes scabiei is the causal agent of the highly contagious disease sarcoptic mange (scabies) that affects animals and humans worldwide. An increasing number of cases of treatment failure is being reported because of drug resistance. The development of a specific vaccine would be a sustainable option for control of this disease. In this study, we cloned and expressed a S. scabiei gene encoding paramyosin (PAR) and investigated the immune response elicited by DNA encoding PAR in mice. The ability of the DNA vaccine to express antigen in COS-7 cells was confirmed by RT-PCR and IFA. The immune response induced by DNA vaccine was investigated by ELISA, splenocyte proliferation assay, and cytokine production assay. Compared to the pVAX1 control group, the PAR DNA vaccination group showed the higher levels of IgG, IgG1, IgG2a, IgE, IgM, stronger lymphocyte proliferation in mouse spleen, and larger production of IL-2, IL-4, IL-5, and IFN-γ in the supernatant of cultures from splenocytes. These results indicated that the PAR DNA vaccine induced a mixed Th1/Th2 response in mice. In conclusion, our results revealed that the S. scabiei PAR DNA vaccine induced both a humoral and cellular immune response, which would provide basic data for the further study to develop an effective vaccine against sarcoptic mange.

  4. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...... demonstrate that early life DNA vaccination with the H gene of a CDV vaccine strain induced robust protective immunity against a recent wild type CDV....

  5. DNA Vaccines Against Anthrax

    National Research Council Canada - National Science Library

    Galloway, Darrell R; Baillie, Les

    2004-01-01

    DNA vaccination is vaccination at its simplest. Due to renewed interest in vaccination against anthrax and other biothreat agents, a genetic immunisation approach offers attractive possibilities for rapid, responsive vaccine development...

  6. DNA VACCINES

    OpenAIRE

    Aksu, Burak

    2016-01-01

    Traditionally, protection against infectious diseases has relied on the use of attenuated or killed vaccines. However, many such vaccines are inadequate for reason of efficacy, safety, and cost effectiveness. Live-attenuated vaccines may be immunosuppressive, cause disease if not attenuated sufficiently, or provide limited immunity if too much attenuated. A major concern regarding the use of live vaccines is the possibility of outgrowth of more virulent organisms. Killed vaccines are often un...

  7. DNA vaccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses.

    Science.gov (United States)

    Hanif, S N M; Al-Attiyah, R; Mustafa, A S

    2010-11-01

    RD1 PE35, PPE68, EsxA, EsxB and RD9 EsxV genes are present in Mycobacterium tuberculosis genome but deleted in Mycobacterium bovis BCG. The aim of this study was to clone these genes into DNA vaccine vectors capable of expressing them in eukaryotic cells as fusion proteins, fused with immunostimulatory signal peptides of human interleukin-2 (hIL-2) and tissue plasminogen activator (tPA), and evaluate the recombinant DNA vaccine constructs for induction of antigen-specific cellular immune responses in mice. DNA corresponding to the aforementioned RD1 and RD9 genes was cloned into DNA vaccine plasmid vectors pUMVC6 and pUMVC7 (with hIL-2 and tPA signal peptides, respectively), and a total of 10 recombinant DNA vaccine constructs were obtained. BALB/c mice were immunized with the parent and recombinant plasmids and their spleen cells were tested for antigen-induced proliferation with antigens of M. tuberculosis and pure proteins corresponding to the cloned genes. The results showed that antigen-specific proliferation responses were observed for a given antigen only with spleen cells of mice immunized with the homologous recombinant DNA vaccine construct. The mice immunized with the parent plasmids did not show positive immune responses to any of the antigens of the cloned genes. The ability of the DNA vaccine constructs to elicit cellular immune responses makes them an attractive weapon as a safer vaccine candidate for preventive and therapeutic applications against tuberculosis. © 2010 The Authors. Scandinavian Journal of Immunology © 2010 Blackwell Publishing Ltd.

  8. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  9. DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice.

    Science.gov (United States)

    Han, Yali; Zhou, Aihua; Lu, Gang; Zhao, Guanghui; Sha, Wenchao; Wang, Lin; Guo, Jingjing; Zhou, Jian; Zhou, Huaiyu; Cong, Hua; He, Shenyi

    2017-10-01

    Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant α-GalCer. As results, TgCPC1 DNA vaccine with or without adjuvant α-GalCer showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and IFN-γ in the spleen compared to controls (PBS, pEGFP-C1, and α-Galcer). Upon challenge infection with tachyzoites of T. gondii (RH), pCPC1/α-Galcer immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and α-Galcer). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

  10. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene......-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those...... elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion...

  11. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot

    DEFF Research Database (Denmark)

    Sommerset, I.; Lorenzen, Ellen; Lorenzen, Niels

    2003-01-01

    A DNA vaccine encoding the envelope glycoprotein from a fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), has previously been shown to induce both early and long time protection against the virus in rainbow trout. Challenge experiments have revealed that the immunity established shortly...... after vaccination is cross-protective against heterologous fish rhabdoviruses. In this study, we show that the DNA vaccine encoding the VHSV glycoprotein also induces early protection against a non-enveloped, positive-sense RNA vir-us belonging to the Nodavirus family, the Atlantic halibut nodavirus...... (AHNV). In a vaccine. efficacy test using juvenile turbot as model fish, the fish injected with the VHSV vaccine were completely protected against a nodavirus challenge performed 8 days post vaccination, while the cumulative mortality in the control group reached 54%. A DNA vaccine carrying the gene...

  12. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    International Nuclear Information System (INIS)

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  13. DNA Vaccines

    Indian Academy of Sciences (India)

    The year 1996 marked the 200th anniversary of the first vaccine developed against smallpox by Edward Jenner. In the now- famous 1796 experiment, Jenner scratched the arm of eight- year-old James Phipps, infecting the boy with cowpox pus taken from a milkmaid carrying the virus. Two months later, he scratched James ...

  14. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  15. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...... whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non...

  16. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  17. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  18. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    Science.gov (United States)

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  20. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    International Nuclear Information System (INIS)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-01-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  1. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  2. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  3. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    Suschak and Schmaljohn DNA Vaccine Electroporation and Molecular Adjuvants 1 Abstract To date, there is no protective vaccine for Ebola virus...infection. Safety concerns have prevented the use of live-attenuated vaccines , and forced researchers to examine new vaccine formulations. DNA... vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and

  4. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with these modifications, it is likely that the primary use of DNA vaccines may be as primers for viral-vectored vaccines, rather than as single agents. This review discusses the approaches used to enhance DNA vaccine immunogenicity, with a primary focus on fusion strategies that enhance antigen presentation....

  5. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  6. A DNA Vaccine Encoding Cu,Zn Superoxide Dismutase of Brucella abortus Induces Protective Immunity in BALB/c Mice

    Science.gov (United States)

    Oñate, Angel A.; Céspedes, Sandra; Cabrera, Alex; Rivers, Rodolfo; González, Andrés; Muñoz, Carola; Folch, Hugo; Andrews, Edilia

    2003-01-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). Intramuscular injection of plasmid DNA carrying the SOD gene (pcDNA-SOD) into BALB/c mice elicited both humoral and cellular immune responses. Animals injected with pcDNA-SOD developed SOD-specific antibodies which exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the DNA vaccine elicited a T-cell-proliferative response and also induced the production of gamma interferon, but not interleukin-10 (IL-10) or IL-4, upon restimulation with either recombinant SOD or crude Brucella protein, suggesting the induction of a typical T-helper-1-dominated immune response in mice. The pcDNA-SOD (but not the control vector) induced a strong, significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308; the level of protection was similar to the one induced by B. abortus vaccine strain RB51. Altogether, these data suggest that pcDNA-SOD is a good candidate for use in future studies of vaccination against brucellosis. PMID:12933826

  7. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Delgado, L.; Lorenzen, Ellen

    2009-01-01

    DNA vaccines encoding the glycoprotein genes of the salmonid rhabdoviruses VHSV and IHNV are very efficient in eliciting protective immune responses against their respective diseases in rainbow trout (Oncorhynchus mykiss). The early anti-viral response (EAVR) provides Protection by 4 days post...... against the two diseases would be a preferable option. In the present study we demonstrated that a single injection of mixed DNA vaccines induced long-lasting protection against both individual and a simultaneous virus challenge 80 days post vaccination. Transfected muscle cells at the injection site...... expressed both G proteins. This study confirms the applied potential Of using a combined DNA vaccination for protection of fish against two different rhabdoviral diseases....

  8. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...

  9. THE PROTECTIVE MECHANISMS INDUCED BY A FISH RHABDOVIRUS DNA-VACCINE DEPENDS ON TTEMPERATURE

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    DNA-vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis virus (IHNV) have proved highly efficient in rainbow trout (Oncorhynchus mykiss) under experimental conditions. In the early phase following vaccination, innate cross......-protective mechanisms are dominating but the protection becomes highly specific within 3-4 weeks at 12-15C. Temperature is known as an important external parameter affecting the immune response in fish and the present study aimed at characterizing temperature effects on the immune response to a VHS DNA vaccine....... Rainbow trout fingerlings acclimated at 5°C, 10°C or 15C, were given an intramuscular injection of 1g purified plasmid DNA and challenged with virulent VHSV 9 or 36-40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer...

  10.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    hydroxylase (TH) DNA minigene vaccine. We identified three novel mouse TH (mTH3) derived peptides with high predicted binding affinity to MHC class I antigen H2-K(k) according to the prediction program SYFPEITHI and computer modeling of epitopes into the MHC class I antigen binding groove. Subsequently, a DNA...... following the mTH3 DNA minigene vaccination was mediated by CD8(+) T cells as indicated by infiltration of primary tumors and TH-specific cytolytic activity in vitro. Importantly, no cell infiltration was detectable in TH-expressing adrenal medulla, indicating the absence of autoimmunity. In summary, we......Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...

  11. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  12. DNA vaccine: the miniature miracle

    Directory of Open Access Journals (Sweden)

    Karthik Kaliaperumal

    2013-08-01

    Full Text Available DNA, the essential part of the life is making way in to new vaccine technology. Plasmid vectors from the bacteria have revolutionized the world of vaccine design by its new technology – DNA vaccines. Small portion of the nucleotides from the pathogen held under the control of promoter in a plasmid vector can be used as a vaccine. DNA vaccines alleviate the odds of the other vaccines by having good hold on both the faces of the immunity. The key to the success of DNA vaccine lies in the route of administration of the vaccine which can be done in many ways. Prime boost strategy is an approach used to boost the action of DNA vaccine. To date there are only four DNA vaccine available in the market. [Vet World 2013; 6(4.000: 228-232

  13. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  15. The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    2009-01-01

    DNA vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis Virus (IHNV) have proved highly efficient in rainbow trout (Oncorhynchus mykiss) under experimental conditions. Non-specific as well as specific immune mechanisms seem...... to be activated. Temperature is an important external parameter affecting the immune response in fish. The present study aimed at determining the effectiveness of a DNA vaccine against VHS at different temperatures. Rainbow trout fingerlings acclimated at 5 degrees C, 10 degrees C or 15 degrees C, were given...... an intramuscular injection of 1 mu g purified plasmid DNA and challenged with virulent VHSV 8 or 36-40 days later. The vaccine protected the fish well at all three temperatures, but the involvement of innate and adaptive mechanisms differed: at low temperature. non-specific protection lasted longer and at 36 dpv...

  16. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... with the optimized DNA vaccine resulted in specific, dose-dependent immunity down to the lowest dose (200μg DNA/vaccination). Both the antibody-mediated and the recall lymphocyte immune responses demonstrated high reactivity against vaccine-specific strains and cross-reactivity to vaccine-heterologous strains...

  17. Development of dengue DNA vaccines.

    Science.gov (United States)

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed. Published by Elsevier Ltd.

  18. DNA vaccination against v-src oncogene-induced tumours in congenic chicken

    Czech Academy of Sciences Publication Activity Database

    Plachý, Jiří; Hejnar, Jiří; Trtková, Kateřina; Trejbalová, Kateřina; Svoboda, Jan; Hála, K.

    2001-01-01

    Roč. 19, - (2001), s. 4526-4535 ISSN 0264-410X R&D Projects: GA ČR GA524/99/0366; GA AV ČR IPP2052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : v-src-specific immunity * DNA vaccination * chicken MHC (B) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.943, year: 2001

  19. Reduced Immunogenicity of DNA Vaccine Plasmids in Mixtures

    National Research Council Canada - National Science Library

    Sedegah, M; Charoenvit, Y; Minh, L; Belmonte, M; Majam, V. F; Abot, S; Ganeshan, H; Kumar, S; Bacon, D. J; Stowers, A; Narum, D. L; Carucci, D. J; Rogers, W. O

    2004-01-01

    We measured the ability of nine DNA vaccine plasmids encoding candidate malaria vaccine antigens to induce antibodies and interferon-gamma responses when delivered alone or in a mixture containing all nine plasmids...

  20. Intraspleen Delivery of a DNA Vaccine Coding for Superoxide Dismutase (SOD) of Brucella abortus Induces SOD-Specific CD4+ and CD8+ T Cells

    Science.gov (United States)

    Muñoz-Montesino, Carola; Andrews, Edilia; Rivers, Rodolfo; González-Smith, Andrés; Moraga-Cid, Gustavo; Folch, Hugo; Céspedes, Sandra; Oñate, Angel A.

    2004-01-01

    In the development of vaccines capable of providing immunity against brucellosis, Cu-Zn superoxide dismutase (SOD) has been demonstrated to be one of the protective immunogens of Brucella abortus. In an earlier study, we provided strong evidence that intramuscular injection with a plasmid DNA carrying the SOD gene (pcDNA-SOD) was able to induce a protective immune response. The present study was designed to characterize T-cell immune responses after an intraspleen (i.s.) vaccination of BALB/c mice with pcDNA-SOD. Animals vaccinated with pcDNA-SOD did not develop SOD-specific antibodies, at least until week 4 after immunization (the end of the experiment), and in vitro stimulation of their splenocytes with either recombinant Cu-Zn SOD or crude Brucella protein induced the secretion of gamma interferon (IFN-γ), but not interleukin-4, and elicited the induction of cytotoxic-T-lymphocyte activity. Upon analyzing the SOD-specific T-cell responses, the pcDNA-SOD vaccination was found to be stimulating both CD4+- and CD8+-T-cell populations. However, only the CD4+ population was able to produce IFN-γ and only the CD8+ population was able to induce cytotoxic activity. Nevertheless, although i.s. route vaccination induces a significant level of protection in BALB/c mice against challenge with the virulent B. abortus strain 2308, vaccination by the intramuscular route with a similar amount of plasmid DNA does not protect. Based on these results, we conclude that i.s. immunization with pcDNA-SOD vaccine efficiently induced a Th1 type of immune response and a protective response that could be related to IFN-γ production and cytotoxic activity against infected cells by SOD-specific CD4+ and CD8+ T cells, respectively. PMID:15039330

  1. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    to be fully addressed, although inherently the risks should not be any greater than with the commercial fish vaccines that are currently used. Present classification systems lack clarity in distinguishing DNA-vaccinated animals from genetically modified organisms (GMOs), which could raise issues in terms...... of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production...... for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain...

  2. DNA vaccines encoding antigen targeted to MHC class II induce influenza specific CD8+ T cell responses, enabling faster resolution of influenza disease.

    Directory of Open Access Journals (Sweden)

    Laura Lambert

    2016-08-01

    Full Text Available Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune cell targeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the two strains (CB6F1. BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  3. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  4. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  5. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... no permanent tissue damage. To further investigate the ability of DNA-based vaccines to induce protective immunity in fish, viral haemorrhagic septicaemia virus G and N genes were cloned individually into an expression plasmid. Both G and N proteins produced in transfected fish cells appeared identical...... protein, killing the transfected host cells and ablating further expression of G protein and luciferase. Finally, young rainbow trout injected with the G construct, alone or together with the N construct, were strongly protected against challenge with live virus. These results suggest that DNA vaccines...

  6. DNA vaccines for cancer therapy.

    Science.gov (United States)

    Horton; Parker; Wloch; Norman

    1999-12-01

    Vaccination with a tumour antigen-expressing plasmid DNA (pDNA) is a novel approach to human cancer immunotherapy. Initial results in preclinical rodent tumour models are promising, revealing that pDNA cancer vaccines can elicit both humoral, as well as cell-mediated immunity and, in some cases, protect against tumour growth. Compared to peptide, viral or dendritic cell vaccines, the delivery of tumour antigens using pDNA has the advantages of ease of manufacture, lack of toxicity and broad applicability to large populations. With advances in modern genomics strategies and the identification of an increasing number of tumour antigen genes, pDNA-based cancer vaccines may be used in the future to treat a wide variety of human cancers.

  7. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  8. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...

  9. A DNA Vaccine-Encoded Nucleoprotein of Influenza Virus Fails To Induce Cellular Immune Responses in a Diabetic Mouse Model▿

    OpenAIRE

    Jamali, Abbas; Sabahi, Farzaneh; Bamdad, Taravat; Hashemi, Hamidreza; Mahboudi, Fereidoun; Kheiri, Masume Tavasoti

    2010-01-01

    International audience; Influenza virus infections cause yearly epidemics and are a major cause of lower respiratory tract illnesses in humans worldwide. Influenza virus has long been recognized to be associated with higher morbidity and mortality in diabetic patients. Vaccination is an effective tool to prevent influenza virus infection in this group of patients. Vaccines employing recombinant-DNA technologies are an alternative to inactivated virus and live attenuated virus vaccines. Intern...

  10. A Mycobacterium bovis BCG-Naked DNA Prime-Boost Vaccination Strategy Induced CD4+ and CD8+ T-Cell Response against Mycobacterium tuberculosis Immunogens

    Directory of Open Access Journals (Sweden)

    Miao Lu

    2014-01-01

    Full Text Available Mycobacterium tuberculosis infection is still a major global public health problem. Presently the only tuberculosis (TB vaccine available is Bacille Calmette-Guérin (BCG, although it fails to adequately protect against pulmonary TB in adults. To solve this problem, the development of a new effective vaccine is urgently desired. BCG-prime DNA-booster vaccinations strategy has been shown to induce greater protection against tuberculosis (TB than BCG alone. Some studies have demonstrated that the two genes (Rv1769 and Rv1772 are excellent T-cell antigens and could induce T-cell immune responses. In this research, we built BCG-C or BCG-P prime-recombination plasmid PcDNA3.1-Rv1769 or PcDNA3.1-Rv1772 boost vaccinations strategy to immunize BALB/c mice and evaluated its immunogenicity. The data suggests that the BCG-C+3.1-72 strategy could elicit the most long-lasting and strongest Th1-type cellular immune responses and the BCG-C+3.1-69 strategy could induce the high level CD8+ T-cell response at certain time points. These findings support the ideas that the prime-boost strategy as a combination of vaccines may be better than a single vaccine for protection against tuberculosis.

  11. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    Science.gov (United States)

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  12. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Vaccination with a DNA vaccine encoding Toxoplasma gondii ROP54 induces protective immunity against toxoplasmosis in mice.

    Science.gov (United States)

    Yang, Wen-Bin; Zhou, Dong-Hui; Zou, Yang; Chen, Kai; Liu, Qing; Wang, Jin-Lei; Zhu, Xing-Quan; Zhao, Guang-Hui

    2017-12-01

    Toxoplasma gondii is an obligatory intracellular protozoan, which infects most of the warm-blooded animals, causing serious public health problems and enormous economic losses worldwide. The rhoptry effector protein 54 (ROP54) has been indicated as a virulence factor that promotes Toxoplasma infection by modulating GBP2 loading onto parasite-containing vacuoles, which can modulate some aspects of the host immune response. In order to evaluate the immuno-protective value of ROP54, we constructed a eukaryotic recombinant plasmid expressing T. gondii ROP54 and intramuscularly immunized Kunming mice with this recombinant plasmid against acute and chronic toxoplasmosis. All mice immunized with pVAX-ROP54 elicited a high level of specific antibody responses, a significant increase of lymphocyte proliferation, and a significant level of Th1-type cytokines (IFN-γ, IL-2 and IL-12p70), in addition to an increased production of Th2-type cytokines (IL-4 and IL-10). These results demonstrated that pVAX-ROP54 induced significant cellular and humoral (Th1/Th2) immune responses, which extended the survival time (13.0±1.15days for pVAX-ROP54 vs 6.7±0.48days for pVAX I, 6.8±0.42days for PBS and 6.5±0.53 for blank control) and significantly reduced cyst burden (35.9% for pVAX-ROP54, 1% for pVAX I and 2% for PBS, compared with blank control) of immunized mice. These results indicate that the recombinant ROP54 plasmid can provide partial protection and might be a potential vaccine candidate against acute and chronic toxoplasmosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Testing the ability of viral haemorrhagic septicaemia virus to evade the protective immune response induced in rainbow trout by DNA vaccination

    DEFF Research Database (Denmark)

    Sepulveda, Dagoberto; Lorenzen, Niels

    2013-01-01

    Viral haemorrhagic septicaemia virus, a negative strand RNA virus belonging to the genus Novirhabdovirus within the family Rhabdoviridae, is the causative agent of VHS, which is a serious disease in rainbow trout and other economically important fish species. The DNA vaccine encoding the viral......, this work aims to evaluate whether VHSV is able to evade the protective immune response induced by the DNA vaccination. Earlier studies have demonstrated that VHSV can evade the neutralizing effect of monoclonal antibodies by mutations in the glycoprotein gene. One approach of the present study is therefore...... to try to isolate VHSV variants which can escape the neutralizing activity of serum from fish immunized with the DNA vaccine. To do so, a highly pathogenic VHSV isolate (DK3592B) will be repeatedly passaged in fish cell cultures in the presence of neutralizing fish serum. Another approach comprises...

  15. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  16. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades.

    Science.gov (United States)

    Bragstad, Karoline; Martel, Cyril J; Thomsen, Joakim S; Jensen, Kim L; Nielsen, Lars P; Aasted, Bent; Fomsgaard, Anders

    2011-01-01

    Alternative influenza vaccines and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change in the vaccine formulations. In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Ferrets were immunised by particle-mediated epidermal delivery (gene gun) with DNA vaccines based on the haemagglutinin (HA) and neuraminidase (NA) and/or the matrix (M) and nucleoprotein genes of the 1918 H1N1 Spanish influenza pandemic virus or the 1968 H3N2 Hong Kong influenza pandemic virus. The animals were challenged with contemporary H1N1 or H3N2 viruses. We demonstrated that DNA vaccines encoding proteins of the original 1918 H1N1 pandemic virus induced protective cross-reactive immune responses in ferrets against infection with a 1947 H1N1 virus and a recent 1999 H1N1 virus. Similarly, a DNA vaccine, based on the HA and NA of the 1968 H3N2 pandemic virus, induced cross-reactive immune responses against a recent 2005 H3N2 virus challenge. DNA vaccines based on pandemic or recent seasonal influenza genes induced cross-reactive immunity against contemporary virus challenge as good as or superior to contemporary conventional trivalent protein vaccines. This suggests a unique ability of influenza DNA to induce cross-protective immunity against both contemporary and long-time drifted viruses. © 2010 Blackwell Publishing Ltd.

  17. Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine.

    Science.gov (United States)

    Tretyakova, Irina; Lukashevich, Igor S; Glass, Pamela; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2013-02-04

    DNA vaccines combine remarkable genetic and chemical stability with proven safety and efficacy in animal models, while remaining less immunogenic in humans. In contrast, live-attenuated vaccines have the advantage of inducing rapid, robust, long-term immunity after a single-dose vaccination. Here we describe novel iDNA vaccine technology that is based on an infectious DNA platform and combines advantages of DNA and live attenuated vaccines. We applied this technology for vaccination against infection with Venezuelan equine encephalitis virus (VEEV), an alphavirus from the Togaviridae family. The iDNA vaccine is based on transcription of the full-length genomic RNA of the TC-83 live-attenuated virus from plasmid DNA in vivo. The in vivo-generated viral RNA initiates limited replication of the vaccine virus, which in turn leads to efficient immunization. This technology allows the plasmid DNA to launch a live-attenuated vaccine in vitro or in vivo. Less than 10 ng of pTC83 iDNA encoding the full-length genomic RNA of the TC-83 vaccine strain initiated replication of the vaccine virus in vitro. In order to evaluate this approach in vivo, BALB/c mice were vaccinated with a single dose of pTC83 iDNA. After vaccination, all mice seroconverted with no adverse reactions. Four weeks after immunization, animals were challenged with the lethal epidemic strain of VEEV. All iDNA-vaccinated mice were protected from fatal disease, while all unvaccinated controls succumbed to infection and died. To our knowledge, this is the first example of launching a clinical live-attenuated vaccine from recombinant plasmid DNA in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Multivalent Fusion DNA Vaccine against Brucella abortus

    Science.gov (United States)

    Gómez, Leonardo; Llanos, Javiera; Escalona, Emilia; Sáez, Darwin; Álvarez, Francisco; Molina, Raúl; Flores, Manuel

    2017-01-01

    As an alternative brucellosis prevention method, we evaluated the immunogenicity induced by new multivalent DNA vaccines in BALB/c mice. We constructed the vaccines by fusion of BAB1_0273 and/or BAB1_0278 open reading frames (ORFs) from genomic island 3 (GI-3) and the Brucella abortus 2308 sodC gene with a link based on prolines and alanines (pV273-sod, pV278-sod, and pV273-278-sod, resp.). Results show that immunization with all tested multivalent DNA vaccines induced a specific humoral and cellular immune response. These novel multivalent vaccines significantly increased the production of IgM, IgG, and IgG2a antibodies as well as IFN-γ levels and the lymphoproliferative response of splenocytes. Although immunization with these multivalent vaccines induced a typical T-helper 1- (Th1-) dominated immune response, such immunogenicity conferred low protection levels in mice challenged with the B. abortus 2308 pathogenic strain. Our results demonstrated that the expression of BAB1_0273 and/or BABl_0278 antigens conjugated to SOD protein can polarize mice immunity to a Th1-type phenotype, conferring low levels of protection. PMID:29082252

  19. Multivalent Fusion DNA Vaccine against Brucella abortus

    Directory of Open Access Journals (Sweden)

    Leonardo Gómez

    2017-01-01

    Full Text Available As an alternative brucellosis prevention method, we evaluated the immunogenicity induced by new multivalent DNA vaccines in BALB/c mice. We constructed the vaccines by fusion of BAB1_0273 and/or BAB1_0278 open reading frames (ORFs from genomic island 3 (GI-3 and the Brucella abortus 2308 sodC gene with a link based on prolines and alanines (pV273-sod, pV278-sod, and pV273-278-sod, resp.. Results show that immunization with all tested multivalent DNA vaccines induced a specific humoral and cellular immune response. These novel multivalent vaccines significantly increased the production of IgM, IgG, and IgG2a antibodies as well as IFN-γ levels and the lymphoproliferative response of splenocytes. Although immunization with these multivalent vaccines induced a typical T-helper 1- (Th1- dominated immune response, such immunogenicity conferred low protection levels in mice challenged with the B. abortus 2308 pathogenic strain. Our results demonstrated that the expression of BAB1_0273 and/or BABl_0278 antigens conjugated to SOD protein can polarize mice immunity to a Th1-type phenotype, conferring low levels of protection.

  20. Cationic influenza virosomes as an adjuvanted delivery system for CTL induction by DNA vaccination

    NARCIS (Netherlands)

    Jamali, Abbas; Holtrop, Marijke; de Haan, Aalzen; Hashemi, Hamidreza; Shenagari, Mohammad; Memarnejadian, Arash; Roohvand, Farzin; Sabahi, Farzaneh; Kheiri, Masumeh Tavassoti; Huckriede, Anke

    2012-01-01

    DNA vaccines have emerged as an attractive approach to induce CTL responses against cancer and infectious agents in recent years. Although CTL induction by DNA vaccination would be a valuable strategy for controlling viral infections, increasing the potency of DNA vaccines is mandatory before DNA

  1. Influenza Plasmid DNA Vaccines: Progress and Prospects.

    Science.gov (United States)

    Bicho, Diana; Queiroz, João António; Tomaz, Cândida Teixeira

    2015-01-01

    Current influenza vaccines have long been used to fight flu infectious; however, recent advances highlight the importance of produce new alternatives. Even though traditional influenza vaccines are safe and usually effective, they need to be uploaded every year to anticipate circulating flu viruses. This limitation together with the use of embryonated chicken eggs as the substrate for vaccine production, is time-consuming and could involve potential biohazards in growth of new virus strains. Plasmid DNA produced by prokaryote microorganisms and encoding foreign proteins had emerged as a promising therapeutic tool. This technology allows the expression of a gene of interest by eukaryotic cells in order to induce protective immune responses against the pathogen of interest. In this review, we discuss the strategies to choose the best DNA vaccine to be applied in the treatment and prevention of influenza. Specifically, we give an update of influenza DNA vaccines developments, all involved techniques, their main characteristics, applicability and technical features to obtain the best option against influenza infections.

  2. Protective antiviral immune responses to pseudorabies virus induced by DNA vaccination using dimethyldioctadecylammonium bromide as an adjuvant

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Glansbeek, H.L.; Hilgers, L.A.T.; Lintelo, te E.G.; Visser, de Y.E.; Boersma, W.J.A.; Haagmans, B.L.; Bianchi, A.T.J.

    2002-01-01

    To enhance the efficacy of a DNA vaccine against pseudorabies virus (PRV), we evaluated the adjuvant properties of plasmids coding for gamma interferon or interleukin-12, of CpG immunostimulatory motifs, and of the conventional adjuvants dimethyldioctadecylammonium bromide in water (DDA) and

  3. The protective immune response against Pseudorabies virus induced by DNA vaccination is impaired if the plasmid harbors a functional Porcine circovirus type 2 rep and origin of replication.

    Science.gov (United States)

    Faurez, Florence; Grasland, Béatrice; Béven, Véronique; Cariolet, Roland; Keranflec'h, André; Henry, Aurélie; Jestin, André; Dory, Daniel

    2012-12-01

    A plasmid rendered replicative in mammalian cells by inserting the Porcine circovirus 2 (PCV2) origin of replication and replicase gene (Ori-rep) has been previously constructed. The aim of the present study was to evaluate if the replication capacity of this plasmid could be advantageously used to improve the protective immunity induced by DNA vaccination. In this case we used the porcine Pseudorabies virus (PrV) DNA vaccination model. The replicative capacity of the DNA vaccine did not improve the protective immunity against PrV in pigs, but on the contrary the presence of the PCV2 Ori-rep sequence was harmful in the induction of this immunity compared to an equivalent but non-replicative DNA vaccine. In addition, the distribution and the persistence of the replicative and non-replicative plasmids inside the body were the same. This is the first study showing an in vivo deleterious effect of the replicative active PCV2 Ori-rep on the natural and specific protection against PrV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A Novel DNA-Based Vaccine Methodology for AIDS

    National Research Council Canada - National Science Library

    Widera, Georg

    1997-01-01

    The possibility of inducing an immune response to a protein expressed in vivo directly from an introduced gene, the use of DNA as an immunogen, represents an attractive alternative to classic vaccination (1...

  5. DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis induces long-term protection in presence of regulatory T cells.

    Science.gov (United States)

    de Amorim, Juliana; Magalhães, Adriana; Muñoz, Julián Esteban; Rittner, Glauce M G; Nosanchuk, Joshua D; Travassos, Luiz R; Taborda, Carlos P

    2013-03-01

    Paracoccidioidomycosis is a granulomatous systemic mycosis endemic in Brazil and other Latin America countries. A DNA vaccine encoding the immunoprotective peptide 10 (P10) significantly reduced the fungal burden in mice when given prior to or after intratracheal challenge with Paracoccidioides brasiliensis. Presently, the generation/expansion of CD4+ CD44hi memory T cells as well as Foxp3+ Treg cells in mice immunized with the DNA vaccine (pcDNA3-P10) before and after infection with P. brasiliensis was investigated. Memory CD4+ CD44hi T cells simultaneously with Foxp3+ Treg cells increased in the spleens and lungs of pcDNA3-P10 immunized mice on day 0, 30, 60 and 120 postinfection. Histopathology of the lung tissue showed minimal inflammation in immunized mice compared with the unimmunized group, suggesting a role for regulatory T cells in controlling the immunopathology. The DNA vaccine shows that the repeated immunization generates memory cells and regulatory T cells that replace the initially protective pro-inflammatory T cells conferring a long term protection while preserving the integrity of the infected tissue. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Protective immunity against acute toxoplasmosis in BALB/c mice induced by a DNA vaccine encoding Toxoplasma gondii elongation factor 1-alpha.

    Science.gov (United States)

    Wang, Shuai; Wang, YuJian; Sun, XiaoNi; Zhang, ZhenChao; Liu, TingQi; Gadahi, Javaid Ali; Hassan, Ibrahim Adam; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai; Li, XiangRui

    2015-10-24

    Toxoplasma gondii can infect almost all warm-blood animals including human beings. The high incidence and severe damage that can be caused by T. gondii infection clearly indicates the need for the development of a vaccine. T. gondii elongation factor 1-alpha (TgEF-1α) plays an important role in pathogenesis and host cell invasion for this parasite. The aim of this study was to evaluate the immune protective efficacy of a DNA vaccine encoding TgEF-1α gene against acute T. gondii infection in mice. A DNA vaccine (pVAX-EF-1α) encoding T. gondii EF-1a (TgEF-1α) gene was constructed and its immune response and protective efficacy against lethal challenge in BALB/c mice were evaluated. Mice inoculated with the pVAX-EF-1α vaccine had a high level of specific anti-T. gondii antibodies and produced high levels of IFN-gamma, interleukin (IL)-4, and IL-17. The expression levels of MHC-I and MHC-II molecules as well as the percentages of both CD4(+) and CD8(+) T cells in mice vaccinated with pVAX-EF-1α were significantly increased (p control groups (blank control, PBS, and pVAXI). Immunization with pVAX-EF-1α significantly (p control groups which died within 8 days. DNA vaccination with pVAX-EF-1α triggered strong humoral and cellular responses and induced effective protection in mice against acute T. gondii infection, indicating that TgEF-1α is a promising vaccine candidate against acute toxoplasmosis.

  7. DNA vaccination of neonate piglets in the face of maternal immunity induces humoral memory and protection against a virulent pseudorabies virus challenge.

    Science.gov (United States)

    Fischer, Laurent; Barzu, Simona; Andreoni, Christine; Buisson, Nathalie; Brun, André; Audonnet, Jean Christophe

    2003-04-02

    DNA vaccination represents a unique opportunity to overcome the limitations of conventional vaccine strategy in early life in the face of maternal-derived immunity. We used the model of pseudorabies virus (PRV) infection in pigs to further explore the potential of DNA vaccination in piglets born to sows repeatedly vaccinated with a PRV inactivated vaccine. A single immunisation of 8-week-old piglets with a DNA vaccine expressing secreted forms of PRV gB, gC, and gD, triggered an active serological response, confirming that DNA vaccination can over-ride significant residual maternal-derived immunity. A clear anamnestic response was evidenced when a secondary DNA vaccination was performed at 11 weeks of age, suggesting that DNA vaccination, performed in the face of passive immunity, elicited a strong humoral memory. We subsequently explored the potential of DNA vaccination in neonate piglets (5-6 days of age) in the face of very high titres of maternal antibodies and demonstrated that very high titres of passive antibodies selectively inhibited serological responses but not the establishment of potent memory responses. Finally, we demonstrated that DNA vaccination provided protection against an infectious PRV challenge at the end of the fattening period (i.e. at approximately 5 months of age). Collectively, our results pave the way for a new flexible vaccination program, which could ensure uninterrupted protection of fattening pigs over their entire economical life under field conditions.

  8. DNA-launched live-attenuated vaccines for biodefense applications.

    Science.gov (United States)

    Pushko, Peter; Lukashevich, Igor S; Weaver, Scott C; Tretyakova, Irina

    2016-09-01

    A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses.

  9. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  10. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination

    Science.gov (United States)

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries. PMID:28819449

  11. Preclinical development of DNA vaccine candidates for the treatment of HPV16 induced malignancies

    NARCIS (Netherlands)

    Oosterhuis, Koen

    2012-01-01

    High-risk Human Papilloma Virus (HPV) induced malignancies are an interesting target for immunotherapy as they invariably express the viral proteins E6 and E7 that allow specific recognition of tumor cells without the risk of inducing autoimmunity. This thesis describes the preclinical development

  12. Block copolymer/DNA vaccination induces a strong allergen-specific local response in a mouse model of house dust mite asthma.

    Directory of Open Access Journals (Sweden)

    Camille Rolland-Debord

    Full Text Available BACKGROUND: Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which Dermatophagoides farinae (Der f is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity. OBJECTIVE: The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice. METHODS: Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-γ production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements. RESULTS: Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-γ but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-γ was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted. CONCLUSIONS & CLINICAL RELEVANCE: DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response

  13. Intragastric administration of attenuated Salmonella typhimurium harbouring transmissible gastroenteritis virus (TGEV) DNA vaccine induced specific antibody production.

    Science.gov (United States)

    Yang, Heng; Cao, Sanjie; Huang, Xiaobo; Liu, Jiawen; Tang, Ying; Wen, Xintian

    2009-08-13

    Attenuated Salmonella typhimurium was selected as a transgenic vehicle for the development of live mucosal vaccines against transmissible gastroenteritis virus (TGEV). A 2.2kb DNA fragment, encoding for N-terminal domain glycoprotein S of TGEV, was amplified by RT-PCR and cloned into eukaryotic expression vector pVAX1. The recombinant plasmid pVAX-S was transformed by electroporation into attenuated S. typhimurium SL7207, the expression and translation of the pVAX-S delivered by recombinant S. typhimurium SL7207 (pVAX-S) was detected in vitro and in vivo respectively. BALB/c mice were inoculated orally with SL7207 (pVAX-S) at different dosages, the bacterium was safe to mice at dosage of 2x10(9)CFU and eventually eliminated from the spleen and liver at week 4 post-immunization. Mice immunized with different dosages of SL7207 (pVAX-S) elicited specific anti-TGEV local mucosal and humoral responses as measured by indirect ELISA assay. Moreover, the immunogenicity of the DNA vaccine was highly dependent on the dosage of the attenuated bacteria used for oral administration, 10(9)CFU dosage group showed higher antibody response than 10(8)CFU and 10(7)CFU dosages groups during week 4-8 post-immunization. The results indicated that attenuated S. typhimurium could be used as a delivery vector for oral immunization of TGEV DNA vaccine.

  14. [Biodegradable microcapsules containing DNA for the new DNA vaccine design].

    Science.gov (United States)

    Selina, O E; Belov, S Iu; Vlasova, N N; Balysheva, V I; Churin, A I; Bartkoviak, A; Sukhorukov, G B; Markvicheva, E A

    2009-01-01

    A general method for the preparation of biodegradable microcapsules capable of antigen inclusion is suggested. Multilayer microcapsules were obtained by the method of level-by-level sorption of various polyelectrolytes (alginate, poly-L-lysine, kappa-carrageenan, and chitosan and dextran derivatives). High inclusion efficiency was found for protein and plasmid DNA (no less than 90%). A series of microcapsules with included pTKShi plasmid that incorporated a genome site encoding the E(2) polypeptide of the classic pig plague virus were obtained for carrying out in vivo experiments. It was shown that introduction to mice of microcapsules with the included pTKShi plasmid induced an immune response. The highest antibody titers of the mouse blood sera were obtained in immunization by microcapsules based on the modified dextran/carrageenan and modified chitosan/carrageenan. The method of antigen inclusion into biodegradable microcapsules could be used for the development of encapsulated vaccines of a new generation (DNA vaccines).

  15. Immunization with a DNA Vaccine Cocktail Induces a Th1 Response and Protects Mice Against Mycobacterium avium subsp. paratuberculosis Challenge

    Science.gov (United States)

    Several novel antigens of Mycobacterium avium subsp. paratuberculosis have been studied as vaccine components and their immunogenicity has been evaluated. Previously, we reported that 85 antigen complex (85A, 85B, and 85C), superoxide dismutase (SOD), and 35kDa protein could induce significant lymph...

  16. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  17. Evaluation of the immune response in BALB/c mice induced by a novel DNA vaccine expressing GRA14 against Toxoplasma gondii.

    Science.gov (United States)

    Ahmadpour, E; Sarvi, S; Hashemi Soteh, M B; Sharif, M; Rahimi, M T; Valadan, R; Tehrani, M; Khalilian, A; Montazeri, M; Daryani, A

    2017-04-01

    Toxoplasma gondii can cause severe and even fatal disease in human beings and animals. Effective vaccines may contribute to control toxoplasmosis. GRA14, a novel secreted dense granule protein of T. gondii, has been proposed as a vaccine candidate due to its intervacuolar transport and unique topology in the parasitophorous vacuole membrane. In this study, we constructed a DNA vaccine encoding GRA14 of T. gondii. BALB/c mice were immunized intramuscularly three times at 2 week intervals and challenged with T. gondii RH strain 5 weeks later. The immune responses were evaluated using lymphocyte proliferation assay, cytokine and antibody measurements. In addition, the survival times and parasite load of mice challenged with the virulent T. gondii RH strain were evaluated. The results showed that the mice immunized with pcGRA14 induced both enhanced specific humoral and Th1 cellular immune responses, and also mice immunized with the pcGRA14 showed an increased survival time and decreased parasite load compared with control groups (P<.05). The results indicated, for the first time, that the GRA14 is a potential DNA vaccine against toxoplasmosis. © 2017 John Wiley & Sons Ltd.

  18. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...... that intramuscular injection of the DNA vaccine encoding the viral glycoprotein G induced protective immunity to VHS in rainbow trout fry of 0.5g.However, the vaccine is known to induce both innate and adaptive protection. The present work therefore aimed at determination of which type of protection the DNA vaccine...... induced in such early life stages of rainbow trout. Vaccination trials were performed with fry at average sizes of 0.25 g and 0.5 g respectively and included both the homologous VHSV G-gene vaccine and a heterologous DNA vaccine encoding the G-protein of infectious haematopoietic necrosis virus (IHNV...

  19. Comparison of infection-neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice.

    Science.gov (United States)

    Sjatha, Fithriyah; Takizawa, Yamato; Kotaki, Tomohiro; Yamanaka, Atsushi; Konishi, Eiji

    2013-11-01

    Dengue viruses have spread throughout tropical and subtropical countries, and vaccine development is urgently needed. However, one concern is that induction of insufficient levels of neutralizing antibodies in vaccines may increase disease severity because of a hypothetical mechanism termed antibody-dependent enhancement of infection. This study used two distinct genotype strains of dengue virus types 1 and 3 (DENV1 and DENV3, respectively) to compare antibody responses in a mouse-DNA vaccine model. As expected, a conventional neutralization test using Vero cells showed higher antibody titers in homologous rather than heterologous combinations of genotype strains used for mouse immunization and the neutralization test, for each of DENV1 and DENV3. However, our assay system using K562 cells to measure the balance of neutralizing and enhancing antibodies indicated that Vero cell-neutralizing antibody titers did not always correlate with enhancing activities observed at subneutralizing doses. Rather, induction of enhancing activities depended on the genotype strain used for mouse immunization. The genotype/strain difference also affected IgG subclass profiles and potentially the composition of antibody species induced in mice. This study suggests that enhancing activities of dengue virus-induced neutralizing antibodies may vary according to the genotype and has implications for vaccine antigen development. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. DNA-based influenza vaccines as immunoprophylactic agents toward universality.

    Science.gov (United States)

    Zhang, Han; El Zowalaty, Mohamed E

    2016-01-01

    Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.

  1. The future of human DNA vaccines

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-01-01

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including “epigenetics” and “omics” approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans PMID:22981627

  2. Coadministration of the Three Antigenic Leishmania infantum Poly (A Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Manuel Soto

    2015-05-01

    Full Text Available Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A binding proteins (LiPABPs.Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid.The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.

  3. Histone Deacetylase Inhibitor AR-42 Enhances E7-Specific CD8+ T Cell-Mediated Antitumor Immunity Induced by Therapeutic HPV DNA Vaccination

    OpenAIRE

    Lee, Sung Yong; Huang, Zhuomin; Kang, Tae Heung; Soong, Ruey-Shyang; Knoff, Jayne; Axenfeld, Ellen; Wang, Chenguang; Alvarez, Ronald D.; Chen, Ching-Shih; Hung, Chien-Fu; Wu, T.-C.

    2013-01-01

    We have previously created a potent DNA vaccine encoding calreticulin linked to the HPV oncogenic protein E7 (CRT/E7). While treatment of the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency of the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi have been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administratio...

  4. Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors.

    Science.gov (United States)

    Kottke, Timothy; Errington, Fiona; Pulido, Jose; Galivo, Feorillo; Thompson, Jill; Wongthida, Phonphimon; Diaz, Rosa Maria; Chong, Heung; Ilett, Elizabeth; Chester, John; Pandha, Hardev; Harrington, Kevin; Selby, Peter; Melcher, Alan; Vile, Richard

    2011-06-19

    Effective cancer immunotherapy requires the release of a broad spectrum of tumor antigens in the context of potent immune activation. We show here that a cDNA library of normal tissue, expressed from a highly immunogenic viral platform, cures established tumors of the same histological type from which the cDNA library was derived. Immune escape occurred with suboptimal vaccination, but tumor cells that escaped the immune pressure were readily treated by second-line virus-based immunotherapy. This approach has several major advantages. Use of the cDNA library leads to presentation of a broad repertoire of (undefined) tumor-associated antigens, which reduces emergence of treatment-resistant variants and also permits rational, combined-modality approaches in the clinic. Finally, the viral vectors can be delivered systemically, without the need for tumor targeting, and are amenable to clinical-grade production. Therefore, virus-expressed cDNA libraries represent a novel paradigm for cancer treatment addressing many of the key issues that have undermined the efficacy of immuno- and virotherapy to date.

  5. HIV Env conserved element DNA vaccine alters immunodominance in macaques.

    Science.gov (United States)

    Hu, Xintao; Valentin, Antonio; Rosati, Margherita; Manocheewa, Siriphan; Alicea, Candido; Chowdhury, Bhabadeb; Bear, Jenifer; Broderick, Kate E; Sardesai, Niranjan Y; Gall, Sylvie Le; Mullins, James I; Pavlakis, George N; Felber, Barbara K

    2017-12-02

    Sequence diversity and immunodominance are major obstacles in the design of an effective vaccine against HIV. HIV Env is a highly-glycosylated protein composed of 'conserved' and 'variable' regions. The latter contains immunodominant epitopes that are frequently targeted by the immune system resulting in the generation of immune escape variants. This work describes 12 regions in HIV Env that are highly conserved throughout the known HIV M Group sequences (Env CE), and are poorly immunogenic in macaques vaccinated with full-length Env expressing DNA vaccines. Two versions of plasmids encoding the 12 Env CE were generated, differing by 0-5 AA per CE to maximize the inclusion of commonly detected variants. In contrast to the full-length env DNA vaccine, vaccination of macaques with a combination of these 2 Env CE DNA induced robust, durable cellular immune responses with a significant fraction of CD8 + T cells with cytotoxic phenotype (Granzyme B + and CD107a + ). Although inefficient in generating primary responses to the CE, boosting of the Env CE DNA primed macaques with the intact env DNA vaccine potently augmented pre-existing immunity, increasing magnitude, breadth and cytotoxicity of the cellular responses. Fine mapping showed that 7 of the 12 CE elicited T cell responses. Env CE DNA also induced humoral responses able to recognize the full-length Env. Env CE plasmids are therefore capable of inducing durable responses to highly conserved regions of Env that are frequently absent after Env vaccination or immunologically subdominant. These modified antigens are candidates for use as prophylactic and therapeutic HIV vaccines.

  6. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle......-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. Objectives To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. Methods By intradermal...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated...

  7. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8⁺ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination.

    Science.gov (United States)

    Lee, Sung Yong; Huang, Zhuomin; Kang, Tae Heung; Soong, Ruey-Shyang; Knoff, Jayne; Axenfeld, Ellen; Wang, Chenguang; Alvarez, Ronald D; Chen, Ching-Shih; Hung, Chien-Fu; Wu, T-C

    2013-10-01

    We have previously created a potent DNA vaccine encoding calreticulin linked to the human papillomavirus (HPV) oncogenic protein E7 (CRT/E7). While treatment with the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency with the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi has been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve the activation of HPV antigen-specific CD8(+) T cells, resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8(+) T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased the surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccines have been used in independent clinical trials; the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy. AR-42, a novel HDAC inhibitor, enhances potency of therapeutic HPV DNA vaccines AR-42 treatment leads to strong E7-specific CD8+ T cell immune responses AR-42 improves tumor-specific immunity and antitumor effects elicited by HPV DNA vaccine AR-42 is more potent than

  8. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    Science.gov (United States)

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The past, current and future trends in DNA vaccine immunisations

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2015-05-01

    Full Text Available This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can result in the subsequent expression of its products and lead to the induction of an immune response within a host. This is pertinent to prophylactic and therapeutic vaccination approach when the peculiar gene produces a protective epitope from a pathogen. The recent studies demonstrated by a number of research centers showed that these immune responses evoke protective immunity against several infectious diseases and cancers, which provides adequate support for the use of this approach. We attempt in this review to provide an informative and unbiased overview of the general principles and concept of DNA vaccines technology with a summary of a novel approach to the DNA vaccine, present investigations that describe the mechanism(s of protective immunity provoked by DNA immunization and to highlight the advantages and disadvantages of DNA immunisation.

  11. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif

    2013-01-01

    seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs...... intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA...... of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve....

  12. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model

    Directory of Open Access Journals (Sweden)

    Yan Su

    2016-01-01

    Full Text Available Allergies caused by Japanese Red Cedar (JRC pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1 to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4+ T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses.

  13. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model.

    Science.gov (United States)

    Su, Yan; Connolly, Michael; Marketon, Anthony; Heiland, Teri

    2016-01-01

    Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4(+) T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses.

  14. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice.

    Science.gov (United States)

    Meng, Min; He, Shenyi; Zhao, Guanghui; Bai, Yang; Zhou, Huaiyu; Cong, Hua; Lu, Gang; Zhao, Qunli; Zhu, Xing-Quan

    2012-11-26

    Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be antigenic and immunogenic and was a potential vaccine candidate against toxoplasmosis. In this study, we evaluated the immune responses induced by recombinant plasmids encoding T. gondii surface antigen 1 (SAG1) and 14-3-3 protein by immunizing BALB/c mice intramuscularly. In the present study, BALB/c mice were randomly divided into five groups, including three experimental groups (pSAG1, p14-3-3 and pSAG1/14-3-3) and two control groups (PBS and pBudCE4.1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine production in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally (i.p.) with 1×10(4) tachyzoites of T. gondii and the survival time of mice was observed and recorded every day. Mice vaccinated with pSAG1, p14-3-3 or pSAG1/14-3-3 developed high levels of IgG2a and gamma interferon (IFN-γ) and low levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) compared to control groups (PBS or pBudCE4.1), which suggested a modulated Th1 type immune response (Pmice in experimental groups was longer than control groups (Pmice and was a novel DNA vaccine candidate against toxoplasmosis, and the immune protective efficacy elicited by SAG1 gene was also demonstrated. Our results also showed multi-gene vaccine significantly enhanced immune responses and protective efficacy and was superior to the single-gene vaccine.

  15. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  16. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  17. Effects of a novel recombinant somatostatin DNA vaccination on rat ...

    African Journals Online (AJOL)

    —pVAX- asd-GS/2SS (pGS/2SS), administrated with intramuscular (IM) and subcutaneous (SC) two delivery routes on female rat fertility and offspring growth. Results show that this pGS/2SS DNA vaccine could induce effective anti-SS immune ...

  18. DNA vaccines: safety aspect assessment and regulation.

    Science.gov (United States)

    Medjitna, T D E; Stadler, C; Bruckner, L; Griot, C; Ottiger, H P

    2006-01-01

    For licensing purposes, besides the immunogenic aspects, deoxyribonucleic acid (DNA) vaccines present safety considerations that must be critically assessed during preclinical or/and clinical safety studies. The major concerns with regard to safety are integration of the plasmid DNA into the host genome, adverse immunopathological effects, the formation of anti-DNA antibodies resulting in auto-immune disease and the use of novel molecular adjuvants. Moreover, for veterinary vaccines intended to be used in husbandry animals, food safety aspects will become an important issue. All new vaccine candidates should therefore be thoroughly tested in target animals, keeping in mind that for food producing animals, the products will be consumed. Finally, a further safety aspect of interest concerns the possible spread of genetic material to the environment, by the potential transformation of the environmental microflora with only a few copies of complete or fragmented plasmid. These are issues that need to be considered in the final scientific decisions underpinning the registration of vaccines. Thus, to establish criteria for guidance and regulations for industry and licensing authorities, a project has been initiated to assess such risks of plasmid DNA vaccinations. Major emphasis will be placed on aspects such as the biodistribution of plasmid in vaccinated animals. This paper is intended as a contribution to the debate on the use of biotechnology in the future and should facilitate further discussions on the various safety aspects of DNA-based immunisations.

  19. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules

    Czech Academy of Sciences Publication Activity Database

    Němečková, Š.; Šmahel, M.; Hainz, P.; Macková, J.; Zurková, K.; Gabriel, P.; Indrová, Marie; Kutinová, L.

    2007-01-01

    Roč. 54, č. 4 (2007), s. 326-333 ISSN 0028-2685 R&D Projects: GA MZd NR8004 Institutional research plan: CEZ:AV0Z50520514 Keywords : vaccinia virus MVA expressing GM-CSF * DNA vaccine * HPV16 induced tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.208, year: 2007

  20. Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes.

    Science.gov (United States)

    Sawant, P M; Verma, P C; Subudhi, P K; Chaturvedi, U; Singh, M; Kumar, Rajeev; Tiwari, A K

    2011-11-15

    The basic objective of this study was to enumerate whether co-administration of interferon-γ (IFN-γ) and/or interleukin-4 (IL-4) gene along with a bivalent Newcastle disease (ND) DNA vaccine construct could modulate the immune response to the DNA vaccine in chickens. pVIVO2 vector carrying Haemaglutinin-Neuraminidase (HN) and Fusion (F) genes of Newcastle disease virus (NDV) at its two cloning sites was used as a DNA vaccine. The same vector was used to clone the chicken IFN-γ and IL-4 genes at the multiple cloning site-1 separately. In vitro expression of IFN-γ and IL-4 gene constructs was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and that of HN and F genes by indirect fluorescent antibody technique (IFAT) in addition to RT-PCR. The chickens were immunized thrice intramuscularly at 21, 36 and 46 days of age with the bivalent DNA vaccine alone, or in combination with IFN-γ/IL-4 or both cytokine gene constructs. The bivalent DNA vaccine led to increase in both NDV specific antibodies as assessed by enzyme linked immunosorbent assay (ELISA) and haemagglutination inhibition test (HI) and cell mediated immune (CMI) response as assessed by lymphocyte transformation test (LTT) employing MTT assay. Co-administration of the DNA vaccine with IL-4 gene resulted in highest IgY levels while IFN-γ produced highest CMI response. The DNA vaccine alone could afford only 10% protection against challenge infection by velogenic NDV. This protection was increased to 40% when IL-4 gene construct was co-administered with the DNA vaccine. Co-injection of IFN-γ as well as the combination of IFN-γ and IL-4 gene constructs with the DNA vaccine yielded 20% protection. Our study suggests that IL-4 may prove to be more appropriate as a genetic adjuvant than IFN-γ for ND DNA vaccine. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Differential humoral and cellular immunity induced by vaccination using plasmid DNA and protein recombinant expressing the NS3 protein of dengue virus type 3.

    Science.gov (United States)

    Hurtado-Melgoza, M L; Ramos-Ligonio, A; Álvarez-Rodríguez, L M; Meza-Menchaca, T; López-Monteon, A

    2016-12-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serine-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work we evaluated the potential of the NS3 (protease domain) as a protective antigen by comparing the administration of a recombinant protein versus a DNA vaccine in the mouse model. BALB/c mice were immunized with the recombinant protein NS3-DEN3 via intraperitoneal and with plasmid pcDNA3/NS3-DEN3 intramuscularly and the immune response was evaluated. The activity of T lymphocytes was analyzed by the MTT assay, and cells of mice immunized with the recombinant protein showed no activity when stimulated with the homologous protein. However, cells from mice immunized with DNA, responded to stimulation with the recombinant protein. When the expression (RT-PCR) and cytokine production (ELISA) was evaluated in the splenocytes, different behavior depending on the type of immunization was observed, splenocytes of mice immunized with the recombinant protein expressed cytokines such as IL-4, IL-10 and produced high concentrations of IL-1, IL-6 and TNFα. Splenocytes from mice immunized with DNA expressed IL-2 and IFNγ and did not produce IL-6. In addition, immunization with the recombinant protein induced the production of antibodies that are detected up to a dilution 1:3200 by ELISA and Western blot assays, however, the serum of mice immunized with DNA presented no detectable antibody titers. The results obtained in this study show that administration of pcDNA3/NS3-DEN3 induces a favorable response in the activation of T lymphocytes with low production of specific

  2. DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection.

    Science.gov (United States)

    Chandra, Janin; Dutton, Julie L; Li, Bo; Woo, Wai-Ping; Xu, Yan; Tolley, Lynn K; Yong, Michelle; Wells, James W; R Leggatt, Graham; Finlayson, Neil; Frazer, Ian H

    We have previously shown that a novel DNA vaccine technology of codon optimization and the addition of ubiquitin sequences enhanced immunogenicity of a herpes simplex virus 2 polynucleotide vaccine in mice, and induced cell-mediated immunity when administered in humans at relatively low doses of naked DNA. We here show that a new polynucleotide vaccine using the same technology and encoding a fusion protein of the E6 and E7 oncogenes of high-risk human papillomavirus type 16 (HPV16) is immunogenic in mice. This vaccine induces long-lasting humoral and cell-mediated immunity and protects mice from establishment of HPV16-E7-expressing tumors. In addition, it suppresses growth of readily established tumors and shows enhanced efficacy when combined with immune checkpoint blockade targeted at PD-L1. This vaccine also facilitates rejection of HPV16-E7-expressing skin grafts that demonstrate epidermal hyperplasia with characteristics of cervical and vulvar intraepithelial neoplasia. Clinical studies evaluating the efficacy of this vaccine in patients with HPV16 premalignancies are planned.

  3. Recent Developments in Preclinical DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Kenji Okuda

    2014-01-01

    Full Text Available The advantages of genetic immunization of the new vaccine using plasmid DNAs are multifold. For example, it is easy to generate plasmid DNAs, increase their dose during the manufacturing process, and sterilize them. Furthermore, they can be stored for a long period of time upon stabilization, and their protein encoding sequences can be easily modified by employing various DNA-manipulation techniques. Although DNA vaccinations strongly increase Th1-mediated immune responses in animals, several problems persist. One is about their weak immunogenicity in humans. To overcome this problem, various genetic adjuvants, electroporation, and prime-boost methods have been developed preclinically, which are reviewed here.

  4. Prime-boost vaccination with plasmid DNA followed by recombinant vaccinia virus expressing BgGARP induced a partial protective immunity to inhibit Babesia gibsoni proliferation in dogs.

    Science.gov (United States)

    Cao, Shinuo; Mousa, Ahmed Abdelmoniem; Aboge, Gabriel Oluga; Kamyingkird, Ketsarin; Zhou, Mo; Moumouni, Paul Franck Adjou; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Nishikawa, Yoshifumi; Suzuki, Hiroshi; Fukumoto, Shinya; Xuan, Xuenan

    2013-12-01

    A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs.

  5. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA

  6. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    Science.gov (United States)

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

  7. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response

    DEFF Research Database (Denmark)

    Embregts, Carmen W. E.; Rigaudeau, Dimitri; Veselý, Tomas

    2017-01-01

    Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 μg...... DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using...... this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described...

  8. DNA vaccines: technology and application as anti-parasite and anti-microbial agents.

    Science.gov (United States)

    Alarcon, J B; Waine, G W; McManus, D P

    1999-01-01

    DNA vaccines have been termed The Third Generation of Vaccines. The recent successful immunization of experimental animals against a range of infectious agents and several tumour models of disease with plasmid DNA testifies to the powerful nature of this revolutionary approach in vaccinology. Among numerous advantages, a major attraction of DNA vaccines over conventional vaccines is that they are able to induce protective cytotoxic T-cell responses as well as helper T-cell and humoral immunity. Here we review the current state of nucleic acid vaccines and cover a wide range of topics including delivery mechanisms, uptake and expression of plasmid DNA, and the types of immune responses generated. Further, we discuss safety issues, and document the use of nucleic acid vaccines against viral, bacterial and parasitic diseases, and cancer. The early potential promise of DNA vaccination has been fully substantiated with recent, exciting developments including the movement from testing DNA vaccines in laboratory models to non-human primates and initial human clinical trials. These advances and the emerging voluminous literature on DNA vaccines highlight the rapid progress that has been made in the DNA immunization field. It will be of considerable interest to see whether the progress and optimism currently prevailing can be maintained, and whether the approach can indeed fulfil the medical and commerical promise anticipated.

  9. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    Science.gov (United States)

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  10. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  11. DNA vaccines against leptospirosis: A literature review.

    Science.gov (United States)

    Silveira, Marcelle Moura; Oliveira, Thaís Larré; Schuch, Rodrigo Andrade; McBride, Alan John Alexander; Dellagostin, Odir Antônio; Hartwig, Daiane Drawanz

    2017-10-09

    Leptospirosis is an infectious disease caused by pathogenic Leptospira species. The vaccines that are currently available for leptospirosis are composed of whole-cell preparations and suffer from limitations such as low efficacy, multiple side-effects, poor immunological memory and lack of cross-protection against different serovars of Leptospira spp. In light of the global prevalence of this disease, the development of a more effective vaccine against leptospirosis is of paramount importance. Genetic immunization is a promising alternative to conventional vaccine development. In the last 25years, several novel strategies have been developed for increasing the efficacy of DNA vaccines. Examples of such strategies include the introduction of novel plasmid vectors, adjuvants, alternate delivery routes, and prime-boost regimens. Herein we discuss the latest and most promising advances that have been made in developing DNA vaccines against leptospirosis. We also deliberate over the future directions that must be undertaken in order to improve results in this field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Oral DNA Vaccine Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply

    National Research Council Canada - National Science Library

    Reisfeld, Ralph A

    2005-01-01

    .... These cells overexpress a glycoprotein called endoglin which stimulates such vessels. We successfully constructed and evaluated an oral endoglin-based DNA vaccine and demonstrated its capability to induce a robust CD8...

  13. Increased humoral immunity by DNA vaccination using an alpha-tocopherol-based adjuvant

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Nielsen, Jens

    2017-01-01

    DNA vaccines induce broad immunity, which involves both humoral and strong cellular immunity, and can be rapidly designed for novel or evolving pathogens such as influenza. However, the humoral immunogenicity in humans and higher animals has been suboptimal compared to that of traditional vaccine...... approaches. We tested whether the emulsion-based and alpha-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin......). The animals received two intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing alpha-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced...

  14. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  15. Polysaccharides from Dioscorea (山藥 Shān Yào and Other Phytochemicals Enhance Antitumor Effects Induced by DNA Vaccine Against Melanoma

    Directory of Open Access Journals (Sweden)

    Wen-Chi Wei

    2014-01-01

    Full Text Available Adjuvants can be used to enhance the immunogenicity of antigens and improve the efficacy of vaccines. Potent adjuvant action is known to often correlate with the activation of the transcription factor, nuclear factor-κB (NF-κB. Specific plant polysaccharides and a variety of phytochemicals from foods and traditional medicinal herbs have been shown to modulate NF-κB activation. In the present study, selected plant polysaccharides and phytochemicals were evaluated for use as a DNA vaccine adjuvant in a murine melanoma model. We observed that a specific ethanol extract fraction (DsCE-I from the tuber of a key Traditional Chinese Medicine plant, Dioscorea (山藥 Shān Yào, enhanced the protection against melanoma after immunization with a gene-based vaccine. A number of anti-inflammatory phytochemicals tested were able to partially diminish the inflammation-associated tumorigenesis elicited by LPS. Among the several phytochemical combinations investigated, the use of an adjuvant containing LPS in combination with emodin resulted in smaller tumors and higher survival rate in test mice than the use of other adjuvant treatments and the control sets in this DNA cancer vaccine model. A Dioscorea polysaccharide fraction (DsCE-I and several specific phytochemicals warrant further exploration as useful adjuvants for anticancer vaccines.

  16. Antibody and T cell responses induced in chickens immunized with avian influenza virus N1 and NP DNA vaccine with chicken IL-15 and IL-18.

    Science.gov (United States)

    Lim, Kian-Lam; Jazayeri, Seyed Davoud; Yeap, Swee Keong; Mohamed Alitheen, Noorjahan Banu; Bejo, Mohd Hair; Ideris, Aini; Omar, Abdul Rahman

    2013-12-01

    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Prior DNA immunization enhances immune response to dominant and subdominant viral epitopes induced by a fowlpox-based SIVmac vaccine in long-term slow-progressor macaques infected with SIVmac251

    International Nuclear Information System (INIS)

    Radaelli, Antonia; Nacsa, Janos; Tsai, W.-P.; Edghill-Smith, Yvette; Zanotto, Carlo; Elli, Veronica; Venzon, David; Tryniszewska, Elzbieta; Markham, Phil; Mazzara, Gail P.; Panicali, Dennis; Morghen, Carlo De Giuli; Franchini, Genoveffa

    2003-01-01

    A therapeutic vaccine for individuals infected with HIV-1 and treated with antiretroviral therapy (ART) should be able to replenish virus-specific CD4+ T-cells and broaden the virus-specific CD8+ T-cell response in order to maintain CD8+ T-cell function and minimize viral immune escape after ART cessation. Because a combination of DNA and recombinant poxvirus vaccine modalities induces high levels of virus-specific CD4+ T-cell response and broadens the cytolytic activity in naive macaques, we investigated whether the same results could be obtained in SIVmac251-infected macaques. The macaques studied here were long-term nonprogressors that naturally contained viremia but were nevertheless treated with a combination of antiviral drugs to assess more carefully the effect of vaccination in the context of ART. The combination of a DNA expressing the gag and pol genes (DNA-SIV-gp) of SIVmac239 followed by a recombinant fowlpox expressing the same SIVmac genes (FP-SIV-gp) was significantly more immunogenic than two immunizations of FP-SIV-gp in SIVmac251-infected macaques treated with ART. The DNA/FP combination significantly expanded and broadened Gag-specific T-cell responses measured by tetramer staining, ELISPOT, and intracellular cytokine staining and measurement of ex vivo cytolytic function. Importantly, the combination of these vaccine modalities also induced a sizeable expansion in most macaques of Gag-specific CD8-(CD4+) T-cells able to produce TNF-α. Hopefully, this modality of vaccine combination may be useful in the clinical management of HIV-1-infected individuals

  18. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates.

    Science.gov (United States)

    McBurney, Sean P; Sunshine, Justine E; Gabriel, Sarah; Huynh, Jeremy P; Sutton, William F; Fuller, Deborah H; Haigwood, Nancy L; Messer, William B

    2016-06-24

    We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further

  19. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I...

  20. Differential effector mechanisms induced by vaccination with MUC1 DNA in the rejection of colon carcinoma growth at orthotopic sites and metastases.

    Science.gov (United States)

    Sugiura, Daisuke; Aida, Satoshi; Denda-Nagai, Kaori; Takeda, Kazuyoshi; Kamata-Sakurai, Mika; Yagita, Hideo; Irimura, Tatsuro

    2008-12-01

    The effects of MUC1 DNA vaccination on the orthotopic growth and liver metastasis of colon carcinoma cells were investigated in mice. Vaccination with MUC1 DNA resulted in immune responses that were effective in suppressing mouse colon carcinoma cells transfected with MUC1 cDNA. CD4+ T cells but not CD8+ T cells mediated this antitumor response as shown by the in vivo depletion of lymphocyte subpopulations with the use of anti-CD4 or anti-CD8 antibody. The effects of neutralizing antibodies in vivo revealed that the predominant effector molecule in preventing orthotopic tumor growth was FasL, whereas the effector molecule effective in preventing liver metastasis was tumor necrosis factor-alpha. Colon carcinoma cells isolated from tumors growing in the ceca, spleens, and livers were shown to be equally sensitive to FasL and tumor necrosis factor-alpha. The results strongly suggest that elimination of tumor cells initiated by DNA vaccination in the present protocol is mediated by antigen-specific CD4+ T cells and the effector mechanisms in the cecum and in the liver are distinct due to a unique organ microenvironment.

  1. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and

  2. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  3. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    Science.gov (United States)

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  4. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    Science.gov (United States)

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  5. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2012-07-01

    Full Text Available Abstract Orally delivered DNA vaccines against duck enteritis virus (DEV were developed using live attenuated Salmonella typhimurium (SL7207 as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24 and SL7207 (pVAX-LTB-UL24 respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24 or SL7207 (pVAX-LTB-UL24, the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24 during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24 (1011 CFU immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24 showed superior efficacy of protection (60-80% against a lethal DEV challenge (1000 LD50, compared with the limited survival rate (40% of ducklings immunized with SL7207 (pVAX-UL24. Our study suggests that the SL7207 (pVAX-LTB-UL24 can be a candidate DEV vaccine.

  6. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    Science.gov (United States)

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  7. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  8. Developing DNA vaccines that call to dendritic cells

    OpenAIRE

    Kutzler, Michele A.; Weiner, David B.

    2004-01-01

    DNA vaccination is a novel immunization strategy that has great potential for the development of vaccines and immune therapeutics. This strategy has been highly effective in mice, while less immunogenic in nonhuman primates and humans. Enhancing DNA vaccine potency remains a challenge. It is likely that APCs, and especially DCs, play a paramount role in the presentation of vaccine antigen to the immune system. A new study reports the synergistic recruitment, expansion, and activation of DCs i...

  9. Interference of an ERM-vaccine with a VHS-DNA vaccine in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    Simultaneous vaccination of fish against several diseases is often desirable in order to minimise cost and handling of the fish. Intramuscular DNA-vaccination of rainbow trout against viral haemorrhagic septicaemia virus (VHSV) has proved to provide very good protection. However, preliminary...... results showed that intraperitoneal injection of a commercial vaccine against Enteric Redmouth Disease (ERM) based on formalin-killed bacteria in oil adjuvant immediately followed by intramuscular injection of an experimental DNA-vaccine against VHSV, decreased the protective effect of the DNA-vaccine...... against challenge with VHSV 11 weeks post vaccination (pv). This experiment was performed with rainbow trout of 30 g injected with 0.5 g VHS-DNA vaccine. The experiment was later repeated with smaller fish (2.5g) and using two different doses of DNA-vaccine, 1 g and 0.05 g. Both doses provided good...

  10. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  11. Production optimisation of a DNA vaccine candidate against ...

    African Journals Online (AJOL)

    Plasmid DNA (pDNA) vaccines are promising means to prevent and treat infectious diseases, such as leishmaniasis, but immunisation protocols require large amounts of supercoiled plasmid DNA (scpDNA). Although pDNA can be produced at a reasonable cost in bioreactors; this scale of production may not be the best ...

  12. Immune-enhancing effects of Taishan Pinus massoniana pollen polysaccharides on DNA vaccine expressing Bordetella avium ompA

    Directory of Open Access Journals (Sweden)

    Fujie eZhu

    2016-02-01

    Full Text Available Bordetella avium is the causative agent of bordetellosis, which remains to be the cause of severe losses in the turkey industry. Given the lack of vaccines that can provide good protection, developing a novel vaccine against B. avium infection is crucial. In this study, we constructed a eukaryotic expression plasmid, which expressed the outer membrane protein A (ompA of B. avium, to prepare a B. avium recombinant ompA-DNA vaccine. Three concentrations (low, middle, and high of Taishan Pinus massoniana pollen polysaccharides (TPPPS, a known immunomodulator, were used as adjuvants, and their immune conditioning effects on the developed DNA vaccine were examined. The pure ompA-DNA vaccine, Freund's incomplete adjuvant ompA-DNA vaccine, and the empty plasmid served as the controls. The chickens in each group were separately inoculated with these vaccines three times at 1, 7 and 14 days old. Dynamic changes in antibody production, cytokine secretion, and lymphocyte count were then determined from 7 days to 49 days after the first inoculation. Protective rates of the vaccines were also determined after the third inoculation. Results showed that the pure DNA vaccine obviously induced the production of antibodies, the secretion of cytokines, and the increase in CD4+ and CD8+ T lymphocyte counts in peripheral blood, as well as provided a protective rate of 50% to the B. avium-challenged chickens. The chickens inoculated with the TPPPS adjuvant ompA-DNA vaccine and Freund’s adjuvant ompA-DNA vaccine demonstrated higher levels of immune responses than those inoculated with pure ompA-DNA vaccine, whereas only the ompA-DNA vaccine with 200 mg/mL TPPPS completely protected the chickens against B. avium infection. These findings indicate that the B. avium ompA-DNA vaccine combined with TPPPS is a potentially effective B. avium vaccine.

  13. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis.

    Science.gov (United States)

    Song, Xiaokai; Zhao, Xiaofang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2017-04-01

    In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment.

    Directory of Open Access Journals (Sweden)

    Youmin Kang

    Full Text Available BACKGROUND: Regulatory T (Treg cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS. Tacrolimus (FK506 has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. METHODOLOGY/PRINCIPAL FINDINGS: After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. CONCLUSIONS/SIGNIFICANCE: DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.

  15. Radiation-Induced Vaccination to Breast Cancer

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-11-1-0531 TITLE: Radiation-Induced Vaccination to Breast Cancer PRINCIPAL INVESTIGATOR: William H. McBride CONTRACTING...FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 2. REPORT TYPE Annual 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Radiation-Induced Vaccination to...determine abscopal responses that are hypothesized to be due to RT- induced vaccination . RT was started 10 days after the first and 3rd dose of

  16. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  17. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  18. Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15-2-0029 TITLE: Enhancing the Immunogenicity of a Tetravalent Dengue DNA Vaccine PRINCIPAL INVESTIGATOR: Maya...TITLE AND SUBTITLE Enhancing the Immunogenicity of a Tetravalent Dengue DNA 5a. CONTRACT NUMBER Vaccine 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...the top infectious diseases that afflict US Military personnel deployed overseas. Developing a successful vaccine to prevent dengue fever in DoD

  19. Immunotherapy of Trypanosoma cruzi Infection with DNA Vaccines in Mice

    OpenAIRE

    Dumonteil, Eric; Escobedo-Ortegon, Javier; Reyes-Rodriguez, Norma; Arjona-Torres, Arletty; Ramirez-Sierra, Maria Jesus

    2004-01-01

    The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 × 104 parasites) as a model of acute infection, and then they were treated with two injecti...

  20. Protective antitumor activity induced by a fusion vaccine with murine ...

    African Journals Online (AJOL)

    Targeting angiogenesis is an effective strategy for anticancer therapy. The vascular endothelialcadherin (VE-cad) regulated angiogenesis is a potential target for anti-angiogenesis. Here, we develop a fusion vaccine plasmid DNA pSec-MBD2-VE-cad from VE-cad and murine beta defensin2 (MBD2) to induce immunity for ...

  1. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease

    Directory of Open Access Journals (Sweden)

    Firouzamandi M

    2016-01-01

    Full Text Available Masoumeh Firouzamandi,1,2 Hassan Moeini,3 Seyed Davood Hosseini,4 Mohd Hair Bejo,1 Abdul Rahman Omar,1,3 Parvaneh Mehrbod,3 Mohamed E El Zowalaty,5 Thomas J Webster,6 Aini Ideris1,3 1Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Iran; 3Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 4Razi Vaccine and Serum Research Institute, Arak, Iran; 5Biomedical Research Center, Vice President Office for Research, Qatar University, Doha, Qatar; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Plasmid DNA (pDNA-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND. Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM, a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 µg pDNA/egg alone induced high levels of antibody titer (P<0.05 in specific pathogen-free (SPF chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI titer was not significantly different between groups injected with 40 µg pDNA + 64 µg D-SPM and 40 µg pDNA at 4 weeks postvaccination (P>0.05. Higher antibody titer was observed in the group immunized with 40 µg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 µg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection

  2. Effect of vaccination route and composition of DNA vaccine on the induction of protective immunity against pseudorabies infection in pigs

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Haagmans, B.L.; Visser, de Y.E.; Bruin, de M.G.M.; Boersma, W.; Bianchi, A.T.J.

    1998-01-01

    Vaccination with naked DNA may be an alternative to conventional vaccines because it combines the efficacy of attenuated vaccines with the biological safety of inactivated vaccines. We recently showed that the vaccination with naked DNA coding for the immunorelevant glycoprotein D (gD) of

  3. A novel chimeric DNA vaccine: enhancement of preventive and therapeutic efficacy of DNA vaccine by fusion of Mucin 1 to a heat shock protein 70 gene.

    Science.gov (United States)

    Choi, Dae-Han; Woo, Jong Kyu; Choi, Yun; Seo, Hye-Sook; Kim, Chul-Woo

    2011-01-01

    Intensive efforts to improve vaccines against cancer are currently outgoing. Mucin 1 (Muc1) is a tumor-specific antigen that is overexpressed and heavily glycosylated in a variety of adenocarcinomas. In the present study, the efficacy of an anticancer DNA vaccination strategy was demonstrated using Muc1 fusion vaccines. To enhance antigen presentation and tumor-suppressive efficacy, a chimeric Muc1 vaccine was designed, encoding the transmembrane- and C-terminal domain-deleted Muc1 gene (∆TM) fused to the human HSP70 gene. To confirm the expression and secretion of fusion protein, cell culture supernatants were subjected to Western blotting. We found secreted Muc1 ΔTM-HSP0 fusion protein in the supernatants. These results demonstrate that the Muc1 ΔTM-HSP0 construct can be efficiently expressed and secreted from transfected cells. When the chimeric Muc1 vaccine was administered to mice, antigen-specific cellular immune responses were observed. Notably, we observed that antigen-specific lymphocyte proliferation and cytotoxic responses were effectively induced only in the group of mice that had been vaccinated with the chimeric Muc1 vaccine. Concurrent with the Muc1-specific tumor-suppressive effect, the growth of established Muc1-expressing B16 mouse melanoma cells was also significantly inhibited by vaccination with the chimeric Muc1 vaccine. The growth of B16 mouse melanoma cells expressing human Muc1 in C57BL/6 mice was effectively suppressed by the Muc1-HSP70 chimeric DNA vaccine. Our results reveal that the antitumor efficacy of the chimeric DNA vaccine was improved by the presence of HSP/70.

  4. Radiation Induced Vaccination to Breast Cancer

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-1-0531 TITLE: Radiation-Induced Vaccination to Breast Cancer PRINCIPAL INVESTIGATOR: William H. McBride CONTRACTING...TITLE AND SUBTITLE Radiation-Induced Vaccination to Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0531 5c. PROGRAM ELEMENT NUMBER 6...therapy to generate an in situ tumor vaccine and abscopal effects at distant tumor sites (13), giving some rationale for this attempt to examine this

  5. Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Lintelo, E.G. te; Egberink, H.F.; Duquesne, V.; Aubert, A.; Rottier, P.J.M.

    2002-01-01

    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was

  6. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2015-01-01

    with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected...... against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces......Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits...

  8. [Construction and evaluation of hepatitis C virus (HCV) DNA vaccine containing E2-gAD fusion gene].

    Science.gov (United States)

    Wen, Bo; Deng, Yao; Tan, Wen-Jie; Ying, Xiao; Gao, Ji-Ming; Ruan, Li

    2010-02-01

    To rational design HCV DNA vaccine candidates and evaluate their specific We design to construct two DNA vaccine candidates, one consists of immunity to HCV in mice. We design to construct two DNA vaccine candidates, one consists of E2 (the envelope glycoprotein 2 of HCV) gene only, the second consists of E2-gAD (Globular Domain of Human Adiponectin) fusion gene via overlapping PCR. Confirm the expression of the DNA vaccines by Western blotting, and then vaccinated by injection of DNA vaccines with gene electrotransfer (GET) in BALB/c mice. The immune response was measured by IFN-gamma ELISPOT. The DNA vaccine candidate consists of E2-gAD could effectively express in vitro , and it could induced a higher anti-HCV T cell response in mice than the one consists of E2 only. The HCV DNA vaccine consists of E2-gAD fusion can increase the immunity of the E, to some extend, and the research paved a way to develop and optimize the novel HCV DNA vaccine.

  9. Removing residual DNA from Vero-cell culture-derived human rabies vaccine by using nuclease.

    Science.gov (United States)

    Li, Si-Ming; Bai, Fu-Liang; Xu, Wen-Juan; Yang, Yong-Bi; An, Ying; Li, Tian-He; Yu, Yin-Hang; Li, De-Shan; Wang, Wen-Fei

    2014-09-01

    The clearance of host cell DNA is a critical indicator for Vero-cell culture-derived rabies vaccine. In this study, we evaluated the clearance of DNA in Vero-cell culture-derived rabies vaccine by purification process utilizing ultrafiltration, nuclease digestion, and gel filtration chromatography. The results showed that the bioprocess of using nuclease decreased residual DNA. Dot-blot hybridization analysis showed that the residual host cell DNA was rabies vaccine was less than 0.1 ng/ml protein. The residual nuclease could not paly the biologically active role of digestion of DNA. Experiments of stability showed that the freeze-drying rabies virus vaccine was stable and titers were >5.0 IU/ml. Immunogenicity test and protection experiments indicated mice were greatly induced generation of neutralizing antibodies and invoked protective effects immunized with intraperitoneal injections of the rabies vaccine. These results demonstrated that the residual DNA was removed from virus particles and nuclease was removed by gel filtration chromatography. The date indicated that technology was an efficient method to produce rabies vaccine for human use by using nuclease. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. ANTICANCER DNA VACCINATION: PRINCIPLE AND PERSPECTIVES OF THE METHOD

    Directory of Open Access Journals (Sweden)

    M. V. Stegantseva

    2017-01-01

    Full Text Available Conventional strategies for cancer treatment are close to their efficiency limits. Meanwhile, rapid development of experimental immunology and immunotherapy led to first successful experiences in antitumor vaccination. Over last decade, remarkable results were obtained by means of anticancer vaccination being implemented into clinical settings thus causing popularity and growth of interest to tumor-specific DNA vaccines. In this review, we discuss basic principles of a DNA vaccine construction, their structural characteristics and diversity, mechanisms of their biological action, pharmaceutical forms and delivery routes into the body. 

  11. Influência do biofármaco DNA-hsp65 na lesão pulmonar induzida por bleomicina Influence of a DNA-hsp65 vaccine on bleomycin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Adriana Ignacio de Padua

    2008-11-01

    receiving intratracheal (IT instillation of saline; SB, injected with saline (placebo and then receiving IT instillation of bleomycin; PB, treated with plasmid only, without bacterial genome, and then receiving IT instillation of bleomycin; and BB, treated with the vaccine and then receiving IT instillation of bleomycin. Bleomycin was instilled 15 days after the last immunization, and the animals were killed six weeks thereafter. The left and right lungs were removed, the former for morphological analysis and the latter for hydroxyproline measurements. RESULTS: The proportion of deaths within the first 48 h after the IT instillation (deaths attributed to the surgical procedure was higher in the SB group than in the SS group (57.7% vs. 11.1%. The mean area of pulmonary interstitial septa was greater in the SB and PB groups (53.1 ± 8.6% and 53.6±9.3%, respectively than in the SS and BB groups (32.9 ± 2.7% and 34.3 ± 6.1%, respectively. The mean area of interstitial septa stained by picrosirius was greater in the SB, PB and BB groups than in the SS group (8.2 ± 4.9%, 7.2 ± 4.2% and 6.6 ± 4.1%, respectively, vs. 2.0±1.4%. The total hydroxyproline content in the lung was significantly lower in the SS group (104.9 ± 20.9 pg/lung than in the other groups (SB: 160.4 ± 47.8 pg/lung; PB: 170.0 ± 72.0 pg/lung; and BB: 162.5 ± 39.7 pg/lung. CONCLUSIONS: Immunization with the DNA-hsp65 vaccine reduced the deposition of noncollagen matrix in a model of bleomycin-induced lung lesion.

  12. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    Science.gov (United States)

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  13. A DNA vaccine coding for gB and gD of pseudorabies virus (suid herpes type 1) primes the immune system in the presence of maternal immunity more efficiently than conventional vaccines

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Moonen-Leusen, H.W.M.; Visser-Hendriksen, de Y.E.; Middel, W.G.; Boersma, W.J.A.; Bianchi, A.T.J.

    2006-01-01

    DNA vaccines are capable of priming the immune system of neonates in the presence of maternal antibodies. However, it is still not clear whether the extent of priming and protection against challenge infections induced by a DNA vaccine in maternally immune newborns is better than that induced by

  14. Assessment of a DNA Vaccine Encoding Burkholderia pseudomallei Bacterioferritin

    Science.gov (United States)

    2007-08-01

    excised by restriction enzyme digestion with Xba I and subcloned into the mammalian expression vector pcDNA3.1start, to create the DNA vaccine...Lewis, J. T. August, and E. T. Marques. 2006. DNA Encoding an HIV -1 Gag/Human Lysosome-Associated Membrane Protein-1 Chimera Elicits a Broad

  15. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  16. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  17. Transcriptome profiles associated to VHSV infection or DNA vaccination in turbot (Scophthalmus maximus.

    Directory of Open Access Journals (Sweden)

    Patricia Pereiro

    Full Text Available DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV in turbot (Scophthalmus maximus we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4 and DNA vaccine (pMCV1.4-G860 intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules

  18. [The adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in dengue virus and hepatitis C virus DNA vaccines].

    Science.gov (United States)

    Wu, Jiang-Man; Chen, Hui; Sheng, Zi-Yang; Wang, Juan; Fan, Dong-Ying; Gao, Na; An, Jing

    2012-05-01

    To investigate the adjuvant effect of granulocyte macrophage colony stimulating factor (GM-CSF) in Flaviviridae virus DNA vaccines. After DNA immunization, the antibody levels of serum from mice were detected by ELISA and indirect immunofluorescence assay. Co-immunization of GM-CSF suppressed the immune responses induced by DV1 and DV2 candidate vaccines whereas enhanced the immune response induced by HCV C and E1 DNA vaccines. As genetic adjuvant for DNA vaccines, GM-CSF might display complex diversity on the immune responses: an augmentation or suppression due to different immunogens. Therefore, GM-CSF should be used with some cautions in clinic.

  19. Approaches toward the development of DNA vaccine for influenza ...

    African Journals Online (AJOL)

    The main goals of this investigation were to prepare a viral DNA vaccine to help stimulate the immune system of poultry and to increase the efficiency of this vaccine. To accomplish this work, a strain of H5N1 circulating in Egypt was confirmed using rapid diagnostic methods and also, reverse transcriptase polymerase chain ...

  20. Optimizing the efficacy of epitope-directed DNA vaccination

    NARCIS (Netherlands)

    Wolkers, Monika C.; Toebes, Mireille; Okabe, Masaru; Haanen, John B. A. G.; Schumacher, Ton N. M.

    2002-01-01

    An increasing number of clinical trials has been initiated to test the potential of prophylactic or curative vaccination with tumor Ag-encoding DNA vaccines. However, in the past years it has become apparent that for many Ags and in particular for tumor Ags the intracellular processing and

  1. TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Roberto Bei

    2010-01-01

    Full Text Available DNA-based cancer vaccines represent an attractive strategy for inducing immunity to tumor associated antigens (TAAs in cancer patients. The demonstration that the delivery of a recombinant plasmid encoding epitopes can lead to epitope production, processing, and presentation to CD8+ T-lymphocytes, and the advantage of using a single DNA construct encoding multiple epitopes of one or more TAAs to elicit a broad spectrum of cytotoxic T-lymphocytes has encouraged the development of a variety of strategies aimed at increasing immunogenicity of TAA polyepitope DNA-based vaccines. The polyepitope DNA-based cancer vaccine approach can (a circumvent the variability of peptide presentation by tumor cells, (b allow the introduction in the plasmid construct of multiple immunogenic epitopes including heteroclitic epitope versions, and (c permit to enroll patients with different major histocompatibility complex (MHC haplotypes. This review will discuss the rationale for using the TAA polyepitope DNA-based vaccination strategy and recent results corroborating the usefulness of DNA encoding polyepitope vaccines as a potential tool for cancer therapy.

  2. Immunogenicity of bivalent human papillomavirus DNA vaccine using human endogenous retrovirus envelope-coated baculoviral vectors in mice and pigs.

    Directory of Open Access Journals (Sweden)

    Hee-Jung Lee

    Full Text Available Human papillomavirus is known to be the major pathogen of cervical cancer. Here, we report the efficacy of a bivalent human papillomavirus type 16 and 18 DNA vaccine system following repeated dosing in mice and pigs using a recombinant baculovirus bearing human endogenous retrovirus envelope protein (AcHERV as a vector. The intramuscular administration of AcHERV-based HPV16L1 and HPV18L1 DNA vaccines induced antigen-specific serum IgG, vaginal IgA, and neutralizing antibodies to levels comparable to those achieved using the commercially marketed vaccine Cervarix. Similar to Cervarix, AcHERV-based bivalent vaccinations completely blocked subsequent vaginal challenge with HPV type-specific pseudovirions. However, AcHERV-based bivalent vaccinations induced significantly higher cell-mediated immune responses than Cervarix, promoting 4.5- (HPV16L1 and 3.9-(HPV18L1 fold higher interferon-γ production in splenocytes upon stimulation with antigen type-specific pseudovirions. Repeated dosing did not affect the immunogenicity of AcHERV DNA vaccines. Three sequential immunizations with AcHERV-HP18L1 DNA vaccine followed by three repeated dosing with AcHERV-HP16L1 over 11 weeks induced an initial production of anti-HPV18L1 antibody followed by subsequent induction of anti-HPV16L1 antibody. Finally, AcHERV-based bivalent DNA vaccination induced antigen-specific serum IgG immune responses in pigs. These results support the further development of AcHERV as a bivalent human papillomavirus DNA vaccine system for use in preventing the viral infection as well as treating the infected women by inducing both humoral and cell-mediated immune responses. Moreover, the possibility of repeated dosing indicates the utility of AcHERV system for reusable vectors of other viral pathogen vaccines.

  3. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  4. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    OpenAIRE

    Bellier, Bertrand; Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccine...

  5. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  6. Therapeutic vaccination for HPV induced cervical cancers.

    Science.gov (United States)

    Brinkman, Joeli A; Hughes, Sarah H; Stone, Pamela; Caffrey, Angela S; Muderspach, Laila I; Roman, Lynda D; Weber, Jeffrey S; Kast, W Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer-related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  7. Approaches toward the development of DNA vaccine for influenza ...

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... into eight groups and each group was vaccinated by the couple of DNA NP with one of the other genes. The efficiency of coupled DNA ..... Bouback and Redwan 5213. Table 1. Plaque titration of HPAIV H5N1. Dilution. Replica 1. Replica 2. Replica 3. Average number of plaque. PFU/ml. 10-1. Unc. Unc. Unc.

  8. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    Science.gov (United States)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  9. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications.

    Science.gov (United States)

    Osinubi, M O V; Wu, X; Franka, R; Niezgoda, M; Nok, A J; Ogunkoya, A B; Rupprecht, C E

    2009-11-27

    Enhancing DNA vaccine effectiveness remains a challenge, especially if the desired goal is immunization efficacy after a single dose. The glycoprotein gene from the rabies virus Evelyn-Rokitnicki-Abelseth (ERA) strain was modified by mutation at amino acid residue 333 from arginine to glutamine. The modified and original unmodified glycoprotein genes were cloned separately and developed as DNA vaccines for immunization in mice. The intramuscular (IM) route using a single dose (100 microg) of a modified DNA vaccine showed virus neutralizing antibody induction by d30, and 80% of the mice survived a challenge in which 100% of unvaccinated controls succumbed. Similar results were obtained using a single dose (10 microg) by the intradermal (ID) route with one-tenth amount of the DNA administered. Administration of single dose of DNA vaccine with unmodified G did not result in the production of detectable levels of virus neutralizing antibody by d30. The results of the IM and the ID routes of administration were statistically significant (Prabies virus strain may be an ideal candidate for DNA vaccine efficacy enhancement.

  10. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    DEFF Research Database (Denmark)

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    in the injected muscle tissues, only CXCL10, CK5B and CK6 were more strongly transcribed in DNA vaccinated fish compared to control fish injected with the corresponding vector backbone. In vitro tests performed with recombinant trout CK5B and CK6 revealed that these chemokines have chemotactic capacities which......In fish, intramuscular injection of plasmid DNA encoding viral proteins has proved as the most effective vaccination strategy against many viral pathogens. The efficacy of DNA vaccination in teleost fish is based on a high level of viral antigen expression in muscle cells inducing a strong and long......-lasting protection. However, the mechanisms through which this protection is conferred in fish are still not understood. Moreover, similarities to mammalian models can not be established since DNA vaccination in mammals induces much lower responses. In this work, we have focused on the characterization of immune...

  11. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants.

    Science.gov (United States)

    Calarota, Sandra A; Weiner, David B

    2004-06-01

    It is clear that the development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) remains a crucial goal for controlling the acquired immunodeficiency syndrome epidemic. At present, it is not clear what arm of the immune response correlates with protection from HIV-1 infection or disease. Therefore, a strong cellular and humoral immune response will likely be needed to control this infection. Among different vaccine alternatives, DNA vaccines appeared more than a decade ago, demonstrating important qualities of inducing both humoral and cellular immune responses in animal models. However, after several years and various clinical studies in humans, supporting the safety of the HIV-DNA vaccine strategies, it has become clear that their potency should be improved. One way to modulate and enhance the immune responses induced by a DNA vaccine is by including genetic adjuvants such as cytokines, chemokines, or T-cell costimulatory molecules as part of the vaccine itself. Particularly, vaccine immunogenicity can be modulated by factors that attract professional antigen-presenting cells, provide additional costimulation, or enhance the uptake of plasmid DNA. This review focuses on developments in the coadministration of molecular adjuvants for the enhancement of HIV-1 DNA-vaccine potency.

  12. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  13. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    International Nuclear Information System (INIS)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  14. Aluminium allergy and granulomas induced by vaccinations for children

    DEFF Research Database (Denmark)

    Andersen, Rosa Marie O; Zachariae, Claus; Johansen, Jeanne Duus

    2014-01-01

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site - vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we...... examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark....

  15. [Aluminium allergy and granulomas induced by vaccinations for children].

    Science.gov (United States)

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-04-27

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark.

  16. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  17. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  18. Comparison of the immune responses in BALB/c mice following immunization with DNA-based and live attenuated vaccines delivered via different routes.

    Science.gov (United States)

    Cai, Ming-sheng; Deng, Shu-xuan; Li, Mei-li

    2013-02-18

    The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4(+), and CD8(+) T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8(+) T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4(+) T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  1. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice.

    Science.gov (United States)

    Wang, Fei; Chen, Quanjiao; Li, Shuntang; Zhang, Chenyao; Li, Shanshan; Liu, Min; Mei, Kun; Li, Chunhua; Ma, Lixin; Yu, Xiaolan

    2017-06-01

    Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparative study of the immunoprotective effect of two DNA vaccines against grass carp reovirus.

    Science.gov (United States)

    Chen, Dan-Dan; Yao, Yuan-Yuan; Cui, Zheng-Wei; Zhang, Xiang-Yang; Peng, Kai-Song; Guo, Xia; Wang, Biao; Zhou, Yuan-Yuan; Li, Shun; Wu, Nan; Zhang, Yong-An

    2018-04-01

    Grass carp reovirus II (GCRV II) causes severe hemorrhagic disease with high mortality in grass carp, Cyenopharyngodon idellus. DNA vaccination has been proven to be a very effective method in conferring protection against fish viruses. However, DNA vaccines for GCRV II have not yet been conducted on grass carp. In the current work, we vaccinated grass carp with a DNA vaccine consisting of the segment 6 (pC-S6; encoding VP4) or 10 (pC-S10; encoding NS38) of GCRV II and comparatively analyzed the immune responses induced by these two vaccines. The protective efficacy of pC-S6 and pC-S10, in terms of relative percentage survival (RPS), was 59.9% and 23.1% respectively. This suggests that pC-S6 and pC-S10 DNA vaccines could increase the survival rate of grass carp against GCRV, albeit with variations in immunoprotective effect. Immunological analyses indicated the following. First, post-vaccination (pv), both pC-S6 and pC-S10 up-regulated the expression of interferon (IFN-1), Mx1, IL-1β, and TNF-α. However, CD4 and CD8α were up-regulated in the case of pC-S6 but not pC-S10. Second, comparing non-vaccinated and pC-S10-vaccinated fish, the T cell response related genes, such as CD4, CD8α, and GATA3, were elevated in pC-S6-vaccinated fish at 48 h post-challenge (pc). Third, pC-S6 and pC-S10 induced similar patterns of specific antibody response pv. However, only anti-VP4 IgM in the sera of surviving fish infected with GCRV was significantly increased pc compared with that pre-challenge. Taken together, these results indicate that pC-S6 promotes both innate (IFN-1 and Mx1 induction) and adaptive (T cell and specific antibody response) immunity pv and that the induction of a memory state promptly primes the immune response upon later encounters with the virus, whereas pC-S10 only induces the type I IFN-related response pv and a lower inflammatory response pc. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice.

    Science.gov (United States)

    Dumonteil, Eric; Escobedo-Ortegon, Javier; Reyes-Rodriguez, Norma; Arjona-Torres, Arletty; Ramirez-Sierra, Maria Jesus

    2004-01-01

    The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 x 10(4) parasites) as a model of acute infection, and then they were treated with two injections of 100 microg of plasmid DNA 1 week apart, beginning on day 5 postinfection. Control mice had high levels of parasitemia and mortality and severe cardiac inflammation, while mice treated with plasmid DNA encoding trypomastigote surface antigen 1 or Tc24 had reduced parasitemia and mild cardiac inflammation and >70% survived the infection. The efficacy of the immunotherapy also was significant when it was delayed until days 10 and 15 after infection. Parasitological analysis of cardiac tissue of surviving mice indicated that most mice still contained detectable parasite kinetoplast DNA but fewer mice contained live parasites, suggesting that there was efficient but not complete parasite elimination. DNA vaccine immunotherapy was also evaluated in CD1 mice infected with a low dose (5 x 10(2) parasites) as a model of chronic infection. Immunotherapy was initiated on day 70 postinfection and resulted in improved survival and reduced cardiac tissue inflammation. These results suggest that DNA vaccines have strong potential for the immunotherapy of T. cruzi infection and may provide new alternatives for the control of Chagas' disease.

  4. (UVB)-induced DNA damage

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... E-mail: renu2498@hotmail.com. Abbreviations: POE, Pandanus ordoratissimus extract; KSCs, keratinocyte stem cells; AAG, ascorbyl glucoside. as the major cause of human skin cancer. It is well established that UVB induced DNA damage by photoi- somerization, resulting in the formation of the 6-4 photo-.

  5. Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets.

    Science.gov (United States)

    Ou, Changbo; Tian, Deyu; Ling, Yong; Pan, Qing; He, Qing; Eko, Francis O; He, Cheng

    2013-08-01

    Chlamydia abortus (C. abortus) is an obligate intracellular pathogen that causes abortion in pigs and poses a zoonotic risk in pregnant women. Although attenuated and inactivated vaccines are available, they do not provide complete protection in animals underlining the need to develop new vaccines. In this study, we tested the hypothesis that intramuscular immunization with an ompA-based phage-mediated DNA chlamydial vaccine candidate will induce significant antigen-specific cellular and humoral immune responses. Thus, groups of piglets (five per group) were immunized intramuscularly with the phage-MOMP vaccine (λ-MOMP) or a commercial live-attenuated vaccine (1B vaccine) or a GFP-expressing phage (λ-GFP) or phosphate buffered saline (PBS) (control) and antigen-specific cell-mediated and humoral immune responses were evaluated. By day 63 post-immunization, the λ-MOMP vaccine elicited significantly higher (Pabortus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  7. Effects of a novel recombinant somatostatin DNA vaccination on rat ...

    African Journals Online (AJOL)

    AJL

    2012-06-19

    Jun 19, 2012 ... Key words: Somatostatin, DNA vaccine, rat, fertility, pup growth. INTRODUCTION ... reproduction and milk secretion (closely related to the pup weight gain) of animals by inhibiting the secretion of different hormones. One hypothesis stated that the ... granulocyte/macrophage colony-stimulating factor gene.

  8. Blocking Blood Supply to Breast Carcinoma With a DNA Vaccine Encoding VEGF Receptor-2

    Science.gov (United States)

    2006-03-01

    vaccination: an update. Methods Mol Med 2003;87:377–90. 14. Ambrosini G, Adida C, Altieri DC. A novel anti- apoptosis gene, survivin, expressed in cancer...endothelial cells. Biochem Biophys Res Commun 1999;264:781–8. 26. O’Connor DS, Schechner JS, Adida C, et al. Control of apoptosis during angiogenesis by...minigene DNA vaccine protects mice from tumors of different origins by inducing a T cell-mediated suppression of tumor angiogenesis. From the Department of

  9. Innovative DNA vaccine to break immune tolerance against tumor self-antigen.

    Science.gov (United States)

    Kang, Tae Heung; Mao, Chih-Ping; La, Victor; Chen, Alexander; Hung, Chien-Fu; Wu, T-C

    2013-02-01

    Vaccination is, in theory, a safe and effective approach for controlling disseminated or metastatic cancer due to the specificity of the mammalian immune system, yet its success in the clinic has been hampered thus far by the problem of immune tolerance to tumor self-antigen. Here we describe a DNA vaccination strategy that is able to control cancer by overcoming immune tolerance to tumor self-antigen. We engineered a DNA construct encoding a dimeric form of a secreted single-chain trimer of major histocompatibility complex class I heavy chain, β2-microglobulin, and peptide antigen linked to immunoglobulin G (SCT-Ag/IgG). The chimeric protein was able to bind to antigen-specific CD8(+) T cells with nearly 100% efficiency and strongly induce their activation and proliferation. In addition, the chimeric protein was able to coat professional antigen-presenting cells through the F(c) receptor to activate antigen-specific CD8(+) T cells. Furthermore, intradermal vaccination with DNA-encoding SCT-Ag/IgG could generate significant numbers of cytotoxic effector T cells against tumor self-antigen and leads to successful therapeutic outcomes in a preclinical model of metastatic melanoma. Our data suggest that the DNA vaccine strategy described in the current study is able to break immune tolerance against endogenous antigen from melanoma and result in potent therapeutic antitumor effects. Such strategy may be used in other antigenic systems for the control of infections and/or cancers.

  10. Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners

    Directory of Open Access Journals (Sweden)

    Paola Cappello

    2018-02-01

    Full Text Available Pancreatic Ductal Adenocarcinoma (PDA is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC. Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1, a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells, which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors that could be effective in amplifying the response induced by the immune vaccination in PDA.

  11. DNA vaccination with all-trans retinoic acid treatment induces long-term survival and elicits specific immune responses requiring CD4+ and CD8+ T-cell activation in an acute promyelocytic leukemia mouse model

    Czech Academy of Sciences Publication Activity Database

    Furugaki, K.; Pokorná, Kateřina; le Pogam, C.; Aoki, M.; Reboul, M.; Bajzik, V.; Krief, P.; Janin, A.; Noguera, M.-E.; West, R.; Charron, D.; Chomienne, C.; Pla, M.; Moins-Teisserenc, H.; Padua, R.A.

    2010-01-01

    Roč. 115, č. 3 (2010), s. 653-656 ISSN 0006-4971 Grant - others:GA UK(CZ) 94308 Institutional research plan: CEZ:AV0Z50520514 Keywords : all-trans retinoic acid * DNA vaccination * protective immunity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.558, year: 2010

  12. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    International Nuclear Information System (INIS)

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-01-01

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  13. Influenza H5 hemagglutinin DNA primes the antibody response elicited by the live attenuated influenza A/Vietnam/1203/2004 vaccine in ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    Full Text Available Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1 candidate vaccine (LAIV, VN04 ca primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03 and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness.

  14. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    International Nuclear Information System (INIS)

    Rong, Yefei; Jin, Dayong; Wu, Wenchuan; Lou, Wenhui; Wang, Danshong; Kuang, Tiantao; Ni, Xiaoling; Qin, Xinyu

    2009-01-01

    Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene into the pcDNA3.1. In the preventive group, female C57BL/6 mice were immunized with the vaccine, pcDNA3.1 or PBS; and challenged with panc02-MUC1 or panc02 cell. In the therapeutic group the mice were challenged with panc02-MUC1 or panc02 cell, and then immunized with the vaccine, pcDNA3.1 or PBS. The tumor size and the survival time of the animals were compared between these groups. The DNA vaccine pcDNA3.1-VNTR could raise cytotoxic T lymphocyte (CTL) activity specific for MUC1. In the preventive experiment, the mice survival time was significantly longer in the vaccine group than in the control groups (P < 0.05). In the therapeutic experiment, the DNA vaccine prolonged the survival time of the panc02-MUC1-bearing mice (P < 0.05). In both the preventive and therapeutic experiments, the tumor size was significantly less in the vaccine group than in the control groups (P < 0.05). This pcDNA3.1-VNTR vaccine, however, could not prevent the mice attacked by panc02 cells and had no therapeutic effect on the mice attacked by panc02 cells. The MUC1 DNA vaccine pcDNA3.1-VNTR could induce a significant MUC1-specific CTL response; and had both prophylactic and therapeutic effect on panc02-MUC1 tumors. This vaccine might be used as a new adjuvant strategy against pancreatic cancer

  15. DNA vaccination for rabies: Evaluation of preclinical safety and toxicology

    Directory of Open Access Journals (Sweden)

    Rajni Garg

    2014-01-01

    Full Text Available The worldwide incidence of rabies and high rates of therapy failure, despite availability of effective vaccines indicate the need for timely and improved prophylactic approaches. DNA vaccination based on optimized formulation of lysosome-targeted glycoprotein of the rabies virus provides potential platform for preventing and controlling rabies. As per the pre-clinical requirements, listed in guidelines of Schedule Y, FDA and that of The European Agency for evaluation of Medicinal Products; we evaluated the acute (single dose – 14 days using three dosing levels, that is, the therapeutic (1×, average (5× and high dose (10× intramuscular toxicity in the rodent model Swiss Albino mice. Furthermore, the chronic intramuscular toxicity (repeated dose – 43 days with another 14 days for satellite groups was investigated using broad dosing levels ranging from low (7×, mid (14× to high (28× in Wistar rats. A range of parameters including physical, physiological, clinical, immunological, hematological along with histopathology profiles of target organs was monitored to assess the impact of vaccination. There were no observational adverse effects despite high dose administration of the DNA vaccine formulation. Thus, this study indicates the safety of next generation of vaccines as well as highlights their potential application.

  16. Immunotherapy with an HIV-DNA Vaccine in Children and Adults

    Directory of Open Access Journals (Sweden)

    Paolo Palma

    2014-07-01

    Full Text Available Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals’ immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children’s and adults’ responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4–16 years were immunized during antiretroviral therapy (ART. Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T

  17. DNA technology for diagnosis and vaccines for infectious diseases

    International Nuclear Information System (INIS)

    Notani, N.K.

    1992-01-01

    Three or four general strategies are adopted for the control of infectious diseases. Early diagnosis, vaccination and chemotherapy. In the situations where there is transfer through mosquitoes or ticks from alternate hosts, control of the vector and of the infection in the alternate host are additional measures to be taken. This Chapter looks at the problems of disease control from the perspective of genetics, since molecular genetics now provides powerful tools in the form of radiolabelled DNA probes and clones of selected segments, useful for diagnosis as well as for vaccine design

  18. PD1-based DNA vaccine amplifies HIV-1 GAG-specific CD8+ T cells in mice

    Science.gov (United States)

    Zhou, Jingying; Cheung, Allen K.L.; Tan, Zhiwu; Wang, Haibo; Yu, Wenbo; Du, Yanhua; Kang, Yuanxi; Lu, Xiaofan; Liu, Li; Yuen, Kwok-Yung; Chen, Zhiwei

    2013-01-01

    Viral vector–based vaccines that induce protective CD8+ T cell immunity can prevent or control pathogenic SIV infections, but issues of preexisting immunity and safety have impeded their implementation in HIV-1. Here, we report the development of what we believe to be a novel antigen-targeting DNA vaccine strategy that exploits the binding of programmed death-1 (PD1) to its ligands expressed on dendritic cells (DCs) by fusing soluble PD1 with HIV-1 GAG p24 antigen. As compared with non–DC-targeting vaccines, intramuscular immunization via electroporation (EP) of the fusion DNA in mice elicited consistently high frequencies of GAG-specific, broadly reactive, polyfunctional, long-lived, and cytotoxic CD8+ T cells and robust anti-GAG antibody titers. Vaccination conferred remarkable protection against mucosal challenge with vaccinia GAG viruses. Soluble PD1–based vaccination potentiated CD8+ T cell responses by enhancing antigen binding and uptake in DCs and activation in the draining lymph node. It also increased IL-12–producing DCs and engaged antigen cross-presentation when compared with anti-DEC205 antibody-mediated DC targeting. The high frequency of durable and protective GAG-specific CD8+ T cell immunity induced by soluble PD1–based vaccination suggests that PD1-based DNA vaccines could potentially be used against HIV-1 and other pathogens. PMID:23635778

  19. The Role of Particle-Mediated DNA Vaccines in Biodefense Preparedness

    National Research Council Canada - National Science Library

    Dean, Hansi J; Haynes, Joel; Schmaljohn, Connie

    2005-01-01

    Particle-mediated epidermal delivery (PMED) of DNA vaccines is based on the acceleration of DNA-coated gold directly into the cytoplasm and nuclei of living cells of the epidermis, facilitating DNA delivery and gene expression...

  20. Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA Prime-Modified Vaccinia Virus Ankara Boost HIV-1 Vaccine Regimen.

    Science.gov (United States)

    Bauer, Asli; Podola, Lilli; Mann, Philipp; Missanga, Marco; Haule, Antelmo; Sudi, Lwitiho; Nilsson, Charlotta; Kaluwa, Bahati; Lueer, Cornelia; Mwakatima, Maria; Munseri, Patricia J; Maboko, Leonard; Robb, Merlin L; Tovanabutra, Sodsai; Kijak, Gustavo; Marovich, Mary; McCormack, Sheena; Joseph, Sarah; Lyamuya, Eligius; Wahren, Britta; Sandström, Eric; Biberfeld, Gunnel; Hoelscher, Michael; Bakari, Muhammad; Kroidl, Arne; Geldmacher, Christof

    2017-09-15

    Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function, and specificity of Gag-specific T cells induced by a DNA-prime modified vaccinia virus Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding a subtype B and AB-recombinant Gag p37 and two vaccinations with MVA-CMDR encoding subtype A Gag p55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced gamma interferon-positive (IFN-γ + ) Gag-specific T-cell responses were dominated by CD4 + T cells ( P viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved, either by improved cross-recognition of multiple variants for a given antigenic region or through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses. Copyright © 2017 American Society for Microbiology.

  1. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  2. Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae.

    Science.gov (United States)

    Kato, Goshi; Kondo, Hidehiro; Aoki, Takashi; Hirono, Ikuo

    2012-08-01

    Nocardiosis caused by Nocardia seriolae has been causing severe loss of fish production, so that an effective vaccine is urgently needed. Mycobacterium bovis BCG (BCG) is a live attenuated vaccine for tuberculosis, which is effective against various infectious diseases including nocardiosis in mammals. In this study, the protective efficacy of BCG against N. seriolae was evaluated in Japanese flounder Paralichthys olivaceus and antigen-specific immune responses induced in BCG vaccinated fish were investigated. Cumulative mortality of BCG-vaccinated fish was 21.4% whereas that of PBS-injected fish was 56.7% in N. seriolae challenge. However, gene expression level of IFN-γ was only slightly up-regulated in BCG-vaccinated fish after injection of N. seriolae antigen. In order to reveal non-specific immune responses induced by BCG vaccination, transcriptome of the kidney after BCG vaccination was investigated using oligo DNA microarray. Gene expression levels of antimicrobial peptides such as C-type and G-type lysozyme were significantly up-regulated after BCG vaccination. Consistently, BCG vaccination appeared to increase the bacteriolysis activity of the serum against Micrococcus luteus and N. seriolae. These results suggest that BCG-vaccinated Japanese flounder fight N. seriolae infection mainly by non-specific immune responses such as by the production of bacteriolytic lysozymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    Science.gov (United States)

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    Science.gov (United States)

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-05-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles.

  5. Cationic Lipid-Formulated DNA Vaccine against Hepatitis B Virus : Immunogenicity of MIDGE-Th1 Vectors Encoding Small and Large Surface Antigen in Comparison to a Licensed Protein Vaccine

    NARCIS (Netherlands)

    Endmann, Anne; Klunder, Katharina; Kapp, Kerstin; Riede, Oliver; Oswald, Detlef; Talman, Eduard G.; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H. J.; Juhls, Christiane

    2014-01-01

    Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible

  6. Enhanced Delivery of DNA or RNA Vaccines by Electroporation.

    Science.gov (United States)

    Broderick, Kate E; Humeau, Laurent M

    2017-01-01

    Nucleic acid vaccines are a next-generation branch of vaccines which offer major benefits over their conventional protein, bacteria, or viral-based counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA and mRNA, electroporation enhances both the uptake and expression of the delivered nucleic acids. The muscle is an attractive tissue for nucleic acid vaccination in a clinical setting due to the accessibility and abundance of the target tissue. Historical clinical studies of electroporation in the muscle have demonstrated the procedure to be generally well tolerated in patients. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width and drug product formulation) majorly impact the efficiency of nucleic acid delivery. We provide an overview of DNA/RNA vaccination in the muscle of mice. Our results suggest that the technique is safe and effective and is highly applicable to a research setting as well as scalable to larger animals and humans.

  7. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  8. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity.

    Science.gov (United States)

    Sun, Bo; Li, Zhao-Shen; Tu, Zhen-Xing; Xu, Guo-Ming; Du, Yi-Qi

    2006-11-21

    To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity. By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments. A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response. The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  9. Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Carolina R. Oliveira

    2012-01-01

    Full Text Available The development of a vaccine would be essential for the control of schistosomiasis, which is recognized as the most important human helminth infection in terms of morbidity and mortality. A new approach of oral vaccination with DNA-chitosan nanoparticles appears interesting because of their great stability and the ease of target accessibility, besides chitosan immunostimulatory properties. Here we described that chitosan nanoparticles loaded with plasmid DNA encoding Rho1-GTPase protein of Schistosoma mansoni, prepared at different molar ratios of primary amines to DNA phosphate anion (N/P, were able to complex electrostatically with DNA and condense it into positively charged nanostructures. Nanoparticles were able to maintain zeta potential and size characteristics in media that simulate gastric (SGF and intestinal fluids (SIF. Further in vivo studies showed that oral immunization was not able to induce high levels of specific antibodies but induced high levels of the modulatory cytokine IL-10. This resulted in a significative reduce of liver pathology, although it could not protect mice of infection challenge with S. mansoni worms. Mice immunized only with chitosan nanoparticles presented 47% of protection against parasite infection, suggesting an important role of chitosan in inducing a protective immune response against schistosomiasis, which will be more explored in further studies.

  10. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  11. HIV-1 p24(gag derived conserved element DNA vaccine increases the breadth of immune response in mice.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag region according to two principles: the immunogen must (i include strictly conserved elements of the virus that cannot mutate readily, and (ii exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag DNA immunogens that express 7 highly Conserved Elements (CE of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site', together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag DNA induced poor, CD4(+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+ and CD8(+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag, which recognize the virus encoded p24(gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+ and CD8(+ T cells to additional regions of Gag compared to vaccination with p55(gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.

  12. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression

    NARCIS (Netherlands)

    Bins, Adriaan D.; Jorritsma, Annelies; Wolkers, Monika C.; Hung, Chien-Fu; Wu, T.-C.; Schumacher, Ton N. M.; Haanen, John B. A. G.

    2005-01-01

    Induction of immunity after DNA vaccination is generally considered a slow process. Here we show that DNA delivery to the skin results in a highly transient pulse of antigen expression. Based on this information, we developed a new rapid and potent intradermal DNA vaccination method. By

  13. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    Science.gov (United States)

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (pleishmaniasis and tuberculosis and have important implication in future vaccine design.

  14. Replacing antibodies with modified DNA aptamers in vaccine potency assays.

    Science.gov (United States)

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-10-04

    Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  16. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    Science.gov (United States)

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  17. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  18. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  19. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Science.gov (United States)

    2012-01-01

    Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES) domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient

  20. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route.

    Science.gov (United States)

    Mealey, R H; Stone, D M; Hines, M T; Alperin, D C; Littke, M H; Leib, S R; Leach, S E; Hines, S A

    2007-10-23

    Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates.

  1. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection.

    Science.gov (United States)

    Guy, Bruno; Jackson, Nicholas

    2016-01-01

    Dengue virus (DENV) is a human pathogen with a large impact on public health. Although no vaccine against DENV is currently licensed, a recombinant vaccine - chimeric yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) - has shown efficacy against symptomatic dengue disease in two recent Phase III clinical trials. Safety observations were also recently reported for these trials. In this Opinion article, we review the data from recent vaccine clinical trials and discuss the putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.

  2. The immunogenicity of tetravalent dengue DNA vaccine in mice pre-exposed to Japanese encephalitis or Dengue virus antigens.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2015-09-01

    Asian countries are an endemic area for both dengue (DENV) and Japanese encephalitis viruses (JEV). While JEV vaccines have been used extensively in this region, DENV vaccines remains under development. Whether preexisting naturally acquired or vaccination-induced immunity against JEV may affect the immune response to dengue vaccine candidate is unclear. In this study we used mice previously immunized with JEV vaccines to evaluate the impact on dengue-specific neutralizing antibody responses to a tetravalent dengue DNA vaccine candidate (TDNA). A tetravalent cocktail of plasmids encoding pre-membrane and envelope proteins from each dengue serotype was administered into mice which had been previously primed with inactivated or live-attenuated JEV vaccines, or dengue serotype2 virus (DENV-2). Neutralizing antibody response was measured employing a plaque reduction neutralization test at two weeks after the priming and at four weeks after the second dose of the dengue tetravalent plasmids. Inactivated or live-attenuated JEV vaccines, or DENV-2 induced low levels of neutralizing antibodies against the homologous viruses (JE and dengue virus, respectively). DENV-2 injection induced also low levels of cross-reactive antibodies against DENV-1, -3 and -4. JEV vaccines have no effect on the dengue-specific neutralizing antibody responses to the subsequent TDNA immunization. Pre-exposure to DENV-2 infection increased DENV-2 specific response neutralizing antibody to two doses of TDNA plasmids by six folds, but did not affect antibody response to other serotypes. Priming with JEV vaccines did not impact on dengue virus-specific neutralizing antibody response to a dengue TDNA vaccine candidate in mice.

  3. Approaches towards DNA Vaccination against a Skin Ciliate Parasite in Fish

    Science.gov (United States)

    von Gersdorff Jørgensen, Louise; Sigh, Jens; Kania, Per Walter; Holten-Andersen, Lars; Buchmann, Kurt; Clark, Theodore; Rasmussen, Jesper Skou; Einer-Jensen, Katja; Lorenzen, Niels

    2012-01-01

    Rainbow trout (Oncorhynchus mykiss) were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags) and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(G)protein (VHSV G) were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens are required for

  4. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  5. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  6. Radiation-induced electron migration along DNA

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-04-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to nonrandom types of damage along DNA manifested distal to the sites of the initial energy deposition. Electron migration along DNA is significantly influenced by the DNA base sequence and DNA conformation. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along DNA. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation

  7. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    Science.gov (United States)

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  8. Processive DNA demethylation via DNA deaminase-induced lesion resolution.

    Directory of Open Access Journals (Sweden)

    Don-Marc Franchini

    Full Text Available Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.

  9. Broad cross-protective anti-hemagglutination responses elicited by influenza microconsensus DNA vaccine.

    Science.gov (United States)

    Yan, Jian; Morrow, Matthew P; Chu, Jaemi S; Racine, Trina; Reed, Charles C; Khan, Amir S; Broderick, Kate E; Kim, J Joseph; Kobinger, Gary P; Sardesai, Niranjan Y; Weiner, David B

    2017-10-31

    Despite the routine development and distribution of seasonal influenza vaccines, influenza remains an important pathogen contributing to significant human morbidity as well as mortality each year. The seasonal variability of influenza creates a significant issue for vaccine development of seasonal strains that can afford protection from infection or disease based on serotype matching. It is appreciated that the globular head of the HA antigen contained in the vaccines generates antibodies that result in HAI activity that are a major correlates of the protection against a particular strain. Due to seasonal genetic changes in the HA protein, however, new vaccine strains are needed to be developed continually to match the new HA antigen of that seasons virus. A distinct advantage in seasonal vaccine development would be if a small group of antigens could be developed that could span many seasons without needed to be replaced due to this genetic drift. Here we report on a synthetic microconsensus approach that relies on a small collection of 4 synthetic H1HA DNA antigens which together induce broad protective HAI immunity spanning decades of H1 influenza viruses in mice, guinea pigs and non-human primates. The protective HAI titers induced by microconsensus immunogens are fully functional in vivo as immunized ferrets were completely protected from A/Mexico/InDRE4487/2009 virus infection and morbidity associated with lethal challenge. These results are encouraging that a limited easy-to-formulate collection of invariant antigens can be developed which can span seasonal vaccine changes allowing for continued immune protection. Copyright © 2017. Published by Elsevier Ltd.

  10. An HDAC inhibitor enhances the antitumor activity of a CMV promoter-driven DNA vaccine.

    Science.gov (United States)

    Lai, M-D; Chen, C-S; Yang, C-R; Yuan, S-Y; Tsai, J-J; Tu, C-F; Wang, C-C; Yen, M-C; Lin, C-C

    2010-03-01

    The cytomegalovirus (CMV) promoter is considered to be one of the strongest promoters for driving the in vivo expression of genes encoded by DNA vaccines. However, the efficacy of DNA vaccines has so far been disappointing (particularly in humans), and this might be explained in part by histone deacetylase (HDAC)-mediated chromatin condensation. Hence, we sought to investigate whether increasing the expression of DNA vaccine antigens with the HDAC inhibitor OSU-HDAC42 would enhance the efficacy of DNA vaccines in vivo. A luciferase assay was used to determine the effects of OSU-HDAC42 on CMV promoter-driven DNA plasmids in vitro and in vivo. Three HDAC inhibitors were able to activate expression from the CMV promoter in NIH3T3 cells and MBT-2 bladder cancer cells. The expression of luciferase was significantly enhanced by co-administration of pCMV-luciferase and OSU-HDAC42 in mice. To explore whether OSU-HDAC42 could enhance the specific antitumor activity of a neu DNA vaccine driven by the CMV promoter, we evaluated therapeutic effects and immune responses in a mouse tumor natively overexpressing HER2/neu. Mice receiving OSU-HDAC42 in combination with the CMV-promoter neu DNA vaccine exhibited stronger antitumor effects than mice given the DNA vaccine only. In addition, a correlation between the antitumor effects and the specific cellular immune responses was observed in the mice receiving the DNA vaccine and OSU-HDAC42.

  11. DNA Damage Induced Neuronal Death

    National Research Council Canada - National Science Library

    Kisby, Glen

    1999-01-01

    ... (nitrogen mustard or HN2) and the neurotoxic DNA-damaging agent methylazoxymethanol (MAM) using neuronal and astrocyte cell cultures from different brain regions of mice with perturbed DNA repair...

  12. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

    NARCIS (Netherlands)

    Wagemakers, A.; Mason, L. M. K.; Oei, A.; de Wever, B.; van der Poll, T.; Bins, A. D.; Hovius, J. W. R.

    2014-01-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method

  13. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  14. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection.

    Science.gov (United States)

    Wang, Ledan; Cai, Yiqi; Xiong, Yirong; Du, Wangqi; Cen, Danwei; Zhang, Chanqiong; Song, Yiling; Zhu, Shanli; Xue, Xiangyang; Zhang, Lifang

    2017-05-16

    Chlamydia trachomatis (Ct) is one of the most frequently encountered sexual infection all over the world, yielding tremendous reproductive problems (e.g. infertility and ectopic pregnancy) in the women. This work described the design of a plasmid vaccine that protect mice from Ct infection, and reduce productive tract damage by generating effective antibody and cytotoxic T cell immunity. The vaccine, s was composed of MOMP multi-epitope and HPV16L2 genes carried in pcDNA plasmid (i.e. pcDNA3.1/MOMP/HPV16L). In transfection, the vaccine expressed the chimeric genes (i.e. MOMP and HPV16L2), as demonstrated via western blot, RT-PCR and fluorescence imaging. In vitro, the vaccine transfected COS-7 cells and expressed the proteins corresponding to the genes carried in the vaccine. Through intramuscular immunization in BALB/c mice, the vaccine induced higher levels of anti-Ct IgG titer, anti-HPV16L2 IgG titer in serum and IgA titer in local mucosal secretions, compared to plasmid vaccines that carry only Ct MOMP multi-epitope or HPV16L2 chimeric component only. In mice intravaginally challenged with Ct, the vaccines pcDNA3.1/MOMP/HPV16L2 generated a higher level of genital protection compared to other vaccine formulations. Additionally, histochemical staining indicated that pcDNA3.1/MOMP/HPV16L2 eliminated mouse genital tract tissue pathologies induced by Ct infection. This work demonstrated that pcDNA/MOMP/HPV16L2 vaccine can protect against Ct infection by regulating antibody production, cytotoxic T cell killing functions and reducing pathological damage in mice genital tract. This work can potentially offer us a new vaccine platform against Ct infection.

  15. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Science.gov (United States)

    Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde; Bellier, Bertrand

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases. PMID:25206960

  16. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Directory of Open Access Journals (Sweden)

    Christine Sedlik

    2014-08-01

    Full Text Available The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA antigen to EVs: (a by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin, which is exposed on the surface of secreted membrane vesicles; and (b by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs. We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

  17. Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination.

    Science.gov (United States)

    Lorenzo, Gema; López-Gil, Elena; Ortego, Javier; Brun, Alejandro

    2018-02-21

    The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.

  18. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress

    NARCIS (Netherlands)

    L. Jabaaij (Lea); J. van Hattum (Jan); A.J.J.M. Vingerhoets (Ad); F.G. Oostveen (Frank); H.J. Duivenvoorden (Hugo); R.E. Ballieux (Rudy)

    1996-01-01

    textabstractIn a previous study it was shown that antibody formation after vaccination with a low-dose recombinant DNA (rDNA) hepatitis B vaccine was negatively influenced by psychological stress. The present study was designed to assess whether the same inverse relation between HBs-antibody levels

  19. Undersøgelse af vildtype hvalpesygevirus og DNA vaccination i mink

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2010-01-01

    Hill virus. Herefter undersøgte vi hvorvidt vaccination af mink med DNA vacciner baseret på gener fra vaccinestammer inducerer krydsbeskyttelse mod cirkulerende europæiske hvalpesygevirusstammer. Resultaterne fra vores undersøgelse viste, at DNA vaccinerne havde en beskyttende effekt mod udvikling af...

  20. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Viktoria Stab

    Full Text Available The Respiratory Syncytial Virus (RSV and Influenza A Virus (IAV are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  1. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates.

    Directory of Open Access Journals (Sweden)

    Peter T Loudon

    2010-06-01

    Full Text Available The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99 HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun was analyzed in rhesus macaques.Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine.These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.

  2. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    Science.gov (United States)

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  3. Co-administration of the polysaccharide of Lycium barbarum with DNA vaccine of Chlamydophila abortus augments protection.

    Science.gov (United States)

    Ling, Yong; Li, Shaowen; Yang, Junjing; Yuan, Jilei; He, Cheng

    2011-01-01

    Lycium barbarum polysaccharides (LBP) can stimulate moderate immune responses therefore could potentially be used as a substitute for oil adjuvants in veterinary vaccines. In the present study, it was shown that the isolated active component of LBP3a, combined with a DNA vaccine encoding the major outer membrane protein (MOMP) of Chlamydophila abortus, induced protection in mice against challenge. Sixty BALB/c mice were randomly assigned to 5 groups. Sub-fractions of polysaccharide LBP3a, at 12.5, 25 and 50 mg/kg concentrations, respectively, were mixed with a pCI-neo::MOMP (pMOMP) vaccine. Mice administrated with pCI-neo + LBP3a were served as a control. All mice were inoculated at day 0, 14, and 28, and challenged on day 44. The effects of LBp3a on serum antibody levels, in vitro lymphocyte proliferation, the activity of interleaukin-2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor α(TNF-α)and chlamydia clearance were determined. A combination of DNA vaccine and LBP3a induced significantly higher antibody levels in mice, higher T cell proliferation and higher levels of IFN-γ and IL-2. Mice immunized with DNA and LBP3a also showed significantly higher levels of chlamydia clearance in mice spleens and a greater Th1 immune response. The immunoenhancement induced by 25 mg/kg LBP3a is more effective than that induced by a 12.5 and 50 mg/kg. This implies that LBP3a at 25 mg/kg has a high potential to be used as an effective adjuvant with a DNA vaccine against swine Chlamydophila abortus.

  4. Induction of a protective immune response against swine Chlamydophila abortus infection in mice following co-vaccination of omp-1 DNA with recombinant MOMP.

    Science.gov (United States)

    Zhang, F; Li, S; Yang, J; Yang, L; He, C

    2009-03-01

    Chlamydophila abortus is the causative agent of abortion in pigs and pregnant women. Seroconversion rates were arranged from 11% to 80% in piglets and sows in China. These very high rates illustrate the scale of the problem in China and highlight the urgent need for the development of a C. abortus vaccine. An efficacious anti-chlamydial vaccine should induce not only strong mucosal and systemic T-helper type 1 (Th1) immune response but also give a humoral response that enhances Th1 activation following infection. In order to evaluate an active immune response of a combination of the major outer membrane protein (MOMP) DNA- and protein-based vaccines, 54 BALB/c mice were randomly assigned to six groups and inoculated intramuscularly with: (i) 100 microg pcDNA::MOMP, (ii) 10 microg r-MOMP, (iii) primed with 100 microg pcDNA::MOMP and boosted with 10 microg r-MOMP, (iv) primed-boosted with a combination of pcDNA::MOMP and r-MOMP simultaneously, (v) live-attenuated 1B vaccine, (vi) 100 microg pcDNA3.1 vector. All animals were vaccinated two times at 14 days intervals. Results showed that mice given DNA and r-MOMP induced higher antibody levels, higher T cells proliferation and an elevated level of chlamydial clearance in spleen, which was equivalent to the clearance of 1B vaccine. Mice administrated the DNA-primed/MOMP-boosted approach elicited moderate antibody levels, less T-lymphocyte proliferation and lower chlamydial clearance as compared with 1B vaccine. Co-immunization with DNA- and r-MOMP vaccine may provide novel ways for active immunization strategy against swine C. abortus.

  5. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu–Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice

    Science.gov (United States)

    Escalona, Emilia; Sáez, Darwin; Oñate, Angel

    2017-01-01

    Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu–Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus. PMID:28232837

  6. Virus-like particle secretion and genotype-dependent immunogenicity of dengue virus serotype 2 DNA vaccine.

    Science.gov (United States)

    Galula, Jedhan U; Shen, Wen-Fan; Chuang, Shih-Te; Chang, Gwong-Jen J; Chao, Day-Yu

    2014-09-01

    evaluated for their immunogenicity, homologous and heterologous neutralizing (Nt) antibody titers, and cross-genotype protection in a murine model. The immunity elicited by our prototype vaccine candidate (Asian 1 genotype strain 16681) in mice was protective against viruses of other genotypes but not against virus of the Sylvatic genotype, whose emergence and potential risk after introduction into the human population have previously been demonstrated. The underlying mechanism of a lack of protection elicited by the prototype vaccine may at least be contributed by the absence of a flavivirus subgroup-cross-reactive, highly neutralizing monoclonal antibody 1B7-5-like epitope in DENV-2 of the Sylvatic genotype. The DENV DNA vaccine directs the synthesis and assembly of virus-like particles (VLPs) and induces immune responses similar to those elicited by live-attenuated vaccines, and its flexibility permits the fast deployment of vaccine to combat emerging viruses, such as Sylvatic genotype viruses. The enhanced VLP secretion obtained by replacement of ectodomain I-II (EDI-II) of the Cosmopolitan genotype vaccine construct (VD2-Cosmopolitan) with the Asian 1 EDI-II elicited significantly higher total IgG and Nt antibody titers and suggests a novel approach to enhance the immunogenicity of the DNA vaccine. A DENV vaccine capable of eliciting protective immunity against viruses of existing and emerging genotypes should be the focus of future DENV vaccine development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice : Influence of the route of vaccine administration

    NARCIS (Netherlands)

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Gostick, Emma; Price, David A.; Huckriede, Anke; Wilschut, Jan

    2013-01-01

    Background Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal

  8. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggest novel combinatorial approaches for enhancing responses

    OpenAIRE

    Vargas-Inchaustegui, Diego A.; Tuero, Iskra; Mohanram, Venkatramanan; Musich, Thomas; Pegu, Poonam; Valentin, Antonio; Sui, Yongjun; Rosati, Margherita; Bear, Jenifer; Venzon, David J.; Kulkarni, Viraj; Alicea, Candido; Pilkington, Guy R.; Liyanage, Namal P.M.; Demberg, Thorsten

    2014-01-01

    Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given so...

  9. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium.

    Science.gov (United States)

    Jiang, Hao; Hu, Yijun; Yang, Mei; Liu, Hao; Jiang, Guangshui

    2017-05-01

    The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (Panti-caries DNA vaccine when employing attenuated Salmonella as delivering vehicle for mucosal immunization. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Influence of temperature on the efficacy of homologous and heterologous DNA vaccines against viral hemorrhagic septicemia in Pacific Herring

    Science.gov (United States)

    Hart, Lucas; Lorenzen, Niels; Einer-Jensen, Katja; Purcell, Maureen; Hershberger, Paul

    2017-01-01

    Homologous and heterologous (genogroup Ia) DNA vaccines against viral hemorrhagic septicemia virus (genogroup IVa) conferred partial protection in Pacific Herring Clupea pallasii. Early protection at 2 weeks postvaccination (PV) was low and occurred only at an elevated temperature (12.6°C, 189 degree days), where the relative percent survival following viral exposure was similar for the two vaccines (IVa and Ia) and higher than that of negative controls at the same temperature. Late protection at 10 weeks PV was induced by both vaccines but was higher with the homologous vaccine at both 9.0°C and 12.6°C. Virus neutralization titers were detected among 55% of all vaccinated fish at 10 weeks PV. The results suggest that the immune response profile triggered by DNA vaccination of herring was similar to that reported for Rainbow Trout Oncorhynchus mykiss by Lorenzen and LaPatra in 2005, who found interferon responses in the early days PV and the transition to adaptive response later. However, the protective effect was far less prominent in herring, possibly reflecting different physiologies or adaptations of the two fish species.

  11. Frequency and persistency of DNA vaccine encoding GP25 by oral on common carp

    Directory of Open Access Journals (Sweden)

    Sri Nuryati

    2015-05-01

    Full Text Available ABSTRACT Koi herpesvirus (KHV is a major viral pathogen that infects common carp and koi. KHV disease outbreak is happened in almost all centre of common carp culture in Indonesia and caused mass mortality. Deoxyribonucleic acid (DNA vaccination method is one of ways to cope with KHV infection. Vaccines were commonly given by injection. The aim of this research was to get frequency and persistency of DNA vaccine encoding GP25 given by oral delivery method in common carp. This research would like to determine dose, frequency of vaccination, persistency of DNA vaccine and culture medium for the bacterial host. DNA vaccine persistency test was done by using polymerase chain reaction (PCR method with the specific primer for GP25 gene. The results showed that level of DNA vaccine that could be detected in feed was 7.56 ng (equal to 1.598×1010 copies. Efficient culture medium for Escherichia coli DH5α carrying DNA vaccine was LB triptone. Feeding fish with diet supplemented with 1 mL E. coli DH5α containing DNA vaccine for each fish and two times a week allowed persistence of DNA vaccine in kindney and spleen. Keywords: common carp, KHV, DNA vaccine, GP25, persistance  ABSTRAK Koi herpesvirus (KHV adalah virus patogen utama yang menginfeksi ikan mas dan ikan koi. Wabah penyakit KHV terjadi di hampir semua sentra budidaya ikan mas di Indonesia dan menyebabkan kematian massal ikan. Metode vaksinasi DNA merupakan salah satu cara yang dapat dilakukan untuk menanggulangi serangan KHV. Pemberian vaksin umumnya dilakukan dengan cara injeksi. Tujuan penelitian ini adalah untuk menguji frekuensi dan persistensi vaksin DNA GP25 antivirus KHV yang diberikan melalui oral pada ikan mas. Pada penelitian ini dilakukan uji dosis, frekuensi pemberian vaksin, persistensi vaksin DNA, dan media kultur bakteri inang. Persistensi vaksin DNA dianalisis menggunakan metode PCR dengan primer spesifik gen GP25. Hasil penelitian menunjukkan bahwa dosis vaksin DNA yang

  12. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  13. Assessment of a DNA vaccine encoding an anchored-glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis

    Directory of Open Access Journals (Sweden)

    Eduardo JM Nascimento

    2007-02-01

    Full Text Available Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a. Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a was observed.

  14. A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response

    Directory of Open Access Journals (Sweden)

    Yao Ma

    2018-01-01

    Full Text Available Human respiratory syncytial virus (RSV is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.

  15. The Synergistic Effect of Combined Immunization with a DNA Vaccine and Chimeric Yellow Fever/Dengue Virus Leads to Strong Protection against Dengue

    Science.gov (United States)

    Azevedo, Adriana S.; Gonçalves, Antônio J. S.; Archer, Marcia; Freire, Marcos S.; Galler, Ricardo; Alves, Ada M. B.

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes. PMID:23472186

  16. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Science.gov (United States)

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  17. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  18. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins

    Directory of Open Access Journals (Sweden)

    Sailaja Gangadhara

    2017-12-01

    Full Text Available Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1. To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP, and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env. DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN-γ, and spleen cells producing interleukin (IL-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  19. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Hearn, Jason; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2014-06-15

    Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 μg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  1. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roger Le Grand

    2013-07-01

    Full Text Available HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb. We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  2. Influenza vaccine induces intracellular immune memory of human NK cells.

    Science.gov (United States)

    Dou, Yaling; Fu, Binqing; Sun, Rui; Li, Wenting; Hu, Wanfu; Tian, Zhigang; Wei, Haiming

    2015-01-01

    Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.

  3. What you always needed to know about electroporation based DNA vaccines

    DEFF Research Database (Denmark)

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle......, and it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment efforts...... on vaccine development. The purpose of this review is to give a succinct but comprehensive overview of electroporation as a delivery modality including electrotransfer to skin and muscle. As well, this review will speculate and discuss future uses for this powerful electrotransfer technology....

  4. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida

    Directory of Open Access Journals (Sweden)

    Satparkash Singh

    2011-06-01

    Full Text Available Haemorrhagic Septicaemia (HS, an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  5. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.

    Science.gov (United States)

    Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2013-06-28

    Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Pneumococcal vaccination: conjugated vaccine induces herd immunity and reduces antibiotic resistance].

    Science.gov (United States)

    Pletz, M W; Maus, U; Hohlfeld, J M; Lode, H; Welte, T

    2008-02-01

    Pneumococcal infections (pneumonia, otitis media, sinusitis, meningitis) are common and usually involve toddlers and the elderly. Currently, two pneumococcal vaccines are in clinical use. The older vaccine consists of pure capsular polysaccharides from 23 pneumococcal serotypes and induces only a limited B-cell response because polysaccharides are poor antigens that stimulate mainly B-cells. In 2000, a vaccination program with a novel 7-valent pneumococcal conjugate vaccine was launched in the U.S. The conjugation of capsular polysaccharides with a highly immunogenic diphtheria toxoid protein induces both a T cell and B cell response that results in specific humoral and mucosal immunity. Since children are the main reservoir of pneumococci, the 7-valent conjugate vaccine seems to eradicate the respective pneumococcal serotypes within the population, as demonstrated by recent US data. Pronounced herd immunity resulted in a decrease in invasive pneumococcal diseases in vaccinees and non-vaccinees as well as in a reduction of antibiotic resistance rates. However, recent data suggest a replacement of vaccine-serotypes by non-vaccine serotypes, which conquer the ecological niche created by the vaccine. In order to encounter this problem a 13-valent conjugated vaccine is currently under development.

  7. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i.......d.) injection of plasmid DNA. This indicates, that the ear is an attractive site for gene gun vaccination of pigs....

  8. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids.

    Science.gov (United States)

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-02-16

    Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx.

  9. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids

    Science.gov (United States)

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-01-01

    Background: Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. Methods: We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. Results: HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. Conclusions: We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx. PMID:26867163

  10. Coxiella burnetii DNA in goat milk after vaccination with Coxevac(®).

    Science.gov (United States)

    Hermans, Mirjam H A; Huijsmans, C Ronald J J; Schellekens, Jeroen J A; Savelkoul, Paul H M; Wever, Peter C

    2011-03-24

    Q fever is a zoonotic disease caused by Coxiella burnetii, a species of bacteria that is distributed globally. A large Q fever epidemic is currently spreading throughout the Netherlands with more than 3500 human cases notified from 2007 to 2009. Governmental measures to prevent further spread of the disease imposed in December 2009 included vaccination of all dairy goats and sheep and, in parallel, bulk tank milk testing to identify contaminated goat and sheep farms. When bulk tank milk was found to contain C. burnetii DNA, pregnant ruminants were culled. An important, but unsolved issue in this policy was whether vaccine-derived C. burnetii DNA is excreted in milk after vaccination. Using real time PCR and single nucleotide polymorphism (SNP) genotyping techniques, we show here that within hours and up to 9 days after vaccination with Coxevac(®), vaccine-derived C. burnetii DNA can be detected in the milk of dairy goats. This is the first report describing DNAlactia of vaccine-derived DNA after vaccination with a completely inactivated vaccine. This finding had implications for the Dutch policy to combat the Q fever epidemic. A 2-week interval was introduced between vaccination and bulk tank milk testing to identify infected farms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    Science.gov (United States)

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  13. Therapeutic Vaccination for HPV Induced Cervical Cancers

    OpenAIRE

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining th...

  14. Immune responses against chimeric DNA and protein vaccines composed of plpEN-OmpH and PlpEC-OmpH from Pasteurella multocida A:3 in mice.

    Science.gov (United States)

    Okay, Sezer; Ozcengiz, Erkan; Ozcengiz, Gülay

    2012-12-01

    Pasteurella multocida is a pathogenic bacterium causing many diseases that are of significant economic importance to livestock industries. Outer membrane protein H (ompH) gene and two fragments of Pasteurella lipoprotein E (plpE) gene, namely plpEN and plpEC, were cloned from P. multocida A:3. Three DNA vaccine formulations, namely pCMV-ompH, pCMV-plpEN-ompH and pCMV-plpEC-ompH and two protein-based prototype vaccines, alum adjuvanted PlpEN-OmpH and PlpEC-OmpH, were generated. Antibody levels were induced in mice vaccinated with chimeric DNA or protein vaccines. A significant (p multocida A:3. However, 40% protection was conferred by 100 μg of PlpEC-OmpH which was not statistically significant. These results showed that plpEN-ompH and plpEC-ompH chimeric DNA vaccines and alum adjuvanted PlpEN-OmpH or PlpEC-OmpH protein vaccines were immunogenic but not protective against P. multocida A:3 in mice. Prime-boost strategies, i.e. priming with DNA vaccines and boost with protein formulations or different adjuvants can be utilized to obtain significant protection.

  15. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  16. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  17. Evaluation of humoral and cellular immune responses to a DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Xiao, Zhao; Juan, Long; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    A major challenge in the development of effective therapies for rheumatoid arthritis (RA) is finding a method for the specific inhibition of the inflammatory disease processes without the induction of generalized immunosuppression. Of note, the development of therapeutic DNA vaccines and boosters that may restore immunological tolerance remains a high priority. pcDNA-CCOL2A1 is a therapeutic DNA vaccine encoding chicken type II collagen(CCII). This vaccine was developed by our laboratory and has been shown to exhibit efficacy comparable to that of the current "gold standard" treatment, methotrexate (MTX). Here, we used enzyme-linked immunosorbent assays with anti-CII IgG antibodies, quantified the expression levels of Th1, Th2, and Th3 cytokines, and performed flow cytometric analyses of different T-cell subsets, including Th1, Th2, Th17, Tc, Ts, Treg, and CD4(+)CD29(+)T cells to systemically evaluate humoral and cellular immune responses to pcDNA-CCOL2A1 vaccine in normal rats. Similar to our observations at maximum dosage of 3 mg/kg, vaccination of normal rats with 300 μg/kg pcDNA-CCOL2A1 vaccine did not induce the production of anti-CII IgG. Furthermore, no significant changes were observed in the expression levels of pro-inflammatory cytokines interleukin (IL)-1α, IL-5, IL-6, IL-12(IL-23p40), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, regulated on activation in normal T-cell expressed and secreted (RANTES), receptor activator for nuclear factor-κB ligand (RANKL), and granulocyte colony-stimulating factor (G-CSF) or anti-inflammatory cytokines IL-4 and IL-10 in vaccinated normal rats relative to that in controls(P > 0.05). However, transforming growth factor (TGF)-β levels were significantly increased on days 10 and 14, while interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels were significantly decreased on days 28 and 35 after vaccination(P 0.05), with the exception of Treg cells, which were significantly

  18. Blocking Blood Supply to Breast Carcinoma with a DNA Vaccine Encoding VEGF Receptor-2

    National Research Council Canada - National Science Library

    Xiang, Rong

    2003-01-01

    Proof of concept was established for the hypothesis driving this project indicating that effective suppression of tumor angiogenesis can be achieved with a DNA vaccine encoding murine VEGF receptor-2 (FLK-l...

  19. Blocking Blood Supply to Breast Carcinoma with a DNA Vaccine Encoding VEGF Receptor-2

    National Research Council Canada - National Science Library

    Xiang, Rong

    2004-01-01

    .... In our second fiscal year, we demonstrated proof of concept indicating that effective suppression of tumor angiogenesis can be achieved with a DNA vaccine encoding either muring VEGF receptor-2 (Flk-1...

  20. An Oral DNA Vaccine Encoding Endoglin Eradicates Breast Tumors by Blocking Their Blood Supply

    National Research Council Canada - National Science Library

    Reisfeld, Ralph A

    2007-01-01

    In an effort to meet the urgent need for the development of novel and effective treatments for metastatic breast cancer, we developed and evaluated a novel, oral DNA vaccine targeting endoglin (CD105...

  1. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  2. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China

    Science.gov (United States)

    Xu, Liming; Zhao, Jingzhuang; Liu, Miao; Kurath, Gael; Ren, Guangming; LaPatra, Scott E.; Yin, Jiasheng; Liu, Hongbai; Feng, Jian; Lu, Tongyan

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In this study, a DNA vaccine, designated pIHNch-G, was constructed with the glycoprotein (G) gene of a Chinese IHNV isolate SD-12 (also called Sn1203) of genotype J. The minimal dose of vaccine required, the expression of the Mx-1 gene in the muscle (vaccine delivery site) and anterior kidney, and the titers of the neutralizing antibodies produced were used to evaluate the vaccine efficacy. To assess the potential utility of the vaccine in controlling IHNV throughout China, the cross protective efficacy of the vaccine was determined by challenging fish with a broad range of IHNV strains from different geographic locations in China. A single 100 ng dose of the vaccine conferred almost full protection to rainbow trout fry (3 g) against waterborne or intraperitoneal injection challenge with IHNV strain SD-12 as early as 4 days post-vaccination (d.p.v.), and significant protection was still observed at 180 d.p.v. Intragenogroup challenges showed that the DNA vaccine provided similar protection to the fish against all the Chinese IHNV isolates tested, suggesting that the vaccine can be widely used in China. Mx-1 gene expression was significantly upregulated in the muscle tissue (vaccine delivery site) and anterior kidney in the vaccinated rainbow trout at both 4 and 7 d.p.v. Similar levels of neutralizing antibodies were determined with each of the Chinese IHNV strains at 60 and 180 d.p.v. This DNA vaccine should play an important role in the control of IHN in China.

  3. MDA5 can be exploited as efficacious genetic adjuvant for DNA vaccination against lethal H5N1 influenza virus infection in chickens.

    Directory of Open Access Journals (Sweden)

    Matthias Liniger

    Full Text Available Chickens lack the retinoic acid-inducible gene I (RIG-I and sense avian influenza virus (AIV infections by means of the melanoma differentiation-associated gene 5 product (chMDA5. Plasmid-driven expression of the N-terminal half of chMDA5 containing the caspase activation and recruitment domains [chMDA5(1-483] triggers interferon-β responses in chicken cells. We hypothesized that mimicking virus infection by chMDA5(1-483 expression may enhance vaccine-induced adaptive immunity. In order to test this, the potential genetic adjuvant properties of chMDA5(1-483 were evaluated in vivo in combination with a suboptimal quantity of a plasmid DNA vaccine expressing haemagglutinin (HA of H5N1 AIV. Co-administration of the HA plasmid with plasmid DNA for chMDA5(1-483 expression resulted in approximately 10-fold higher HA-specific antibody responses than injection of the HA plasmid mixed with empty vector DNA as control. Accordingly, compared with HA DNA vaccination alone, the chMDA5(1-483-adjuvanted HA DNA vaccine mediated enhanced protection against a lethal H5N1 challenge infection in chickens, with reduced clinical signs and cloacal virus shedding. These data demonstrate that innate immune activation by expression of signaling domains of RIG-I-like receptors can be exploited to enhance vaccine efficacy.

  4. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV

    Directory of Open Access Journals (Sweden)

    J Hinkula

    2017-06-01

    Conclusions: HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.

  5. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  6. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    Science.gov (United States)

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-07

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis.

    Science.gov (United States)

    Bergmann-Leitner, Elke S; Leitner, Wolfgang W; Duncan, Elizabeth H; Savranskaya, Tatyana; Angov, Evelina

    2009-09-18

    Malaria represents a major global health problem but despite extensive efforts, no effective vaccine is available. Various vaccine candidates have been developed that provide protection in animal models, such as a gene gun-delivered DNA vaccine encoding the circumsporozoite protein (CSP) of Plasmodium berghei. A common shortcoming of most malaria vaccines is the requirement for multiple immunizations leaving room for improvement even for established vaccine candidates such as the CSP-DNA vaccine. In this study, we explored whether regulating apoptosis in DNA vaccine transfected host cells could accelerate the onset of protective immunity and provide significant protection after a single immunization. A pro-apoptotic gene (Bax) was used as a molecular adjuvant in an attempt to mimic the immunostimulatory apoptosis triggered by viral or virus-derived vaccines, while anti-apoptotic genes such as Bcl-XL may increase the life span of transfected cells thus prolonging antigen production. Surprisingly, co-delivery of either Bax or Bcl-XL greatly reduced CSP-DNA vaccine efficacy after a single immunization. Co-delivery of Bax for three immunizations still had a detrimental effect on protective immunity, while repeated co-delivery of Bcl-XL had no negative impact. The fine characterization of humoral and cellular immune response modulated by these two molecular adjuvants revealed a previously unknown effect, i.e., a shift in the Th-profile. These results demonstrate that pro- or anti-apoptotic molecules should not be used as molecular adjuvants without careful evaluation of the resulting immune response. This finding represents yet another example that strategies to enhance vaccine efficacy developed for other model systems such as viral diseases cannot easily be applied to any vaccine.

  8. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  9. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA enhances CD8+ T Cell responses providing protection against Leishmania (Viannia.

    Directory of Open Access Journals (Sweden)

    Asha Jayakumar

    2011-06-01

    Full Text Available Leishmania (Viannia parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective.Using a newly developed mouse model of chronic L. (Viannia panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP could provide protection against infection/disease.Heterologous prime - boost (DNA/MVA vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V. panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses.Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that

  10. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Science.gov (United States)

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  11. Vacunas de ADN: inducción de la respuesta inmunitaria DNA Vaccines: Induction of the immune response

    Directory of Open Access Journals (Sweden)

    Javier Mota-Sánchez

    2009-01-01

    Full Text Available La efectividad de las vacunas y la inmunización en la prevención de las enfermedades infecciosas es uno de los grandes avances de la medicina. En la actualidad, el acceso a la tecnología de punta en el área de la genómica y la proteómica ha hecho posible acelerar el desarrollo de nuevos modelos de vacunas con características mejoradas en aspectos fundamentales, como la inmunogenicidad y la seguridad. A casi dos décadas del primer informe, en el cual se demostró que un gen puede expresarse mediante la inyección directa de ADN desnudo, las vacunas de ADN han probado ser eficientes para inducir una respuesta inmunitaria protectora contra parásitos, virus y bacterias en diversos modelos animales. Esta revisión tiene por objetivo presentar un panorama general de las vacunas de ADN y los mecanismos mediante los cuales la inmunización con antígenos insertados en vectores de ADN (plásmidos inducen una respuesta inmunitaria.The effectiveness of vaccines and immunization in the prevention of infectious diseases is one of the greatest successes in medicine. In recent years, with access to cutting edge genomic and proteomic technology, it is possible to accelerate the development of new and improved vaccines with better immunogenicity and safety characteristics. Since the first report almost two decades ago, where it was demonstrated that gene expression is possible by directed injection of naked DNA, DNA vaccines have been proven to induce protective immune responses against parasites, virus and bacterium in diverse animal disease models. This review aims to present an overview about DNA vaccines and the mechanisms by which immune responses are induced after immunization with plasmid DNA-encoded antigens.

  12. Induction of neutralizing antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent DNA vaccines.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2014-01-01

    DNA vaccine against dengue is an interesting strategy for a prime/boost approach. This study evaluated neutralizing antibody (NAb) induction of a dengue tetravalent DNA (TDNA) vaccine candidate administered by intramuscular-electroporation (IM-EP) and the benefit of homologous TDNA boosting in mice. Consensus humanized pre-membrane (prM) and envelope (E) of each serotypes, based on isolates from year 1962-2003, were separately cloned into a pCMVkan expression vector. ICR mice, five-six per group were immunized for three times (2-week interval) with TDNA at 100 µg (group I; 25 µg/monovalent) or 10 µg (group II; 2.5 µg/monovalent). In group I, mice received an additional TDNA boosting 13 weeks later. Plaque reduction neutralization tests (PRNT) were performed at 4 weeks post-last immunization. Both 100 µg and 10 µg doses of TDNA induced high NAb levels against all DENV serotypes. The median PRNT50 titers were comparable among four serotypes of DENV after TDNA immunization. Median PRNT50 titers ranged 240-320 in 100 µg and 160-240 in 10 µg groups (p = ns). A time course study of the 100 µg dose of TDNA showed detectable NAb at 2 weeks after the second injection. The NAb peaked at 4 weeks after the third injection then declined over time but remained detectable up to 13 weeks. An additional homologous TDNA boosting significantly enhanced the level of NAb from the nadir for at least ten-fold (pdengue viral strain for both vaccine immunogen design and neutralization assays is critical to avoid a mismatching outcome. In summary, this TDNA vaccine candidate induced good neutralizing antibody responses in mice; and the DNA/DNA prime/boost strategy is promising and warranted further evaluation in non-human primates.

  13. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    Science.gov (United States)

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA

  14. Unveiling Unexpected Immune Activities Induced by Your Pneumococcal Vaccine

    Directory of Open Access Journals (Sweden)

    Julia L. Hurwitz

    2016-03-01

    Full Text Available In modern-day vaccine design, a good pneumococcal capsular polysaccharide vaccine is measured by its ability to induce opsonic antibodies. These antibodies label bacteria for phagocytosis by neutrophils and thereby overcome the capsule’s barrier function. Doyle and Pirofski have raised a serious challenge to the current paradigm by describing anti-capsular antibodies that are highly protective but nonopsonic [C.R. Doyle and L. Pirofski, mBio 7(1:e02260-15, 2016, doi:10.1128/mBio.02260-15]. In fact, some functions are not related to neutrophils or phagocytosis at all. An increased awareness of these activities is critical not only for accurate comparisons of vaccine candidates but also for improvements in vaccination outcomes in settings of neutropenia. When vaccine developers select a single gatekeeper assay (e.g., an opsonophagocytic assay for bacteria or a neutralization assay for viruses, promising vaccine candidates may be missed. Doyle and Pirofski stress that multiple functions, not just one, should be investigated to enhance discovery of antibody mechanisms and to best assess vaccine-induced correlates of immune protection.

  15. Protective effect of the DNA vaccine encoding the major house dust mite allergens on allergic inflammation in the murine model of house dust mite allergy

    Directory of Open Access Journals (Sweden)

    Lee Jaechun

    2006-02-01

    Full Text Available Abstract Background Vaccination with naked DNA encoding antigen induces cellular and humoral immunity characterized by the activation of specific Th1 cells. Objective To evaluate the effects of vaccination with mixed naked DNA plasmids encoding Der p 1, Der p 2, Der p 3, Der f 1, Der f 2, and Der f 3, the major house dust mite allergens on the allergic inflammation to the whole house dust mites (HDM crude extract. Methods Three hundred micrograms of these gene mixtures were injected into muscle of BALB/c mice. Control mice were injected with the pcDNA 3.1 blank vector. After 3 weeks, the mice were actively sensitized and inhaled with the whole house dust mite extract intranasally. Results The vaccinated mice showed a significantly decreased synthesis of total and HDM-specific IgE compared with controls. Analysis of the cytokine profile of lymphocytes after challenge with HDM crude extract revealed that mRNA expression of interferon-γ was higher in the vaccinated mice than in the controls. Reduced infiltration of inflammatory cells and the prominent infiltration of CD8+ T cells were observed in histology of lung tissue from the vaccinated mice. Conclusion Vaccination with DNA encoding the major house dust mite allergens provides a promising approach for treating allergic responses to whole house dust mite allergens.

  16. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  17. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  18. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine

    2004-01-01

    Porcine circovirus type 2 (PCV2) is the causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome (PMWS). The disease affects primarily 5-12-weeks-old pigs which might suggest that infection with PCV2 occurs when the level of maternal antibodies have declined to sub......-protective levels around weaning at 3-5-weeks of age. If immunoprophylaxis is to be effective, an immunisation method capable of breaking through maternal immunity must be employed. In this study, we have developed and investigated the potential of a DNA vaccination approach to be one such method. The gene encoding...... the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...

  19. Increasing versatility of the DNA vaccines through modification of the subcellular location of plasmid-encoded antigen expression in the in vivo transfected cells.

    Directory of Open Access Journals (Sweden)

    Alicia Martinez-Lopez

    Full Text Available The route of administration of DNA vaccines can play a key role in the magnitude and quality of the immune response triggered after their administration. DNA vaccines containing the gene of the membrane-anchored glycoprotein (gpG of the fish rhabdoviruses infectious haematopoietic necrosis virus (IHNV or viral haematopoietic septicaemia virus (VHSV, perhaps the most effective DNA vaccines generated so far, confer maximum protection when injected intramuscularly in contrast to their low efficacy when injected intraperitoneally. In this work, taking as a model the DNA vaccine against VHSV, we focused on developing a more versatile DNA vaccine capable of inducing protective immunity regardless of the administration route used. For that, we designed two alternative constructs to gpG₁₋₅₀₇ (the wild type membrane-anchored gpG of VHSV encoding either a soluble (gpG₁₋₄₆₂ or a secreted soluble (gpG(LmPle20-462 form of the VHSV-gpG. In vivo immunisation/challenge assays showed that only gpG(LmPle20-462 (the secreted soluble form conferred protective immunity against VHSV lethal challenge via both intramuscular and intraperitoneal injection, being this the first description of a fish viral DNA vaccine that confers protection when administered intraperitoneally. Moreover, this new DNA vaccine construct also conferred protection when administered in the presence of an oil adjuvant suggesting that DNA vaccines against rhabdoviruses could be included in the formulation of current multicomponent-intaperitoneally injectable fish vaccines formulated with an oil adjuvant. On the other hand, a strong recruitment of membrane immunoglobulin expressing B cells, mainly membrane IgT, as well as t-bet expressing T cells, at early times post-immunisation, was specifically observed in the fish immunised with the secreted soluble form of the VHSV-gpG protein; this may indicate that the subcellular location of plasmid-encoded antigen expression in the in

  20. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  1. Construction and Immunogenicity of DNA Vaccines Encoding Fusion Protein of Porcine IFN-λ1 and GP5 Gene of Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Luping Du

    2013-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV has been mainly responsible for the catastrophic economic losses in pig industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. Thus, the focus and direction is to develop safer and more effective vaccines in the research field of PRRS. The immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. IFN-λ1 belongs to type III interferon, a new interferon family. IFN-λ1 is an important cytokine with multiple functions in innate and acquired immunity. In this study, porcine IFN-λ1 (PoIFN-λ1 was evaluated for its adjuvant effects on the immunity of a DNA vaccine carrying the GP5 gene of PRRSV. Groups of mice were immunized twice at 2-week interval with 100 μg of the plasmid DNA vaccine pcDNA3.1-SynORF5, pcDNA3.1-PoIFN-λ1-SynORF5, and the blank vector pcDNA3.1, respectively. The results showed that pcDNA3.1-PoIFN-λ1-SynORF5 can significantly enhance GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, and lymphocyte proliferation ratherthan the responses induced by pcDNA3.1-SynORF5. Therefore, type III interferon PoIFN-λ1 could enhance the immune responses of DNA vaccine of PRRSV, highlighting the potential value of PoIFN-λ1 as a molecular adjuvant in the prevention of PRRSV infection.

  2. Induction of proapoptotic antibodies to triple-negative breast cancer by vaccination with TRAIL death receptor DR5 DNA.

    Science.gov (United States)

    Piechocki, Marie P; Wu, Gen Sheng; Jones, Richard F; Jacob, Jennifer B; Gibson, Heather; Ethier, Stephen P; Abrams, Judith; Yagita, Hideo; Venuprasad, K; Wei, Wei-Zen

    2012-12-01

    TNF-related apoptosis-inducing ligand receptor 2 [TRAIL-R2 or death receptor 5 (DR5)] is expressed at elevated levels in a broad range of solid tumors to mediate apoptotic signals from TRAIL or agonist antibodies. We tested the hypothesis that DR5 DNA vaccination will induce proapoptotic antibody to trigger apoptosis of tumor cells. BALB/c mice were electrovaccinated with DNA-encoding wild-type human DR5 (phDR5) or its derivatives. Resulting immune serum or purified immune IgG induced apoptosis in triple-negative breast cancer (TNBC) cells, which were also TRAIL sensitive. The proapoptotic activity of immune serum at dilutions of 0.5-2% was comparable to that of 1-2 μg/ml of TRAIL. Apoptotic activity of immune serum was enhanced by antibody crosslinking. Apoptotic cell death induced by anti-DR5 antibody was shown by the cleavage of PARP and caspase-3. In contrast, immune serum had no effect on the proliferation of activated human T cells, which expressed low levels of DR5. In vivo, hDR5 reactive immune serum prevented growth of SUM159 TNBC cells in severe combined immune-deficient mice. DR5-specific IFN-γ-secreting T cells were also induced by DNA vaccination. Furthermore, the feasibility to overcome immune tolerance to self DR5 was shown by the induction of mouse DR5-binding antibody after electrovaccination of BALB/c mice with pmDR5ectm-Td1 encoding a fusion protein of mouse DR5 and an immunogenic fragment of tetanus toxin. These findings support DR5 as a promising vaccine target for controlling TNBC and other DR5-positive cancers. Copyright © 2012 UICC.

  3. Heterologous HA DNA vaccine prime--inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses.

    Science.gov (United States)

    Wang, Shixia; Parker, Chris; Taaffe, Jessica; Solórzano, Alicia; García-Sastre, Adolfo; Lu, Shan

    2008-07-04

    The trivalent inactivated vaccine (TIV) is used to prevent seasonal influenza virus infection in humans, however, the immunogenicity of this vaccine may be influenced by the priming effect of previous influenza vaccinations or exposure to antigenically related influenza viruses. The current study examines the immunogenicity of a clinically licensed TIV in rabbits naïve to influenza antigens. Animals were immunized with either the licensed TIV, a bivalent (H1 and H3) HA DNA vaccine or the combination of both. Temporal and peak level serum anti-influenza virus IgG responses were determined by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were measured by hemagglutination inhibition and microneutralization against either A/NewCaledonia//20/99 (H1N1) or A/Panama/2007/99 (H3N2) influenza viruses. Our results demonstrate that the immunogenicity of the TIV is low in sero-negative animals. More significantly, the heterologous DNA prime-TIV boost regimen was more immunogenic than the homologous prime-boost using either TIV or DNA vaccines alone. This finding justifies further investigation of HA DNA vaccines as a priming immunogen for the next generation of vaccines against seasonal or pandemic influenza virus infections.

  4. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Ma, Jiang-Yao; Hao, Le; Liu, Zhen-Xing

    2017-07-01

    Streptococcus agalactiae (S. agalactiae) is an important fish pathogen, which has received more attention in the past decade due to the increasing economic losses in the tilapia industry worldwide. As existing effective vaccines of S. agalactiae in fish have obvious disadvantage, to select immunoprotective antigens and package materials would undoubtedly contribute to the development of novel oral vaccines. In the present study, surface immunogenic protein (sip) was selected from the S. agalactiae serovar I a genomes as immunogenic protein in DNA vaccine form with cationic chitosan and biodegradable and biocompatible PLGA. The pcSip plasmid in cationic-PLGA was successfully expressed in tissues of immunized tilapia and the immunogenicity was assessed in tilapia challenge model. A significant increase was observed in the cytokine levels of IL-1β, TNF-α, CC1, CC2 in spleen and kidney tissues. Furthermore, immunized tilapia conferred different levels of protection against challenge with a lethal dose of highly virulent serovar I a S. agalactiae. Our results indicated that the pcSip plasmid in cationic-PLGA induced high level of antibodies and protection against S. agalactiae infection, could be effective oral DNA vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    Science.gov (United States)

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis. © 2013 John Wiley & Sons Ltd.

  6. Increased generation of HIV-1 gp120-reactive CD8+ T cells by a DNA vaccine construct encoding the chemokine CCL3.

    Directory of Open Access Journals (Sweden)

    Inger Øynebråten

    Full Text Available DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC could increase the immune response to surface envelope glycoprotein (Env gp120 from Human Immunodeficiency Virus type 1 (HIV-1. To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv specific for the major histocompatibility complex (MHC class II I-E molecules, and the CC chemokine ligand 3 (CCL3. The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8+ T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.

  7. Protective efficacy of a broadly cross-reactive swine influenza DNA vaccine encoding M2e, cytotoxic T lymphocyte epitope and consensus H3 hemagglutinin

    Science.gov (United States)

    2012-01-01

    Background Pigs have been implicated as mixing reservoir for the generation of new pandemic influenza strains, control of swine influenza has both veterinary and public health significance. Unlike human influenza vaccines, strains used for commercially available swine influenza vaccines are not regularly replaced, making the vaccines provide limited protection against antigenically diverse viruses. It is therefore necessary to develop broadly protective swine influenza vaccines that are efficacious to both homologous and heterologous virus infections. In this study, two forms of DNA vaccines were constructed, one was made by fusing M2e to consensus H3HA (MHa), which represents the majority of the HA sequences of H3N2 swine influenza viruses. Another was made by fusing M2e and a conserved CTL epitope (NP147-155) to consensus H3HA (MNHa). Their protective efficacies against homologous and heterologous challenges were tested. Results BALB/c mice were immunized twice by particle-mediated epidermal delivery (gene gun) with the two DNA vaccines. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2 strains representative of different evolutional and antigenic clusters were used to challenge the vaccine-immunized mice (homosubtypic challenge). Results indicated that both of the DNA vaccines prevented homosubtypic virus infections completely. The vaccines’ heterologous protective efficacies were further tested by challenging with a H1N1 swine influenza virus and a reassortant 2009 pandemic strain. It was found that MNHa reduced the lung viral titers significantly in both challenge groups, histopathological observation showed obvious reduction of lung pathogenesis as compared to MHa and control groups. Conclusions The combined utility of the consensus HA and the conserved M2e and CTL epitope can confer complete and partial protection against homologous and

  8. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  9. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    Science.gov (United States)

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    Science.gov (United States)

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-11-17

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  11. Pilot study of p62 DNA vaccine in dogs with mammary tumors.

    Science.gov (United States)

    Gabai, Vladimir; Venanzi, Franco M; Bagashova, Elena; Rud, Oksana; Mariotti, Francesca; Vullo, Cecilia; Catone, Giuseppe; Sherman, Michael Y; Concetti, Antonio; Chursov, Andrey; Latanova, Anastasia; Shcherbinina, Vita; Shifrin, Victor; Shneider, Alexander

    2014-12-30

    Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for the prevention and treatment of canine and feline cancers. The second more important benefit of testing anti-cancer vaccines in dogs is that spontaneous tumors in dogs may provide invaluable information for human trials. Here, we evaluated the effect(s) of p62 DNA vaccine on mammary tumors of dogs. We found that p62 DNA vaccine administered i.m. decreased or stabilized growth of locally advanced lesions in absence of its overall toxic effects. The observed antitumor activity was associated with lymphocyte infiltration and tumor encapsulation via fibrotic reaction. This data justifies both human clinical trials and veterinary application of p62 DNA vaccine.

  12. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  13. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  14. Antibody response to Mycoplasma hyopneumoniae infection in vaccinated pigs with or without maternal antibodies induced by sow vaccination.

    Science.gov (United States)

    Martelli, P; Terreni, M; Guazzetti, S; Cavirani, S

    2006-06-01

    Vaccination with bacterins is an important tool for the control of Mycoplasma hyopneumoniae infection of pigs. Because such vaccination often involves piglets that have suckled M. hyopneumoniae antibody-positive dams it is important to understand the effect of pre-existing (passively acquired) antibody on vaccine-induced immunity. To investigate this issue experimentally, 20 sows that were seronegative for M. hyopneumoniae were selected from a M. hyopneumoniae-infected herd and then randomly allocated to one of four treatment groups (five sows/group): Group A, vaccinated sows/vaccinated piglets; Group B, vaccinated sows/non-vaccinated piglets; Group C, non-vaccinated sows/vaccinated piglets; Group D, non-vaccinated sows/non-vaccinated piglets. Sows (Groups A and B) were vaccinated 14 days before farrowing and seroconverted within the next 14 days. Conversely, none of the non-vaccinated sows was seropositive at farrowing. Piglets (Groups A and C) were vaccinated when they were 7 days of age. Regardless of treatments none of the piglets had any evidence of an active immune response until many of those of Groups A and C and a few of those of Groups B and D seroconverted after it had been shown that at least some pigs of all groups had been naturally infected with a field strain of M. hyopneumoniae. This pattern of immune responsiveness (i.e. the collective results of Groups A, B, C and D) suggested that vaccination of pigs had primed their immune system for subsequent exposure to M. hyopneumoniae, and that passively acquired antibody had little or no effect on either a vaccine-induced priming or a subsequent anamnestic response. According to the statistical analysis sow serological status did not interfere with the antibody response in early vaccinated piglets. In conclusion, the results pointed out that early vaccination of piglets may assist M. hyopneumoniae control independently from the serological status of sows.

  15. Nucleic acid (DNA) immunization as a platform for dengue vaccine development.

    Science.gov (United States)

    Porter, Kevin R; Raviprakash, Kanakatte

    2015-12-10

    Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods. Published by Elsevier Ltd.

  16. Effect of West Nile virus DNA-plasmid vaccination on response to live virus challenge in red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Redig, Patrick T; Tully, Thomas N; Ritchie, Branson W; Roy, Alma F; Baudena, M Alexandra; Chang, Gwong-Jen J

    2011-08-01

    To evaluate the safety and efficacy of an experimental adjuvanted DNA-plasmid vaccine against West Nile virus (WNV) in red-tailed hawks (Buteo jamaicensis). 19 permanently disabled but otherwise healthy red-tailed hawks of mixed ages and both sexes without detectable serum antibodies against WNV. Hawks were injected IM with an experimental WNV DNA-plasmid vaccine in an aluminum-phosphate adjuvant (n = 14) or with the adjuvant only (control group; 5). All birds received 2 injections at a 3-week interval. Blood samples for serologic evaluation were collected before the first injection and 4 weeks after the second injection (day 0). At day 0, hawks were injected SC with live WNV. Pre- and postchallenge blood samples were collected at intervals for 14 days for assessment of viremia and antibody determination; oropharyngeal and cloacal swabs were collected for assessment of viral shedding. Vaccination was not associated with morbidity or deaths. Three of the vaccinated birds seroconverted after the second vaccine injection; all other birds seroconverted following the live virus injection. Vaccinated birds had significantly less severe viremia and shorter and less-intense shedding periods, compared with the control birds. Use of the WNV DNA-plasmid vaccine in red-tailed hawks was safe, and vaccination attenuated but did not eliminate both the viremia and the intensity of postchallenge shedding following live virus exposure. Further research is warranted to conclusively determine the efficacy of this vaccine preparation for protection of red-tailed hawks and other avian species against WNV-induced disease.

  17. Immunization with electroporation enhances the protective effect of a DNA vaccine candidate expressing prME antigen against dengue virus serotype 2 infection.

    Science.gov (United States)

    Chen, Hui; Zheng, Xiaoyan; Wang, Ran; Gao, Na; Sheng, Ziyang; Fan, Dongying; Feng, Kaihao; Liao, Xianzheng; An, Jing

    2016-10-01

    We aimed to use the dengue virus (DV) serotype 2 as a proof of principal for testing the efficacy of a DNA vaccine candidate via in vivo electroporation in mice and rabbits prior to the development of a tetravalent vaccine. Different dosages of DNA pVAX1-D2ME encoding DV2 prME genes were vaccinated in mice via intramuscular injection or in vivo electroporation, immune responses and protection were determined. In DNA-vaccinated rabbits via electroporation, antibody titer and protein expression were tested. In mice, 50μg of pVAX1-D2ME via electroporation elicited effective anti-DV2 responses and conferred significant protection against DV2 challenge. Moreover, anti-DV2 IgG and neutralizing antibodies were successfully induced in rabbits immunized with pVAX1-D2ME via electroporation and the expression of the interest protein was observed at local sites. Enhanced immunogenicity and protective effect conferred by pVAX1-D2ME via electroporation show great promise for the development of a dengue tetravalent DNA vaccine. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2001-01-01

    -vaccination respectively, revealed that a highly protective and lasting immunity was established shortly after vaccination, in accordance with earlier experiments with larger fish. The defence mechanisms activated by the DNA vaccine are thus functional at an early life-stage in rainbow trout....

  19. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  20. Molecular Adjuvant Ag85A Enhances Protection against Influenza A Virus in Mice Following DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Hong Li

    2012-12-01

    Full Text Available A novel DNA vaccine vector encoding the Mycobacterium tuberculosis secreted antigen Ag85A fused with the influenza A virus (IAV HA2 protein epitopes, pEGFP/Ag85A-sHA2 (pAg85A-sHA2, was designed to provide protection against influenza. The antigen encoded by the DNA vaccine vector was efficiently expressed in mammalian cells, as determined by reverse transcription polymerase chain reaction (RT-PCR and fluorescence analyses. Mice were immunized with the vaccine vector by intramuscular injection before challenge with A/Puerto Rico/8/34 virus (PR8 virus. Sera and the splenocyte culture IFN-γ levels were significantly higher in immunized mice compared with the control mice. The novel vaccine group showed a high neutralization antibody titer in vitro. The novel vaccine vector also reduced the viral loads, increased the survival rates in mice after the PR8 virus challenge and reduced the alveolar inflammatory cell numbers. Sera IL-4 concentrations were significantly increased in mice immunized with the novel vaccine vector on Day 12 after challenge with the PR8 virus. These results demonstrated that short HA2 (sHA2 protein epitopes may provide protection against the PR8 virus and that Ag85A could strengthen the immune response to HA2 epitopes, thus, Ag85A may be developed as a new adjuvant for influenza vaccines.

  1. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    DEFF Research Database (Denmark)

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    encoding the VHSV glycoprotein gene. We will link mRNA and miRNA profiles with phenotypic, genotypic, and immunological data, which will provide an integrated view of the mechanisms of resistance and the strong protective immune responses provided by vaccination. This information is important in designing......RNAs, miRNAs could be involved in controlling the expression of fish immune response genes. This project aims to analyze mRNA and miRNA expression in organs of vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) families showing differential mortality in previous infection trials...... with the highly pathogenic fish rhabdovirus Viral hemorrhagic septicemia virus (VHSV). This talk will discuss our overall strategy and present preliminary data on the expression of miRNAs and the type I interferon-inducible Mx gene in the liver and the skeletal muscle tissue of fish injected with a DNA vaccine...

  2. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    DEFF Research Database (Denmark)

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15 degreesC. Nearly complete protection was also observed at late......-protection against IHNV challenge for a transient period of time, whereas a rabies virus DNA vaccine was not protective. This indication of distinct early and late protective mechanisms was not dependent on DNA vaccine doses from 0.1 to 2.5 mug....

  3. Intramuscular delivery of a cholera DNA vaccine primes both systemic and mucosal protective antibody responses against cholera.

    Science.gov (United States)

    Xu, Guifang; Wang, Shixia; Zhuang, Ling; Hackett, Anthony; Gu, Ling; Zhang, Lu; Zhang, Chunhua; Wang, Hua; Huang, Zuhu; Lu, Shan

    2009-06-12

    Cholera is a potentially lethal diarrhea disease caused by the gram-negative bacterium Vibrio cholerae. The need for an effective cholera vaccine is clearly indicated but the challenges of eliciting both systemic and mucosal immune responses remains a significant challenge. In the current report, we discovered that a DNA vaccine expressing a protective cholera antigen, cholera toxin B subunit (CTB), delivered parenterally can elicit both systemic and mucosal anti-CTB antibody responses in mice. The priming effect by DNA immunization was demonstrated by higher mucosal antibody responses following one boost with the inactivated cholera vaccine (KWC-B) delivered orally when compared to the twice oral administration of KWC-B alone. This finding indicates that DNA vaccines delivered parenterally are effective in eliciting mucosal protective immune responses--a unique advantage for DNA vaccination that has not yet been well realized and should bring value to the development of novel vaccination approaches against mucosally transmitted diseases.

  4. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults.

    Directory of Open Access Journals (Sweden)

    Spyros A Kalams

    Full Text Available DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37 DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug IL-12 DNA. However, after three doses, 44.4% (4/9 of vaccinees receiving gag DNA and intermediate dose (500 ug of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605.

  5. Immunogenicity of two different dosages (10 and 5 μg) of recombinant DNA hepatitis B vaccine in healthy neonates

    NARCIS (Netherlands)

    R. Del Cancho (R.); P.M. Grosheie (P.); M. Voogd-Schotanus (M.); W. Huisman (Willem); R.A. Heijtink; S.W. Schalm (Solko)

    1994-01-01

    textabstractThe immunogenicity of a half (5 μg) and a full (10 μg) dosage of recombinant DNA yeast-derived hepatitis B vaccine (HB-Vax-DNA) in healthy neonates was assessed in order to compare two candidate dosages of vaccine. After randomization 174 newborns of HBsAg-negative mothers entered the

  6. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity

    NARCIS (Netherlands)

    Berg, J.H. van den; Oosterhuis, K.; Hennink, W.E.; Storm, G.; Aa, L.J.; Engbersen, J.F.J.; Haanen, J.B.A.G.; Beijnen, J.H.; Schumacher, T.N.; Nuijen, B.

    2010-01-01

    Nanoparticle-formulated DNA vaccines hold promise for the design of in vivo vaccination platforms that target defined cell types in human skin. A variety of DNA formulations, mainly based on cationic liposomes or polymers, has been investigated to improve transfection efficiency in in vitro

  7. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity

    NARCIS (Netherlands)

    van den Berg, Joost H.; Oosterhuis, Koen; Hennink, Wim E.; Storm, Gert; Storm, Gerrit; van der Aa, L.J.; Engbersen, Johannes F.J.; Haanen, John B.A.G.; Beijnen, Jos H.; Schumacher, Ton N.; Nuijen, Bastiaan

    2010-01-01

    Nanoparticle-formulated DNA vaccines hold promise for the design of in vivo vaccination platforms that target defined cell types in human skin. A variety of DNA formulations, mainly based on cationic liposomes or polymers, has been investigated to improve transfection efficiency in in vitro assays.

  8. Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout.

    Science.gov (United States)

    Ahmadivand, Sohrab; Soltani, Mehdi; Behdani, Mahdi; Evensen, Øystein; Alirahimi, Ehsan; Hassanzadeh, Reza; Soltani, Ellahe

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) is the etiological agent of a contagious viral disease causing remarkable mortalities in different fish species. Despite the availability of commercial vaccines against IPN, the disease still constitutes one of the main threats to the aquaculture industry worldwide. In this study, we developed a DNA vaccine encoding the VP2 gene of IPNV and evaluated its ability to induce protective immunity in rainbow trout fry (3 g) at doses of 10 and 25 μg/fish and boosting with the same doses two weeks later through the oral route using chitosan/tripolyphosphate (CS-TPP) nanoparticles and alginate microparticles incorporated into fish feed. The distribution of the administered vaccines in different organs and transcription of VP2 gene were confirmed by RT-PCR assay at day 30 post boost-vaccination. Transcript levels of IFN-1, Mx-1, IgM, IgT and CD4 genes was dependent on vaccine dose and was significantly up-regulated in head kidney of all orally vaccinated fish groups compared to controls (pcDNA3.1). Cumulative mortalities post-challenge with virulent isolate of the virus were lower in the vaccinated fish and a relative percentage survival (RPS) of 59% and 82% were obtained for the 10 and 25 μg/fish pcDNA3.1-VP2 groups, respectively. Vaccination with the same amount of pcDNA3.1-VP2 encapsulated with CS-TPP nanoparticles resulted in RPS of 47 %and 70%, respectively. Detectable anti-IPNV antibodies were shown until 90 days postvaccination. The orally administrated vaccines significantly decreased VP4 transcripts thus contributing to reducing viral load in surviving fish on day 45 post-challenge. In conclusion, these results show good to high protection post-vaccination alongside with significant up-regulation of key immune genes and detectable levels of circulating antibodies after oral administration of the DNA vaccine formulated in CS-TPP nanoparticles and alginate microparticles in fish feed. Copyright © 2017 Elsevier Ltd. All

  9. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  10. Cost-effectiveness analysis for Pap smear screening and human papillomavirus DNA testing and vaccination.

    Science.gov (United States)

    Chen, Meng-Kan; Hung, Hui-Fang; Duffy, Stephen; Yen, Amy Ming-Fang; Chen, Hsiu-Hsi

    2011-12-01

    As the effectiveness of cytology-based screening programme for cervical cancer in mortality reduction has reached a plateau, various preventive strategies have been considered, including intensive Pap smear screening and the supplemental use of human papillomavirus (HPV) DNA test or HPV vaccination. Cost and effectiveness of these various preventive strategies are therefore of great concern for health policy makers. We intended to assess whether the combination of HPV DNA testing or HPV vaccination with Pap smear screening programme or the sole annual Pap smear screening is more effective and cost-effective in prevention of cervical cancer than the existing triennial Pap smear screening programme. A Markov decision model was constructed to compare total costs and effectiveness between different preventive strategies (including annual Pap smear, HPV DNA testing or HPV vaccination together with Pap smear screening programme) as opposed to the triennial Pap smear screening alone (the comparator). Probabilistic cost-effectiveness (C-E) analysis was adopted to plot a series of simulated incremental C-E ratios scattered over C-E plane and also to yield the acceptability curve for different comparisons of strategies. The threshold of vaccine cost and the influence of attendance rate were also investigated. Compared with triennial Pap smear screening programme, most of preventive strategies cost more but gain additional life years (quadrant I of C-E plane) except HPV DNA testing with Pap smear every 5 years dominated by triennial Pap smear screening programme. The most cost-effective strategy was annual Pap smear (incremental C-E ratio = $31 698), followed by HPV DNA testing with Pap smear every 3 years ($36 627), and vaccination programme with triennial Pap smear screening ($44 688) with the corresponding cost-effective probabilities by the acceptability curve being 65.52%, 52.08% and 35.84% given the threshold of $40 000 of willingness to pay. Vaccination combined with

  11. Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice

    International Nuclear Information System (INIS)

    Jin Huali; Xiao Chong; Chen Ze; Kang Youmin; Ma Yijie; Zhu Kaichun; Xie Qifa; Tu Yixian; Yu Yang; Wang Bin

    2005-01-01

    Vaccination against the SARS-CoV infection is an attractive means to control the spread of viruses in public. In this study, we employed a DNA vaccine technology with the levamisole, our newly discovered chemical adjuvant, to generate Th1 type of response. To avoid the enhancement antibody issue, genes encoding the nucleocapsid, membrane, and envelope protein of SARS-CoV were cloned and their expressions in mammalian cells were determined. After the intramuscular introduction into animals, we observed that the constructs of the E, M, and N genes could induce high levels of specific antibodies, T cell proliferations, IFN-γ, DTH responses, and in vivo cytotoxic T cells activities specifically against SARS-CoV antigens. The highest immune responses were generated by the construct encoding the nucleocapsid protein. The results suggest that the N, M, and E genes could be used as the targets to prevent SARS-CoV infection in the DNA vaccine development

  12. DNA vaccines: general concerns and its applications in human and veterinary medicine/ Vacina de DNA: aspectos gerais e sua aplicação na medicina humana e veterinária

    Directory of Open Access Journals (Sweden)

    Marilda Carlos Vidotto

    2007-08-01

    Full Text Available The vaccination with DNA is one of the most promising immunization techniques against a pathogens variety and tumors, for which the conventional methods have not been efficient. DNA vaccines are capable to induce immune humoral and cellular response, directed to lymphocytes CD4+ and CD8+, without the necessity of live microorganisms. In spite of the great potential of inducing protective immunity, the DNA vaccine not always has success. The immunity depends on several factors such as the selection of the target gene, construction of the expression vector, frequency and via of administration of the vaccine, amount of DNA, location of the antigen codified by the plasmid and age, health and species of vaccinated animals. This revision shows the development of some vaccines of DNA for diseases of interest in the veterinary and human medicine.A vacinação com DNA é uma das mais promissoras técnicas de imunização contra uma variedade de patógenos e tumores, para os quais os métodos convencionais não tem sido eficientes. Vacinas de DNA são capazes de induzir resposta imune humoral e celular, tanto para resposta de linfócitos CD4+ quanto CD8+, sem a necessidade de microrganismos vivos. Apesar do grande potencial de induzir imunidade protetora, a vacina de DNA nem sempre apresenta bons resultados. A imunidade depende de vários fatores como a seleção do gene alvo, construção do vetor de expressão, freqüência e via de administração da vacina, quantidade de DNA, localização do antígeno codificado pelo plasmídio e idade, saúde e espécies de animais vacinados. Esta revisão relata o desenvolvimento de algumas vacinas de DNA para doenças de interesse na medicina veterinária e humana.

  13. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models.

    Directory of Open Access Journals (Sweden)

    Aura R Garrison

    2017-09-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/- mice; and a novel transiently immune suppressed (IS mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group were intraperitoneally (IP challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.

  15. Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination.

    Science.gov (United States)

    Slon Campos, J L; Poggianella, M; Marchese, S; Bestagno, M; Burrone, O R

    2015-11-01

    Dengue virus (DENV) is currently among the most important human pathogens and affects millions of people throughout the tropical and subtropical regions of the world. Although it has been a World Health Organization priority for several years, there is still no efficient vaccine available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in mammalian cells, and how this affects their ability to induce neutralizing antibody responses in DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the level of protein secreted from transfected cells determines the strength and efficiency of antibody responses in the context of DNA vaccination and should be considered a pivotal feature for the development of E-based DNA vaccines against DENV.

  16. Expression of hBD-2 induced by 23-valent pneumococcal polysaccharide vaccine, Haemophilus influenzae type b vaccine and split influenza virus vaccine.

    Science.gov (United States)

    Shen, Zhenwei; Lei, Han

    2012-10-01

    Human β-defensin-2 (hBD-2) is an antimicrobial peptide with high activity and broad spectrum activity. hBD-2 expression may be highly elevated by microorganisms and inflammation. We reported that the majority of common vaccines used, including 23-valent pneumococcal polysaccharide vaccine, Haemophilus influenzae type b vaccine and split influenza virus vaccine, could induce the expression of hBD-2 in epithelial cells. Among them, the 23-valent pneumococcal polysaccharide vaccine was effective at a lower concentration (0.5 µg/ml), while Haemophilus influenzae type b vaccine and split influenza virus vaccine were effective at the concentration of 1 µg/ml. However, bacteriostatic experiments revealed that the split influenza virus vaccine was capable of inducing the highest antimicrobial activity. The medium of the 23-valent pneumococcal polysaccharide vaccine treatment group had a higher antimicrobial activity than the medium of the Haemophilus influenzae type b vaccine treatment group. The transcriptional regulator of hBD-2, that is, the NF-κB subunit, had a high level of activity, while the normal epithelial cells showed barely detectable activity, indicating that these vaccines have potential for clinical application.

  17. Prospects and progress of DNA vaccines for treating hepatitis B

    NARCIS (Netherlands)

    Chen, Margaret; Jagya, Neetu; Bansal, Ruchi; Frelin, Lars; Sällberg, Matti

    2015-01-01

    The hepatitis B virus (HBV) is a global cause of liver disease. The preventive HBV vaccine has effectively reduced the disease burden. However, an estimated 340 million chronic HBV cases are in need of treatment. Current standard therapy for chronic HBV blocks reversed transcription. As this therapy

  18. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Directory of Open Access Journals (Sweden)

    Johanna Poecheim

    2015-12-01

    Full Text Available Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA. The formulations included (1 trimethyl chitosan (TMC nanoparticles, (2 a squalene-in-water nanoemulsion, and (3 a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9. In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2 was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

  19. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pLACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pLACK-TSA and TSA groups than LACK group after challenge (pLACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  20. Gene therapeutics and DNA vaccines; quality and regulatory aspects

    NARCIS (Netherlands)

    Schalk JAC; Hegger I; Jongen PMJM; LGM

    2001-01-01

    Overdracht van genen naar cellen, gevolgd door de expressie van deze genen kan de symptomen van een ziekte opheffen (gentherapie), of infectieuze ziektes voorkomen (DNA vaccinatie). Gentherapie en DNA vaccinatie zijn gebaseerd op relatief nieuwe technologieen. De verwachting is dat de eerste

  1. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    Science.gov (United States)

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A viral vaccine encoding PSA induces antigen spreading to a common set of self proteins in prostate cancer patients

    Science.gov (United States)

    Nesslinger, Nancy J.; Ng, Alvin; Tsang, Kwong-Yok; Ferrara, Theresa; Schlom, Jeff; Gulley, James L.; Nelson, Brad H.

    2010-01-01

    Purpose We previously reported a randomized phase II clinical trial combining a poxvirus-based vaccine encoding PSA with radiotherapy in patients with localized prostate cancer. Here we investigate whether vaccination against PSA induced immune responses to additional tumor-associated antigens and how this influenced clinical outcome. Experimental Design Pre- and post-treatment serum samples from patients treated with vaccine + external beam radiation therapy (EBRT) versus EBRT alone were evaluated by Western blot and serological screening of a prostate cancer cDNA expression library (SEREX) to assess the development of treatment-associated autoantibody responses. Results Western blotting revealed treatment-associated autoantibody responses in 15/33 (45.5%) patients treated with vaccine + EBRT versus 1/8 (12.5%) treated with EBRT alone. SEREX screening identified 18 antigens, which were assembled on an antigen array with 16 previously identified antigens. Antigen array screening revealed that seven of 33 patients (21.2%) treated with vaccine + EBRT demonstrated a vaccine-associated autoantibody response to four ubiquitously expressed self antigens: DIRC2, NDUFS1, MRFAP1 and MATN2. These responses were not seen in patients treated with EBRT alone, or other control groups. Patients with autoantibody responses to this panel of antigens had a trend towards decreased biochemical-free survival. Conclusions Vaccine + EBRT induced antigen spreading in a large proportion of patients. A subset of patients developed autoantibodies to a panel of four self antigens and showed a trend toward inferior outcomes. Thus, cancer vaccines directed against tumor-specific antigens can trigger autoantibody responses to self proteins, which may influence the efficacy of vaccination. PMID:20562209

  3. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65.

    Science.gov (United States)

    Yi, He; Rong, Yan; Yankai, Zhang; Wentao, Liu; Hongxia, Zhou; Jie, Wu; Rongyue, Cao; Taiming, Li; Jingjing, Liu

    2006-03-24

    Studies have demonstrated that active-specific immunotherapy has potential for controlling mammary tumor progression. Human chorionic gonadotropin (hCG) is expressed and extremely sensitive, easily detectable and highly correlated with breast cancer. We developed a gene vaccine using a plasmid vector to deliver the six copies of 10-amino acid residues of beta-hCG 109-118 and beta hCG C-terminal 37-amino acid (CTP37). BALB/c female mice were immunized with a combination of pCR-HBc-X6-betahCGCTP37 DNA vaccine and HSP-X6-betahCGCTP37 protein vaccine. pCR-HBc-X6-betahCGCTP37 DNA vaccine were injected intramuscularly three times, on days -46,-25 and -11 and HSP-X6-betahCGCTP37 protein were applied two times, 21 and 14 days before tumor cell challenge. We assessed a combined DNA and protein vaccine for its effect of against murine EMT6 mammary tumor cells. In this study, animals vaccinated DNA vaccination boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65 induced higher avidity antibodies and effectively inhibited the growth of tumor, compared with treatment using DNA alone or BCG priming HSP-X6-betahCGCTP37 protein boosting. The data presented demonstrate that improve immunogenicity of DNA vaccination by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65, which should prove useful in the development of new DNA vaccine against growth factors for cancer immunotherapy.

  4. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Lobell, A; Weissert, R; Storch, M K; Svanholm, C; de Graaf, K L; Lassmann, H; Andersson, R; Olsson, T; Wigzell, H

    1998-05-04

    We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68-85 (MBP68-85), before induction of EAE with MBP68-85 in complete Freund's adjuvant. Compared to vaccination with a control DNA construct, the vaccination suppressed clinical and histopathological signs of EAE, and reduced the interferon gamma production after challenge with MBP68-85. Targeting of the gene product to Fc of IgG was essential for this effect. There were no signs of a Th2 cytokine bias. Our data suggest that DNA vaccines encoding autoantigenic peptides may be useful tools in controlling autoimmune disease.

  5. Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases.

    Science.gov (United States)

    Behzadi, Elham; Halabian, Raheleh; Hosseini, Hamideh Mahmoodzadeh; Fooladi, Abbas Ali Imani

    2016-11-01

    DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  7. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Daniela Santoro Rosa

    Full Text Available T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+ T cells are important for the generation and maintenance of functional CD8(+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18, capable of eliciting broad CD4(+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+/CD8(+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+ and CD8(+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2 simultaneously in response to HIV-1 peptides. For CD4(+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2. The vaccine also generated long-lived central and effector memory CD4(+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+ T cells and antibody responses- elicited by other HIV immunogens.

  8. Prophylactic DNA vaccine targeting Foxp3+ regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model.

    Science.gov (United States)

    Namdar, Afshin; Mirzaei, Reza; Memarnejadian, Arash; Boghosian, Roobina; Samadi, Morteza; Mirzaei, Hamid Reza; Farajifard, Hamid; Zavar, Mehdi; Azadmanesh, Kayhan; Elahi, Shokrollah; Noorbakhsh, Farshid; Rezaei, Abbas; Hadjati, Jamshid

    2018-03-01

    Regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) are the two important and interactive immunosuppressive components of the tumor microenvironment that hamper anti-tumor immune responses. Therefore, targeting these two populations together might be beneficial for overcoming immune suppression in the tumor microenvironment. We have recently shown that prophylactic Foxp3 DNA/recombinant protein vaccine (Foxp3 vaccine) promotes immunity against Treg in tumor-free conditions. In the present study, we investigated the immune modulatory effects of a prophylactic regimen of the redesigned Foxp3 vaccine in the B16F10 melanoma model. Our results indicate that Foxp3 vaccination continuously reduces Treg population in both the tumor site and the spleen. Surprisingly, Treg reduction was associated with a significant decrease in the frequency of MDSC, both in the spleen and in the tumor environment. Furthermore, Foxp3 vaccination resulted in a significant reduction of arginase-1(Arg-1)-induced nitric oxide synthase (iNOS), reactive oxygen species (ROS) and suppressed MDSC activity. Moreover, this concurrent depletion restored production of inflammatory cytokine IFN-γ and enhanced tumor-specific CTL response, which subsequently resulted in the reduction of tumor growth and the improved survival rate of vaccinated mice. In conclusion, our results revealed that Foxp3 vaccine promotes an immune response against tumor by targeting both Treg and MDSC, which could be exploited as a potential immunotherapy approach.

  9. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    Science.gov (United States)

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  10. DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers.

    Science.gov (United States)

    Gupta, Sachin; Clark, Emily S; Termini, James M; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C; Abraham, Sakhi; Montefiori, David C; Khan, Wasif N; Stone, Geoffrey W

    2015-04-01

    Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of

  11. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens.

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan; Tao, Jianping

    2013-04-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (Pcoccidiosis control.

  12. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  13. Structural changes of linear DNA molecules induced by cisplatin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiguo, E-mail: cn.zguoliu@yahoo.com [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu, Ruisi; Zhou, Zhen; Zu, Yuangang; Xu, Fengjie [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2015-02-20

    Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.

  14. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  15. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  16. SopB of Salmonella enterica serovar Typhimurium is a potential DNA vaccine candidate in conjugation with live attenuated bacteria.

    Science.gov (United States)

    Nagarajan, Arvindhan G; Balasundaram, Sudhagar V; Janice, Jessin; Karnam, Guruswamy; Eswarappa, Sandeepa M; Chakravortty, Dipshikha

    2009-05-11

    The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.

  17. Pilot study of p62 DNA vaccine in dogs with mammary tumors

    OpenAIRE

    Gabai, Vladimir; Venanzi, Franco M.; Bagashova, Elena; Rud, Oksana; Mariotti, Francesca; Vullo, Cecilia; Catone, Giuseppe; Sherman, Michael Y.; Concetti, Antonio; Chursov, Andrey; Latanova, Anastasia; Shcherbinina, Vita; Shifrin, Victor; Shneider, Alexander

    2014-01-01

    Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for th...

  18. Prevention and therapy of hepatocellular carcinoma by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex without carriers.

    Directory of Open Access Journals (Sweden)

    Sanghoon Kwon

    Full Text Available Although peptide vaccines have been actively studied in various animal models, their efficacy in treatment is limited. To improve the efficacy of peptide vaccines, we previously formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (Lipoplex(O. Here, we show that immunization of mice with a complex consisting of peptide and Lipoplex(O without carriers significantly induces peptide-specific IgG2a production in a CD4(+ cells- and Th1 differentiation-dependent manner. The transmembrane 4 superfamily member 5 protein (TM4SF5 has gained attention as a target for hepatocellular carcinoma (HCC therapy because it induces uncontrolled growth of human HCC cells via the loss of contact inhibition. Monoclonal antibodies specific to an epitope of human TM4SF5 (hTM4SF5R2-3 can recognize native mouse TM4SF5 and induce functional effects on mouse cancer cells. Pre-immunization with a complex of the hTM4SF5R2-3 epitope and Lipoplex(O had prophylactic effects against tumor formation by HCC cells implanted in an mouse tumor model. Furthermore, therapeutic effects were revealed regarding the growth of HCC when the vaccine was injected into mice after tumor formation. These results suggest that our improved peptide vaccine technology provides a novel prophylaxis measure as well as therapy for HCC patients with TM4SF5-positive tumors.

  19. Construction and immunogenicity of DNA vaccines encoding fusion protein of murine complement C3d-p28 and GP5 gene of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Zhang, Deqing; Xia, Qingxiang; Wu, Jiaqiang; Liu, Dong; Wang, Xiaolong; Niu, Zhongxiang

    2011-01-17

    Porcine reproductive and respiratory syndrome virus (PRRSV) has recently caused catastrophic losses in swine industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. At present, DNA vaccine is the focus on the new vaccines. The gene fragment (p28) coding for the molecular adjuvants complement protein C3d (mC3d) from BALB/c mouse was cloned and expressed as a fusion protein for its application in the vaccine study of mice. Three potential vaccines construct units were engineered to contain two, four and six copies of mC3d-p28 coding gene linked to the GP5 gene of PRRSV and one vaccine expressing GP5 alone (pcDNA3.1-GP5) was constructed. Subsequently, the vaccines' abilities to elicit the humoral and cellular immune responses were investigated in mice. These results showed that significantly enhanced GP5-specific ELISA antibody, GP5-specific neutralizing antibody, IFN-γ level, and IL-4 level, could be induced in mice immunized with DNA construct units encoding the pcDNA3.1-C3d-p28.n-GP5 than those received DNA vaccine expressing GP5 alone (pcDNA3.1-GP5). Analysis of the immunogenicity of different repeats of mC3d-p28 revealed that mC3d-p28 had an enhancing effect on the immunogenicity of antigens, and that six or more repeats of mC3d-p28 may be necessary for efficient enhancement of antigen specific immune responses. This approach may provide a new strategy for the development of efficient vaccines against the PRRSV for pigs in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine - Preliminary Report.

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma L; Kudchodkar, Sagar B; Zaidi, Faraz I; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Boyer, Jean; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Spruill, Susan E; Bagarazzi, Mark; Kobinger, Gary P; Weiner, David B; Maslow, Joel N

    2017-10-04

    Background Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. Methods In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. Results The median age of the participants was 38 years, and 60% were women; 78% were white, and 22% black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. Conclusions In this phase 1, open-label clinical

  1. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    International Nuclear Information System (INIS)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-01-01

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d 3 ) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d 3 . In addition, both sCD4-gp120 and sCD4-gp120-mC3d 3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d 3 or sCD4-gp120-mC3d 3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d 3 -DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d 3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d

  2. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  3. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    NARCIS (Netherlands)

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-01-01

    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the

  4. DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: A dose-response and time-course study

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Martinussen, T.

    2000-01-01

    Viral hemorrhagic septicemia (VHS) in rainbow trout Oncorhynchus mykiss is caused by VHS virus (VHSV), which belongs to the rhabdovirus family. Among the different strategies for immunizing fish with a recombinant vaccine, genetic immunization has recently proven to be highly effective. To further...... investigate the potential for protecting fish against VHS by DNA vaccination, experiments were conducted to determine the amount of plasmid DNA needed for induction of protective immunity. The time to onset of immunity and the duration of protection following administration of a protective vaccine dose were...... serologically different from the isolate used for vaccine development. Following administration of 1 mug of a DNA vaccine, significant protection against VHS was observed in the fish as early as 8 d postvaccination. At 168 d postvaccination, the fish had increased in size by a factor of 10 and protection...

  5. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  6. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  7. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5'-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections...

  8. Coexisting Bacillus Calmette-Guérin-Induced Lupus Vulgaris Involving the Vaccination Site and Lichen Scrofulosorum in an Immunocompetent Boy.

    Science.gov (United States)

    Angoori, Gnaneshwar Rao

    2016-09-01

    The coexistence of Bacillus Calmette-Guérin (BCG)-induced lupus vulgaris involving the site of vaccination with lichen scrofulosorum is rare. Herein we report a 3-year-old boy who presented with lupus vulgaris at the vaccination site 3 weeks after neonatal BCG vaccination followed by the development of lichen scrofulosorum approximately 2.5 years later. Characteristic clinical morphology, typical histopathology, and positive DNA polymerase chain reaction for Mycobacterium bovis confirmed the clinical diagnosis. © 2016 Wiley Periodicals, Inc.

  9. Pharmaceutical development of the plasmid DNA vaccine pDERMATT

    NARCIS (Netherlands)

    Quaak, S.G.L.

    2009-01-01

    The discovery of tumor specific antigens and self tolerance mechanisms against these antigens led to the assumption that antigens circulating at sufficient concentration levels could break this self tolerance mechanism and evoke immunological antitumor effects. pDERMATT (plasmid DNA encoding

  10. Construction of glutathione peroxidase (GPx) DNA vaccine and its protective efficiency on the orange-spotted grouper (Epinephelus coioides) challenged with Vibrio harveyi.

    Science.gov (United States)

    Wang, Haiyang; Zhu, Fan; Huang, Yucong; Ding, Yu; Jian, Jichang; Wu, Zaohe

    2017-01-01

    The main aims of this study were to construct glutathione peroxidase (GPx) DNA vaccine of Vibrio harveyi ZJ0603 and to investigate its immune protective efficiency as a vaccine candidate on the orange-spotted grouper (Epinephelus coioides) treated with V. harveyi. Base on the cloning of ZJ0603 GPx gene, a DNA vaccine, named as pcDNA-GPx, was constructed by inserting GPx gene into pcDNA3.1 (+) plasmid. Orange-spotted groupers were immunized with the pcDNA-GPx plasmid by injection intramuscularly. The relative percent of survival (RPS) of fish vaccinated with the DNA vaccine against pathogenic V. harveyi infection was 77.5%. The expression of DNA vaccine was analyzed in the tissues of orange-spotted grouper by PCR and RT-PCR. The results indicated that pcDNA-GPx distributed and expressed in the head kidney, liver, spleen, gill and injected muscle at 7 and 28 days after vaccination. Significant specific antibody responses were also detected in the vaccinated orange-spotted groupers by indirect ELISA method. In a conclusion, DNA vaccine pcDNA-GPx showed an effective immune protection to the orange-spotted grouper treated with V. harveyi. The GPx can be used as a candidate DNA vaccine for the control of vibriosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Appraisal of experimental and commercial Marek's disease vaccines to induce bursal and thymic atrophy

    Science.gov (United States)

    Recently, several experimental Marek’s disease (MD) vaccines were developed that appear to protect equally or better than the best commercial vaccines. However, some of the experimental vaccines were reported to induce transient bursal and thymic atrophies. We will report on two promising experiment...

  13. Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus the antibody response in mice

    Science.gov (United States)

    2017-04-06

    Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus... vaccinated against or infected with EBOV. Using the information obtained along with structural modeling to predict epitope accessibility, we then...constructed two DNA vaccines encoding immunodominant and subdominant epitopes predicted to be accessible on EBOV GP. Although a construct designed to

  14. Production of a DNA Vaccine Specific for the 64 kDa Protective Antigen of Erysipelothrix rhusiopathiae

    National Research Council Canada - National Science Library

    Middlebrooks, Bobby L

    2007-01-01

    The gene for the protective antigen of E. rhusiopathiae will be inserted into a eukaryotic vector both for the production of a DNA vaccine and for large scale production of the recombinant protein (in vitro...

  15. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  16. Protective efficacy of a broadly cross-reactive swine influenza DNA vaccine encoding M2e, cytotoxic T lymphocyte epitope and consensus H3 hemagglutinin

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2012-06-01

    Full Text Available Abstract Background Pigs have been implicated as mixing reservoir for the generation of new pandemic influenza strains, control of swine influenza has both veterinary and public health significance. Unlike human influenza vaccines, strains used for commercially available swine influenza vaccines are not regularly replaced, making the vaccines provide limited protection against antigenically diverse viruses. It is therefore necessary to develop broadly protective swine influenza vaccines that are efficacious to both homologous and heterologous virus infections. In this study, two forms of DNA vaccines were constructed, one was made by fusing M2e to consensus H3HA (MHa, which represents the majority of the HA sequences of H3N2 swine influenza viruses. Another was made by fusing M2e and a conserved CTL epitope (NP147-155 to consensus H3HA (MNHa. Their protective efficacies against homologous and heterologous challenges were tested. Results BALB/c mice were immunized twice by particle-mediated epidermal delivery (gene gun with the two DNA vaccines. It was shown that the two vaccines elicited substantial antibody responses, and MNHa induced more significant T cell-mediated immune response than MHa did. Then two H3N2 strains representative of different evolutional and antigenic clusters were used to challenge the vaccine-immunized mice (homosubtypic challenge. Results indicated that both of the DNA vaccines prevented homosubtypic virus infections completely. The vaccines’ heterologous protective efficacies were further tested by challenging with a H1N1 swine influenza virus and a reassortant 2009 pandemic strain. It was found that MNHa reduced the lung viral titers significantly in both challenge groups, histopathological observation showed obvious reduction of lung pathogenesis as compared to MHa and control groups. Conclusions The combined utility of the consensus HA and the conserved M2e and CTL epitope can confer complete and partial protection

  17. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    complications. Although several strategies have been suggested for making a vaccine, none is currently available. Here, we investigate the protection conferred by DNA vaccination with two constructs, pcEC2 (MIC2-MIC3-SAG1) and pcEC3 (GRA3-GRA7-M2AP), encoding chimeric proteins containing multiple antigenic...

  18. Mitochondrial DNA exhibits resistance to induced point and deletion mutations

    Science.gov (United States)

    Valente, William J.; Ericson, Nolan G.; Long, Alexandra S.; White, Paul A.; Marchetti, Francesco; Bielas, Jason H.

    2016-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure. PMID:27550180

  19. Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in Skeletal Muscle Myocytes

    Science.gov (United States)

    2017-10-01

    pathway, the presence of DNA inside the cytosol induces cGAS (cyclic-GMP- AMP synthase) to activate STING (stimulator of interferon genes...Interferon Inducible protein 204), anti-cGAS (cyclic GMP- AMP synthase) and anti- STING (Stimulator of Interferon Genes) antibodies. Mouse anti-GAPDH

  20. [Enhancement of a hepatitis B DNA vaccine potency using aluminum phosphate in mice].

    Science.gov (United States)

    Liang, Zeng-wei; Ren, Hong; Lang, Ying-hua; Li, Yong-guo

    2004-02-01

    To study antibody response to a hepatitis B DNA vaccine by formulation with aluminum phosphate in mice. An eukaryotic expression plasmid inserted HBsAg gene (pcDNA3.1-S) was constructed by cloning technique and the accuracy of the construct was confirmed by restriction enzyme digestion and DNA sequencing, then hepatitis B DNA vaccine formulations were prepared by mixing pcDNA3.1-S with various concentration of aluminum phosphate in 0.9% NaCl. HBsAg expressions were assayed by ELISA in vivo five days after intramuscular injection of pcDNA3.1-S with or without aluminum phosphate. And serum samples were obtained from individual immunized or control mice 6 weeks post injection. Then anti-HBs were assayed in mice sera by ELISA. Five days after intramuscular immunization, the levels of HBsAg expression of groups with aluminum phosphate showed no difference from those of control group in tibialis arterials muscles. In sera, HBsAg could not be detectable in all groups. Intramuscular immunization of BABL/C mice with pcDNA3.1-S mixed aluminum phosphate (0microg, 1microg, 10microg, 50microg, 100microg) 6 weeks later, the P/N values of anti-HBs in sera were 11.54+/-5.60, 11.00+/-6.62, 20.30+/-10.20, 49.18+/-24.40 and 48.68+/-27.78, respectively. It showed that pcDNA3.1-S mixing with aluminum phosphate could increase anti-HBs titers in mice. No increase of HBsAg expression was observed by mixing plasmid pcDNA3.1-S with various concentration of aluminum phosphate in vivo. But Intramuscular immunization of BALB/C mice with pcDNA3.1-S mixing aluminum phosphate adjuvant can increase anti -HBs titers. It seemed that aluminum phosphate would be valuable for further investigation as a potential adjuvant of hepatitis B DNA vaccines.

  1. Vaccination with DNA Encoding an Immunodominant Myelin Basic Protein Peptide Targeted to Fc of Immunoglobulin G Suppresses Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Lobell, Anna; Weissert, Robert; Storch, Maria K.; Svanholm, Cecilia; de Graaf, Katrien L.; Lassmann, Hans; Andersson, Roland; Olsson, Tomas; Wigzell, Hans

    1998-01-01

    We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68–85 (MBP68–85), before induction of EAE with MBP68–85 in complete Freund's adjuvant....

  2. The protective efficacy of chimeric SO7/IL-2 DNA vaccine against coccidiosis in chickens.

    Science.gov (United States)

    Song, Hongyan; Qiu, Baofeng; Yan, Ruofeng; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2013-06-01

    The protective efficacy of recombinant vaccines encoding an Eimeria refractile body antigen SO7 was assessed in broiler chickens following oral infection with Eimeria tenella. The SO7 and chicken IL-2 genes were cloned into the expression vector pVAX1 consecutively to construct DNA vaccines pVAX-SO7 and pVAX-SO7-IL-2. Expression of SO7 and IL-2 gene transcripts and proteins encoded by the plasmid DNAs in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Chickens were inoculated with 100 μg of plasmids pVAX-SO7 or pVAX-SO7-IL-2, or 200 μg of recombinant SO7 protein or chicken IL-2 protein by leg intramuscular injection. At 28days of age, all chickens except the unchallenged control group were challenged orally with 5×10(4) sporulated oocysts of E. tenella. All chickens were euthanized to determine the effects of immunization on the 7th day post-challenge. The results showed that both DNA vaccines containing the SO7 gene and the recombinant SO7 protein could obviously alleviate body weight loss and cecal lesions compared with unvaccinated and challenged control. These findings also suggested that chicken IL-2 could effectively enhance the immunity of SO7 against E. tenella challenge compared with vaccination using pVAX-SO7 alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Construction of an artificial recombinant bicistronic plasmid DNA vaccine against porcine rotavirus

    OpenAIRE

    Tingting Cui; Jun Xiong; Yongzhi Wang; Xintian Wen; Xiaobo Huang; Yong Huang; Xiaoping Ma; Zhongkai Hu; Qin Zhao; Sanjie Cao

    2013-01-01

    The attenuated Salmonella typhimurium χ4550 strain was used to harbour a reconstructed bicistronic DNA vaccine against porcine rotavirus, which carried the rotavirus nonstructural protein 4 (NSP4) and VP7 genes simultaneously. Using a balanced lethal system, the kanamycin resistance gene of expressing eukaryotic plasmids pVAX1 and pVAXD were replaced by the aspartate β-semialdehyde dehydrogenase (asd) gene. The NSP4 cleavage product (259–525) of rotavirus OSU strain and VP7 full-lengt...

  4. BAFF, stimulatory DNA and IL-15 stimulates IgA(+) memory B cells and provides a novel approach for analysis of memory responses to mucosal vaccines.

    Science.gov (United States)

    Tengvall, Sara; Lundgren, Anna; Quiding-Järbrink, Marianne; Svennerholm, Ann-Mari

    2010-07-26

    Assessment of immune responses induced by mucosal vaccines is to a large extent based on measurement of IgA levels in mucosal secretions and detection of short-lived effector IgA-secreting cells circulating in peripheral blood. Since these immunological parameters poorly reflect long-term IgA-mediated responses, we sought to investigate novel approaches that would enable detection of vaccine specific IgA memory B cells. We demonstrate that stimulation of human peripheral blood mononuclear cells in vitro with immunostimulatory DNA in combination with B cell-activating factor (BAFF) and IL-15 promotes differentiation of IgA memory B cells to IgA-secreting cells. By using the inactivated oral cholera vaccine Dukoral we demonstrate that vaccine specific IgA memory B cells are induced by oral immunization and are circulating for at least 9 months after vaccination. We also show that stimulated IgA memory B cells do not secrete IgA unless they reencounter the specific antigen. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. In vivo protection against ZIKV infection and pathogenesis through passive antibody transfer and active immunisation with a prMEnv DNA vaccine

    Science.gov (United States)

    Muthumani, Karuppiah; Griffin, Bryan D; Agarwal, Sangya; Kudchodkar, Sagar B; Reuschel, Emma L; Choi, Hyeree; Kraynyak, Kimberly A; Duperret, Elizabeth K; Keaton, Amelia Anne; Chung, Christopher; Kim, Yinho K; Booth, Stephanie A; Racine, Trina; Yan, Jian; Morrow, Matthew P; Jiang, Jingjing; Lee, Brian; Ramos, Stephanie; Broderick, Kate E; Reed, Charles C; Khan, Amir S; Humeau, Laurent; Ugen, Kenneth E; Park, Young K; Maslow, Joel N; Sardesai, Niranjan Y; Joseph Kim, J; Kobinger, Gary P; Weiner, David B

    2016-01-01

    Significant concerns have been raised owing to the rapid global spread of infection and disease caused by the mosquito-borne Zika virus (ZIKV). Recent studies suggest that ZIKV can also be transmitted sexually, further increasing the exposure risk for this virus. Associated with this spread is a dramatic increase in cases of microcephaly and additional congenital abnormalities in infants of ZIKV-infected mothers, as well as a rise in the occurrence of Guillain Barre’ syndrome in infected adults. Importantly, there are no licensed therapies or vaccines against ZIKV infection. In this study, we generate and evaluate the in vivo efficacy of a novel, synthetic, DNA vaccine targeting the pre-membrane+envelope proteins (prME) of ZIKV. Following initial in vitro development and evaluation studies of the plasmid construct, mice and non-human primates were immunised with this prME DNA-based immunogen through electroporation-mediated enhanced DNA delivery. Vaccinated animals were found to generate antigen-specific cellular and humoral immunity and neutralisation activity. In mice lacking receptors for interferon (IFN)-α/β (designated IFNAR−/−) immunisation with this DNA vaccine induced, following in vivo viral challenge, 100% protection against infection-associated weight loss or death in addition to preventing viral pathology in brain tissue. In addition, passive transfer of non-human primate anti-ZIKV immune serum protected IFNAR−/− mice against subsequent viral challenge. This study in NHP and in a pathogenic mouse model supports the importance of immune responses targeting prME in ZIKV infection and suggests that additional research on this vaccine approach may have relevance for ZIKV control and disease prevention in humans. PMID:29263859

  6. Long-Term Antibody and Immune Memory Response Induced by Pulmonary Delivery of the Influenza Iscomatrix Vaccine

    OpenAIRE

    Vujanic, Ana; Snibson, Kenneth J.; Wee, Janet L. K.; Edwards, Stirling J.; Pearse, Martin J.; Scheerlinck, Jean-Pierre Y.; Sutton, Philip

    2012-01-01

    Pulmonary delivery of an influenza Iscomatrix adjuvant vaccine induces a strong systemic and mucosal antibody response. Since an influenza vaccine needs to induce immunological memory that lasts at least 1 year for utility in humans, we examined the longevity of the immune response induced by such a pulmonary vaccination, with and without antigen challenge. Sheep were vaccinated in the deep lung with an influenza Iscomatrix vaccine, and serum and lung antibody levels were quantified for up to...

  7. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  8. For t 2 DNA vaccine prevents Forcipomyia taiwana (biting midge) allergy in a mouse model.

    Science.gov (United States)

    Lee, M-F; Song, P-P; Lin, T-M; Chiu, Y-T; Chen, Y-H

    2016-04-01

    Forcipomyia taiwana (biting midge) is the most prevalent allergenic biting insect in Taiwan, and 60% of the exposed subjects develop allergic reactions. Subjects with insect allergy frequently limit their outdoor activities to avoid the annoyingly intense itchy allergic reactions, leading to significant worsening of their quality of life. Allergen-specific immunotherapy is the only known therapy that provides long-term host immune tolerance to the allergen, but is time-consuming and cumbersome. This study tested whether the For t 2 DNA vaccine can prevent allergic symptoms in For t 2-sensitized mice. Two consecutive shots of For t 2 DNA vaccine were given to mice with a 7-day interval before sensitization with recombinant For t 2 proteins, using the two-step sensitization protocol reported previously. The For t 2 DNA vaccine at 50 μg prevented the production of For t 2-specific IgE (P allergy in the future. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Kirkby, N

    1999-01-01

    Cytotoxic T-lymphocyte (CTL) response is an important component of anti-viral immunity. CTLs are specific to short peptides presented by MHC-I molecules and immunisation with the exact peptide sequence introduced in the cytosol is therefore a minimal approach, which potentially affords a high...... degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible......'. This did not improve CTL induction. In another version, one CTL epitope was inserted into a known T-helper protein (HBsAg). This did significantly augment the response probably due to immunological help from HBsAg Th epitopes. Finally, the CTL inducing minigene DNA vaccines were compared with Flu...

  10. Terminal twist-induced writhe of DNA with intrinsic curvature.

    Science.gov (United States)

    Hu, Kai

    2007-04-01

    Supercoiling of a closed circular DNA rod may result from an application of terminal twist to the DNA rod by cutting the rod, rotating one of the cut faces as the other being fixed and then sealing the cut. According to White's formula, DNA supercoiling is probably accompanied by a writhe of the DNA axis. Deduced from the elastic rod model for DNA structure, an intrinsically straight closed circular DNA rod does not writhe as subject to a terminal twist, until the number of rotation exceeds a rod-dependent threshold. By contrast, a closed circular DNA rod with intrinsic curvature writhes instantly as subject to a terminal twist. This noteworthy character in fact belongs to many intrinsically curved DNA rods. By solving the dynamic equations, the linearization of the Euler-Lagrange equations governing intrinsically curved DNA rods, this paper shows that almost every clamped-end intrinsically curved DNA rod writhes instantly when subject to a terminal twist (clamped-end DNA rods include closed circular DNA rods and topological domains of open DNA rods). In terms of physical quantities, the exceptions are identified with points in R(6) whose projections onto R(5) (through ignoring the total energy density of a rod) form a subset of a quadratic hypersurface. This paper also suggests that the terminal twist induced writhe is due to the elasticity and the clamped-end boundary conditions of the DNA rods.

  11. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial

    Directory of Open Access Journals (Sweden)

    Knutson Keith L

    2010-06-01

    Full Text Available Abstract Background Adjuvant trastuzumab (Herceptin treatment of breast cancer patients significantly improves their clinical outcome. Vaccination is an attractive alternative approach to provide HER-2/neu (Her2-specific antibodies and may in addition concomitantly stimulate Her2-reactive T-cells. Here we report the first administration of a Her2-plasmid DNA (pDNA vaccine in humans. Patients and Methods The vaccine, encoding a full-length signaling-deficient version of the oncogene Her2, was administered together with low doses of GM-CSF and IL-2 to patients with metastatic Her2-expressing breast carcinoma who were also treated with trastuzumab. Six of eight enrolled patients completed all three vaccine cycles. In the remaining two patients treatment was discontinued after one vaccine cycle due to rapid tumor progression or disease-related complications. The primary objective was the evaluation of safety and tolerability of the vaccine regimen. As a secondary objective, treatment-induced Her2-specific immunity was monitored by measuring antibody production as well as T-cell proliferation and cytokine production in response to Her2-derived antigens. Results No clinical manifestations of acute toxicity, autoimmunity or cardiotoxicity were observed after administration of Her2-pDNA in combination with GM-CSF, IL-2 and trastuzumab. No specific T-cell proliferation following in vitro stimulation of freshly isolated PBMC with recombinant human Her2 protein was induced by the vaccination. Immediately after all three cycles of vaccination no or even decreased CD4+ T-cell responses towards Her2-derived peptide epitopes were observed, but a significant increase of MHC class II restricted T-cell responses to Her2 was detected at long term follow-up. Since concurrent trastuzumab therapy was permitted, λ-subclass specific ELISAs were performed to specifically measure endogenous antibody production without interference by trastuzumab. Her2-pDNA vaccination

  12. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  13. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  14. Intranasal Vaccination against Cutaneous Leishmaniasis with a Particulated Leishmanial Antigen or DNA Encoding LACK

    Science.gov (United States)

    Pinto, Eduardo Fonseca; Pinheiro, Roberta Olmo; Rayol, Alice; Larraga, Vicente; Rossi-Bergmann, Bartira

    2004-01-01

    We have previously demonstrated that oral delivery of a disease-promoting particulated antigen of Leishmania amazonensis (LaAg) partially protects mice against cutaneous leishmaniasis. In the present work, we sought to optimize a mucosal vaccine by using the intranasal route for delivery of different antigen preparations, including (i) LaAg, (ii) soluble recombinant p36/LACK leishmanial antigen (LACK), and (iii) plasmid DNA encoding LACK (LACK DNA). BALB/c mice that received two intranasal doses of 10 μg of LaAg and were challenged 1 week postvaccination with L. amazonensis developed delayed but effective control of lesion growth. A diminished parasite burden was accompanied by enhancement of both gamma interferon (IFN-γ) and interleukin-10 levels in the lesion-draining lymph nodes. The vaccine efficacy improved with time. At 4 months postvaccination, when a strong parasite-specific TH1-type response was present in vivo, the infection was controlled for at least 5 months after challenge. In contrast to the particulated LaAg, soluble LACK (10 μg/dose) had no effect. Interestingly, LACK DNA (30 μg/dose), but not empty DNA, promoted rapid and durable protective immunity. Parasite growth was effectively controlled, and at 5 months after challenge LACK-reactive cells in both the mucosal and lesion-draining lymph nodes produced high levels of IFN-γ. These results demonstrate for the first time the feasibility of using the intranasal route for long-lived memory vaccination against cutaneous leishmaniasis with adjuvant-free crude antigens or DNA. PMID:15271911

  15. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  16. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

    Science.gov (United States)

    Gupta, Shivali; Garg, Nisha J

    2015-05-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.

  17. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Shivali Gupta

    2015-05-01

    Full Text Available In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv. We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38% and CD8+ (22-42% T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4 with type 1 cytokine (IFNγ+ and TFNα+ production and cytolytic T lymphocyte (CTL activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.

  18. Clinical study on safety and immunogenicity of therapeutic dual-plasmid HBV DNA vaccine mediated by in vivo electroporation

    Directory of Open Access Journals (Sweden)

    Hai-yan YANG

    2013-03-01

    Full Text Available Objective  To evaluate the safety and immunogenicity of the therapeutic dual-plasmid HBV DNA vaccine mediated by electroporation (EP in vivo against the hepatitis B virus in healthy adult volunteers. Methods The enrolled 30 healthy volunteers were randomly divided into three dosage groups (10 volunteers in each group, namely: high-dose (4mg, middle-dose (2mg and low-dose (1mg groups. Volunteers received four intramuscular injections of HBV DNA vaccine mediated by in vivo EP at the 0, 4th, 12th and 24th week. Each dose group was further divided into 2 sub-groups (5 persons/per group with different EP frequencies, i.e. 36 and 60 volt. The changes in response was determined by physical diagnosis (ECG, chest X-ray, type-B ultrasound, lab findings (blood and urine routine, blood biochemistry, prothrombin time, thyroid function, tumor biomarkers, immunological variables (IFN-γ, ANA, anti-dsDNA Ab, serological variables pertaining to HBV (HBsAg, HBcAb, HBeAg, HBeAb, HBV DNA and serum anti-HBs status in volunteers before and after receiving EP mediated HBV DNA vaccination. Results The dual-plasmid HBV DNA vaccination mediated by in vivo EP was well tolerated in all healthy volunteers with a stable life signs. It was found that EP-mediated immunization of the therapeutic DNA vaccine against hepatitis B virus had a specific and obvious anti-HBs humoral immune response in one volunteer (17.22mU/ml. Four repeated intramuscular injections of the vaccine did not show any significant adverse effects in the receptors. Although mild elevation of serum ALT and enlarged spleen were found in one individual, the abnormalities disappeared spontaneously at the end of the trial. Conclusions EP-mediated dual-plasmid HBV DNA vaccine is safe and well tolerated with certain degree of humoral immunogenicity.

  19. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  20. Characterization of the BPI-like gene from a subtracted cDNA library of large yellow croaker (Pseudosciaena crocea) and induced expression by formalin-inactivated Vibrio alginolyticus and Nocardia seriolae vaccine challenges.

    Science.gov (United States)

    Huang, Yanqing; Lou, Huifang; Wu, Xinzhong; Chen, Yanxia

    2008-12-01

    One expressed sequence tag (EST 64LF004 clone), which is from the subtracted cDNA library of the head kidney of large yellow croaker (Pseudosciaena crocea) stimulated with peptidoglycan (PG) by suppression subtractive hybridization (SSH) method, was cloned using RACE-PCR. The full length cDNA, which possesses typical structural features of a signal peptide, a conserved LPS binding domain and two bactericidal permeability-increasing (BPI) motifs as in higher vertebrates, was identified as a novel homologue, namely of the large yellow croaker BPI-like molecule (Pc-BPI-L). Phylogenetic analysis showed this Pc-BPI-L of large yellow croaker as the most ancestral branch in bony fish clade. The recombinant Pc-BPI-L protein expressed in the Tn-5B1-4 insect cells was successfully produced and confirmed to have the predicted size of 52 kDa by Western blot analysis. At the message level, Pc-BPI-L mRNA was ubiquitously expressed in all tissues examined. Following formalin-inactivated Vibrio alginolyticus and Nocardia seriolae treatment, Pc-BPI-L message was differentially up-regulated in primary immune organs. These results indicate that Pc-BPI-L might be involved in the immune response to bacterial infection.

  1. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection.

    Science.gov (United States)

    Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed.

  2. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection.

    Directory of Open Access Journals (Sweden)

    Natan Raimundo Gonçalves de Assis

    Full Text Available Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2 are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed.

  3. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus

    DEFF Research Database (Denmark)

    Bela-ong, Dennis Berbulla; Schyth, Brian Dall; Zou, Jun

    2015-01-01

    Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse...... class of small (18–22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes, including immune responses. We have recently reported that miR-462 and miR-731 were strongly induced in rainbow......RNAs using anti-miRNA oligonucleotides was conducted in poly I:C-treated rainbow trout fingerlings. Following VHSV challenge, anti-miRNA-injected fish had faster development of disease and higher mortalities than control fish, indicating that miR-462/731 may be involved in IFN-mediated protection conferred...

  4. [Therapeutic effect of a novel recombinant vaccine encoding chicken collagen type II procollagen gene on collagen-induced arthritis in rat].

    Science.gov (United States)

    Song, Xin-qiang; Luo, Yuan; Wang, Dan; Liu, Shu-guang; Liu, Jin-feng; Yuan, Fang; Xue, Hong; Liu, Nan; Liang, Fei; Sun, Yu-ying; Xi, Yong-zhi

    2006-08-08

    To investigate the therapeutic effect of gene vaccine encoding chicken collagen type II (CC II) on collagen-induced arthritis (CIA) comprehensively. Three groups (CIA) were given a single intravenous injection of plasmid pcDNA-CCOL2A1 (20 microg/kg, 200 microg/kg, 400 microg/kg) respectively and one group (CIA) was injected 200 microg/kg pcDNA3.1 as a control. The effect of gene vaccine (pcDNA-CCOL2A1) was evaluated according to the arthritis score, radiological and histological examinations. The severity of arthritis of CIA rats which were administered 200 microg/kg pcDNA-CCOL2A1 was significantly reduced from the fifth day. According to the radiological and histological examinations, the articular cartilage as well as subchondral bone trabeculae are similar to those of the normal groups, so the bone and articular cartilage structure were protected after treatment with 200 microg/kg pcDNA-CCOL2A1 with a little synovial hyperplasia. The therapeutic effect of 200 microg/kg pcDNA-CCOL2A1 group has significant difference in comparison with that of the pcDNA3.1 group (P 0.05). The new gene vaccine pcDNA-CCOL2A1 has significant therapeutic effect on CIA rats, and the treatment may therefore be an effective strategy for RA patient clinically.

  5. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  6. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    Science.gov (United States)

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  7. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    Science.gov (United States)

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  8. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  9. Protection against SHIV-KB9 Infection by Combining rDNA and rFPV Vaccines Based on HIV Multiepitope and p24 Protein in Chinese Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Chang Li

    2012-01-01

    Full Text Available Developing an effective vaccine against HIV infection remains an urgent goal. We used a DNA prime/fowlpox virus boost regimen to immunize Chinese rhesus macaques. The animals were challenged intramuscularly with pathogenic molecularly cloned SHIV-KB9. Immunogenicity and protective efficacy of vaccines were investigated by measuring IFN-γ levels, monitoring HIV-specific binding antibodies, examining viral load, and analyzing CD4/CD8 ratio. Results show that, upon challenge, the vaccine group can induce a strong immune response in the body, represented by increased expression of IFN-γ, slow and steady elevated antibody production, reduced peak value of acute viral load, and increase in the average CD4/CD8 ratio. The current research suggests that rapid reaction speed, appropriate response strength, and long-lasting immune response time may be key protection factors for AIDS vaccine. The present study contributes significantly to AIDS vaccine and preclinical research.

  10. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults.

    Science.gov (United States)

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.

  11. Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp.

    Science.gov (United States)

    Moreno, Esther; Schwartz, Juana; Calvo, Alba; Blanco, Laura; Larrea, Esther; Irache, Juan M; Sanmartín, Carmen; Coulman, Sion A; Soto, Manuel; Birchall, James C; Espuelas, Socorro

    2017-11-25

    Vaccine delivery using microneedles (MNs) represents a safe, easily disposable and painless alternative to traditional needle immunizations. The MN delivery of DNA vaccines to the dermis may result in a superior immune response and/or an equivalent immune response at a lower vaccine dose (dose-sparing). This could be of special interest for immunization programs against neglected tropical diseases such as leishmaniasis. In this work, we loaded a MN device with 60μg of a plasmid DNA cocktail encoding the Leishmania infantum nucleosomal histones H2A, H2B, H3 and H4 and compared its immunogenicity and protective capacity against conventional s.c. or i.d. injection of the plasmid. Mice immunized with MNs showed increased ratios of IFN-γ/IL-10, IFN-γ/IL-13, IFN-γ/IL-4, and IFN-γ/TGF-β in the spleens and lymph nodes compared with mice immunized by s.c. and i.d. routes. Furthermore, CCXCL9, CXCL10 and CCL2 levels were also higher. These data suggest that the nucleic acid immunization using MNs produced a better bias towards a Th1 response. However, none of the immunizations strategies were able to control Leishmania major infection in BALB/c mice, as illustrated by an increase in lesion size and parasite burden. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    Science.gov (United States)

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Asbestos induced oxidative injury to DNA.

    Science.gov (United States)

    Mahmood, N; Khan, S G; Ali, S; Athar, M; Rahman, Q

    1993-06-01

    DNA-damaging effects of asbestos in the presence of organic peroxides and hydroperoxides were investigated. The destabilization of the secondary structure of DNA, damage to deoxyribose sugar and DNA fidelity were measured, respectively, by S-1 nuclease hydrolysis, the formation of thiobarbituric acid (TBA)-reacting species and a melting temperature (Tm) profile using calf thymus DNA. S-1 nuclease hydrolysis and Tm determinations have shown that the presence of benzoylperoxide (BOOB), cumene hydroperoxide (COOH) or tertiary-butyl hydroperoxide (t-BOOH) increased asbestos-mediated DNA damage by a large factor compared either to asbestos alone or to peroxide or hydroperoxide alone. However, no formation of TBA-reacting species could be observed in this system. The quenchers of reactive oxygen species (ROS) afforded protection against DNA damage. These results suggest that asbestos in the presence of organic peroxides and hydroperoxides damage the DNA which is mediated by the generation of oxygen free radicals. The significance of these results in relation to the development of cancer of the respiratory tract among the asbestos exposed population is discussed.

  14. Pre-clinical toxicity & immunobiological evaluation of DNA rabies vaccine & combination rabies vaccine in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Kumar, B Dinesh; Kumar, P Uday; Krishna, T Prasanna; Kalyanasundaram, S; Suresh, P; Jagadeesan, V; Hariharan, S; Naidu, A Nadamuni; Krishnaswamy, Kamala; Rangarajan, P N; Srinivasan, V A; Reddy, G S; Sesikeran, B

    2013-06-01

    Pre-clinical toxicology evaluation of biotechnology products is a challenge to the toxicologist. The present investigation is an attempt to evaluate the safety profile of the first indigenously developed recombinant DNA anti-rabies vaccine [DRV (100 μg)] and combination rabies vaccine [CRV (100 μg DRV and 1.25 IU of cell culture-derived inactivated rabies virus vaccine)], which are intended for clinical use by intramuscular route in Rhesus monkeys. As per the regulatory requirements, the study was designed for acute (single dose - 14 days), sub-chronic (repeat dose - 28 days) and chronic (intended clinical dose - 120 days) toxicity tests using three dose levels, viz. therapeutic, average (2x therapeutic dose) and highest dose (10 x therapeutic dose) exposure in monkeys. The selection of the model i.e. monkey was based on affinity and rapid higher antibody response during the efficacy studies. An attempt was made to evaluate all parameters which included physical, physiological, clinical, haematological and histopathological profiles of all target organs, as well as Tiers I, II, III immunotoxicity parameters. In acute toxicity there was no mortality in spite of exposing the monkeys to 10XDRV. In sub chronic and chronic toxicity studies there were no abnormalities in physical, physiological, neurological, clinical parameters, after administration of test compound in intended and 10 times of clinical dosage schedule of DRV and CRV under the experimental conditions. Clinical chemistry, haematology, organ weights and histopathology studies were essentially unremarkable except the presence of residual DNA in femtogram level at site of injection in animal which received 10X DRV in chronic toxicity study. No Observational Adverse Effects Level (NOAEL) of DRV is 1000 ug/dose (10 times of therapeutic dose) if administered on 0, 4, 7, 14, 28 th day. The information generated by this study not only draws attention to the need for national and international regulatory

  15. Estimation of the duration of vaccine-induced residual protection against severe and fatal smallpox based on secondary vaccination failure.

    Science.gov (United States)

    Nishiura, H; Eichner, M

    2006-10-01

    Understanding the loss of vaccine-induced immunity against smallpox is essential in determining the fraction of those who are still protected in the present population and in constructing effective countermeasures against bioterrorist attacks. Three small Australian outbreaks from the 1880s to early 1900s were investigated. Each documented individual age at infection. The case records for Launceston, 1903, further documented the age at vaccination and disease severity, enabling estimates of the duration of protection against severe and fatal smallpox. A significant association between vaccination and death was observed in the outbreak in Sydney, 1881 (odds ratio of death among vaccinated individuals = 0.3; 95% confidence interval (CI): 0.1, 0.8; p = 0.02), where the time since last vaccination was similar for all vaccinated cases. In Launceston, 1903, where the age at vaccination varied widely, the median duration of partial protection against severe and fatal smallpox was estimated to be 31.7 (95% CI: 13.2, 116.2) and 53.9 (95% CI: 25.6, 123.5) years after vaccination, respectively. Whereas those in their 20s are expected to have the highest frequency of vulnerability to smallpox death in the present population, infections among those in their 30s or 40s are expected to be much less fatal. Long lasting partial protection was suggested from the outbreak records, the estimated durations of which were roughly consistent with those reported previously. In the event of a bioterrorist attack, those involved in emergency tasks before emergency vaccination practices are re-established should ideally be previously vaccinated individuals in their 30s or 40s.

  16. UV Laser-Induced DNA Photochemistry

    Science.gov (United States)

    1991-05-13

    until it reached an absorbance of Acoo-0.5. 500 ̂ 1 of M13 phage stock (containing 10" to 10" pfu/ml) was added to the culture. After one hour...RNA, as well as the formation of intra-molecular crosslinks in CQ phage DNA. They also studied the quantum yield of thymine degradation following...dilution (addition of 2.5 volumes distilled water), and ethanol precipitated. c) M13 RF DNA. Ml3mp7 and Ml3mpl8 replicative form (RF) DNA was purified

  17. Effect of Vaccination with Irradiated Tachyzoites on Histopathological Changes and DNA Damage in Hepatocytes of Experimental Toxoplasmosis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.

    2015-01-01

    Current strategies for the control of toxoplasmosis are based on chemotherapy, however successful vaccine has also been demonstrated. The present study aims to assess the effect of the vaccination with radiation-attenuated tachyzoites in challenged mice regarding histopathological alteration and DNA damage of hepatocytes. Sixty mice were equally divided as follow: Group I left as a normal control group II was infected with 2x10 3 RH virulent tachyzoite s (infected control). Groups III and IV were subdivided into two subgroups a and b where subgroups III a and IV a were vaccinate d with 2.47 mw-min/cm 2 UV and 0.3 KGy gamma radiation – attenuate d tachyzoites respectively without challenge (as vaccine control). Subgroups III b and IV b were vaccinate d with UV and gamma radiation - attenuated tachyzoites and challenged after three weeks with 2x10 3 RH virulent tachyzoites. Livers were examined for histopathological changes and DNA comet assay. It was observed that acute infection with Toxoplasma tachyzoites produced toxic effects which lead to severe damage in liver tissues and DNA of hepatocytes. Meanwhile, the protective effect of UV or gamma radiation-attenuated tachyzoites vaccine resulted in the maintenance of normal histopathological characteristics and DNA of hepatocyte s and UV irradiation is better in its protective capacity

  18. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response.

    Science.gov (United States)

    Pereira, V B; da Cunha, V P; Preisser, T M; Souza, B M; Turk, M Z; De Castro, C P; Azevedo, M S P; Miyoshi, A

    2017-06-01

    A regimen utilizing Bacille Calmette-Guerin (BCG) and another vaccine system as a booster may represent a promising strategy for the development of an efficient tuberculosis vaccine for adults. In a previous work, we confirmed the ability of Lactococcus lactis fibronectin-binding protein A (FnBPA+) (pValac:ESAT-6), a live mucosal DNA vaccine, to produce a specific immune response in mice after oral immunization. In this study, we examined the immunogenicity of this strain as a booster for the BCG vaccine in mice. After immunization, cytokine and immunoglobulin profiles were measured. The BCG prime L. lactis FnBPA+ (pValac:ESAT-6) boost group was the most responsive group, with a significant increase in splenic pro-inflammatory cytokines IL-17, IFN-γ, IL-6 and TNF-α compared with the negative control. Based on the results obtained here, we demonstrated that L. lactis FnBPA+ (pValac:ESAT-6) was able to increase the BCG vaccine general immune response. This work is of great scientific and social importance because it represents the first step towards the development of a booster to the BCG vaccine using L. lactis as a DNA delivery system. © 2017 The Society for Applied Microbiology.

  19. Use of an inactivated vaccine for prevention of parvovirus-induced reproductive failure in gilts.

    Science.gov (United States)

    Brown, T T; Whitacre, M D; Robison, O W

    1987-01-15

    Gilts from dams that had been inoculated with inactivated porcine parvovirus (PPV) vaccine before breeding became seronegative to PPV by 26 weeks of age. Vaccination of these gilts with inactivated PPV vaccine at 32 weeks of age resulted in an antibody response that peaked at about 2 weeks after vaccination, with -log10 mean hemagglutination inhibiting (HI) antibody titers of less than 2. In the first-year group (82 gilts), HI titers gradually decreased, 20% of the gilts being seronegative by 6 to 7 weeks after vaccination and 75% being seronegative by 16 weeks after vaccination. In the second-year group, 93 gilts were infected naturally by a field strain of PPV at about 11 weeks after single vaccination with inactivated PPV. Additionally, in the second year, 20 vaccinated and 6 nonvaccinated gilts were immune-challenged with virulent PPV at 10 to 12 weeks after vaccination. Neither field nor challenge PPV infection of vaccinated pregnant gilts caused reproductive failure, even though some of the gilts became seronegative for PPV before challenge. Our findings suggest that single vaccination of gilts with inactivated PPV vaccine should give adequate protection from PPV-induced reproductive failure, even though serum HI titers decrease to an undetectable level shortly before PPV infection.

  20. Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection.

    Science.gov (United States)

    Lauretti, Flavio; Chattopadhyay, Anasuya; de Oliveira França, Rafael Freitas; Castro-Jorge, Luiza; Rose, John; Fonseca, Benedito A L da

    2016-09-01

    Dengue is the most important arbovirus disease throughout the world and it is responsible for more than 500,000 dengue hemorrhagic cases and 22,000 deaths every year. One vaccine was recently licensed for human use in Brazil, Mexico and Philippines and although at least seven candidates have been in clinical trials the results of the most developed CYD vaccine have demonstrated immunization problems, such as uneven protection and interference between serotypes. We constructed a vaccine candidate based on vesicular stomatitis virus (VSV) expression of pre-membrane (prM) and envelope (E) proteins of dengue-2 virus (DENV-2) and tested it in mice to evaluate immunogenicity and protection against DENV-2 infection. VSV has been successfully used as vaccine vectors for several viruses to induce strong humoral and cellular immune responses. The VSV-DENV-2 recombinant was constructed by inserting the DENV-2 structural proteins into a VSV plasmid DNA for recombinant VSV-DENV-2 recovery. Infectious recombinant VSV viruses were plaque purified and prM and E expression were confirmed by immunofluorescence and radiolabeling of proteins of infected cells. Forty Balb/C mice were inoculated through subcutaneous (s.c.) route with VSV-DENV-2 vaccine in a two doses schedule 15 d apart and 29 d after first inoculation, sera were collected and the mice were challenged with 50 lethal doses (LD50) of a neurovirulent DENV-2. The VSV-DENV-2 induced anti-DENV-2 antibodies and protected animals in the challenge experiment comparable to DENV-2 immunization control group. We conclude that VSV is a promising platform to test as a DENV vaccine and perhaps against others Flaviviridae.

  1. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy.

    Science.gov (United States)

    Un, Keita; Kawakami, Shigeru; Suzuki, Ryo; Maruyama, Kazuo; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2010-10-01

    Development of a gene delivery system to transfer the gene of interest selectively and efficiently into targeted cells is essential for achievement of sufficient therapeutic effects by gene therapy. Here, we succeeded in developing the gene transfection method using ultrasound (US)-responsive and mannose-modified gene carriers, named Man-PEG(2000) bubble lipoplexes. Compared with the conventional lipofection method using mannose-modified carriers, this transfection method using Man-PEG(2000) bubble lipoplexes and US exposure enabled approximately 500-800-fold higher gene expressions in the antigen presenting cells (APCs) selectively in vivo. This enhanced gene expression was contributed by the improvement of delivering efficiency of nucleic acids to the targeted organs, and by the increase of introducing efficiency of nucleic acids into the cytoplasm followed by US exposure. Moreover, high anti-tumor effects were demonstrated by applying this method to DNA vaccine therapy using ovalbumin (OVA)-expressing plasmid DNA (pDNA). This US-responsive and cell-specific gene delivery system can be widely applied to medical treatments such as vaccine therapy and anti-inflammation therapy, which its targeted cells are APCs, and our findings may help in establishing innovative methods for in-vivo gene delivery to overcome the poor introducing efficiency of carriers into cytoplasm which the major obstacle associated with gene delivery by non-viral carriers. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Penaranda, M.M.D.; LaPatra, S.E.; Kurath, G.

    2011-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a fish rhabdovirus that causes significant mortality in salmonid species. In North America IHNV has three major genogroups designated U, M, and L. Host-specificity of the M and U genogroups of IHNV has been established both in the field and in experimental challenges, with M isolates being more prevalent and more virulent in rainbow trout (Oncorhynchus mykiss), and U isolates being more prevalent and highly virulent in sockeye salmon (Oncorhynchus nerka). In this study, efficacy of DNA vaccines containing either M (pM) or U (pU) virus glycoprotein genes was investigated during intra- and cross-genogroup challenges in rainbow trout. In virus challenges at 7 days post-vaccination (early antiviral response), both pM and pU were highly protective against either M or U IHNV. In challenges at 28 days post-vaccination (specific antiviral response), both pM and pU were protective against M IHNV but the homologous pM vaccine was significantly more protective than pU in one of two experiments. At this stage both pM and pU induced comparably high protection against U IHNV challenge. Correlates of protection were also investigated by assessing the expression of the interferon-stimulated gene Mx-1 and the production of neutralizing antibodies (NAbs) following pM or pU DNA vaccination. Mx-1 gene expression, measured at 4 and 7 days post-vaccination as an indicator of the host innate immune response, was found to be significantly higher after pM than pU vaccination in some cases. Neutralizing antibody was produced in response to the two vaccines, but antibody titers did not show consistent correlation with protection. The results show that the rainbow trout innate and adaptive immune responses have some ability to distinguish between the U and M genogroup IHNV, but overall the pM and pU vaccines were protective against both homologous and cross-genogroup challenges.

  3. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  4. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  5. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  6. Serological response to rabies virus induced by commercial vaccines in cattle

    Directory of Open Access Journals (Sweden)

    Mathias Martins

    2017-09-01

    Full Text Available ABSTRACT: The antibody response to rabies virus (RABV induced by commercial vaccines in heifers was investigated. For this, 84 heifers were vaccinated twice (30 days interval with each of four vaccines (G1 = 14 animals; G2 = 24; G3 = 22 and G4 = 24 and received a booster vaccination 360 days later. Serum samples collected at different intervals after vaccination and 30 days after booster were submitted to a virus neutralizing (VN assay for RABV antibodies. Thirty days after the second vaccine dose, 92% of the immunized animals presented VN titers ≥0.5UI/mL (geometric medium titers [GMT] 1.7 to 3.8UI/mL. At the day of the booster (360 days post-vaccination; however, the percentage of animals harboring antibody titers ≥0.5UI/mL had dropped to 31% (0-80% of the animals, depending on the vaccine, resulting in lower GMT (0.1 to 0.6UI/mL. Booster vaccination at day 360 resulted in a detectable anamnestic response in all groups, resulting in 83% of animals (65 to 100% harboring VN titers ≥0.5UI/mL thirty days later (GMT 0.6 to 4.3UI/mL. These results indicated that these vaccines were able to induce an adequate anti-RABV response in all animals after prime vaccination (and after booster as well. However, the titers decreased, reaching titers <0.5UI/mL in approximately 70% of animals within the interval before the recommended booster. Thus, booster vaccination for rabies in cattle using the current vaccines should be performed before the recommended one-year interval, as to maintain neutralizing antibodies levels in most vaccinated animals.

  7. Preparation and characterization of novel PBAE/PLGA polymer blend microparticles for DNA vaccine delivery.

    Science.gov (United States)

    Balashanmugam, Meenashi Vanathi; Nagarethinam, Sivagurunathan; Jagani, Hitesh; Josyula, Venkata Rao; Alrohaimi, Abdulmohsen; Udupa, Nayanabhirama

    2014-01-01

    Poly(beta-amino ester) (PBAE) with its pH sensitiveness and Poly(lactic-co-glycolic acid) (PLGA) with huge DNA cargo capacity in combination prove to be highly efficient as DNA delivery system. To study the effectiveness of novel synthesized PBAE polymer with PLGA blend at different ratios in DNA vaccine delivery. In the present study, multifunctional polymer blend microparticles using a combination of PLGA and novel PBAE polymers A1 (bis(3-(propionyloxy)propyl)3,3'-(propane-1,3-diyl-bis(methylazanediyl))dipropanoate) and A2 (bis(4-(propionyloxy)butyl)3,3'-(ethane-1,2-diyl-bis(isopropylazanediyl))dipropanoate) at different ratios (85:15, 75:25, and 50:50) were prepared by double emulsion solvent removal method. The microparticles were characterized for cytotoxicity, transfection efficiency, and DNA encapsulation efficiency. It was evident from results that among the microparticles prepared with PLGA/PBAE blend the PLGA:PBAE at 85:15 ratio was found to be more effective combination than the microparticles prepared with PLGA alone in terms of transfection efficiency and better DNA integrity. Microparticles made of PLGA and PBAE A1 at 85:15 ratio, respectively, were found to be less toxic when compared with microparticles prepared with A2 polymer. The results encourage the use of the synthesized PBAE polymer in combination with PLGA as an effective gene delivery system.

  8. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    Science.gov (United States)

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-04-01

    Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non-invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein-expressing Caco-2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  9. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  10. ZIKA-001: Safety and Immunogenicity of an Engineered DNA Vaccine Against ZIKA virus infection

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Zaidi, Faraz; Boyer, Jean; Kudchodkar, Sagar; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Kobinger, Gary P; Weiner, David; Maslow, Joel

    2017-01-01

    Abstract Background While Zika virus (ZIKV) infection is typically self-limited, congenital birth defects and Guillain-Barré syndrome are well-described. There are no therapies or vaccines against ZIKV infection. Methods ZIKA-001 is a phase I, open label, clinical trial designed to evaluate the safety, side effect profile, and immunogenicity of a synthetic, DNA vaccine (GLS-5700) targeting the pre-membrane+envelope proteins (prME) of the virus. Two groups of 20 participants received GLS-5700 at one of two dose levels: 1 mg or 2 mg DNA/dose at 0, 4, and 12 weeks. Vaccine was administered as 0.1 or 0.2 ml (1 or 2 mg) intradermal (ID) injection followed by electroporation (EP) with the CELLECTRA®-3P device Results The median age of the 40 participants was 38 (IQR 30–54) years; 60% were female 30% Latino and 78% white. No SAEs have been reported to date. Local minor AEs were injection site pain, redness, swelling and itching that occurred in half of the participants. Systemic adverse events were rare and included headache, myalgias, upper respiratory infections, fatigue/malaise and nausea. Four weeks after the first dose 25% vs. 60% of the participants in the 1 mg and 2 mg dose seroconverted. By week 6, 2 weeks after the second dose, the response was 65 and 84% respectively and 2 weeks after the third dose all participants in both dosing groups developed antibodies. At the end of the vaccination period over 60% of vaccinated person neutralized Zika virus in a vero cell assay and greater than 80% on neuronal cell targets. The protective efficacy of the antibodies generated by the vaccine was evaluated in the lethal IFNAR−/− mouse model. After the intraperitoneal administration of 0.1 ml of either baseline, week 14 serum or PBS the animals were challenged with 106 PFUs of ZIKV PR209 isolate. Whereas animals administered PBS (control) or baseline serum succumbed after a median of 5 days, those pretreated with week 14 serum from study participants survived

  11. Ability of vaccine strain induced antibodies to neutralize field isolates of caliciviruses from Swedish cats.

    Science.gov (United States)

    Wensman, Jonas Johansson; Samman, Ayman; Lindhe, Anna; Thibault, Jean-Christophe; Berndtsson, Louise Treiberg; Hosie, Margaret J

    2015-12-12

    Feline calicivirus (FCV) is a common cause of upper respiratory tract disease in cats worldwide. Its characteristically high mutation rate leads to escape from the humoral immune response induced by natural infection and/or vaccination and consequently vaccines are not always effective against field isolates. Thus, there is a need to continuously investigate the ability of FCV vaccine strain-induced antibodies to neutralize field isolates. Seventy-eight field isolates of FCV isolated during the years 2008-2012 from Swedish cats displaying clinical signs of upper respiratory tract disease were examined in this study. The field isolates were tested for cross-neutralization using a panel of eight anti-sera raised in four pairs of cats following infection with four vaccine strains (F9, 255, G1 and 431). The anti-sera raised against F9 and 255 neutralised 20.5 and 11.5 %, and 47.4 and 64.1 % of field isolates tested, respectively. The anti-sera against the more recently introduced vaccine strains G1 and 431 neutralized 33.3 and 55.1 % (strain G1) or 69.2 and 89.7 % (strain 431) of the field isolates with titres ≥5. [corrected]. Dual vaccine strains displayed a higher cross-neutralization. This study confirms previous observations that more recently introduced vaccine strains induce antibodies with a higher neutralizing capacity compared to vaccine strains that have been used extensively over a long period of time. This study also suggests that dual FCV vaccine strains might neutralize more field isolates compared to single vaccine strains. Vaccine strains should ideally be selected based on updated knowledge on the antigenic properties of field isolates in the local setting, and there is thus a need for continuously studying the evolution of FCV together with the neutralizing capacity of vaccine strain induced antibodies against field isolates at a national and/or regional level.

  12. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs

    OpenAIRE

    Denies, Sofie; Cicchelero, Laetitia; Polis, Ingeborgh; Sanders, Niek N.

    2016-01-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by ...

  13. The Cartography of UV-induced DNA Damage Formation and DNA Repair.

    Science.gov (United States)

    Hu, Jinchuan; Adar, Sheera

    2017-01-01

    DNA damage presents a barrier to DNA-templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high-throughput genomic tools overcame these limitations and provide high-resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis. © 2016 The American Society of Photobiology.

  14. Notable mucosal immune responses induced in the intestine of zebrafish (Danio rerio) bath-vaccinated with a live attenuated Vibrio anguillarum vaccine.

    Science.gov (United States)

    Liu, Xiaohong; Wu, Haizhen; Chang, Xinyue; Tang, Yufei; Liu, Qin; Zhang, Yuanxing

    2014-09-01

    Live attenuated vaccine is one of the efficient vaccine candidates in aquaculture, which can be easily delivered to fish via bath-vaccination. An outstanding advantage of bath-vaccination is that vaccine delivery is through the same route as that utilized by many fish pathogens, generating specific mucosal immune responses. In this work, we investigated the mucosal immune responses induced by a live attenuated Vibrio anguillarum vaccine in zebrafish via bath-vaccination. Bacteria proliferated rapidly in 3 h after vaccination and maintained at a high level until 6 h in the intestine. Besides, bacteria persisted in the intestine for a longer time whereas decreased rapidly in the skin and gills. Moreover, a significant up-regulation of TLR5 triggering a MyD88-dependent signaling pathway was observed in the intestine, which implied that flagella were the crucial antigenic component of the live attenuated vaccine. And macrophages and neutrophils showed active responses participating in antigen recognition and sampling after vaccination. Furthermore, an inflammation was observed with plenty of lymphocytes in the intestine at 24 h post vaccination but eliminated within 7 days. In conclusion, the live attenuated V. anguillarum vaccine induced notable mucosal immune responses in the intestine which could be used as a mucosal vaccine vector in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV.

    Science.gov (United States)

    Hinkula, J; Petkov, S; Ljungberg, K; Hallengärd, D; Bråve, A; Isaguliants, M; Falkeborn, T; Sharma, S; Liakina, V; Robb, M; Eller, M; Moss, B; Biberfeld, G; Sandström, E; Nilsson, C; Markland, K; Blomberg, P; Wahren, B

    2017-06-01

    In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct

  16. Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil.

    Science.gov (United States)

    Lee, Sin Hang

    2012-12-01

    Medical practitioners in nine countries submitted samples of Gardasil (Merck & Co.) to be tested for the presence of human papillomavirus (HPV) DNA because they suspected that residual recombinant HPV DNA left in the vaccine might have been a contributing factor leading to some of the unexplained post-vaccination side effects. A total of 16 packages of Gardasil were received from Australia, Bulgaria, France, India, New Zealand, Poland, Russia, Spain and the United States. A nested polymerase chain reaction (PCR) method using the MY09/MY11 degenerate primers for initial amplification and the GP5/GP6-based nested PCR primers for the second amplification were used to prepare the template for direct automated cycle DNA sequencing of a hypervariable segment of the HPV L1 gene which is used for manufacturing of the HPV L1 capsid protein by a DNA recombinant technology in vaccine production. Detection of HPV DNA and HPV genotyping of all positive samples were finally validated by BLAST (Basic Local Alignment Search Tool) analysis of a 45-60 bases sequence of the computer-generated electropherogram. The results showed that all 16 Gardasil samples, each with a different lot number, contained fragments of HPV-11 DNA, or HPV-18 DNA, or a DNA fragment mixture from both genotypes. The detected HPV DNA was found to be firmly bound to the insoluble, proteinase-resistant fraction, presumably of amorphous aluminum hydroxyphosphate sulfate (AAHS) nanoparticles used as adjuvant. The clinical significance of these residual HPV DNA fragments bound to a particulate mineral-based adjuvant is uncertain after intramuscular injection, and requires further investigation for vaccination safety. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. UV-induced DNA repair in leukemic cell differentiation

    International Nuclear Information System (INIS)

    Nakamaki, Tsuyoshi; Sakashita, Akiko; Tomoyasu, Shigeru; Tsuruoka, Nobuyoshi; Ajiri, Teizo.

    1989-01-01

    Ultraviolet light (UV)-induced DNA repair during myeloid leukemic cell differentiation was examined. Human myeloid leukemic cells could be induced to differentiate in vitro into mature cells by various chemical inducers that lost their proliferating potencies. In spite of decrease of proliferation capacity, almost all these terminally differentiated myeloid leukemic cells invariably showed UV-induced unscheduled DNA synthesis (UDS) at low energy of UV irradiation (3-5 J/m 2 ). This indicated that the terminally differentiated myeloid leukemic cells are functionally quite different from mature granulocytes in chronic myeloid leukemia (CML) or in normal peripheral blood. In HL-60 cells, UV-survival was enhanced in the process of differentiation induced by 1.25% DMSO or 0.6 mM sodium n-butyrate. The degree of enhancement of UV-survival was correlated with the increased amount of UDS. The process of myeloid leukemic cell differentiation which is completed without loss of capacity performing repair DNA synthesis was one of the characteristics of the terminally differentiated myeloid leukemic cells induced by chemical inducers in vitro and this function may support the hypothesis that DNA breaking and rejoining are involved in a mechanism of cytodifferentiation. (author)

  18. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles.

    Science.gov (United States)

    Ali, Ahlam A; McCrudden, Cian M; McCaffrey, Joanne; McBride, John W; Cole, Grace; Dunne, Nicholas J; Robson, Tracy; Kissenpfennig, Adrien; Donnelly, Ryan F; McCarthy, Helen O

    2017-04-01

    HPV subtypes (16, 18) are associated with the development of cervical cancer, with oncoproteins E6 and E7 responsible for pathogenesis. The goal of this study was to evaluate our 'smart system' technology platform for DNA vaccination against cervical cancer. The vaccination platform brings together two main components; a peptide RALA which condenses DNA into cationic nanoparticles (NPs), and a polymeric polyvinylpyrrolidone (PVP) microneedle (MN) patch for cutaneous delivery of the loaded NPs. RALA condensed E6/E7 DNA into NPs not exceeding 100nm in diameter, and afforded the DNA protection from degradation in PVP. Sera from mice vaccinated with MN/RALA-E6/E7 were richer in E6/E7-specific IgGs, displayed a greater T-cell-mediated TC-1 cytotoxicity and contained more IFN-γ than sera from mice that received NPs intramuscularly. More importantly, MN/RALA-E6/E7 delayed TC-1 tumor initiation in a prophylactic model, and slowed tumor growth in a therapeutic model of vaccination, and was more potent than intramuscular vaccination. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens.

    Science.gov (United States)

    Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-09-01

    Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier

  20. An extended sequence specificity for UV-induced DNA damage.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use...... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  2. Mutagenicity of acrolein and acrolein-induced DNA adducts.

    Science.gov (United States)

    Liu, Xing-yu; Zhu, Mao-xiang; Xie, Jian-ping

    2010-01-01

    Acrolein mutagenicity relies on DNA adduct formation. Reaction of acrolein with deoxyguanosine generates alpha-hydroxy-1, N(2)-propano-2'-deoxyguanosine (alpha-HOPdG) and gamma-hydroxy-1, N(2)-propano-2'-deoxyguanosine (gamma-HOPdG) adducts. These two DNA adducts behave differently in mutagenicity. gamma-HOPdG is the major DNA adduct and it can lead to interstrand DNA-DNA and DNA-peptide/protein cross-links, which may induce strong mutagenicity; however, gamma-HOPdG can be repaired by some DNA polymerases complex and lessen its mutagenic effects. alpha-HOPdG is formed much less than gamma-HOPdG, but difficult to be repaired, which contributes to accumulation in vivo. Results of acrolein mutagenicity studies haven't been confirmed, which is mainly due to the conflicting mutagenicity data of the major acrolein adduct (gamma-HOPdG). The minor alpha-HOPdG is mutagenic in both in vitro and in vivo test systems. The role of alpha-HOPdG in acrolein mutagenicity needs further investigation. The inconsistent result of acrolein mutagenicity can be attributed, at least partially, to a variety of acrolein-DNA adducts formation and their repair in diverse detection systems. Recent results of detection of acrolein-DNA adduct in human lung tissues and analysis of P53 mutation spectra in acrolein-treated cells may shed some light on mechanisms of acrolein mutagenicity. These aspects are covered in this mini review.

  3. Induced pluripotent stem cells with a mitochondrial DNA deletion.

    Science.gov (United States)

    Cherry, Anne B C; Gagne, Katelyn E; McLoughlin, Erin M; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D; Zhang, Jin; Zon, Rebecca L; Ince, Tan A; Neufeld, Ellis J; Lerou, Paul H; Fleming, Mark D; Daley, George Q; Agarwal, Suneet

    2013-07-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. Copyright © 2013 AlphaMed Press.

  4. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  5. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  6. [Construction, safety and immunogenicity analysis of attenuated salmonella typhimurium harbouring TGEV DNA vaccine].

    Science.gov (United States)

    Yang, Heng; Liu, Jiawen; Cao, Sanjie; Huang, Xiaobo; Wen, Xintian

    2009-01-01

    To study the feasibility of using attenuated Salmonella typhimurium as carrier for oral immunization of TGEV DNA vaccine. The 2.1 Kb fragments of the TGVE SC-H strain S gene that encompasses all the four major antigenic domains were amplified by RT-PCR and cloned into eukaryotic expression vector pVAX1. The recombinant plasmid pVAX-S was transfected into COS7 cellsand the expression of recombinant plasmids was identified by indirect immunofluorscence assay. Then pVAX-S was transformed by electroporation into attenuated Salmonella typhimurium SL7207. The recombinant was screened and designated as SL7207 (pVAX-S). Mouse peritoneal macrophages were infected with SL7207 (pVAX-S), the transcription and expression of S gene were detected by RT-PCR and indirect immunofluorscence. BALB/c mouse were inoculated orally with SL7207(pVAX-S) at dosage of 5 x 10(8), 1 x 10(9) and 2 x 10(9) CFU for safety analysis. In a vaccination test, BALB/c mouse were immunized orally with recombinant bacterium at dosage of 1 x 10(9) CFU, for 3 times and specific serum IgG and intestinal mucosal IgA antibody were detected by indirect ELISA. Recombinant plasmid pVAX-S was constructed correctly and expressed in COS7 cells. The transcription and expression of S gene were detected after mouse peritoneal macrophages were infected with SL7207 (pVAX-S). The recombinant bacterium was safe to mouse at dosage of 2 x 10(9) CFU. Specific serum IgG and intestinal mucosal IgA antibody against TGEV S protein were detected in SL7207 (pVAX-S) immunized group at 2 weeks post-boosting,and there were significant difference (P TGEV S gene DNA vaccines had good immunogenicity and safety in mouse.

  7. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  8. Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection.

    Science.gov (United States)

    Önnheim, Karin; Ekblad, Maria; Görander, Staffan; Bergström, Tomas; Liljeqvist, Jan-Åke

    2016-04-22

    Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, and in serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  9. Oral vaccination with inhibin DNA delivered using attenuated Salmonella choleraesuis for improving reproductive traits in mice.

    Science.gov (United States)

    Han, Li; Zhen, Yan-Hong; Liang, Ai-Xin; Zhang, Jian; Riaz, Hasan; Xiong, Jia-Jun; Guo, Ai-Zhen; Yang, Li-Guo

    2014-09-01

    The objective of this study was to examine the efficacy and safety of a novel inhibin vaccine containing inhibin α (1-32) fragments in mice. A recombinant plasmid pVAX-asd-IS was constructed by inserting recombinant inhibin α (1-32) and the hepatitis B surface antigen S into the plasmid in which the asd gene, rather than the kanamycin gene, was a selection marker. Ninety Kuming mice were divided into six groups consisting of 15 mice each. First group was (C1) injected with 200 µl of PBS, second (C2) received 1 × 10(10) CFU of crp(-) /asd(-) C500/pVAX-asd and served as vector control, third did not receive any treatment (C3), while fourth, fifth, and sixth group received 1 × 10(10) , 1 × 10(9) , 1 × 10(8) CFU of the recombinant inhibin vaccin