WorldWideScience

Sample records for dna restriction enzyme

  1. Site-specific DNA transesterification catalyzed by a restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the t...

  2. Partial digestion with restriction enzymes of ultraviolet-irradiated human genomic DNA: a method for identifying restriction site polymorphisms

    International Nuclear Information System (INIS)

    Nobile, C.; Romeo, G.

    1988-01-01

    A method for partial digestion of total human DNA with restriction enzymes has been developed on the basis of a principle already utilized by P.A. Whittaker and E. Southern for the analysis of phage lambda recombinants. Total human DNA irradiated with uv light of 254 nm is partially digested by restriction enzymes that recognize sequences containing adjacent thymidines because of TT dimer formation. The products resulting from partial digestion of specific genomic regions are detected in Southern blots by genomic-unique DNA probes with high reproducibility. This procedure is rapid and simple to perform because the same conditions of uv irradiation are used for different enzymes and probes. It is shown that restriction site polymorphisms occurring in the genomic regions analyzed are recognized by the allelic partial digest patterns they determine

  3. Highlights of the DNA cutters: a short history of the restriction enzymes.

    Science.gov (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E

    2014-01-01

    In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.

  4. Model for how type I restriction enzymes select cleavage sites in DNA

    International Nuclear Information System (INIS)

    Studier, F.W.; Bandyopadhyay, P.K.

    1988-01-01

    Under appropriate conditions, digestion of phage T7 DNA by the type I restriction enzyme EcoK produces an orderly progression of discrete DNA fragments. All details of the fragmentation pattern can be explained on the basis of the known properties of type I enzymes, together with two further assumptions: (i) in the ATP-stimulated translocation reaction, the enzyme bound at the recognition sequence translocates DNA toward itself from both directions simultaneously; and (ii) when translocation causes neighboring enzymes to meet, they cut the DNA between them. The kinetics of digestion at 37 degree C indicates that the rate of translocation of DNA from each side of a bound enzyme is about 200 base pairs per second, and the cuts are completed within 15-25 sec of the time neighboring enzymes meet. The resulting DNA fragments each contain a single recognition site with an enzyme (or subunit) remaining bound to it. At high enzyme concentrations, such fragments can bu further degraded, apparently by cooperation between the specifically bound and excess enzymes. This model is consistent with a substantial body of previous work on the nuclease activity of EcoB and EcoK, and it explains in a simple way how cleavage sites are selected

  5. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

    NARCIS (Netherlands)

    van den Broek, B.; Noom, M.C.; Wuite, G.J.L.

    2005-01-01

    Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition.

  6. Sequence dependent DNA conformations: Raman spectroscopic studies and a model of action of restriction enzymes

    International Nuclear Information System (INIS)

    Nishimura, Y.

    1985-01-01

    Raman spectra have been examined to clarify the polymorphic forms of DNA, A, B, and Z forms. From an analysis the authors found that the guanine ring breathing vibration is sensitive to its local conformation. Examination of nine crystals of guanosine residues in which the local conformations are well established revealed that a guanosine residue with a C3'endo-anti gives a strong line at 666+-2 cm/sup -1/, O4'endo-anti at 682 cm/sup -1/, C1'exo-anti at 673 cm/sup -1/, C2'endo-anti at 677 cm/sup -1/ and syn-forms around 625 cm/sup -1/. Using this characteristic line, they were able to obtain the local conformations of guanosine moieties in poly(dG-dC). Such a sequence derived variation is suggested to be recognized by sequence specific proteins such as restriction enzymes. The authors found a correlation between sequence dependent DNA conformation and a mode of action of restriction enzymes. The cutting mode of restriction enzymes is classified into three groups. The classification of whether the products have blunt ends, two-base-long cohesive ends, or four-base-long cohesive ends depends primarily on the substrate, not on the enzyme. It is suggested that sequence dependent DNA conformation causes such a classification by the use of the Calladine-Dickerson analysis. In the recognition of restriction enzymes, the methyl group in a certain sequence is considered to play an important role by changing the local conformation of DNA

  7. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    Science.gov (United States)

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  8. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme

    NARCIS (Netherlands)

    Zaremba, M.; Lyubchenko, Y.L.; Laurens, N.; van den Broek, B.; Wuite, G.J.L.; Siksnys, V.

    2010-01-01

    To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or

  9. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Correspondence between radioactive and functional methods in the quality control of DNA restriction and modifying enzymes

    DEFF Research Database (Denmark)

    Trujillo, L E; Pupo, E; Miranda, F

    1996-01-01

    We evaluated the use of two radiolabeled lambda DNA/Hpa II substrates to detect 5'-->3', 3'-->5' single and double stranded DNA dependent exonuclease and phosphatase activities found as contaminants in restriction and modifying enzyme preparations. Looking for the meaning of the radioactive assay...

  11. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    Science.gov (United States)

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  12. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  13. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  14. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H.; Dryden, David T.F.

    2010-01-01

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  15. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    Science.gov (United States)

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  16. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  17. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was ass...

  19. Genomic-based restriction enzyme selection for specific detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    Directory of Open Access Journals (Sweden)

    Dinka eMandakovic

    2016-05-01

    Full Text Available The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS, a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination and fish samples (coinfection, aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction - Restriction Fragment Length Polymorphism assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants. Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

  20. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  1. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    Science.gov (United States)

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  2. distribution, abundance and properties of restriction enzymes

    African Journals Online (AJOL)

    DNA of granule-bound starch synthase (GBSS) I and II with a view to ... properties for manipulation of the genes for production of modified starch. .... procurement, storage and handling of the ..... been made on restriction enzymes of potato,.

  3. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  4. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  5. Cut-and-Paste of DNA Using an Artificial Restriction DNA Cutter

    Directory of Open Access Journals (Sweden)

    Makoto Komiyama

    2013-02-01

    Full Text Available DNA manipulations using a completely chemistry-based DNA cutter (ARCUT have been reviewed. This cutter, recently developed by the authors, is composed of Ce(IV/EDTA complex and two strands of pseudo-complementary peptide nucleic acid. The site-selective scission proceeds via hydrolysis of targeted phosphodiester linkages, so that the resultant scission fragments can be easily ligated with other fragments by using DNA ligase. Importantly, scission-site and site-specificity of the cutter are freely tuned in terms of the Watson–Crick rule. Thus, when one should like to manipulate DNA according to the need, he or she does not have to think about (1 whether appropriate “restriction enzyme sites” exist near the manipulation site and (2 whether the site-specificity of the restriction enzymes, if any, are sufficient to cut only the aimed position without chopping the DNA at non-targeted sites. Even the human genome can be manipulated, since ARCUT can cut the genome at only one predetermined site. Furthermore, the cutter is useful to promote homologous recombination in human cells, converting a site to desired sequence. The ARCUT-based DNA manipulation should be promising for versatile applications.

  6. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing

    International Nuclear Information System (INIS)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    DNA samples prepared from human SP 3 cells, which had not been exposed to various doses of X-ray, were treated with NotI restriction endonuclease before being run in a contour-clamped homogeneous electrophoresis system. The restriction enzyme cuts the DNA at defined positions delivering DNA sizes which can be resolved by pulsed-field gel electrophoresis (PFGE). In order to investigate only one of the DNA fragments, a human lactoferrin cDNA, pHL-41, was hybridized to the DNA separated by PFGE. As a result, only the DNA fragment which contains the hybridized gene was detected resulting in a one-band pattern. The decrease of this band was found to be exponential with increasing radiation dose. From the slope, a double-strand break induction rate of (6.3±0.7) x 10 -3 /Mbp/Gy was deduced for 80 kV X-rays. (Author)

  7. Pattern analysis approach reveals restriction enzyme cutting abnormalities and other cDNA library construction artifacts using raw EST data

    Directory of Open Access Journals (Sweden)

    Zhou Sun

    2012-05-01

    Full Text Available Abstract Background Expressed Sequence Tag (EST sequences are widely used in applications such as genome annotation, gene discovery and gene expression studies. However, some of GenBank dbEST sequences have proven to be “unclean”. Identification of cDNA termini/ends and their structures in raw ESTs not only facilitates data quality control and accurate delineation of transcription ends, but also furthers our understanding of the potential sources of data abnormalities/errors present in the wet-lab procedures for cDNA library construction. Results After analyzing a total of 309,976 raw Pinus taeda ESTs, we uncovered many distinct variations of cDNA termini, some of which prove to be good indicators of wet-lab artifacts, and characterized each raw EST by its cDNA terminus structure patterns. In contrast to the expected patterns, many ESTs displayed complex and/or abnormal patterns that represent potential wet-lab errors such as: a failure of one or both of the restriction enzymes to cut the plasmid vector; a failure of the restriction enzymes to cut the vector at the correct positions; the insertion of two cDNA inserts into a single vector; the insertion of multiple and/or concatenated adapters/linkers; the presence of 3′-end terminal structures in designated 5′-end sequences or vice versa; and so on. With a close examination of these artifacts, many problematic ESTs that have been deposited into public databases by conventional bioinformatics pipelines or tools could be cleaned or filtered by our methodology. We developed a software tool for Abnormality Filtering and Sequence Trimming for ESTs (AFST, http://code.google.com/p/afst/ using a pattern analysis approach. To compare AFST with other pipelines that submitted ESTs into dbEST, we reprocessed 230,783 Pinus taeda and 38,709 Arachis hypogaea GenBank ESTs. We found 7.4% of Pinus taeda and 29.2% of Arachis hypogaea GenBank ESTs are “unclean” or abnormal, all of which could be cleaned

  8. Characterizing restriction enzyme-associated loci in historic ragweed (Ambrosia artemisiifolia) voucher specimens using custom-designed RNA probes

    DEFF Research Database (Denmark)

    Sanchez Barreiro, Fatima; Garrett Vieira, Filipe Jorge; Martin, Michael David

    2017-01-01

    Population genetic studies of non-model organisms frequently employ reduced representation library (RRL) methodologies, many of which rely on protocols in which genomic DNA is digested by one or more restriction enzymes. However, because high molecular weight DNA is recommended for these protocols......, samples with degraded DNA are generally unsuitable for RRL methods. Given that ancient and historic specimens can provide key temporal perspectives to evolutionary questions, we explored how custom-designed RNA probes could enrich for RRL loci (Restriction Enzyme-Associated Loci baits, or REALbaits...

  9. Analysis of mutation/rearrangement frequencies and methylation patterns at a given DNA locus using restriction fragment length polymorphism.

    Science.gov (United States)

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Restriction fragment length polymorphism (RFLP) is a difference in DNA sequences of organisms belonging to the same species. RFLPs are typically detected as DNA fragments of different lengths after digestion with various restriction endonucleases. The comparison of RFLPs allows investigators to analyze the frequency of occurrence of mutations, such as point mutations, deletions, insertions, and gross chromosomal rearrangements, in the progeny of stressed plants. The assay involves restriction enzyme digestion of DNA followed by hybridization of digested DNA using a radioactively or enzymatically labeled probe. Since DNA can be digested with methylation sensitive enzymes, the assay can also be used to analyze a methylation pattern of a particular locus. Here, we describe RFLP analysis using methylation-insensitive and methylation-sensitive enzymes.

  10. Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis.

    Science.gov (United States)

    Wang, Rong; Xie, Hua; Xu, Yue-Bing; Jia, Zheng-Ping; Meng, Xian-Dong; Zhang, Juan-Hong; Ma, Jun; Wang, Juan; Wang, Xian-Hua

    2012-03-01

    The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser-induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE-LIF-REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE-LIF. The results demonstrate that the CE-LIF-REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme

    OpenAIRE

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2008-01-01

    Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3′-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2′-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme–DNA intermediate and then resolves it...

  12. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  13. Stock discrimination in Great Lakes Walleye using mitochondrial DNA restriction analysis

    International Nuclear Information System (INIS)

    Billington, N.; Hebert, P.D.N.

    1986-01-01

    Over the past two years it has become evident that because of its strict maternal inheritance and rapid rate of evolutionary differentiation, mitochondrial (mt) DNA diversity offers exceptional promise in the discrimination of fish stocks. The current project aims to determine the extent of mt DNA variation among stocks of walleye (Stizostedion vitreum) from the Great Lakes. At this point, mt DNA has been isolated from 68 walleye representing the Thames River stock and a reef breeding stock from western Lake Erie, as well as from individuals of S. canadense, a species which hybridizes with S. vitreum. Mitochondrial DNA was extracted from livers of these fish, purified by CsCl density gradient centrifugation and digested using 20 endonucleases. Polymorphisms were detected with 8 of the enzymes. There was a great deal of variation among fish from both spawning populations, so much so that individual fish could be identified by this technique. No single enzyme allowed discrimination of the two stocks, but restriction pattern variation following Dde I digestion permitted separation of 50% of Lake Erie fish from Thames River stock. Comparison of mt DNA restriction patterns of walleye and sauger showed that two species are easily separable, setting the stage for a more detailed study of hybridization between the taxa

  14. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  15. Use of sperm plasmid DNA lipofection combined with REMI (restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescent protein) or human follicle-stimulating hormone.

    Science.gov (United States)

    Harel-Markowitz, Eliane; Gurevich, Michael; Shore, Laurence S; Katz, Adi; Stram, Yehuda; Shemesh, Mordechai

    2009-05-01

    Linearized p-eGFP (plasmid-enhanced green fluorescent protein) or p-hFSH (plasmid human FSH) sequences with the corresponding restriction enzyme were lipofected into sperm genomic DNA. Sperm transfected with p-eGFP were used for artificial insemination in hens, and in 17 out of 19 of the resultant chicks, the exogenous DNA was detected in their lymphocytes as determined by PCR and expressed in tissues as determined by (a) PCR, (b) specific emission of green fluorescence by the eGFP, and (c) Southern blot analysis. A complete homology was found between the Aequorea Victoria eGFP DNA and a 313-bp PCR product of extracted DNA from chick blood cells. Following insemination with sperm lipofected with p-hFSH, transgenic offspring were obtained for two generations as determined by detection of the transgene for human FSH (PCR) and expression of the gene (RT-PCR and quantitative real-time PCR) and the presence of the protein in blood (radioimmunoassay). Data demonstrate that lipofection of plasmid DNA with restriction enzyme is a highly efficient method for the production of transfected sperm to produce transgenic offspring by direct artificial insemination.

  16. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.

    Science.gov (United States)

    Arn, P H; Li, X; Smith, C; Hsu, M; Schwartz, D C; Jabs, E W

    1991-01-01

    Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.

  17. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    Science.gov (United States)

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-25

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.

  18. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. On the distinction of the mechanisms of DNA cleavage by restriction enzymes—The I-, II-, and III-type molecular motors

    Science.gov (United States)

    Pikin, S. A.

    2008-09-01

    A comparative physical description is given for the functioning of various restriction enzymes and for their processes of DNA cleavage. The previously proposed model system of kinetic equations is applied to the I-and III-type enzymes, which use ATP molecules as an energy source, while the II-type enzymes work thanks to catalytic reactions with participation of an electric field. All the enzymes achieved bending and twisting DNA, providing for either the linear motion of the II-type enzyme along the DNA chain or the DNA translocation by the I-and III-type enzymes due to moving chiral kinks. A comparative estimation of the considered linear and angular velocities is performed. The role of stalling forces for enzyme-DNA complexes, which induce the observed cutting of the DNA either inside the enzyme (II) or in some “weak” places outside enzymes I and III, which results in the supercoiling of the DNA, is shown. The role of ionic screening for the described processes is discussed.

  20. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  1. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  2. Enhanced resolution of DNA restriction fragments: A procedure by two-dimensional electrophoresis and double-labeling

    International Nuclear Information System (INIS)

    Yi, M.; Au, L.C.; Ichikawa, N.; Ts'o, P.O.

    1990-01-01

    A probe-free method was developed to detect DNA rearrangement in bacteria based on the electrophoretic separation of twice-digested restriction fragments of genomic DNA into a two-dimensional (2-D) pattern. The first restriction enzyme digestion was done in solution, followed by electrophoresis of the restriction fragments in one dimension. A second restriction enzyme digestion was carried out in situ in the gel, followed by electrophoresis in a second dimension perpendicular to the first electrophoresis. The 2-D pattern provides for the resolution of 300-400 spots, which are defined and indexed by an x,y coordinate system with size markers. This approach has greatly increased the resolution power over conventional one-dimensional (1-D) electrophoresis. To study DNA rearrangement, a 2-D pattern from a test strain was compared with the 2-D pattern from a reference strain. After the first digestion, genomic DNA fragments from the test strain were labeled with 35S, while those from the reference strain were labeled with 32P. This was done to utilize the difference in the energy emission of 35S and 32P isotopes for autoradiography when two x-ray films were exposed simultaneously on top of the gel after the 2-D electrophoresis. The irradiation from the decay of 35S exposed only the lower film, whereas the irradiation from the decay of 32P exposed both the lower and upper films. Different DNA fragments existed in the test DNA compared with the reference DNA can be identified unambiguously by the differential two 2-D patterns produced on two films upon exposure to the 35S and 32P fragments in the same gel. An appropriate photographic procedure further simplified the process, allowing only the difference in DNA fragments between these two patterns to be shown in the map

  3. Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I

    Czech Academy of Sciences Publication Activity Database

    Sinha, Dhiraj; Shamayeva, Katerina; Ramasubramani, V.; Řeha, David; Bialevich, V.; Khabiri, Morteza; Guzanová, Alena; Milbar, N.; Weiserová, Marie; Cséfalvay, Eva; Carey, J.; Ettrich, Rüdiger

    2014-01-01

    Roč. 20, č. 7 (2014), s. 2334 ISSN 1610-2940 R&D Projects: GA ČR GAP207/12/2323 Institutional support: RVO:67179843 ; RVO:61388971 Keywords : DNA restriction enzymes * Molecular modeling * QM/MM calculations * principal components analysis * E. coli * Multisubunit enzyme complex * Correlated loop motions Subject RIV: EH - Ecology, Behaviour; EE - Microbiology, Virology (MBU-M) Impact factor: 1.736, year: 2014

  4. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  5. Random Tagging Genotyping by Sequencing (rtGBS, an Unbiased Approach to Locate Restriction Enzyme Sites across the Target Genome.

    Directory of Open Access Journals (Sweden)

    Elena Hilario

    Full Text Available Genotyping by sequencing (GBS is a restriction enzyme based targeted approach developed to reduce the genome complexity and discover genetic markers when a priori sequence information is unavailable. Sufficient coverage at each locus is essential to distinguish heterozygous from homozygous sites accurately. The number of GBS samples able to be pooled in one sequencing lane is limited by the number of restriction sites present in the genome and the read depth required at each site per sample for accurate calling of single-nucleotide polymorphisms. Loci bias was observed using a slight modification of the Elshire et al.some restriction enzyme sites were represented in higher proportions while others were poorly represented or absent. This bias could be due to the quality of genomic DNA, the endonuclease and ligase reaction efficiency, the distance between restriction sites, the preferential amplification of small library restriction fragments, or bias towards cluster formation of small amplicons during the sequencing process. To overcome these issues, we have developed a GBS method based on randomly tagging genomic DNA (rtGBS. By randomly landing on the genome, we can, with less bias, find restriction sites that are far apart, and undetected by the standard GBS (stdGBS method. The study comprises two types of biological replicates: six different kiwifruit plants and two independent DNA extractions per plant; and three types of technical replicates: four samples of each DNA extraction, stdGBS vs. rtGBS methods, and two independent library amplifications, each sequenced in separate lanes. A statistically significant unbiased distribution of restriction fragment size by rtGBS showed that this method targeted 49% (39,145 of BamH I sites shared with the reference genome, compared to only 14% (11,513 by stdGBS.

  6. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....

  7. A Mimicking-of-DNA-Methylation-Patterns Pipeline for Overcoming the Restriction Barrier of Bacteria

    Science.gov (United States)

    Zhang, Guoqiang; Wang, Wenzhao; Deng, Aihua; Sun, Zhaopeng; Zhang, Yun; Liang, Yong; Che, Yongsheng; Wen, Tingyi

    2012-01-01

    Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential

  8. A new restriction endonuclease-based method for highly-specific detection of DNA targets from methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP. At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i any mutation of the restriction site reduced the signal to zero; (ii double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same

  9. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  10. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    International Nuclear Information System (INIS)

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  11. Restriction enzyme analysis of the chloroplast DNA of Phaseolus vulgaris L. vr. Rio Negro Análise de restrição do DNA cloroplástico de Phaseolus vulgaris vr. Rio Negro

    Directory of Open Access Journals (Sweden)

    Sergio Echeverrigaray

    1996-12-01

    Full Text Available The chloroplast DNA of Phaseolus vulgaris L. vr. Rio Negro was isola ted from chloroplasts obtained by descontiuous sucrose gradient centrifugation. The restriction analysis with the enzymes HindIII, EcoRI and BamHI and their combination, allowed to identified more than 20 fragments of 18 to 0.65kb. The size of Phaseolus vulgaris L. cp DNA was estimated in 140kb with the presence of a repeat sequence of about 22kb.O DNA cloroplástico do cultivar Rio Negro (Phaseolus vulgaris L. foi isolado a partir de cloroplastos obtidos por gradiente descontínuo de sacarose. A análise de restrição com as enzimas HindIII, EcoRI e BamHI e a combinação destas, permitiu a identificação de mais de 20 fragmentos na faixa de 18 a 0.65kb. O tamanho do cp DNA de Phaseolus vulgaris L. foi estimado em 140kb com a existência de sequências repetidas de aproximadamente 22kb.

  12. Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA.

    Directory of Open Access Journals (Sweden)

    Guang Liu

    2010-12-01

    Full Text Available Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(32 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631 leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16-28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.

  13. Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato.

    Science.gov (United States)

    Shirasawa, Kenta; Hirakawa, Hideki; Isobe, Sachiko

    2016-04-01

    Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput genome-wide genotyping with next-generation sequencing technology. Consequently, this method has become popular in plant genetics and breeding. Although computational in silico prediction of restriction sites from the genome sequence is recognized as an effective approach for choosing the restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experimental data. In this study, we designed and demonstrated a workflow for in silico and empirical ddRAD-Seq analysis in tomato, as follows: (i)in silico prediction of optimum restriction enzymes from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restriction enzyme combinations, (iii) establishment of a computational data processing pipeline for high-confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate genetics, genomics, and molecular breeding in both model and non-model plants, including crops. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  15. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.

    Science.gov (United States)

    Szczelkun, Mark D

    2011-04-01

    To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

  16. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. [Haemophilus influenzae, Escherichia coli, Paramecium aurelia

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.; Greenberg, B.

    1977-01-01

    Restriction endonucleases Dpn I and Dpn II are produced by two distinct strains of Diplococcus pneumoniae. The two enzymes show complementary specificity with respect to methylation of sites in DNA. From the identity of its cleavage site with that of Mbo I, it appears that Dpn II cleaves at the unmodified sequence 5'-G-A-T-C-3'. Dpn I cleaves at the same sequence when the adenine residue is methylated. Both enzymes produce only double-strand breaks in susceptible DNA. Their susceptibility to Dpn I and not Dpn II shows that essentially all the G-A-T-C sequences are methylated in DNA from the pneumococcal strain that produces Dpn II as well as in DNA from Hemophilus influenzae and Escherichia coli. In the dam-3 mutant of E. coli none of these sequences appear to be methylated. Residual adenine methylation in the dam-3 mutant DNA most likely occurs at different sites. Different but characteristic degrees of methylation at G-A-T-C sites are found in the DNA of bacterial viruses grown in E. coli. DNAs from mammalian cells and viruses are not methylated at this sequence. Mitochondrial DNA from Paramecium aurelia is not methylated, but a small proportion of G-A-T-C sequences in the macronuclear DNA of this eukaryote appear to be methylated. Possible roles of sequence-specific methylation in the accommodation of plasmids, in the replication of DNA, in the regulation of gene function and in the restriction of viral infection are discussed.

  17. Inhibition of RecBCD enzyme by antineoplastic DNA alkylating agents.

    Science.gov (United States)

    Dziegielewska, Barbara; Beerman, Terry A; Bianco, Piero R

    2006-09-01

    To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.

  18. Identification of a DNA restriction-modification system in Pectobacterium carotovorum strains isolated from Poland.

    Science.gov (United States)

    Waleron, K; Waleron, M; Osipiuk, J; Podhajska, A J; Lojkowska, E

    2006-02-01

    Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.

  19. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  20. On-Chip Evaluation of DNA Methylation with Electrochemical Combined Bisulfite Restriction Analysis Utilizing a Carbon Film Containing a Nanocrystalline Structure.

    Science.gov (United States)

    Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu

    2017-06-06

    This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp 2 and sp 3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp 2 /sp 3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp 2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp 2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.

  1. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    Science.gov (United States)

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  2. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  3. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Directory of Open Access Journals (Sweden)

    Yuqing eFeng

    2014-08-01

    Full Text Available The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-DNA APOBEC3 enzymes deaminate cytosines to forms uracils in single-stranded (- DNA regions. Upon replication of the (-DNA to (+DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but by several degradation-independent mechanisms such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.

  4. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R.; Zhong, Y.; Jin, L. (Univ. of Texas Health Science Center, Houston, TX (United States)); Budowle, B. (FBI Academy, Quantico, VA (United States))

    1994-08-01

    The authors provide experimental evidence showing that, during the restriction-enzyme digestion of DNA samples, some of the HaeIII-digested DNA fragments are small enough to prevent their reliable sizing on a Southern gel. As a result of such nondetectability of DNA fragments, individuals who show a single-band DNA profile at a VNTR locus may not necessarily be true homozygotes. In a population database, when the presence of such nondetectable alleles is ignored, they show that a pseudodependence of alleles within as well as across loci may occur. Using a known statistical method, under the hypothesis of independence of alleles within loci, they derive an efficient estimate of null allele frequency, which may be subsequently used for testing allelic independence within and across loci. The estimates of null allele frequencies, thus derived, are shown to agree with direct experimental data on the frequencies of HaeIII-null alleles. Incorporation of null alleles into the analysis of the forensic VNTR database suggests that the assumptions of allelic independence within and between loci are appropriate. In contrast, a failure to incorporate the occurrence of null alleles would provide a wrong inference regarding the independence of alleles within and between loci. 47 refs., 2 figs., 4 tabs.

  5. Enzyme-linked immunosorbent assays for Z-DNA.

    OpenAIRE

    Thomas, M J; Strobl, J S

    1988-01-01

    Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e....

  6. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping

    Science.gov (United States)

    Hendershot, Jenna M.; O'Brien, Patrick J.

    2014-01-01

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. PMID:25324304

  7. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    Science.gov (United States)

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  8. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  9. Comparison of Six DNA Extraction Procedures and the Application of Plastid DNA Enrichment Methods in Selected Non-photosynthetic Plants

    Directory of Open Access Journals (Sweden)

    Shin-Yi Shyu

    2013-12-01

    Full Text Available Genomic DNA was isolated using three DNA extraction commercial kits and three CTAB-based methods for two non-photosynthetic plants, Balanophora japonica and Mitrastemon kanehirai. The quality of the isolated DNA was evaluated and subjected to following restriction enzyme digestions. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998 performed well in isolating DNA from both species for restriction enzyme digestion. In addition, we succeeded to enrich plastid DNA content by using the methods depending on a high salt buffer to deplete nuclear material. The ‘high salt’ methods based on protocol presented by Milligan (1989 were able to increase plastid DNA effectively and significantly reduce nuclear DNA from M. kanehirai. The plastid DNA enrichment protocols are inexpensive and not time-consuming, and may be applicable to other non-photosynthetic plants.

  10. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.

    Science.gov (United States)

    Stejskalová, Eva; Horáková, Petra; Vacek, Jan; Bowater, Richard P; Fojta, Miroslav

    2014-07-01

    DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5'-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.

  11. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  12. Effect of ionizing radiation on the activity of restriction nucleases PvuII and HindIII

    International Nuclear Information System (INIS)

    Luzova, M.; Michaelidesova, A.; Davidkova, M.

    2014-01-01

    The research is focused on the influence of the ionizing radiation on the activity of the restriction enzymes PvuII and HindIII. Enzymes PvuII and HindIII are restriction endonucleases of type II. These enzymes can be found in bacteria and they have a significant role in defense mechanisms of bacteria against viruses. They cleave DNA double helix at specific recognition palindromic sequences in the presence of cofactor Mg 2+ . PvuII cleaves the sequence CAG↓CTG and HindIII cleaves the sequence A↓AGCTT in marked places. Plasmid pcDNA3 has been used as the DNA substrate for the whole experimental study. It is 5446 base pairs (bp) long, circular DNA molecule and it contains three recognition sites for enzyme PvuII and one recognition site for enzyme HindIII. After the correct interaction of pcDNA3 with PvuII, we thus have three plasmid fragments with lengths 1069, 1097 and 3280 bp. When HindIII is incubated with this plasmid, we shall obtain the linear form of the DNA plasmid.The method for processing the cleaved DNA samples is the agarose gel electrophoresis. The activity of the irradiated enzymes decreases with increasing dose of radiation, because a part of the enzymes is deactivated due to induced radiation damage. To determine effect of radiation quality, samples were irradiated using proton and gamma sources. The results of our experimental study will be presented and discussed with respect to molecular structure of both enzymes and particular sites of radical damage influencing their function. (authors)

  13. Molecular dynamics simulation studies of radiation damaged DNA. Molecules and repair enzymes

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2004-12-01

    Molecular dynamics (MD) studies on several radiation damages to DNA and their recognition by repair enzymes are introduced in order to describe the stepwise description of molecular process observed at radiation lesion sites. MD studies were performed on pyrimidine (thymine dimer, thymine glycol) and purine (8-oxoguanine) lesions using an MD simulation code AMBER 5.0. The force field was modified for each lesion. In all cases the significant structural changes in the DNA double helical structure were observed; a) the breaking of hydrogen bond network between complementary bases and resulting opening of the double helix (8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flipping-out base on the strand complementary to the lesion (8-oxoguanine). These changes were related to the overall collapsing double helical structure around the lesion and might facilitate the docking of the repair enzyme into the DNA and formation of DNA-enzyme complex. In addition to the structural changes, at lesion sites there were found electrostatic interaction energy values different from those at native sites (thymine dimer -10 kcal/mol, thymine glycol -26 kcal/mol, 8-oxoguanine -48 kcal/mol). These values of electrostatic energy may discriminate lesion from values at native sites (thymine 0 kcal/mol, guanine -37 kcal/mol) and enable a repair enzyme to recognize a lesion during scanning DNA surface. The observed specific structural conformation and energetic properties at the lesions sites are factors that guide a repair enzyme to discriminate lesions from non-damaged native DNA segments. (author)

  14. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  15. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    Science.gov (United States)

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  16. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  17. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  18. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering.

    Science.gov (United States)

    Nørholm, Morten H H

    2010-03-16

    The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  19. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    Science.gov (United States)

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  20. Non-random alkylation of DNA sequences induced in vivo by chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Geri, C.; Bonatti, S.; Parenti, R. (Universita di Pisa (Italy))

    1989-08-01

    Previous studies of the interaction of alkylating agents on the eukaryotic genome support the idea that induction of DNA adducts is at specific genomic sites. Here we show molecular and cytological evidence that alkylation is rather specific. Mammalian cell cultures were exposed to different doses of mutagens and the DNA was analyzed by density gradient ultracentrifugation, hydroxylapatite fractionation, and by restriction enzyme analysis. Studies with the labelled mutagens N-ethyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine show that there is a non-random distribution of the adducts. The adducts are found more frequently in A-T, G-C rich satellite DNA and highly repetitive sequences. Analysis with restriction enzymes shows that both methyl and ethyl groups influence the restriction patterns of the enzymes HpaII and MspI that recognize specific endogenous DNA methylation. These data suggest, as a subsequent mechanism, a modification in the pattern of the normal endogenous methylation of 5-methylcytosine.

  1. Pemotongan dan Menyambung DNA dalam Kloning Gen, Studi pada Kloning Gen Prolidase dari Bakteri Asam Laktat

    Directory of Open Access Journals (Sweden)

    Ketut Suriasih

    2015-03-01

    Full Text Available Gene cloning in lactic acid bacteria (LAB is crucial in term to increase their ability to hydrolyze milk protein such as proline. This proline could be hydrolyzed when the LAB undergone cloning on their genome coding the enzyme. The cloning process need technology to separate/isolate the gene capable of proline hydrolyze. Isolation of DNA containing prolidase gene, need DNA genome cutting. After isolation of DNA gene coding prolidase, it is then recombined with other bacterial DNA to obtained recombinant gene. The process need ligase. In gene cloning, knowledge of cutting and joining the DNA should be understood. The enzyme take the role in cutting and joining the DNA were restriction endonuclease and ligase. The restriction enzyme function (1 in inserting a gen into plasmid contained in a vector during gene cloning, and gene expression experiment, and (2 to identify the gene. It is important that the researcher already have standardized  sequenced gene as control. The DNA contained target gene was cut using some restriction enzyme, then the gene was arrayed in electrophoresis gel using southern blot technique. DNA sequence was elucidated by addition of ethydium bromide. To identify/characterize the isolated gene, this DNA sequence was encountered the control DNA.

  2. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  3. Characterization of Biomphalaria orbignyi, Biomphalaria peregrina and Biomphalaria oligoza by polymerase chain reaction and restriction enzyme digestion of the internal transcribed spacer region of the RNA ribosomal gene

    Directory of Open Access Journals (Sweden)

    Spatz Linus

    2000-01-01

    Full Text Available The correct identification of Biomphalaria oligoza, B. orbignyi and B. peregrina species is difficult due to the morphological similarities among them. B. peregrina is widely distributed in South America and is considered a potential intermediate host of Schistosoma mansoni. We have reported the use of the polymerase chain reaction and restriction fragment length polymorphism analysis of the internal transcribed spacer region of the ribosomal DNA for the molecular identification of these snails. The snails were obtained from different localities of Argentina, Brazil and Uruguay. The restriction patterns obtained with MvaI enzyme presented the best profile to identify the three species. The profiles obtained with all enzymes were used to estimate genetic similarities among B. oligoza, B. peregrina and B. orbignyi. This is also the first report of B. orbignyi in Uruguay.

  4. Computational studies of radiation and oxidative damage to DNA and its recognition by repair enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, M. [Center for Promotion of Computational Science and Engineering, Tokai Research Establishment, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    Molecular dynamics (MD) simulation is used to study the time evolution of the recognition processes and to construct a model of the specific DNA-repair enzyme' complexes. MD simulations of the following molecules were performed: DNA dodecamer with thymine dimer (TD), DNA 30-mer with thymine glycol (TG), and respective specific repair enzymes T4 Endonuclease V and Endonuclease III. Both DNA lesions are experimentally suggested to be mutagenic and carcinogenic unless properly recognized and repaired by repair enzymes. In the case of TD, there is detected a strong kink around the TD site, that is not observed in native DNA. In addition there is observed a different value of electrostatic energy at the TD site - negative '-9 kcal/mol', in contrast to the nearly neutral value of the native thymine site. These two factors - structural changes and specific electrostatic energy - seem to be important for proper recognition of a TD damaged site and for formation of DNA-enzyme complex. Formation of this complex is the onset of the repair of DNA. In the case of TG damaged DNA the structural characteristics of the TG were calculated (charges, bond lengths, bond angles, etc.). The formed TG was used to replace the native thymine and then submitted to the simulation in the system with a repair enzyme with Endonuclease III for the purpose of the study of the formation of the DNA-enzyme complex. (author)

  5. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  6. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  7. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  8. A new restriction endonuclease from Citrobacter freundii

    OpenAIRE

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC.

  9. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  10. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  11. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  12. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  13. A new restriction endonuclease from Citrobacter freundii

    Science.gov (United States)

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  14. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  15. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  16. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    Science.gov (United States)

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  18. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  19. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  20. Linkage map of the fragments of herpesvirus papio DNA.

    Science.gov (United States)

    Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H

    1981-01-01

    Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015

  1. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance.

    Science.gov (United States)

    Kojima, Kenji K; Kobayashi, Ichizo

    2015-10-19

    R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East

  2. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing

    Directory of Open Access Journals (Sweden)

    Monson-Miller Jennifer

    2012-02-01

    Full Text Available Abstract Background The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. Results We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. Conclusions The

  3. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.

    Science.gov (United States)

    Liu, Shufeng; Lin, Ying; Liu, Tao; Cheng, Chuanbin; Wei, Wenji; Wang, Li; Li, Feng

    2014-06-15

    Hybridization chain reaction (HCR) strategy has been well developed for the fabrication of various biosensing platforms for signal amplification. Herein, a novel enzyme-free and label-free ultrasensitive electrochemical DNA biosensing platform for the detection of target DNA and adenosine triphosphate (ATP) was firstly proposed, in which three auxiliary DNA probes were ingeniously designed to construct the dendritic DNA concatamer via HCR strategy and used as hexaammineruthenium(III) chloride (RuHex) carrier for signal amplification. With the developed dendritic DNA concatamer-based signal amplification strategy, the DNA biosensor could achieve an ultrasensitive electrochemical detection of DNA and ATP with a superior detection limit as low as 5 aM and 20 fM, respectively, and also demonstrate a high selectivity for DNA and ATP detection. The currently proposed dendritic DNA concatamer opens a promising direction to construct ultrasensitive DNA biosensing platform for biomolecular detection in bioanalysis and clinical biomedicine, which offers the distinct advantages of simplicity and cost efficiency owing to no need of any kind of enzyme, chemical modification or labeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  5. NcoI restriction fragment length polymorphism (RFLP) of the tumour necrosis factor (TNF alpha) region in primary biliary cirrhosis and in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1989-01-01

    The restriction fragment length polymorphism of the human tumour necrosis factor (TNF alpha) region was investigated by means of 20 different restriction enzymes and a human TNF alpha cDNA probe. Only one of the enzymes, NcoI, revealed a polymorphic pattern consisting of fragments of 10.5 and 5.5...

  6. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    Science.gov (United States)

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-04-07

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The role of DNA restriction-modification systems in the biology of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Ramakrishnan eSitaraman

    2016-01-01

    Full Text Available Restriction-modification (R-M systems are widespread among prokaryotes and, depending on their type, may be viewed as selfish genetic elements that persist as toxin-antitoxin modules or as cellular defense systems against phage infection. Studies in the last decade have made it amply clear that these two options do not exhaust the list of possible biological roles for R-M systems. Their presence in a cell may also have a bearing on other processes such as horizontal gene transfer and gene regulation. From genome sequencing and experimental data, we know that Bacillus anthracis encodes at least three methylation-dependent (typeIV restriction endonucleases, and an orphan DNA methyltransferase. In this article, we first present an outline of our current knowledge of R-M systems in Bacillus anthracis. Based on available DNA sequence data, and on our current understanding of the functions of similar genes in other systems, we conclude with hypotheses on the possible roles of the three restriction endonucleases and the orphan DNA methyltransferase.

  8. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    Science.gov (United States)

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  9. Comprehensive evaluation of SNP identification with the Restriction Enzyme-based Reduced Representation Library (RRL method

    Directory of Open Access Journals (Sweden)

    Du Ye

    2012-02-01

    Full Text Available Abstract Background Restriction Enzyme-based Reduced Representation Library (RRL method represents a relatively feasible and flexible strategy used for Single Nucleotide Polymorphism (SNP identification in different species. It has remarkable advantage of reducing the complexity of the genome by orders of magnitude. However, comprehensive evaluation for actual efficacy of SNP identification by this method is still unavailable. Results In order to evaluate the efficacy of Restriction Enzyme-based RRL method, we selected Tsp 45I enzyme which covers 266 Mb flanking region of the enzyme recognition site according to in silico simulation on human reference genome, then we sequenced YH RRL after Tsp 45I treatment and obtained reads of which 80.8% were mapped to target region with an 20-fold average coverage, about 96.8% of target region was covered by at least one read and 257 K SNPs were identified in the region using SOAPsnp software. Compared with whole genome resequencing data, we observed false discovery rate (FDR of 13.95% and false negative rate (FNR of 25.90%. The concordance rate of homozygote loci was over 99.8%, but that of heterozygote were only 92.56%. Repeat sequences and bases quality were proved to have a great effect on the accuracy of SNP calling, SNPs in recognition sites contributed evidently to the high FNR and the low concordance rate of heterozygote. Our results indicated that repeat masking and high stringent filter criteria could significantly decrease both FDR and FNR. Conclusions This study demonstrates that Restriction Enzyme-based RRL method was effective for SNP identification. The results highlight the important role of bias and the method-derived defects represented in this method and emphasize the special attentions noteworthy.

  10. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example.

    Science.gov (United States)

    Antoniali, Giulia; Lirussi, Lisa; Poletto, Mattia; Tell, Gianluca

    2014-02-01

    An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.

  11. Action of some drugs on enzymes involved in DNA-repair and semiconservative DNA-synthesis

    International Nuclear Information System (INIS)

    Wawra, E.; Klein, W.; Kocsis, F.; Weniger, P.

    1975-07-01

    Different antirheumatic and cytostatic drugs had been tested by measurement of the thymidine incorporation into DNA of spleen cells under conditions, under which either DNA-synthesis or repair after gamma- or UV-irradiation takes place. There are substances, which inhibit either only the semiconservative DNA-synthesis (vinblastine, isonicotinic acid hydracide) or only DNA-repair after gamma-irradiation (mixture of penicillin-G and procaine-penicillin-G) or both (cyclophosphamide, phenylbutazone, procarbazine, nalidixic acid). Vincristine shows no effect on the thymidine incorporation in DNA, but by density gradient centrifugation it has been found that it influences the ligase reaction. Two DNA polymerases had been isolated from spleen cells, one of the low molecular and one of the high molecular weight type. The influences of the described drugs on these enzymes and on a deoxyribonuclease I from beef pancreas have been tested in ''in vitro'' systems. In all cases, it has been found that there is no effect or only a very small one, compared with the action of well known inhibitors as e.g. ethidium bromide and p-chloromercuribenzoate, and this cannot be responsible for the suppressions found in DNA-repair and semiconservative DNA-synthesis. (author)

  12. Neurospora ribosomal DNA sequences are indistinguishable within cell types but distinguishable among heterothallic species

    International Nuclear Information System (INIS)

    Chambers, C.; Dutta, S.K.

    1983-01-01

    High molecular nuclear DNAs were isolated from three developmental cell types of N. crassa: conidia, mycelia and germinated conidia, and from mycelial cells of two other heterothallic species, N. intermedia and N. sitophila. These nuclear DNAs were treated with several restriction enzymes: EcoR1, Bam H1, Hind III, Hinc II, Bgl II, Sma I and Pst 1. All seven restriction enzymes were tested on 0.7% agarose gels. EcoR1, Hind III, Pst 1, and Hinc II showed band differences among the species, but not among the cell types. Southern blot transfers of restricted DNA gels were then hybridized with 32 P-labelled pMF2 rDNAs (probe). This later DNA was prepared from N. crassa rDNA cloned into pBR322 plasmid, obtained from Dr. Robert Metzenberg of the University of Wisconsin. Autoradiograms of these hybrids between southern blots and probe DNA revealed similar rDNA band patterns confirming the observations on restriction gels. In the case of EcoR1 restriction analysis there were differences in fragments on 0.7% agarose gel, but after hybridization of southern blots no differences in band patterns were seen in autoradiograms. This raises the question whether the background bands were all of rDNA sequences. These studies are being continued using ITS (internal transcribed spacer) sequences of N. crassa rDNAs cloned in pBR322 plasmid

  13. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    Science.gov (United States)

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  14. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability.

    Science.gov (United States)

    Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan

    2015-08-18

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.

  15. Enzyme-linked immunosorbent assays for Z-DNA.

    Science.gov (United States)

    Thomas, M J; Strobl, J S

    1988-10-01

    Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e.l.i.s.a. was conducted in 48-well culture dishes at 37 degrees C using a rabbit polyclonal antiserum developed against Br-poly(dG-dC).poly(dG-dC), an alkaline phosphatase-conjugated second antibody, and p-nitrophenol as the substrate. Under conditions where antibody concentrations were not limiting, alkaline phosphatase activity was linear for 2 h. Dot blot e.l.i.s.a. conditions are described which allow quantification of Z-DNA [Br-poly(dG-dC).poly(dG-dC)] within the range 5-250 ng. Dot blot and transblot horseradish peroxidase e.l.i.s.a. are described that detect Z-DNA within supercoiled plasmid DNAs immobilized on diazophenylthioether (DPT) paper. In the transblot e.l.i.s.a., plasmid pUC8 derivatives containing 16, 24, or 32 residues of Z-DNA were electrophoresed in agarose gels and electrophoretically transferred to DPT paper. Z-DNA-antibody complexes were detected by the horseradish peroxidase-catalysed conversion of 4-chloro-1-naphthol to a coloured product that was covalently bound to the DPT paper. Z-DNA antibody reactivity was specific for supercoiled Z-DNA containing plasmids after removal of the antibodies cross-reactive with B-DNA by absorption onto native DNA-cellulose. The transblot e.l.i.s.a. was sensitive enough to detect 16 base pairs of alternating G-C residues in 100 ng of pUC8 DNA.

  16. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  17. Pst I restriction fragment length polymorphism of the human placental alkaline phosphatase gene in normal placentae and tumors

    International Nuclear Information System (INIS)

    Tsavaler, L.; Penhallow, R.C.; Kam, W.; Sussman, H.H.

    1987-01-01

    The structure of the human placental alkaline phosphatase gene from normal term placentae was studied by restriction enzyme digestion and Southern blot analysis using a cDNA probe to the gene for the placental enzyme. The DNA digests fall into three distinct patterns based on the presence and intensity of an extra 1.1-kilobase Pst I Band. The extra 1.1-kilobase band is present in 9 of 27 placenta samples, and in 1 of these samples the extra band is present at double intensity. No polymorphism was revealed by digestion with restriction enzymes EcoRI, Sma I, BamHI, or Sac I. The extra Pst I-digestion site may lie in a noncoding region of the gene because no correlation was observed between the restriction fragment length polymorphism and the common placental alkaline phosphatase alleles identified by starch gel electrophoresis. In addition, because placental alkaline phosphatase is frequently re-expressed in neoplasms, the authors examined tissue from ovarian, testicular, and endometrial tumors and from BeWo choriocarcinoma cells in culture. The Pst I-DNA digestion patterns from these cells and tissues were identical to those seen in the normal ovary and term placentae. The consistent reproducible digestion patterns seen in DNA from normal and tumor tissue indicate that a major gene rearrangement is not the basis for the ectopic expression of placental alkaline phosphatase in neoplasia

  18. The two faces of endogenous DNA editing enzymes: Promoting ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The two faces of endogenous DNA editing enzymes: Promoting gene mutations as well as genome repair. Type B lymphocytes are a specific type of white blood cell within our immune system. They produce and export antibodies which seek out, attach to, and neutralize microbes and toxins. A unique way that B ...

  19. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    Science.gov (United States)

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  20. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    Science.gov (United States)

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  1. Differential diagnosis of genetic disease by DNA restriction fragment length polymorphisms

    NARCIS (Netherlands)

    Bolhuis, P. A.; Defesche, J. C.; van der Helm, H. J.

    1987-01-01

    DNA restriction fragment length polymorphisms (RFLPs) are used for diagnosis of genetic disease in families known to be affected by specific disorders, but RFLPs can be also useful for the differential diagnosis of hereditary disease. An RFLP pattern represents the inheritance of chromosomal markers

  2. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    Science.gov (United States)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  3. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  4. Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases

    Czech Academy of Sciences Publication Activity Database

    Olszewska, Agata; Daďová, Jitka; Mačková, Michaela; Hocek, Michal

    2015-01-01

    Roč. 23, č. 21 (2015), s. 6885-6890 ISSN 0968-0896 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : modified nucleotides * DNA * restriction endonucleases * DNA polymerase * pyrimidine nucleosides Subject RIV: CC - Organic Chemistry Impact factor: 2.923, year: 2015

  5. Repair of potentially lethal damage by introduction of T4 DNA ligase in eucaryotic cells

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Napolitano, M.; Gialanella, G.

    1991-01-01

    The bacterial enzyme PvuII, which generates blunt-ended DNA double-strand breaks, and T4 DNA ligase, which seals adjacent DNA fragments in coupling to ATP cleavage, were introduced in mouse C3H10T1/2 fibroblasts using osmolytic shock of pinocytic vesicles. Cells were then assayed for their clonogenic ability. In agreement with previous studies by others, the authors found that PvuII restriction endonuclease simulates ionizing radiation effects by causing a dose-dependent loss of reproductive capacity. They show that concomitant treatment with DNA ligase considerably increases cell survival. Survival curves were shown to be dependent on ligase enzyme dose and on ATP concentration in the hypertonic medium. They conclude that T4 DNA ligase is able to repair some potentially lethal damage produced by restriction endonucleases in eucaryotic cells. (author)

  6. Enzyme-linked electrochemical DNA ligation assay using magnetic beads

    Czech Academy of Sciences Publication Activity Database

    Stejskalová, Eva; Horáková Brázdilová, Petra; Vacek, J.; Bowater, R. P.; Fojta, Miroslav

    2014-01-01

    Roč. 406, č. 17 (2014), s. 4129-4136 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GPP206/11/P739; GA ČR(CZ) GAP206/11/1638; GA AV ČR(CZ) IAA400040901 Institutional support: RVO:68081707 Keywords : Electrochemistry * Enzyme labeling * DNA ligase Subject RIV: BO - Biophysics Impact factor: 3.436, year: 2014

  7. Restriction fragment length polymorphism (RFLP) of two HLA-B-associated transcripts (BATs) genes in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1990-01-01

    The restriction fragment length polymorphism (RFLP) of the two human HLA-B-associated transcripts (BATs) genes, BAT1 and BAT2, was investigated using 5 different restriction enzymes and two human BAT1 and BAT2 cDNA probes. Two of the enzymes, NcoI and RsaI, revealed polymorphic patterns which were...... investigated in healthy Danes. The cDNA/restriction enzyme combination BAT1/NcoI identifies polymorphic bands at 12 kb, 8 kb, 2.5 kb, and 1.1 kb, while the BAT2/RsaI combination identifies polymorphic bands at 3.3 kb, 2.7 kb, 2.3 kb, and 0.9 kb. The frequencies of these markers were determined in 90 unrelated...... Danes. Co-dominant segregation and allelic behavior was seen for the BAT1/NcoI 12 kb and 8 kb bands and the BAT2/RsaI 2.7 kb and 2.3 kb bands, respectively. It is possible that the BAT2/RsaI 3.3 kb band represents a rare allele of the BAT2/RsaI system. The BAT2/RsaI 2.3 kb marker was strongly negatively...

  8. PCR-RFLP Using BseDI Enzyme for Pork Authentication in Sausage and Nugget Products

    Directory of Open Access Journals (Sweden)

    Y. Erwanto

    2011-04-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP using BseDI restriction enzyme had been applied for identifying the presence of pork in processed meat (beef sausage and chicken nugget including before and after frying. Pork sample in various levels (1%, 3%, 5%, 10%, and 25 % was prepared in a mixture with beef and chicken meats and processed for sausage and nugget. The primers CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b (cyt b gene and PCR successfully amplified fragments of 359 bp. To distinguish existence of porcine species, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed pig mitochondrial DNA was cut into 131 and 228 bp fragments. The PCR-RFLP species identification assay yielded excellent results for identification of porcine species. It is a potentially reliable technique for pork detection in animal food processed products for Halal authentication.

  9. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    International Nuclear Information System (INIS)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M.; Ahr, Hans-Juergen; Schmidt, Ulrich; Enzmann, Harald H.

    2004-01-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using 32 P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had 32 P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  11. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)

    2004-10-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  12. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  13. Telomere Restriction Fragment (TRF) Analysis.

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.

  14. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  15. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.

    Science.gov (United States)

    Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng

    2009-05-15

    A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.

  16. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  17. Multilocus DNA fingerprints in gallinaceous birds: general approach and problems.

    Science.gov (United States)

    Hanotte, O; Bruford, M W; Burke, T

    1992-06-01

    Multilocus profiles were investigated in five different species of Galliformes (ring-necked pheasant Phasianus colchicus, Indian peafowl Pavo cristatus, Japanese quail Coturnix coturnix japonica, domestic chicken Gallus gallus, and red grouse Lagopus lagopus scoticus) using two human multilocus probes (33.6 and 33.15) in combination with each of four restriction enzymes (AluI, DdeI, HaeIII or HinfI). All the species show a DNA fingerprint-like pattern using at least one restriction enzyme in combination with each multilocus probe. The number of bands detected and the value of the index of similarity for each species differ significantly between the profiles obtained with each multilocus probe. Some enzyme/probe combinations reveal strong cross-hybridization of the multilocus probes with satellite or satellite-like DNA sequences in pheasant, peacock, quail and chicken, which partially or completely prevented scoring of the profile. The choice of restriction enzyme was found to influence the number of bands, the value of the index of similarity and the probability of obtaining an identical fingerprint between unrelated individuals. The Mendelian inheritance and independent segregation of the fragments detected using AluI was investigated in three species (ring-necked pheasant, Indian peafowl and red grouse). Some bands were shown to be tightly linked. An extreme case was encountered in the red grouse, where 12 of the 15 bands scored in one parent represented only two, apparently allelic, haplotypes and so derived from a single locus. However, fingerprint patterns will often be adequate for use in paternity analyses, such as in behavioural studies, despite the occurrence of haplotypic sets of bands. Identical DNA multilocus profiles were sometimes observed between captive-bred siblings in one species. These results emphasize the desirability of determining, in each new species, the optimal experimental conditions as a preliminary to any behavioural or population

  18. THE HUMAN FUMARYLACETOACETATE GENE : CHARACTERIZATION OF RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISMS AND IDENTIFICATION OF HAPLOTYPES IN TYROSINEMIA TYPE-1 AND PSEUDODEFICIENCY

    NARCIS (Netherlands)

    ROOTWELT, H; KVITTINGEN, EA; HOIE, K; AGSTERIBBE, E; HARTOG, M; BERGER, R

    Deficiency of human fumarylacetoacetase (FAH) activity results in hereditary tyrosinemia type I. Using the restriction enzymes BglII, KpnI and StuI and a 1.3-kb cDNA probe for the FAH gene, we have found 6 restriction fragment length polymorphisms (RFLPs). These RFLPs were utilised in 3 tyrosinemia

  19. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  20. Synthesis of DNA block copolymers with extended nucleic acid segments by enzymatic ligation : cut and paste large hybrid architectures

    NARCIS (Netherlands)

    Ayaz, Meryem S.; Kwak, Minseok; Alemdaroglu, Fikri E.; Wang, Jie; Berger, Ruediger; Herrmann, Andreas; Berger, Rüdiger

    2011-01-01

    Ultra-high molecular weight DNA/polymer hybrid materials were prepared employing molecular biology techniques. Nucleic acid restriction and ligation enzymes were used to generate linear DNA di- and triblock copolymers that contain up to thousands of base pairs in the DNA segments.

  1. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  2. Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique.

    OpenAIRE

    Noll, W W; Collins, M

    1987-01-01

    Single base pair differences between otherwise identical DNA molecules can result in altered melting behavior detectable by denaturing gradient gel electrophoresis. We have developed a simplified procedure for using denaturing gradient gel electrophoresis to detect base pair changes in genomic DNA. Genomic DNA is digested with restriction enzymes and hybridized in solution to labeled single-stranded probe DNA. The excess probe is then hybridized to complementary phage M13 template DNA, and th...

  3. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    International Nuclear Information System (INIS)

    Uyar, A; Kurkcuoglu, O; Doruker, P; Nilsson, L

    2011-01-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved

  4. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  5. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    Science.gov (United States)

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  6. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  7. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  8. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  9. Comparative Study between topical applications liposomally entrapped DNA repair enzymes and thymidine dinucleotide as radioprotectors

    International Nuclear Information System (INIS)

    Shabon, M.H.; El-Bedewi, A.F.

    2005-01-01

    The delivery of active agents to the skin by liposome carriers received great interest during the last three decades. This is based on their potential to enclose various types of biological materials and to deliver them to diverse cell types. Recent work suggests that liposomes as vehicles for topical drug delivery may be superior to conventional preparations. Also, topical application of DNA repair enzymes to irradiated skin increases the rate of repair of DNA potentially damaged cells. Moreover, thymidine dinucleotide is a new skin photo-protective agent against non-ionizing radiation through induction of DNA repair. Gamma irradiation can produce DNA damage in human skin. DNA mutations have an important role in the development of skin cancer and precancerous skin lesions. Albino rats were irradiated with Cobalt-60 gamma radiation with different doses (0.5, 1.5, 3 Gy), and were treated by either thymidine dinucleotide or liposomally entrapped DNA repair enzymes topically 24 hours before irradiation. Evaluation was done histopathologically by H and E stain. Computerized image analyzer using Masson's trichrome stain was also done. Gamma radiation produced epidermal thinning and dermal inflammatory cells together with collagen fragmentation and clumping in a dose-dependent manner. Comparing between both thymidine dinucleotide and liposomally entrapped DNA repair enzymes pretreated and irradiated rats. Low dose irradiation (0.5 Gy) together with previous drugs showed preservation of epidermis with no inflammatory cells and also it maintained the normal architecture of collagen bundles. However, they were ineffective with higher doses. In conclusion our results may suggest that the effects of gamma radiation on the skin at low dose could be minimized by the use of these drugs before exposure

  10. Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection*

    Science.gov (United States)

    Krasner, Danielle S.; Daley, James M.; Sung, Patrick; Niu, Hengyao

    2015-01-01

    DNA double-strand breaks can be eliminated via non-homologous end joining or homologous recombination. Non-homologous end joining is initiated by the association of Ku with DNA ends. In contrast, homologous recombination entails nucleolytic resection of the 5′-strands, forming 3′-ssDNA tails that become coated with replication protein A (RPA). Ku restricts end access by the resection nuclease Exo1. It is unclear how partial resection might affect Ku engagement and Exo1 restriction. Here, we addressed these questions in a reconstituted system with yeast proteins. With blunt-ended DNA, Ku protected against Exo1 in a manner that required its DNA end-binding activity. Despite binding poorly to ssDNA, Ku could nonetheless engage a 5′-recessed DNA end with a 40-nucleotide (nt) ssDNA overhang, where it localized to the ssDNA-dsDNA junction and efficiently blocked resection by Exo1. Interestingly, RPA could exclude Ku from a partially resected structure with a 22-nt ssDNA tail and thus restored processing by Exo1. However, at a 40-nt tail, Ku remained stably associated at the ssDNA-dsDNA junction, and RPA simultaneously engaged the ssDNA region. We discuss a model in which the dynamic equilibrium between Ku and RPA binding to a partially resected DNA end influences the timing and efficiency of the resection process. PMID:26067273

  11. Mutant DNA quantification by digital PCR can be confounded by heating during DNA fragmentation.

    Science.gov (United States)

    Kang, Qing; Parkin, Brian; Giraldez, Maria D; Tewari, Muneesh

    2016-04-01

    Digital PCR (dPCR) is gaining popularity as a DNA mutation quantification method for clinical specimens. Fragmentation prior to dPCR is required for non-fragmented genomic DNA samples; however, the effect of fragmentation on DNA analysis has not been well-studied. Here we evaluated three fragmentation methods for their effects on dPCR point mutation assay performance. Wild-type (WT) human genomic DNA was fragmented by heating, restriction digestion, or acoustic shearing using a Covaris focused-ultrasonicator. dPCR was then used to determine the limit of blank (LoB) by quantifying observed WT and mutant allele counts of the proto-oncogenes KRAS and BRAF in the WT DNA sample. DNA fragmentation by heating to 95°C, while the simplest and least expensive method, produced a high background mutation frequency for certain KRAS mutations relative to the other methods. This was due to heat-induced mutations, specifically affecting dPCR assays designed to interrogate guanine to adenine (G>A) mutations. Moreover, heat-induced fragmentation overestimated gene copy number, potentially due to denaturation and partition of single-stranded DNA into different droplets. Covaris acoustic shearing and restriction enzyme digestion showed similar LoBs and gene copy number estimates to one another. It should be noted that moderate heating, commonly used in genomic DNA extraction protocols, did not significantly increase observed KRAS mutation counts.

  12. KERAGAMAN GENETIK BENIH IKAN KERAPU SUNU, Plectrophomus leopardus TURUNAN PERTAMA (F1 DENGAN ANALISIS RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP MT-DNA

    Directory of Open Access Journals (Sweden)

    Gusti Ngurah Permana

    2016-11-01

    The variability of differences size was occurred on every culture period of coral trout. The aimed of this study was to know genetics variability and evaluated of which are expressed on large, medium, and small size fry on total of length sizes and different weight. Amplification of single fragment using set primer 16 SrDNA (F5’CGCCTG TTTAACAAAAACAT-3’ and reverse (R: 5’-CCGGTCTGAACTCAGATCATGT-3’. Result showed that PCR amplification of mt-DNA was 625 bp. Restriction digestion processed with Mnl I enzyme showed that polymorphism in large size and monomorphic in both medium and small sizes. Two types of haplotype were found in large size (ABABB and ABAAB while one haplotype observed in medium and small sizes ABABB. The heterozygosities value of large, medium and small sizes from Bali location were 0.480, 0.000, and 0.000 restectively. Heterozygosities value of samples from East Java were 0.211, 0.000, and 0.000 restectively. Samples from Lampung were monomorphic (0.000.

  13. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  14. A universal DNA-based protein detection system.

    Science.gov (United States)

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  15. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oncogenic transformation of rat lung epithelioid cells by SV40 DNA and restriction enzyme fragments

    International Nuclear Information System (INIS)

    Daya-Grosjean, L.; Lasne, C.; Nardeux, P.; Chouroulinkov, I.; Monier, R.

    1979-01-01

    Rat epithelioid lung cells were transformed with various preparations of SV40 DNA using the Ca 2+ -precipitation technique. The amount of SV40 genetic information integrated into transformed clones was evaluated by DNA-DNA renaturation kinetics. The growth properties on plastic and in soft-agar were examined, as well as the ability to induce tumors in syngeneic newborn animals or in adult nude mice. One particular transformed line, which had received the HpaII/BamHIA (59 per cent) fragment, was found to contain about 3 integrated copies of this fragment per cell and no significant amount of the HpaII/BamHIB (41 per cent fragment). This line which grew to high saturatio densities and efficiently formed clones in low serum on plastic, produced tumors in both syngeneic rats and nude mice. Thus the HpaII/BamHIA fragment, which mainly includes early viral information, was sufficient to impart these properties to rat epithelioid lung cells. (author)

  17. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  18. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  19. DNA-dependent protein kinase (DAN-PK), a key enzyme in the re-ligation of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Hennequin, C.; Averbeck, D.

    1999-01-01

    Repair pathways of DNA are now defined and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEH) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEj implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridization in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catalytic subunit (DNA-PK cs ) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immuno-deficient (scid) mice are deficient in DNA-PK cs : this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylate Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival. (authors)

  20. Transient and Switchable (Triethylsilyl)ethynyl Protection of DNA against Cleavage by Restriction Endonucleases

    Czech Academy of Sciences Publication Activity Database

    Kielkowski, Pavel; Macíčková-Cahová, Hana; Pohl, Radek; Hocek, Michal

    2011-01-01

    Roč. 50, č. 37 (2011), s. 8727-8730 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : alkynes * DNA * protecting groups * nucleotides * restriction endonucleases Subject RIV: CC - Organic Chemistry Impact factor: 13.455, year: 2011

  1. Molecular mechanisms of mitochondrial DNA depletion diseases caused by deficiencies in enzymes in purine and pyrimidine metabolism.

    Science.gov (United States)

    Eriksson, Staffan; Wang, Liya

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS), a reduction of mitochondrial DNA copy number, often affects muscle or liver. Mutations in enzymes of deoxyribonucleotide metabolism give MDS, for example, the mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) genes. Sixteen TK2 and 22 dGK alterations are known. Their characteristics and symptoms are described. Levels of five key deoxynucleotide metabolizing enzymes in mouse tissues were measured. TK2 and dGK levels in muscles were 5- to 10-fold lower than other nonproliferating tissues and 100-fold lower compared to spleen. Each type of tissue apparently relies on de novo and salvage synthesis of DNA precursors to varying degrees.

  2. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  3. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  4. PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora

    Science.gov (United States)

    Ristaino, Jean B.; Madritch, Michael; Trout, Carol L.; Parra, Gregory

    1998-01-01

    We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora. PMID:9501434

  5. Functional Coupling of Duplex Translocation to DNA Cleavage in a Type I Restriction Enzyme

    Czech Academy of Sciences Publication Activity Database

    Cséfalvay, Eva; Lapkouski, Mikalai; Guzanová, Alena; Cséfalvay, Ladislav; Baikova, T.; Shevelev, Igor; Bialevich, V.; Shamayeva, Katerina; Janščák, Pavel; Kutá-Smatanová, Ivana; Panjikar, S.; Carey, J.; Weiserová, Marie; Ettrich, Rüdiger

    2015-01-01

    Roč. 10, č. 6 (2015), e0128700 E-ISSN 1932-6203 R&D Projects: GA ČR GAP207/12/2323; GA ČR GAP305/10/0281 Institutional support: RVO:67179843 ; RVO:61388971 ; RVO:68378050 Keywords : Escherichia-Coli * Endonuclease ecor1241 * HSDR subunit * RECBCD enzyme * proteins * genes * helicase * sequence * family * domain Subject RIV: CE - Biochemistry Impact factor: 3.057, year: 2015

  6. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    Science.gov (United States)

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and

  7. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  8. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  9. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    International Nuclear Information System (INIS)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-01-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells

  10. PCR-restriction fragment length polymorphism analysis of indigenous nitrogen-fixing micro organisms lineages

    International Nuclear Information System (INIS)

    Liew Woan Ying Pauline; Jong Bor Chyan; Khairuddin Abdul Rahim

    2006-01-01

    The use of PCR-RFLP analysis as a useful microbial identification tool has been evaluated for years. This approach was verified effective worldwide, where differential DNA bands and sequence markers distinctive to specific microbes or microbial groups have been identified. In our study, PCR-RFLP technique has been adopted in the identification of our indigenous N 2 -fixing isolates obtained from several local environments. RFLP was carried out with suitable restriction enzymes and the patterns were documented. Representatives of the different patterns were selected and analysed with the 16S ribosomal DNA sequencing method. The results demonstrated correlation between the differential RFLP patterns and the 16S rDNA identities. (Author)

  11. Simple and sensitive fluorescence assay of restriction endonuclease on graphene oxide

    International Nuclear Information System (INIS)

    Gang, Jong Back

    2015-01-01

    Restriction endonucleases hydrolyze internal phosphodiester bonds at specific sites in a DNA sequence. These enzymes are essential in a variety of fields, such as biotechnology and clinical diagnostics. It is of great importance and necessity for the scientific and biomedical use of enzymes to measure endonuclease activity. In this study, graphene oxide (GO) has been used as a platform to measure enzyme activity with high sensitivity. To increase the detection sensitivity of Hinf I, the endonuclease-digested reaction was treated with exonuclease III (Exo III) and a fluorescence assay was conducted to measure the emission. Results showed that Exo III treatment enhanced 2.7-fold signal-to-background ratio for the detection of Hinf I compared with that done without Exo III in the presence of GO

  12. The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation.

    Science.gov (United States)

    Soyk, Sebastian; Simková, Klára; Zürcher, Evelyne; Luginbühl, Leonie; Brand, Luise H; Vaughan, Cara K; Wanke, Dierk; Zeeman, Samuel C

    2014-04-01

    Plant BZR1-BAM transcription factors contain a β-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    Directory of Open Access Journals (Sweden)

    Elisabetta eCitterio

    2015-09-01

    Full Text Available Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin are crucial for the cellular response to DNA double-strand breaks (DSBs, one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ubiquitin ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs, as supported by the implication of a growing number of DUBs in DNA damage response (DDR processes. Here, we discuss the current knowledge of how ubiquitin-mediated signaling at DSBs is controlled by deubiquitinating enzymes, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.

  14. Updating rDNA restriction enzyme maps of Tetrahymena reveals four new intron-containing species

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Simon, E M; Engberg, J

    1985-01-01

    an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number...

  15. An efficient method for DNA extraction from Cladosporioid fungi.

    Science.gov (United States)

    Moslem, M A; Bahkali, A H; Abd-Elsalam, K A; Wit, P J G M

    2010-11-23

    We developed an efficient method for DNA extraction from Cladosporioid fungi, which are important fungal plant pathogens. The cell wall of Cladosporioid fungi is often melanized, which makes it difficult to extract DNA from their cells. In order to overcome this we grew these fungi for three days on agar plates and extracted DNA from mycelium mats after manual or electric homogenization. High-quality DNA was isolated, with an A(260)/A(280) ratio ranging between 1.6 and 2.0. Isolated genomic DNA was efficiently digested with restriction enzymes and produced distinct banding patterns on agarose gels for the different Cladosporium species. Clear DNA fragments from the isolated DNA were amplified by PCR using small and large subunit rDNA primers, demonstrating that this method provides DNA of sufficiently high quality for molecular analyses.

  16. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1 in human type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Yoon Kun-Ho

    2002-04-01

    Full Text Available Abstract Background It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. Methods Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. Results Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. Conclusion We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.

  17. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  18. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  19. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  20. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    Science.gov (United States)

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  1. The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods

    Science.gov (United States)

    Dean, Derek M.; Wilder, Jason A.

    2011-01-01

    We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…

  2. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  3. Unusual structures are present in DNA fragments containing super-long Huntingtin CAG repeats.

    Directory of Open Access Journals (Sweden)

    Daniel Duzdevich

    2011-02-01

    Full Text Available In the R6/2 mouse model of Huntington's disease (HD, expansion of the CAG trinucleotide repeat length beyond about 300 repeats induces a novel phenotype associated with a reduction in transcription of the transgene.We analysed the structure of polymerase chain reaction (PCR-generated DNA containing up to 585 CAG repeats using atomic force microscopy (AFM. As the number of CAG repeats increased, an increasing proportion of the DNA molecules exhibited unusual structural features, including convolutions and multiple protrusions. At least some of these features are hairpin loops, as judged by cross-sectional analysis and sensitivity to cleavage by mung bean nuclease. Single-molecule force measurements showed that the convoluted DNA was very resistant to untangling. In vitro replication by PCR was markedly reduced, and TseI restriction enzyme digestion was also hindered by the abnormal DNA structures. However, significantly, the DNA gained sensitivity to cleavage by the Type III restriction-modification enzyme, EcoP15I."Super-long" CAG repeats are found in a number of neurological diseases and may also appear through CAG repeat instability. We suggest that unusual DNA structures associated with super-long CAG repeats decrease transcriptional efficiency in vitro. We also raise the possibility that if these structures occur in vivo, they may play a role in the aetiology of CAG repeat diseases such as HD.

  4. Restriction-modification systems in Mycoplasma spp

    Directory of Open Access Journals (Sweden)

    Marcelo Brocchi

    2007-01-01

    Full Text Available Restriction and Modification (R-M systems are present in all Mycoplasma species sequenced so far. The presence of these genes poses barriers to gene transfer and could protect the cell against phage infections. The number and types of R-M genes between different Mycoplasma species are variable, which is characteristic of a polymorphism. The majority of the CDSs code for Type III R-M systems and particularly for methyltransferase enzymes, which suggests that functions other than the protection against the invasion of heterologous DNA may exist. A possible function of these enzymes could be the protection against the invasion of other but similar R-M systems. In Mycoplasma hyopneumoniae strain J, three of the putative methyltransferase genes were clustered in a region forming a genomic island. Many R-M CDSs were mapped in the vicinity of transposable elements suggesting an association between these genes and reinforcing the idea of R-M systems as mobile selfish DNA. Also, many R-M genes present repeats within their coding sequences, indicating that their expression is under the control of phase variation mechanisms. Altogether, these data suggest that R-M systems are a remarkable characteristic of Mycoplasma species and are probably involved in the adaptation of these bacteria to different environmental conditions.

  5. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  6. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    International Nuclear Information System (INIS)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2010-01-01

    Research highlights: → Incubating PCR products at a high temperature causes smears in gel electrophoresis. → Smears interfere with the interpretation of methylation analysis using COBRA. → Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. → The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 o C or 65 o C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.

  7. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    OpenAIRE

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.

  8. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    International Nuclear Information System (INIS)

    Smith, P.J.

    1986-01-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells

  9. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  10. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    Science.gov (United States)

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  11. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Science.gov (United States)

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  12. Genetic structure of European populations of Salmo salar L (Atlantic salmon) inferred from mitochondrial DNA

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1996-01-01

    The genetic relationships between the only natural population of Atlantic salmon (Salmo salar L.) in Denmark and seven other European salmon populations were studied using RFLP analysis of PCR amplified mitochondrial DNA segments. Six different haplotypes were detected by restriction enzyme...

  13. DNA fingerprints come to court

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    DNA fingerprinting, a new technique, which produces a visual representation of a person's genome, enables the identification of perpetrators from as little as a single hair root, providing they have left some biologic evidence-hair, skin cells, blood, or semen-at the scene of the crime. DNA fingerprinting was developed by British geneticist Alec Jeffreys, PhD, in 1985. Jeffreys, professor genetics at the University of Leicester, built upon a discovery, five years earlier, of certain hypervariable regions called minisatellites in unexpressed areas of DNA. The hypervariability was evidenced in the number of repetitions of certain sequences of base pairs. It was this aspect that revealed to Jeffreys something that had eluded other investigators. He realized that these minisatellite regions had a potential for identification far greater than that of conventional genetic markers, which are defined by restriction fragment length polymorphisms (RFLPs). RFLPs are characterized by the substitution of one base pair for another, resulting in the presence or absence of a restriction enzyme site. Thus, each offers a limited number of alleles. In contrast, minisatellite regions have an accordion-like range of length, as the number of repetitions of a given sequence varies widely from person to person

  14. DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes

    Science.gov (United States)

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-01

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

  15. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    Directory of Open Access Journals (Sweden)

    Wang Nian

    2012-08-01

    Full Text Available Abstract Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.

  16. Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.

    Science.gov (United States)

    Yonemoto, Isaac T; Weyman, Philip D

    2017-01-01

    Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.

  17. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium.

    Science.gov (United States)

    Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin

    2016-10-01

    The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.

  18. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    International Nuclear Information System (INIS)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90% of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5' part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acid residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56% similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved

  19. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  20. Intrauterine growth restriction increases circulating mitochondrial DNA and Toll-like receptor 9 expression in adult offspring: could aerobic training counteract these adaptations?

    Science.gov (United States)

    Oliveira, V; Silva Junior, S D; de Carvalho, M H C; Akamine, E H; Michelini, L C; Franco, M C

    2017-04-01

    It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.

  1. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  2. Tranformasi Fragmen Dna Kromosom Xanthomonas Campestris ke dalam Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wibowo Mangunwardoyo

    2002-04-01

    Full Text Available Research on DNA transformation of Xanthomonas campestris into Escherichia coli DH5αα using plasmid vector Escherichia coli (pUC19. was carried out. DNA chromosome was isolated using CTAB method, alkali lysis method was used to isolate DNA plasmid. Both of DNA plasmid and chromosome were digested using restriction enzyme EcoRI. Competent cell was prepared with CaCl2 and heat shock method for transformation procedure. The result revealed transformation obtain 5 white colonies, with transformation frequency was 1,22 x 10-8 colony/competent cell. Electrophoresis analysis showed the DNA fragment (insert in range 0.5 – 7,5 kb. Further research should be carried out to prepare the genomic library to obtain better result of transformant.

  3. The effect of an angiotensin-converting enzyme inhibitor on water and electrolyte balance in water-restricted sheep

    Directory of Open Access Journals (Sweden)

    R.A. Meintjies

    1999-07-01

    Full Text Available The importance of angiotensin II in the regulation of water and electrolyte balance in sheep is questionable. In this trial the effects of an angiotensin-converting enzyme (ACE inhibitor were quantified in sheep on restricted water intake. Comparing the phase of water restriction only with that of water restriction plus ACE inhibition, significant increases were observed during the latter phase in urine volume, sodium and potassium excretion via the urine, sodium concentration in the plasma and osmolar clearance. Urine osmolarity decreased with inhibition of angiotensin II formation while variables such as water, sodium and potassium loss via the faeces were unaffected. Most of the renal effects of ACE inhibition, except the increase in urinary potassium excretion, were explicable in terms of the established functions of angiotensin II. Furthermore, results of this trial indicate that angiotensin II has no significant effect on the intestine in regulating water and electrolyte excretion via the faeces.

  4. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  5. New polymorphic mtDNA restriction site in the 12S rRNA gene detected in Tunisian patients with non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Charfeddine, Ilhem; Fakhfakh, Faiza

    2008-01-01

    The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene

  6. Extraction of Chromosomal DNA from Schizosaccharomyces pombe.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    Extraction of DNA from Schizosaccharomyces pombe cells is required for various uses, including templating polymerase chain reactions (PCRs), Southern blotting, library construction, and high-throughput sequencing. To purify high-quality DNA, the cell wall is removed by digestion with Zymolyase or Lyticase and the resulting spheroplasts lysed using sodium dodecyl sulfate (SDS). Cell debris, SDS, and SDS-protein complexes are subsequently precipitated by the addition of potassium acetate and removed by centrifugation. Finally, DNA is precipitated using isopropanol. At this stage, purity is usually sufficient for PCR. However, for more sensitive procedures, such as restriction enzyme digestion, additional purification steps, including proteinase K digestion and phenol-chloroform extraction, are recommended. All of these steps are described in detail here. © 2016 Cold Spring Harbor Laboratory Press.

  7. Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia.

    Science.gov (United States)

    Johnston, Christopher D; Skeete, Chelsey A; Fomenkov, Alexey; Roberts, Richard J; Rittling, Susan R

    2017-01-01

    Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism's physiology, metabolism, and pathogenesis in human disease.

  8. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Science.gov (United States)

    Sharpe, Richard M; Koepke, Tyson; Harper, Artemus; Grimes, John; Galli, Marco; Satoh-Cruz, Mio; Kalyanaraman, Ananth; Evans, Katherine; Kramer, David; Dhingra, Amit

    2016-01-01

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  9. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    Science.gov (United States)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  10. DNA Methylation Pattern in Overweight Women under an Energy-Restricted Diet Supplemented with Fish Oil

    Directory of Open Access Journals (Sweden)

    Cátia Lira do Amaral

    2014-01-01

    Full Text Available Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC. However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded.

  11. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  12. Computational study of hydration at the TD damaged site of DNA in complex with repair enzyme T4 endonuclease V

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-02-01

    An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3' and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process. (author)

  13. Slow elimination of injured liver DNA bases of γ-irradiated old mice

    International Nuclear Information System (INIS)

    Gaziev, A.I.; Malakhov, L.V.; Fomenko, L.A.

    1982-01-01

    The paper presents a study of the elimination of injured bases from the liver DNA of old and young mice after their exposure to γ rays. The presented data show that if DNA from the liver of irradiated mice is treated with incision enzymes, its priming activity is increased. In the case of enzymatic treatment of DNA isolated 5 h after irradiation we find a great difference between the priming activity of the liver DNA of old and young mice. The reason for this difference is that the liver DNA of 20-month old mice 5 h after irradiation still has many unrepaired injured bases. These data indicated that the rate of incision of γ-injured DNA bases in the liver of old mice is lower than in the liver of young mice. In the liver of mice of different age the rate of restitution of DNA, single-strand breaks induced by γ rays in doses up to 100 Gy is the same. At the same time, the level of induced reparative synthesis of DNA in cells of an old organism is lower than in cells of a young organism. The obtained data suggest that reduction of the rate of elimination of modified bases from the cell DNA of 20-month old mice is due to reduction of the activity of the DNA repair enzymes or to restrictions in the chromatin in the access of these enzymes to the injured regions of DNA in the cells of old animals

  14. Isolation and characterization of the human uracil DNA glycosylase gene

    International Nuclear Information System (INIS)

    Vollberg, T.M.; Siegler, K.M.; Cool, B.L.; Sirover, M.A.

    1989-01-01

    A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage λgt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placenta uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A) + RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or PstI revealed a complex pattern of cDNA-hydridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene

  15. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    International Nuclear Information System (INIS)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M.

    2013-01-01

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g -1 ·min -1 ) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g -1 ·min -1 ) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring

  16. Maternal protein restriction affects gene expression and enzyme activity of intestinal disaccharidases in adult rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, D.F.; Pacheco, P.D.G.; Alvarenga, P.V.; Buratini, J. Jr; Castilho, A.C.S.; Lima, P.F.; Sartori, D.R.S.; Vicentini-Paulino, M.L.M. [Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2013-03-15

    This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02 vs 0.15 ± 0.02), medial (0.30 ± 0.06 vs 0.14 ± 0.01) and distal (0.43 ± 0.07 vs 0.07 ± 0.02 U·g{sup -1}·min{sup -1}) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11 vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g{sup -1}·min{sup -1}) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.

  17. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    Directory of Open Access Journals (Sweden)

    Javier Abellón-Ruiz

    2016-01-01

    Full Text Available In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil; Endonuclease V (EndoV, which recognises hypoxanthine; and Endonuclease Q (EndoQ, (which recognises both uracil and hypoxanthine. Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.

  18. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.

    Science.gov (United States)

    Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua

    2017-11-08

    In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.

  19. The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS*

    Science.gov (United States)

    Ho, Chun-Han; Wang, Hao-Ching; Ko, Tzu-Ping; Chang, Yuan-Chih; Wang, Andrew H.-J.

    2014-01-01

    The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties. PMID:25118281

  20. Assay of repair enzyme activity by reactivation of ultraviolet-irradiated infective viral DNA

    Energy Technology Data Exchange (ETDEWEB)

    Oeda, K; Nakatsu, Y; Sekiguchi, M [Kyushu Univ., Fukuoka (Japan).Faculty of Science

    1980-05-01

    Treatment of OeX174 replicative form (RF) DNA, pre-exposed to ultraviolet light, with T4 endonuclease V led to a marked increase of infectivity of the RF when the activity was assayed on CaCl/sub 2/-treated cells of Escherichia coli strain defective in uvrA gene. The reaction was specific and the extent of the reactivation was proportional to the concentration of the enzyme. Based on this finding, we developed a procedure to assay endonuclease activities specific for ultraviolet-damaged DNA, that might be involved in the incision step of excision repair of pyrimidine dimers. To find conditions suitable for accurate and rapid assays, we examined conditions affecting transfection with OeX174 RF. The maximum transfection was achieved when more than 2 x 10/sup 8/ CaCl/sub 2/-treated cells, which had been prepared from bacteria harvested during the early or mid-logarithmic phase of growth in L broth, were incubated with the DNA at 0/sup 0/C for 20 min in 50 mM CaCl/sub 2/. Incubation of the cell-DNA mixture at 37/sup 0/C decreased the transfection efficiency to about 30% of the optimal level; thus, heat shock, a step regarded as necessary in the conventional CaCl/sub 2/ methods for transfection and transformation, was eliminated. The CaCl/sub 2/-treated cells remained viable and competent after storage at -20/sup 0/C in a solution containing 15% glycerol. By using the procedure thus established, repair endonuclease activities in crude extracts of T4-infected E. coli and of Micrococcus luteus were determined. The procedure should be of use in assaying and purifying repair enzymes of other organisms.

  1. Expression of ultraviolet-induced restriction alleviation in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Thoms, B.; Wackernagel, W.

    1983-01-01

    Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage lambda in cells irradiated with ultraviolet prior to infection. The authors demonstrate that restriction of lambda is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of lambda. At this time more than 60% of the lambda DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of lambda DNA from infected cells and a mild detergent treatment removing adsorbed phages from the cellular surface showed that only a small specific fraction of all lambda infections is destined to escape restriction due to restriction alleviation. This fraction (10-20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of lambda phages explains why the SOS function restriction alleviation could initially be discovered. The authors show that the retarded mode of DNA injection is not required for another SOS function acting on lambda DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation). (Auth.)

  2. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway

  3. The N terminus of cGAS de-oligomerizes the cGAS:DNA complex and lifts the DNA size restriction of core-cGAS activity.

    Science.gov (United States)

    Lee, Arum; Park, Eun-Byeol; Lee, Janghyun; Choi, Byong-Seok; Kang, Suk-Jo

    2017-03-01

    Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme in the innate immune system. Recent studies using core-cGAS lacking the N terminus investigated the mechanism for binding of double-stranded (ds) DNA and synthesis of 2',3'-cyclic GMP-AMP (cGAMP), a secondary messenger that ultimately induces type I interferons. However, the function of the N terminus of cGAS remains largely unknown. Here, we found that the N terminus enhanced the activity of core-cGAS in vivo. Importantly, the catalytic activity of core-cGAS decreased as the length of double-stranded DNA (dsDNA) increased, but the diminished activity was restored by addition of the N terminus. Furthermore, the N terminus de-oligomerized the 2 : 2 complex of core-cGAS and dsDNA into a 1 : 1 complex, suggesting that the N terminus enhanced the activity of core-cGAS by facilitating formation of a monomeric complex of cGAS and DNA. © 2017 Federation of European Biochemical Societies.

  4. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    Science.gov (United States)

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  5. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    Science.gov (United States)

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses

  6. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Directory of Open Access Journals (Sweden)

    Richard M Sharpe

    Full Text Available High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  7. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  8. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  9. Effect of Allium flavum L. and Allium melanantherum Panč. Extracts on Oxidative DNA Damage and Antioxidative Enzymes Superoxide Dismutase and Catalase.

    Science.gov (United States)

    Mitić-Ćulafić, Dragana; Nikolić, Biljana; Simin, Nataša; Jasnić, Nebojša; Četojević-Simin, Dragana; Krstić, Maja; Knežević-Vukčević, Jelena

    2016-03-01

    Allium flavum L. and Allium melanantherum Panč. are wild growing plants used in traditional diet in Balkan region. While chemical composition and some biological activities of A. flavum have been reported, A. melanantherum, as an endemic in the Balkan Peninsula, has never been comprehensively examined. After chemical characterization of A. melanantherum, we examined the protective effect of methanol extracts of both species against t-butyl hydro-peroxide (t-BOOH)-induced DNA damage and mutagenesis. The bacterial reverse mutation assay was performed on Escherichia coli WP2 oxyR strain. DNA damage was monitored in human fetal lung fibroblasts (MRC-5) with alkaline comet assay. Obtained results indicated that extracts reduced t-BOOH-induced DNA damage up to 70 and 72% for A. flavum and A. melanantherum extract, respectively, and showed no effect on t-BOOH-induced mutagenesis. Since the results indicated modulatory effect on cell-mediated antioxidative defense, the effect of extracts on total protein content, and superoxide dismutase (SOD) and catalase (CAT) amounts and activities were monitored. Both extracts increased total protein content, while the increase of enzyme amount and activity was obtained only with A. melanantherum extract and restricted to CAT. The activity of CuZnSOD family was not affected, while SOD1 and SOD2 amounts were significantly decreased, indicating potential involvement of extracellular CuZnSOD. Obtained results strongly support the traditional use of A. flavum and A. melanantherum in nutrition and recommend them for further study.

  10. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP Analysis

    Directory of Open Access Journals (Sweden)

    Yuny Erwanto

    2014-10-01

    Full Text Available This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp. Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  11. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    Science.gov (United States)

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  12. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  13. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    Science.gov (United States)

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  14. Psoralens cleave pBR322 DNA under ultraviolet radiation

    International Nuclear Information System (INIS)

    Kagan, J.; Xinsheng Chen; Wang, T.P.

    1992-01-01

    Supercoiled (SC) pBR322 was used to probe the recent claim that 5-geranoxylpsoralen (5-GOP) did not photoreact with DNA. Contrary to expectations, 5-GOP was found to damage DNA in the presence of UV-A through two competing pathways; (a) single strand breaks, identified by the conversion of supercoiled into open circular and linear DNA, and (b) cross-linking, revealed by the fluence-dependent decrease in the extent of denaturation of the double stranded supercoiled DNA to single stranded circular DNA. In addition, a fluence-dependent modification reduced the ability of the restriction enzyme EcoR I to linearize the photosensitized DNA, and alkali-labile lesions were generated. Psoralen, 5-methoxypsoralen, and 8-methoxypsoralen, which are well-known to undergo cycloaddition to DNA, had a more pronounced effect on supercoiled DNA. Single strand breaks occurred more readily than with 5-GOP, and the surviving SC form remaining had reduced electrophoretic mobility in agarose gels. In all cases, the DNA damage was more prominent when oxygen was absent. (author)

  15. DNA in a Tunnel: A Comfy Spot for Recognition - or -The Structure of BsoBI Complexed with DNA. What can we Learn about Function via Structure Determination and how can this be Applied to Bone or Muscle Biology?

    Science.gov (United States)

    vanderWoerd, Mark

    2004-01-01

    The structure and function of a biologically active molecule are related. To understand its function, it is necessary (but not always sufficient) to know the structure of the molecule. There are many ways of relating the molecular function with the structure. Mutation analysis can identify pertinent amino acids of an enzyme, or alternatively structure comparison of the of two similar molecules with different function may lead to understanding which parts are responsible for a functional aspect, or a series of "structural cartoons" - enzyme structure, enzyme plus substrate, enzyme with transition state analog, and enzyme with product - may give insight in the function of a molecule. As an example we will discuss the structure and function of the restriction enzyme BsoBI from Bacillus stearothemzophilus in complex with its cognate DNA. The enzyme forms a unique complex with DNA in that it completely encircles the DNA. The structure reveals the enzyme-DNA contacts, how the DNA is distorted compared with the canonical forms, and elegantly shows how two distinct DNA sequences can be recognized with the same efficiency. Based on the structure we may also propose a hypothesis how the enzymatic mechanism works. The knowledge gained thru studies such as this one can be used to alter the function by changing the molecular structure. Usually this is done by design of inhibitors specifically active against and fitting into an active site of the enzyme of choice. In the case of BsoBI one of the objectives of the study was to alter the enzyme specificity. In bone biology there are many candidates available for molecular study in order to explain, alter, or (temporarily) suspend activity. For example, the understanding of a pathway that negatively regulates bone formation may be a good target for drug design to stimulate bone formation and have good potential as the basis for new countermeasures against bone loss. In principle the same approach may aid muscle atrophy, radiation

  16. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  17. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types...... 1000-fold above the potential detection limit. CONCLUSION: Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay...... of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence...

  18. Effects of a Brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver

    DEFF Research Database (Denmark)

    Sørensen, Mette; Jensen, B.R.; Poulsen, Henrik E.

    2001-01-01

    and catalase activity was also assessed in the kidneys. In order to examine a possible effect of the Brussels sprouts related to oxidative stress, we measured oxidative DNA damage in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) and lipid peroxidation in terms of malondialdehyde (MDA) formation...... on MDA levels were found. The present results support the data obtained in several studies that consumption of cruciferous vegetables is capable of inducing various phase II enzyme systems. However, the observed increase in oxidative DNA damage raises the question of whether greatly increased ingestion...

  19. Endogenous DNA Damage and Repair Enzymes

    Directory of Open Access Journals (Sweden)

    Arne Klungland

    2016-06-01

    Full Text Available Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career.

  20. Automated DNA electrophoresis, hybridization and detection

    International Nuclear Information System (INIS)

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-01-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; 32 P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing

  1. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  2. Cloning and analysis of the genes encoding the type IIS restriction-modification system HphI from Haemophilus parahaemolyticus.

    Science.gov (United States)

    Lubys, A; Lubienè, J; Kulakauskas, S; Stankevicius, K; Timinskas, A; Janulaitis, A

    1996-07-15

    The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.

  3. Genotypic diversity of oscillatoriacean strains belonging to the genera Geitlerinema and Spirulina determined by 16S rDNA restriction analysis.

    Science.gov (United States)

    Margheri, Maria C; Piccardi, Raffaella; Ventura, Stefano; Viti, Carlo; Giovannetti, Luciana

    2003-05-01

    Genotypic diversity of several cyanobacterial strains mostly isolated from marine or brackish waters, belonging to the genera Geitlerinema and Spirulina, was investigated by amplified 16S ribosomal DNA restriction analysis and compared with morphological features and response to salinity. Cluster analysis was performed on amplified 16S rDNA restriction profiles of these strains along with profiles obtained from sequence data of five Spirulina-like strains, including three representatives of the new genus Halospirulina. Our strains with tightly coiled trichomes from hypersaline waters could be assigned to the Halospirulina genus. Among the uncoiled strains, the two strains of hypersaline origin clustered together and were found to be distant from their counterparts of marine and freshwater habitat. Moreover, another cluster, formed by alkali-tolerant strains with tightly coiled trichomes, was well delineated.

  4. Genetic diversity and differentiation in Prunus species (Rosaceae) using chloroplast and mitochondrial DNA CAPS markers.

    Science.gov (United States)

    Ben Mustapha, S; Ben Tamarzizt, H; Baraket, G; Abdallah, D; Salhi Hannachi, A

    2015-04-27

    Chloroplast (cpDNA) and mitochondrial DNA (mtDNA) were analyzed to establish genetic relationships among Tunisian plum cultivars using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Two mtDNA regions (nad 1 b/c and nad 4 1/2) and a cpDNA region (trnL-trnF) were amplified and digested using restriction enzymes. Seventy and six polymorphic sites were revealed in cpDNA and mtDNA, respectively. As a consequence, cpDNA appears to be more polymorphic than mtDNA. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram showed that accessions were distributed independently of their geographical origin, and introduced and local cultivars appear to be closely related. Both UPGMA and principal component analysis grouped Tunisian plum accessions into similar clusters. The analysis of the pooled sequences allowed the detection of 17 chlorotypes and 12 mitotypes. The unique haplotypes detected for cultivars are valuable for management and preservation of the plum local resources. From this study, PCR-RFLP analysis appears to be a useful approach to detect and identify cytoplasmic variation in plum trees. Our results also provide useful information for the management of genetic resources and to establish a program to improve the genetic resources available for plums.

  5. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    Science.gov (United States)

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-04-20

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  6. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  7. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  8. Influence of LET on repair of DNA damages in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Tanaka, A; Kikuchi, M; Shimizu, T; Watanabe, H [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Cao, J P; Taucher-Scholz, G

    1997-03-01

    Inactivation caused by heavy ions was studied in dry cells of radioresistant bacterium Deinococcus radiodurans. All survival curves were characterized by a large shoulder of the curves. No final slopes of the exponential part of survival curves for heavy ion irradiation were steeper than that for 2.0 MeV electron irradiation. The plots of RBE versus LET showed no obvious peaks, suggesting that this bacterium can repair not only DNA double strand breaks (DSBs) but also clustered damage in DNA which may be induced by heavy ions. The genomic DNA of D. radiodurans was cleaved into large fragments with restriction enzyme Not I after post-irradiation incubation and the fragments were separated using pulsed-field gel electrophoresis (PFGE). DSBs induction and rejoining process were analyzed by detection of the reappearance of ladder pattern of DNA fragments. The required repair time after heavy ions irradiation was longer than the repair time for electrons at the same dose of irradiation, however, the rate of repair enzyme induction was almost similar to each other between electrons and heavy ions, suggesting that the same repair system is likely to be used after both low and high LET irradiations. (author)

  9. Spreadsheet-based program for alignment of overlapping DNA sequences.

    Science.gov (United States)

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  10. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  11. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  12. Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique

    International Nuclear Information System (INIS)

    Noll, W.W.; Collins, M.

    1987-01-01

    Single base pair differences between otherwise identical DNA molecules can result in altered melting behavior detectable by denaturing gradient gel electrophoresis. The authors have developed a simplified procedure for using denaturing gradient gel electrophoresis to detect base pair changes in genomic DNA. Genomic DNA is digested with restriction enzymes and hybridized in solution to labeled single-stranded probe DNA. The excess probe is then hybridized to complementary phage M13 template DNA, and the reaction mixture is electrophoresed on a denaturing gradient gel. Only the genomic DNA probe hybrids migrate into the gel. Differences in hybrid mobility on the gel indicate base pair changes in the genomic DNA. They have used this technique to identify two polymorphic sites within a 1.2-kilobase region of human chromosome 20. This approach should greatly facilitate the identification of DNA polymorphisms useful for gene linkage studies and the diagnosis of genetic diseases

  13. Isolation and characterization of DNA probes from a flow-sorted human chromosome 8 library that detect restriction fragment length polymorphism (RFLP).

    Science.gov (United States)

    Wood, S; Starr, T V; Shukin, R J

    1986-01-01

    We have used a recombinant DNA library constructed from flow-sorted human chromosome 8 as a source of single-copy human probes. These probes have been screened for restriction fragment length polymorphism (RFLP) by hybridization to Southern transfers of genomic DNA from five unrelated individuals. We have detected six RFLPs distributed among four probes after screening 741 base pairs for restriction site variation. These RFLPs all behave as codominant Mendelian alleles. Two of the probes detect rare variants, while the other two detect RFLPs with PIC values of .36 and .16. Informative probes will be useful for the construction of a linkage map for chromosome 8 and for the localization of mutant alleles to this chromosome. Images Fig. 1 PMID:2879441

  14. Molecular bass for a malic enzyme null mutation

    International Nuclear Information System (INIS)

    Brown, M.L.; Wise, L.S.; Rubin, C.S.

    1987-01-01

    Many tissues from normal (wt) mice have cytosolic malic enzyme (ME) activity and express two mRNAs (2 and 3.1 kb) that code for a single ME polypeptide. Mod-1 null (M-n) mice lack cytosolic ME activity, but express 2.5 and 3.6 kb mRNAs that hybridize with wt ME cDNAs. To investigate the basis for the ME deficiency cDNAs corresponding to M-n ME RNA were cloned. A λgt11 library was prepared using M-n liver mRNA as a template. Wt ME cDNA probes hybridized with several recombinant phages and a 2kb insert with an atypical (non-wt) restriction pattern was subcloned in pGEM 1 and sequenced. The M-n ME cDNA contains an internal directly repeated sequence that corresponds to nts 1109-1617 in the coding region of wt ME cDNA. A restriction fragment from M-n ME cDNA that includes the first 204 bp of repeated sequence and 306 bp of contiguous 5' sequence was subcloned into pGEM 1 and used as a template for synthesizing 32 P-labeled anti-sense RNA. After hybridization with M-n liver RNA the 510 nt transcript was resistant to RNA digestion; after hybridization with wt RNA only fragments corresponding to the normally non-contiguous 204 bp and 306 bp segments of the insert were protected. Thus the partial duplication of coding sequence in M-n ME mRNA is confirmed. Analyses of intron-exon organization in the relevant regions of the wt and M-n ME genes will provide further insights into the mechanism underlying the ME null mutation

  15. Effect of specific enzyme inhibitors on replication, total genome DNA repair and on gene-specific DNA repair after UV irradiation in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.C.; Stevsner, Tinna; Bohr, Vilhelm A. (National Cancer Institute, NIH, Bethesda, MD (USA). Division of Cancer Treatment, Laboratory of Molecular Pharmacology); Mattern, M.R. (Smith Kline Beecham Pharmaceuticals, King of Prussia, PA (USA). Department of Biomolecular Discovery)

    1991-09-01

    The effects were studied of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. The inhibitors were tested of DNA poly-merase {alpha} and {delta} (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topo-isomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, the effects were tested of the potential topoisomerase I activator, {beta}-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; {beta}-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair. (author). 36 refs.; 3 figs.; 2 tabs.

  16. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    Science.gov (United States)

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  17. Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage

    DEFF Research Database (Denmark)

    Juul, Sissel; Iacovelli, Federico; Falconi, Mattia

    2013-01-01

    ABSTRACT We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12...... to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 C while ensuring retainment...

  18. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  19. Studies on DNA repair in Bacillus subtilis

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Kada, Tsuneo

    1977-01-01

    An enzyme which enhances the priming activity of γ-irradiated DNA for type I DNA polymerase (EC 2.7.7.7) was identified and partially purified from extracts of Bacillus subtilis cells. The enzyme preferentially degraded γ-irradiated DNA into acid-soluble materials. DNA preparations treated with heat, ultraviolet light, pancreatic DNAase (EC 3.1.4.5) or micrococcal DNAase (EC 3.1.4.7) were not susceptible to the enzyme. However, sonication rendered DNA susceptible to the enzyme to some extent. From these results, it is supposed that this enzyme may function by 'cleaning' damaged terminals produced by γ-irradiation to serve as effective primer of sites for repair synthesis by the type I DNA polymerase

  20. Optimizing Restriction Site Placement for Synthetic Genomes

    Science.gov (United States)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  1. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    International Nuclear Information System (INIS)

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-01-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4 2 , with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement

  2. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  3. Restriction fragment length polymorphism of the HLA-DP subregion and correlations to HLA-DP phenotypes

    International Nuclear Information System (INIS)

    Hyldig-Nielsen, J.J.; Morling, N.; Oedum, N.; Ryder, L.P.; Platz, P.; Jakobsen, B.; Svejgaard, A.

    1987-01-01

    The restriction fragment length polymorphism (RFLP) of the class II HLA-DP subregion of the major histocompatibility complex (MHC) of humans has been unraveled by Southern blotting using DP/sub α/ and DP/sub β/ probes in a study of 46 unrelated individuals with known HLA-DP types. Contrary to earlier preliminary findings with a limited number of enzymes, the RFLP appears to be quite extensive both with the DP/sub β/ (14 different DNA markers defined by individual fragments or clusters thereof) and the DP/sub α/ (8 markers) probes, especially when enzyme recognizing only four base pairs were used. A few markers were absolutely or strongly associated with individual DP antigens, whereas most were associated with two or more DP antigens as defined by primed lymphocyte typing. Thus, Southern blotting seems feasible for typing for most DP determinants by specific fragments or subtraction between the various more broadly reactive DNA markers, and the RFLP provides further information on the DP subregion in addition to that provided by primed lymphocyte typing. In two recombinant families, the DP/sub β/ and DP/sub α/ DNA markers segregated with DP antigens, whereas the DR/sub β/, DQ/sub β/, DQ/sub α/, and DX/sub α/ markers followed the DR and DQ antigens

  4. Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

    Science.gov (United States)

    Hu, Yue; Hu, Liang; Gong, Desheng; Lu, Hanlin; Xuan, Yue; Wang, Ru; Wu, De; Chen, Daiwen; Zhang, Keying; Gao, Fei; Che, Lianqiang

    2018-02-01

    Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.

  5. Improving accuracy of Tay Sachs carrier screening of the non-Jewish population: analysis of 34 carriers and six late-onset patients with HEXA enzyme and DNA sequence analysis.

    Science.gov (United States)

    Park, Noh Jin; Morgan, Craig; Sharma, Rajesh; Li, Yuanyin; Lobo, Raynah M; Redman, Joy B; Salazar, Denise; Sun, Weimin; Neidich, Julie A; Strom, Charles M

    2010-02-01

    The purpose of this study was to determine whether combining different testing modalities namely beta-hexosaminidase A (HEXA) enzyme analysis, HEXA DNA common mutation assay, and HEXA gene sequencing could improve the sensitivity for carrier detection in non-Ashkenazi (AJ) individuals. We performed a HEXA gene sequencing assay, a HEXA DNA common mutation assay, and a HEXA enzyme assay on 34 self-reported Tay-Sachs disease (TSD) carriers, six late-onset patients with TSD, and one pseudodeficiency allele carrier. Sensitivity of TSD carrier detection was 91% for gene sequencing compared with 91% for the enzyme assay and 52% for the DNA mutation assay. Gene sequencing combined with enzyme testing had the highest sensitivity (100%) for carrier detection. Gene sequencing detected four novel mutations, three of which are predicted to be disease causing [118.delT, 965A-->T (D322V), and 775A-->G (T259A)]. Gene sequencing is useful in identifying rare mutations in patients with TSD and their families, in evaluating spouses of known carriers for TSD who have indeterminate enzyme analysis and negative for common mutation analysis, and in resolving ambiguous enzyme testing results.

  6. Nuclear and original DNA application in Oryza taxonomy and phylogeny

    International Nuclear Information System (INIS)

    Romero, Gabriel O.

    1998-01-01

    Conventional taxonomy and phylogeny of germplasm are based on the tedious characterization of morphological variation. The ability to assay DNA variation that underlies morphological variation offers great promise as a convenient alternative for the genetic characterization of germplasm. Restriction fragment length polymorphism (RFLP) was used to survey DNA variation in 22 species of the genus Oryza. At the ribosomal DNA (rDNA) multigene family, 15 rDNA spacer length (sl) variants were identified using restriction enzyme Sst1 and wheatrDNA unit as probe. Particular sl variants predominated in certain isozyme groups of O. sativa, indicating a potential of sl ploymorphism in varietal classification. The distribution of sl variants supports the origin of O. sativa and O. nivara from O. rufipogon, and that O. spontanea arose from introgressions among O. sativa, O. nivara, and O. rufipogon. The distribution also suggests that the CCgenome, of all the genomes in the Officinalis complex, may be closest to the Sativa complex genomes, and it affirms the genetic position of the Officinalis complex intermediate between the Sativa and Ridleyi complexes. Variation at the Oryza organelle genomes was probed with a maize mitochondrial gene, atpA, a wheat chloroplast inverted repeat segment, p6. Results indicated that the complexes can be differentiated by their mitochondrial genome, but not their chloroplast genome when digested by Sst1 or BamH1. Therefore, the natural DNA variation in the nuclear and mitochondrial genomes has demonstrated great potential in complementing the conventional basis of taxa classification and phylogeny in the genus Oryza. (Author)

  7. A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA.

    Science.gov (United States)

    Clark, S J; Templeton, M D; Sullivan, P A

    1997-04-01

    A secreted aspartic proteinase from Glomerella cingulata (GcSAP) was purified to homogeneity by ion exchange chromatography. The enzyme has an M, of 36000 as estimated by SDS-PAGE, optimal activity from pH 3.5 to pH 4.0 and is inhibited by pepstatin. The N-terminal sequence, 23 residues long, was used to design a gene-specific primer. This was used in 3' RACE (rapid amplification of cDNA ends) PCR to amplify a 1.2 kb fragment of the gcsap cDNA. A second gene-specific primer was designed and used in 5' RACE PCR to clone the 5' region. This yielded a 600 bp DNA fragment and completed the open reading frame. The gcsap open reading frame encodes a protein with a 78 residue prepro-sequence typical of other fungal secreted aspartic proteinases. Based on the deduced sequence, the mature enzyme contains 329 amino acids and shows approximately 40% identity to other fungal aspartic proteinases. Subsequent cloning and sequencing of gcsap fragments obtained from PCR with genomic DNA revealed a 73 bp intron beginning at nt 728. Southern analyses at medium and high stringency indicated that G. cingulata possesses one gene for the secreted aspartic proteinase, and Northern blots indicated that gene expression was induced by exogenous protein and repressed by ammonium salts. GcSAP is a putative pathogenicity factor of G. cingulata, and it will now be possible to create SAP-mutants and assess the role GcSAP plays in pathogenicity.

  8. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  9. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  10. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography–Mass Spectrometry

    Science.gov (United States)

    Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786

  11. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Directory of Open Access Journals (Sweden)

    Thai Q Tran

    2017-11-01

    Full Text Available Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  12. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Science.gov (United States)

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  13. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.

  14. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    International Nuclear Information System (INIS)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P 32 labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population

  15. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.

    Science.gov (United States)

    Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P

    2010-06-01

    Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.

  16. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  17. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  18. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  19. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  20. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    Science.gov (United States)

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  1. Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA.

    OpenAIRE

    Williams, D W; Wilson, M J; Lewis, M A; Potts, A J

    1995-01-01

    The PCR was used to amplify a targeted region of the ribosomal DNA from 84 Candida isolates. Unique product sizes were obtained for Candida guilliermondii, Candida (Torulopsis) glabrata, and Candida pseudotropicalis. Isolates of Candida albicans, Candida tropicalis, Candida stellatoidea, Candida parapsilosis, and Candida krusei could be identified following restriction digestion of the PCR products.

  2. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    Science.gov (United States)

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  4. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  5. Mammary sensitivity to protein restriction and re-alimentation.

    Science.gov (United States)

    Goodwill, M G; Jessop, N S; Oldham, J D

    1996-09-01

    The present study tested the influence of protein undernutrition and re-alimentation on mammary gland size and secretory cell activity in lactating rats. During gestation, female Sprague-Dawley rats were offered a high-protein diet (215 g crude protein (N x 6.25; CP)/kg DM; H); litters were standardized to twelve pups at parturition. During lactation, two diets were offered ad libitum, diet H and a low-protein diet (90 g CP/kg DM; L). Lactational dietary treatments were the supply ad libitum of either diet H (HHH) or diet L (LLL) for the first 12 d of lactation, or diet L transferring to diet H on either day 6 (LHH) or 9 (LLH) of lactation. On days 1, 6, 9 and 12 of lactation, rats from each group (n > or = 6) were used to estimate mammary dry mass, fat, protein, DNA and RNA; the activities of lactose synthetase (EC 2.4.1.22) enzyme and Na+,K(+)-ATPase (EC 3.6.1.37) were also measured. Rats offered a diet considered protein sufficient (H) from day 1 of lactation showed a decrease in mammary dry mass and fat but an increase in DNA, RNA and protein on day 6, after which there was no further change, except for mammary protein which continued to increase. However, rats offered diet L showed a steady loss in mammary mass and fat throughout the 12 d lactation period and no change in mammary DNA, RNA or protein. Rats previously protein restricted for either the first 6 or 9 d of lactation had their mammary dry mass and mammary fat loss halted and showed a rapid increase in mammary DNA, RNA and protein on re-alimentation. Lactose production in group HHH, as measured by lactose synthetase activity, was similar on days 1 and 6 of lactation, after which a significant increase was seen. Protein-restricted rats showed no change in lactose synthetase activity during the 12 d experimental period. Changing from diet L to diet H led to a significant increase in lactose synthetase activity to levels comparable with those offered diet H from day 1. These results show that rats

  6. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    Science.gov (United States)

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  7. Mitochondrial DNA polymorphism among populations of Melipona quadrifasciata quadrifasciata Lepeletier (Apidae: Meliponini) from southern Brazil.

    Science.gov (United States)

    Torres, Rogelio R; Arias, Maria C; Moretto, Geraldo

    2009-01-01

    The geographical distribution of the Brazilian endemic stingless bee Melipona quadrifasciata quadrifasciata Lepeletier ranges from Rio Grande do Sul to Minas Gerais states. The objective of the present study was to verify mtDNA polymorphisms among samples of M. q. quadrifasciata collected in southern Brazil. Twenty nine colonies from three localities (Blumenau and Mafra/SC and Prudentópolis/ PR) were sampled. Seven mtDNA regions were amplified and further digested with 15 restriction enzymes (PCR-RFLP). Five composite haplotypes were identified, with two unique to samples from Prudentópolis and the remaining three to samples from Mafra and/or Blumenau.

  8. An improved method for detecting genetic variation in DNA using denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Takahashi, Norio; Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-05-01

    We have examined the feasibility of denaturing gradient gel electrophoresis (DGGE) of RNA:DNA duplexes to detect variations in genomic and cloned DNAs. The result has demonstrated that use of RNA:DNA duplexes makes DGGE much more practical for screening a large number of samples than use of DNA:DNA heteroduplexes, because preparation of RNA probes is easier than that of DNA probes. Three different 32 P-labeled RNA probes were produced. Genomic or cloned DNAs were digested with restriction enzymes and hybridized to labeled RNA probes, and resulting RNA:DNA duplexes were examined by DGGE. The presence of a mismatch(es) was detected as a difference in the mobility of bands on the gel. The experimental conditions were determined using DNA segments from cloned normal and three thalassemic human β-globin genes. The results from experiments on the cloned DNAs suggest that DGGE of RNA:DNA duplexes will detect nucleotide substitutions and deletions in DNA. In the course of these studies, a polymorphism due to a single-base substitution at position 666 of IVS2 (IVS2-666) of the human β-globin gene was directly identified using genomic DNA samples. A study of 59 unrelated Japanese from Hiroshima was undertaken in which the frequency of the allele with C at IVS2-666 was 0.48 and that of the allele with T was 0.52. This approach was found to be very effective for detecting heritable variation and should be a powerful tool for detecting fresh mutations in DNA, which occur outside the known restriction sites. (author)

  9. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations

    Science.gov (United States)

    Rusling, David A.; Laurens, Niels; Pernstich, Christian; Wuite, Gijs J. L.; Halford, Stephen E.

    2012-01-01

    Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology. PMID:22362745

  10. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  11. Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach.

    Science.gov (United States)

    Borda-Molina, Daniel; Montaña, José Salvador; Zambrano, María Mercedes; Baena, Sandra

    2017-08-01

    Microbial enrichments cultures are a useful strategy to speed up the search for enzymes that can be employed in industrial processes. Lipases have gained special attention because they show unique properties such as: broad substrate specificity, enantio- and regio-selectivity and stability in organic solvents. A major goal is to identify novel lipolytic enzymes from microorganisms living in cold extreme environments such as high Andean soils, of relevance to our study being their capability be used in industrial processes. Paramo and glacier soils from the Nevados National Park in Colombia were sampled and microbial communities enriched through a fed-batch fermentation using olive oil as an inductor substrate. After 15 days of enrichment under aerobic conditions, total DNA was extracted. Subsequently, metagenomic libraries were constructed in the cosmid vector pWEB-TNC™. After functional screening, twenty and eighteen lipolytic clones were obtained from Paramo and Glacier soil enrichments, respectively. Based on lipid hydrolysis halo dimensions, the clone (Gla1) from a glacier enrichment was selected. A gene related to lipolytic activity was subcloned to evaluate enzyme properties. Phylogenetic analysis of the identified gene showed that the encoded lipase belongs to the family GDSL from a Ralstonia-like species. Interestingly, the secreted enzyme exhibited stability at high temperature and alkaline conditions, specifically the preferred conditions at 80 °C and pH 9.0. Thus, with the identification of an enzyme with non-expected properties, in this study is shown the potential of extreme cold environments to be explored for new catalytic molecules, using current molecular biology techniques, with applications in industrial processes, which demand stability under harsh conditions.

  12. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  13. Detection of DNA polymorphisms in Dendrobium Sonia White mutant lines

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Putri Noor Faizah Megat Mohd Tahir; Zaiton Ahmad; Mohd Nazir Basiran

    2006-01-01

    Dendrobium Sonia white mutant lines were obtained through gamma ray induced mutation of purple flower Dendrobium Sonia at dosage 35 Gy. Amplified Fragment Length Polymorphism (AFLP) technique was used to compare genomic variations in these mutant lines with the control. Our objectives were to detect polymorphic fragments from these mutants to provide useful information on genes involving in flower colour expression. AFLP is a PCR based DNA fingerprinting technique. It involves digestion of DNA with restriction enzymes, ligation of adapter and selective amplification using primer with one (pre-amplification) and three (selective amplification) arbitrary nucleotides. A total number of 20 primer combinations have been tested and 7 produced clear fingerprint patterns. Of these, 13 polymorphic bands have been successfully isolate and cloned. (Author)

  14. Mitochondrial DNA pattern of the fine shrimp Metapenaeus elegans (De Man, 1907) in the lagoon of Segara Anakan, Central Java, using Hind III

    Science.gov (United States)

    Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia

    2017-05-01

    Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.

  15. The proviral genome of radiation leukemia virus (RadLV): molecular cloning, restriction analysis and integration sites in tumor cell DNA

    International Nuclear Information System (INIS)

    Janowski, M.; Merregaert, J.; Nuyten, J.M.; Maisin, J.R.

    1984-01-01

    An infectious clone of the linear, unintegrated RadLV provirus was obtained by insertion in the plasmid pBR322. Its restriction map was indistinguishable from that of the majority of the multiple proviral copies, which are found apparently at random sites in the DNA of RadLV-induced rat thymic lymphomas [fr

  16. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.

    Science.gov (United States)

    Pedersen, Hege Lynum; Johnson, Kenneth A; McVey, Colin E; Leiros, Ingar; Moe, Elin

    2015-10-01

    Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues

  17. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  18. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  19. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases.

    Science.gov (United States)

    Ren, Ji-Hua; Hu, Jie-Li; Cheng, Sheng-Tao; Yu, Hai-Bo; Wong, Vincent Kam Wai; Law, Betty Yuen Kwan; Yang, Yong-Feng; Huang, Ying; Liu, Yi; Chen, Wei-Xian; Cai, Xue-Fei; Tang, Hua; Hu, Yuan; Zhang, Wen-Lu; Liu, Xiang; Long, Quan-Xin; Zhou, Li; Tao, Na-Na; Zhou, Hong-Zhong; Yang, Qiu-Xia; Ren, Fang; He, Lin; Gong, Rui; Huang, Ai-Long; Chen, Juan

    2018-04-06

    Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA) which serves as a template for HBV RNA transcription is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified SIRT3 as a host factor restricting HBV transcription and replication by screening seven members of Sirtuin family which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA as well as replicative intermediate DNA in HBV-infected HepG2-NTCP cells and PHH. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. Mechanistic study found nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9 (H3K9). Importantly, occupancy of SIRT3 onto cccDNA could increase the recruitment of histone methyltransferase SUV39H1 to cccDNA and decrease recruitment of SETD1A, leading to a marked increase of H3K9me3 and a decrease of H3K4me3 on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor YY1 to cccDNA. Finally, viral protein HBx could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. SIRT3 is a novel host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase. These data provided a rational for the use of SIRT3 activators in the prevention or treatment of HBV infection. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  20. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    Science.gov (United States)

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. DNA polymerase. beta. reaction with ultraviolet-irradiated DNA incised by correndonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, R; Zarebska, Z [Instytut Onkologii, Warsaw (Poland); Zmudzka, B [Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki

    1980-09-19

    Covalently closed circular Col E1 DNA was ultraviolet-irradiated with a dose of 60 J/m/sup 2/, thus introducing about 3.2 pyrimidine dimers per DNA molecule. Treatment of irradiated Col E1 DNA with Micrococcus luteus correndonuclease resulted, in the vicinity of pyrimidine dimers, in an average of 3.3 incisions per DNA molecule, and converted DNA to the open circular form. Incised Col E1 DNA stimulated no reaction with calf thymus DNA polymerase ..cap alpha.. but was recognized as a template by DNA polymerase ..beta... The latter enzyme incorporated about 1.6 molecules of dTMP (corresponding to 6 molecules of dNMP) per one correndonuclease incision. The length of the DNA polymerase ..beta.. product was comparable to the anticipated length of the DNA region within which the hydrogen bonds were disrupted owing to dimer formation. The enzyme required Mg/sup 2 +/ and four dNTPs for reaction and was resistant to N-ethylmaleimide or p-mercuribenzoate.

  2. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets.

    Science.gov (United States)

    Kline, Margaret C; Romsos, Erica L; Duewer, David L

    2016-02-16

    Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.

  3. An enzyme-immunobinding assay for fast screening of expression of tissue plasminogen activator cDNA in E. coli

    International Nuclear Information System (INIS)

    Tang, J.C.T.; Li, S.H.

    1984-01-01

    Tissue plasminogen activator (TPA) has been isolated from normal human tissues and certain human cell lines in culture. The enzyme is a serine protease which converts an inactive zymogen, plasminogen to plasmin, and causes lysis of fibrin clots. The high affinity of TPA for fibrin indicates that it is a potential thrombolytic agent and is superior to urokinase-like plasminogen activators. Recently, TPA has been cloned and expressed in E. coli. Using TPA as a model protein, the authors report here the development of a direct, sensitive enzyme-immunoassay for the screening of a cDNA expression library using specific antibodies and peroxidase-labeled second antibody

  4. Conformational Analysis of DNA Repair Intermediates by Time-Resolved Fluorescence Spectroscopy

    OpenAIRE

    Lin, Su; Horning, David P.; Szostak, Jack W.; Chaput, John C.

    2009-01-01

    DNA repair enzymes are essential for maintaining the integrity of the DNA sequence. Unfortunately, very little is known about how these enzymes recognize damaged regions along the helix. Structural analysis of cellular repair enzymes bound to DNA reveals that these enzymes are able to recognize DNA in a variety of conformations. However, the prevalence of these deformations in the absence of enzymes remains unclear, as small populations of DNA conformations are often difficult to detect by NM...

  5. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    Science.gov (United States)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  6. Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods

    Directory of Open Access Journals (Sweden)

    Ken Motohashi

    2017-03-01

    Full Text Available Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15–39 bp end homology regions. However, colony formation was 30–60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA− strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid

  7. Norrie disease: linkage analysis using a 4.2-kb RFLP detected by a human ornithine aminotransferase cDNA probe.

    Science.gov (United States)

    Ngo, J T; Bateman, J B; Cortessis, V; Sparkes, R S; Mohandas, T; Inana, G; Spence, M A

    1989-05-01

    Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.

  8. Unique features of the structure and interactions of mycobacterial uracil-DNA glycosylase: structure of a complex of the Mycobacterium tuberculosis enzyme in comparison with those from other sources.

    Science.gov (United States)

    Kaushal, Prem Singh; Talawar, Ramappa K; Krishna, P D V; Varshney, Umesh; Vijayan, M

    2008-05-01

    Uracil-DNA glycosylase (UNG), a repair enzyme involved in the excision of uracil from DNA, from mycobacteria differs from UNGs from other sources, particularly in the sequence in the catalytically important loops. The structure of the enzyme from Mycobacterium tuberculosis (MtUng) in complex with a proteinaceous inhibitor (Ugi) has been determined by X-ray analysis of a crystal containing seven crystallographically independent copies of the complex. This structure provides the first geometric characterization of a mycobacterial UNG. A comparison of the structure with those of other UNG proteins of known structure shows that a central core region of the molecule is relatively invariant in structure and sequence, while the N- and C-terminal tails exhibit high variability. The tails are probably important in folding and stability. The mycobacterial enzyme exhibits differences in UNG-Ugi interactions compared with those involving UNG from other sources. The MtUng-DNA complex modelled on the basis of the known structure of the complex involving the human enzyme indicates a domain closure in the enzyme when binding to DNA. The binding involves a larger burial of surface area than is observed in binding by human UNG. The DNA-binding site of MtUng is characterized by the presence of a higher proportion of arginyl residues than is found in the binding site of any other UNG of known structure. In addition to the electrostatic effects produced by the arginyl residues, the hydrogen bonds in which they are involved compensate for the loss of some interactions arising from changes in amino-acid residues, particularly in the catalytic loops. The results arising from the present investigation represent unique features of the structure and interaction of mycobacterial Ungs.

  9. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  10. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  11. DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

    Directory of Open Access Journals (Sweden)

    Benedikt M Kessler

    2016-07-01

    Full Text Available Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs, have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  12. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of amplified rDNA restriction analysis (ARDRA for the identification of cultured mycobacteria in a diagnostic laboratory

    Directory of Open Access Journals (Sweden)

    Rottiers Sylvianne

    2002-03-01

    Full Text Available Abstract Background The development of DNA amplification for the direct detection of M. tuberculosis from clinical samples has been a major goal of clinical microbiology during the last ten years. However, the limited sensitivity of most DNA amplification techniques restricts their use to smear positive samples. On the other hand, the development of automated liquid culture has increased the speed and sensitivity of cultivation of mycobacteria. We have opted to combine automated culture with rapid genotypic identification (ARDRA: amplified rDNA restriction analysis for the detection resp. identification of all mycobacterial species at once, instead of attempting direct PCR based detection from clinical samples of M. tuberculosis only. Results During 1998–2000 a total of approx. 3500 clinical samples was screened for the presence of M. tuberculosis. Of the 151 culture positive samples, 61 were M. tuberculosis culture positive. Of the 30 smear positive samples, 26 were M. tuberculosis positive. All but three of these 151 mycobacterial isolates could be identified with ARDRA within on average 36 hours. The three isolates that could not be identified belonged to rare species not yet included in our ARDRA fingerprint library or were isolates with an aberrant pattern. Conclusions In our hands, automated culture in combination with ARDRA provides with accurate, practically applicable, wide range identification of mycobacterial species. The existing identification library covers most species, and can be easily updated when new species are studied or described. The drawback is that ARDRA is culture-dependent, since automated culture of M. tuberculosis takes on average 16.7 days (range 6 to 29 days. However, culture is needed after all to assess the antibiotic susceptibility of the strains.

  14. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  15. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  17. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  18. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  19. Genotyping of major histocompatibility complex Class II DRB gene in Rohilkhandi goats by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing

    Directory of Open Access Journals (Sweden)

    Kush Shrivastava

    2015-10-01

    Full Text Available Aim: To study the major histocompatibility complex (MHC Class II DRB1 gene polymorphism in Rohilkhandi goat using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and nucleotide sequencing techniques. Materials and Methods: DNA was isolated from 127 Rohilkhandi goats maintained at sheep and goat farm, Indian Veterinary Research Institute, Izatnagar, Bareilly. A 284 bp fragment of exon 2 of DRB1 gene was amplified and digested using BsaI and TaqI restriction enzymes. Population genetic parameters were calculated using Popgene v 1.32 and SAS 9.0. The genotypes were then sequenced using Sanger dideoxy chain termination method and were compared with related breeds/species using MEGA 6.0 and Megalign (DNASTAR software. Results: TaqI locus showed three and BsaI locus showed two genotypes. Both the loci were found to be in Hardy–Weinberg equilibrium (HWE, however, population genetic parameters suggest that heterozygosity is still maintained in the population at both loci. Percent diversity and divergence matrix, as well as phylogenetic analysis revealed that the MHC Class II DRB1 gene of Rohilkhandi goats was found to be in close cluster with Garole and Scottish blackface sheep breeds as compared to other goat breeds included in the sequence comparison. Conclusion: The PCR-RFLP patterns showed population to be in HWE and absence of one genotype at one locus (BsaI, both the loci showed excess of one or the other homozygote genotype, however, effective number of alleles showed that allelic diversity is present in the population. Sequence comparison of DRB1 gene of Rohilkhandi goat with other sheep and goat breed assigned Rohilkhandi goat in divergence with Jamanupari and Angora goats.

  20. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections

    Directory of Open Access Journals (Sweden)

    Sonia Maciejewski

    2015-12-01

    Full Text Available Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3, and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5′ tyrosyl-DNA phosphodiesterase 2 (TDP2. TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg and the 5′ end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections.

  1. Development of Insertion and Deletion Markers for Bottle Gourd Based on Restriction Site-associated DNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Xinyi WU

    2017-01-01

    Full Text Available Bottle gourd is an important cucurbit crop worldwide. To provide more available molecular markers for this crop, a bioinformatic approach was employed to develop insertion–deletions (InDels markers in bottle gourd based on restriction site-associated DNA sequencing (RAD-Seq data. A total of 892 Indels were predicted, with the length varying from 1 bp to 167 bp. Single-nucleotide InDels were the predominant types of InDels. To validate these InDels, PCR primers were designed from 162 loci where InDels longer than 2 bp were predicated. A total of 112 InDels were found to be polymorphic among 9 bottle gourd accessions under investigation. The rate of prediction accuracy was thus at a high level of 72.7%. DNA fingerprinting for 4 cultivars were performed using 8 selected Indels markers, demonstrating the usefulness of these markers.

  2. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  3. Modified protocol for genomic DNA extraction from newly plucked feathers of lophura leucomelana hamiltoni (Galliformes) for genetic studies and its endo-restriction analysis

    International Nuclear Information System (INIS)

    Andleeb, S.; Shamim, S.; Minhas, R.A.

    2012-01-01

    A rapid and accurate protocol was used first time to isolate the high-quality genomic DNA from newly plucked feathers of Lophura leucomelana. Two different lysis protocols were used depending on the feather size and it was observed that 55 deg. C for 3 to 4 days showed better results of feathers lysis as compared with the 37 deg. C for overnight with gentle shaking. Purification of genomic DNA was also performed with phenol: chloroform: isoamyl alcohol and 100% absolute ethanol precipitation methods. By using this protocol, a significant amount of high-quality genomic DNA was obtained and the purity of DNA was analyzed through endo-restriction analysis. Genomic DNA isolated with this modified method will be used for Southern blotting and also in several polymerase chain reaction systems devoted to sex determination and paternity testing and the evolutionary relationships among the other pheasants. (author)

  4. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    Science.gov (United States)

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  5. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections.

    Science.gov (United States)

    Maciejewski, Sonia; Nguyen, Joseph H C; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W; Semler, Bert L

    2015-12-29

    Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem

  6. Comparative analysis of five DNA isolation protocols and three drying methods for leaves samples of Nectandra megapotamica (Spreng. Mez

    Directory of Open Access Journals (Sweden)

    Leonardo Severo da Costa

    2016-06-01

    Full Text Available The aim of the study was to establish a DNA isolation protocol Nectandra megapotamica (Spreng. Mez., able to obtain samples of high yield and quality for use in genomic analysis. A commercial kit and four classical methods of DNA extraction were tested, including three cetyltrimethylammonium bromide (CTAB-based and one sodium dodecyl sulfate (SDS-based methods. Three drying methods for leaves samples were also evaluated including drying at room temperature (RT, in an oven at 40ºC (S40, and in a microwave oven (FMO. The DNA solutions obtained from different types of leaves samples using the five protocols were assessed in terms of cost, execution time, and quality and yield of extracted DNA. The commercial kit did not extract DNA with sufficient quantity or quality for successful PCR reactions. Among the classic methods, only the protocols of Dellaporta and of Khanuja yielded DNA extractions for all three types of foliar samples that resulted in successful PCR reactions and subsequent enzyme restriction assays. Based on the evaluated variables, the most appropriate DNA extraction method for Nectandra megapotamica (Spreng. Mez. was that of Dellaporta, regardless of the method used to dry the samples. The selected method has a relatively low cost and total execution time. Moreover, the quality and quantity of DNA extracted using this method was sufficient for DNA sequence amplification using PCR reactions and to get restriction fragments.

  7. Effect of γ-irradiated DNA on the activity of DNA polymerase

    International Nuclear Information System (INIS)

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  8. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.

    Science.gov (United States)

    Sanchez-Roman, Ines; Barja, Gustavo

    2013-10-01

    Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. DNA methylation analysis of the angiotensin converting enzyme (ACE gene in major depression.

    Directory of Open Access Journals (Sweden)

    Peter Zill

    Full Text Available BACKGROUND: The angiotensin converting enzyme (ACE has been repeatedly discussed as susceptibility factor for major depression (MD and the bi-directional relation between MD and cardiovascular disorders (CVD. In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS: The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS: We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008 and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02. Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04. CONCLUSION: The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.

  10. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    Science.gov (United States)

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  11. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Nakabeppu, Y.; Sekiguchi, M.

    1981-01-01

    T4 endonuclease, which is involved in repair of uv-damaged DNA, has been purified to apparent physical homogeneity. Incubation of uv-irradiated poly(dA).poly(dT) with the purified enzyme preparations resulted in production of alkali-labile apyrimidinic sites, followed by formation of nicks in the polymer. By performing a limited reaction with T4 endonuclease V at pH 8.5, irradiated polymer was converted to an intermediate form that carried a large number of alkali-labile sites but only a few nicks. The intermediate was used as substrate for the assay of apurinic/apyrimidinic DNA endonuclease activity. The two activities, a pyrimidine dimer DNA glycosylase and an apurinic/apyrimidinic DNA endonuclease, were copurified and found in enzyme preparations that contained only a 16,000-dalton polypeptide. These results strongly suggested that a DNA glycosylase specific for pyrimidine dimers and an apurinic/apyrimidinic DNA endonuclease reside in a single polypeptide chain coded by the denV gene of bacteriophage T4

  12. Deoxyribonucleotide pool analysis: functional association of thymidylate synthase with the other enzymes of DNA biosynthesis in mammalian cells

    International Nuclear Information System (INIS)

    Reddy, G.P.V.; Christiansen, E.

    1986-01-01

    Allosteric interaction between thymidylate synthase (TS) and the other enzymes of DNA biosynthesis was suggested from the authors observation that inhibitors of ribonucleotide reductase, topoisomerase of DNA polymerase-α inhibit TS in intact S phase CHEF/18 cells, but not in their soluble extracts. In addition the authors observed that 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), a poison of topoisomerase II, had similar effects on TS activity in mammalian cells. They have examined if the inhibitory effects of these antimetabolites on TS is due to the accumulation of thymidine nucleotide(s) in intact cells, rather than to an allosteric interaction in the replitase complex. A novel method of nucleotide pool analysis revealed that in the presence of these antimetabolites the incorporation of radioactivity from 3 H-deoxyuridine (dUrd) into thymidine nucleotide pools inside the cell did not increase as compared to the control. Furthermore, TS activity as measured in-vitro was not inhibited by supraphysiological concentrations (50μM) of thymidine mono- or tri-phosphates. None of these antimetabolites dramatically influenced the uptake of dUrd and its subsequent phosphorylation to deoxyuridine monophosphate. Therefore, they suggest that the inhibitory effect of these antimetabolites is due to the functional association of their target enzymes with TS

  13. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    Science.gov (United States)

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-23

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans.

  14. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    International Nuclear Information System (INIS)

    Fu, Zidong Donna; Klaassen, Curtis D.

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs

  15. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.

  16. Quantitative Analysis of the Mutagenic Potential of 1-Aminopyrene-DNA Adduct Bypass Catalyzed by Y-Family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544

  17. Epigenetic editing of DNA Methylation and DeRewriting DNA Methylation Signatures at Will : The Curable Genome Within Reach?

    NARCIS (Netherlands)

    Stolzenburg, Sabine; Goubert, Désirée; Rots, Marianne

    2016-01-01

    DNA methyltransferases are important enzymes in a broad range of organisms. Dysfunction of DNA methyltransferases in humans leads to many severe diseases, including cancer. This book focuses on the biochemical properties of these enzymes, describing their structures and mechanisms in bacteria,

  18. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    Science.gov (United States)

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  19. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    Science.gov (United States)

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  20. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    Science.gov (United States)

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  2. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  3. Cell lethality after selective irradiation of the DNA replication fork

    International Nuclear Information System (INIS)

    Hofer, K.G.; Warters, R.L.

    1985-01-01

    It has been suggested that nascent DNA located at the DNA replication fork may exhibit enhanced sensitivity to radiation damage. To evaluate this hypothesis, Chinese hamster ovary cells (CHO) were labeled with 125 I-iododeoxyuridine ( 125 IUdR) either in the presence or absence of aphidicolin. Aphidicolin (5 μg/ml) reduced cellular 125 IUdR incorporation to 3-5% of the control value. The residual 125 I incorporation appeared to be restricted to low molecular weight (sub-replicon sized) fragments of DNA which were more sensitive to micrococcal nuclease attack and less sensitive to high salt DNase I digestion than randomly labeled DNA. These findings suggest that DNA replicated in the presence of aphidicolin remains localized at the replication fork adjacent to the nuclear matrix. Based on these observations an attempt was made to compare the lethal consequences of 125 I decays at the replication fork to that of 125 I decays randomly distributed over the entire genome. Regardless of the distribution of decay events, all treatment groups exhibited identical dose-response curves (D 0 : 101 125 I decays/cell). Since differential irradiation of the replication complex did not result in enhanced cell lethality, it can be concluded that neither the nascent DNA nor the protein components (replicative enzymes, nuclear protein matrix) associated with the DNA replication site constitute key radiosensitive targets within the cellular genome. (orig.)

  4. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  5. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    Science.gov (United States)

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  6. New visible and selective DNA staining method in gels with tetrazolium salts.

    Science.gov (United States)

    Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M

    2017-01-15

    DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression

    Science.gov (United States)

    Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta

    2012-01-01

    Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171

  8. Isolation and characterization of a marsupial DNA photolyase

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, C.L.K.; Ley, R.D.

    1988-05-01

    Post UV-B (280-320 nm) exposure to UV-A (320-400 nm) reverses pyrimidine dimers in the epidermal DNA of the South American opossum Monodelphis domestica. To demonstrate that the observed photorepair is mediated by an enzyme, we have isolated a DNA photolyase from the opossum. DNA photolyase from liver was purified 3000-fold by ammonium sulfate fractionation and phenylsepharose, hydroxylapatite, DEAE-cellulose and DNA-cellulose column chromatography. Heat denaturation completely eliminated the photoreactivating activity. The enzyme was active in the pH range of 5.5 to 8.5 with a pH optimum of 7.5. The enzyme has an apparent molecular weight of 32 000 under nondenaturing conditions. The activity of the enzyme was not affected by sodium chloride up to 250 mM. The action spectrum for the purified DNA photolyase showed activity in the range of 325-475 nm with peak activity at 375 nm.

  9. The chloroplast and mitochondrial DNA type are correlated with the nuclear composition of somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia.

    Science.gov (United States)

    Wolters, A M; Koornneef, M; Gilissen, L J

    1993-09-01

    This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.

  10. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units.

    Science.gov (United States)

    Lim, K Y; Kovarik, A; Matýăsek, R; Bezdĕk, M; Lichtenstein, C P; Leitch, A R

    2000-06-01

    We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nicotiana sylvestris (2n = 2x = 24) and N. tomentosiformis (2n = 2x = 24) and compared these with patterns in N. tabacum (tobacco, 2n = 4x = 48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N

  11. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  12. Mutagenic DNA repair in Escherichia coli: Pt. 17

    International Nuclear Information System (INIS)

    Sharif, F.; Bridges, B.A.

    1990-01-01

    In contrast to the dnaE485 mutation, which is nearly 'dead-stop', dnaE1026 allows DNA synthesis for some time at restrictive temperatures. When bacteria carrying the dnaE486 or dnaE1026 temperature-sensitive mutations were incubated at restrictive temperature after exposure to UV light they showed little or no fixation of mutations as determined by loss of photoreversibility and the mutation frequency fell progressively. These results confirm a role for DnaE protein in UV mutagenesis. A derivative of dnaE1026 carrying the umuC122 allele which blocks normal UV mutagenesis showed induction of mutations when photoreversing light was given to UV-irradiated bacteria after a period of incubation at either permissive or restrictive temperature. The defective DnaE1026 protein is therefore able to carry out the misincorporations postulated to be the first step in the mutagenic process. Its inability to give rise to mutations in umu + bacteria may therefore be attributed to its inability to participate in a later step. In contrast, UV-irradiated dnaE486 umuC122 bacteria did not show mutagenesis when incubated at restrictive temperature before photoreversal, suggesting that the altered DnaE486 protein was not able to carry out the postulate misincorporation step at 43 0 C. DNA polymerase III α-subunit therefore appears to be required for both the misincorporation and bypass steps in the two-step model for UV mutagenesis. (Author)

  13. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak

    2017-08-01

    Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.

  14. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  15. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  16. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  17. Isolation and characterization of a marsupial DNA photolyase

    International Nuclear Information System (INIS)

    Sabourin, C.L.K.; Ley, R.D.

    1988-01-01

    Post UV-B (280-320 nm) exposure to UV-A (320-400 nm) reverses pyrimidine dimers in the epidermal DNA of the South American opossum Monodelphis domestica. To demonstrate that the observed photorepair is mediated by an enzyme, we have isolated a DNA photolyase from the opossum. DNA photolyase from liver was purified 3000-fold by ammonium sulfate fractionation and phenylsepharose, hydroxylapatite, DEAE-cellulose and DNA-cellulose column chromatography. Heat denaturation completely eliminated the photoreactivating activity. The enzyme was active in the pH range of 5.5 to 8.5 with a pH optimum of 7.5. The enzyme has an apparent molecular weight of 32 000 under nondenaturing conditions. The activity of the enzyme was not affected by sodium chloride up to 250 mM. The action spectrum for the purified DNA photolyase showed activity in the range of 325-475 nm with peak activity at 375 nm. (author)

  18. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  19. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  20. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Jae-Sung [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Bo-Mi; Kim, Ryeo-Ok [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Jung Soo [Pathology Team, National Fisheries Research and Development Institute, Busan 619-902 (Korea, Republic of); Kim, Il-Chan [Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon 406-840 (Korea, Republic of); Lee, Young-Mi, E-mail: ymlee70@smu.ac.kr [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-09-15

    Highlights: •Novel identification of DNA repair-related genes in fish. •Investigation of whole expression profiling of DNA repair genes upon gamma radiation. •Analysis of effects of gamma radiation on antioxidant system and cell stress proteins. •Usefulness of verification of pathway-based profiling for mechanistic understanding. -- Abstract: To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4 Gy of radiation, and biochemical and molecular damage became substantial from 8 Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6 Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.

  1. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition.

    Science.gov (United States)

    Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark

    2018-05-01

    While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.

  2. Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging.

    Science.gov (United States)

    Wang, Wenjuan; Cai, Guangyan; Chen, Xiangmei

    2017-09-13

    Dietary restriction (DR) has multiple and essential effects in protecting against DNA damage in model organisms. Persistent DNA damage plays a central role in the process of aging. Senescence-associated secretory phenotype (SASP), as a product of cellular aging, can accelerate the process of cellular senescence as a feedback. In this study, we directly observed whether a DR of 30% for 6months in aged rats could retard SASP by delaying the progression of DNA damage and also found the specific mechanism. The results revealed that a 30% DR could significantly improve renal pathology and some metabolic characteristics. The biomarkers and products of DNA damage were decreased in the process of renal aging on a 30% DR. A series of SASP, notably cytokine, chemokine, and growth factor, were obviously reduced by DR during renal aging. The phosphorylation levels of NF-κB and IκBα in aged kidneys of DR group were markedly reduced. These findings suggest that a 30% DR for 6months can delay renal aging and reduce the accumulation of SASP by retarding the progression of DNA damage and decreasing the transcription activity of NF-κB, thus providing a target to delay renal aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  4. Insecticide exposure affects DNA and antioxidant enzymes activity in honey bee species Apis florea and A. dorsata: Evidence from Punjab, Pakistan.

    Science.gov (United States)

    Hayat, Khizar; Afzal, Muhammad; Aqueel, Muhammad Anjum; Ali, Sajjad; Saeed, Muhammad Farhan; Khan, Qaiser M; Ashfaq, Muhammad; Damalas, Christos A

    2018-04-23

    Insecticide exposure can affect honey bees in agro-ecosystems, posing behavioral stresses that can lead to population decline. In this study, insecticide incidence, DNA damage, and antioxidant enzyme activity were studied in Apis florea and A. dorsata honey bee samples collected from insecticide-treated and insecticide-free areas of Punjab, Pakistan. Seven insecticides: chlorpyrifos, dimethoate, imidacloprid, phorate, emamectin, chlorfenapyr, and acetamiprid were detected in seven samples of A. florea and five samples of A. dorsata. In total, 12 samples (22.2%) of honey bees were found positive to insecticide presence out of 54 samples. The most frequently detected insecticide was chlorpyrifos, which was found in four samples (7.4%), with a concentration ranging from 0.01 to 0.05 μg/g and an average concentration 0.03 μg/g. The comet assay or single cell gel electrophoresis assay, a simple way to measure DNA strand breaks in eukaryotic cells, was used to microscopically find damage of DNA at the level of a single cell. Comet tail lengths of DNA in A. florea and A. dorsata samples from insecticide-treated areas were significantly higher (P honey bee samples from insecticide-treated and insecticide-free areas, while glutathione S-transferase (GST) activity showed a significant reduction in response to insecticide exposure. Significant positive correlations were detected between enzyme activity and insecticide concentration in honey bee species from insecticide-treated areas compared with control groups. Toxicity from pesticide exposure at sub-lethal levels after application or from exposure to pesticide residues should not be underestimated in honey bees, as it may induce physiological impairment that can decline honey bees' health. Copyright © 2018. Published by Elsevier B.V.

  5. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    Science.gov (United States)

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of enzyme-sensitive sites in uv- or. gamma. -irradiated human cells using Micrococcus luteus extracts

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, M C; Smith, B P; Smith, P J

    1979-01-01

    The study of DNA damage and its enzymatic repair has undergone rapid expansion in recent years. Laboratory observations at the molecular level have been facilitated greatly by the availability of a battery of physicochemical techniques capable of monitoring hallmarks of different repair mechanisms. One technique exploits the unique ability of certain putative repair enzymes (endonucleases and DNA glycosylases of prokaryotic origin) to selectively attack DNA at sites containing altered base or sugar residues; the sites are subsequently observed as single-strand break, by velocity sedimentatn of the DNA in an alkaline sucrose gradient. Incubation of carcinogen-treated cell cultures for varying times, followed by enzymatic analysis of their radionuclide-labeled DNA, yields the time course of disappearace of such sites; this is taken as an indirect expression of the kinetics of lesion repair. Although there are several variations of the enzymatic assay two basic protocols are in current use. The only major difference is the way in which the damaged DNA is treated with the lesion-detecting enzyme(s). In one protocol this is achieved by rendering the cells porous to extracellular proteins prior to incubation with the test enzyme(s). In the second protocol the damaged DNA is extracted from the cells and is then exposed to the lesion-recognizing enzyme(s) in vitro. The enzymatic assay developed in our laboratory follows this second protocol, and the procedure is described.

  7. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  8. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  9. Towards the molecular characterisation of parasitic nematode assemblages: an evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis.

    Science.gov (United States)

    Lott, M J; Hose, G C; Power, M L

    2014-09-01

    Identifying factors which regulate temporal and regional structuring within parasite assemblages requires the development of non-invasive techniques which facilitate both the rapid discrimination of individual parasites and the capacity to monitor entire parasite communities across time and space. To this end, we have developed and evaluated a rapid fluorescence-based method, terminal restriction fragment length polymorphism (T-RFLP) analysis, for the characterisation of parasitic nematode assemblages in macropodid marsupials. The accuracy with which T-RFLP was capable of distinguishing between the constituent taxa of a parasite community was assessed by comparing sequence data from two loci (the ITS+ region of nuclear ribosomal DNA and the mitochondrial CO1) across ∼20 species of nematodes (suborder Strongylida). Our results demonstrate that with fluorescent labelling of the forward and reverse terminal restriction fragments (T-RFs) of the ITS+ region, the restriction enzyme Hinf1 was capable of generating species specific T-RFLP profiles. A notable exception was within the genus Cloacina, in which closely related species often shared identical T-RFs. This may be a consequence of the group's comparatively recent evolutionary radiation. While the CO1 displayed higher sequence diversity than the ITS+, the subsequent T-RFLP profiles were taxonomically inconsistent and could not be used to further differentiate species within Cloacina. Additionally, several of the ITS+ derived T-RFLP profiles exhibited unexpected secondary peaks, possibly as a consequence of the restriction enzymes inability to cleave partially single stranded amplicons. These data suggest that the question of T-RFLPs utility in monitoring parasite communities cannot be addressed without considering the ecology and unique evolutionary history of the constituent taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  11. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  12. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  13. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA

    DEFF Research Database (Denmark)

    Avila Arcos, Maria del Carmen; Cappellini, Enrico; Romero-Navarro, J. Alberto

    2011-01-01

    The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples...

  14. DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism.

    Science.gov (United States)

    Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R

    2017-05-04

    Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.

  15. Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken.

    Science.gov (United States)

    Cooper, D N; Errington, L H; Clayton, R M

    1983-01-01

    Using methyl-sensitive and -insensitive restriction enzymes, Hpa II and Msp I, the methylation status of various chicken genes was examined in different tissues and developmental stages. Tissue-specific differences in methylation were found for the delta-crystallin, beta-tubulin, G3PDH, rDNA, and actin genes but not for the histone genes. Developmental decreases in methylation were noted for the delta-crystallin and actin genes in chicken kidney between embryo and adult. Since most of the sequences examined were housekeeping genes, transcriptional differences are apparently not a necessary accompaniment to changes in DNA methylation at the CpG sites examined. The only exception is sperm DNA where the delta-crystallin, beta-tubulin, and actin genes are highly methylated and almost certainly not transcribed. However the G3PDH genes are no more highly methylated in sperm than in other somatic tissues. Many sequences homologous to the rDNA and histone probes used are unmethylated in all tissues examined including sperm, but a methylated rDNA subfraction is more heavily methylated in sperm than in other tissues. We speculate as to the significance of these differences in sperm DNA methylation in the light of possible requirements for early gene activation and the probable deleterious mutagenic effects of heavy methylation within coding sequences.

  16. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  17. Construction and characterization of cDNA library for IRM-2 mice

    International Nuclear Information System (INIS)

    Wang Qin; Li Jin; Song Li; Liu Qiang; Yue Jingyin; Mu Chuanjie; Tang Weisheng; Fan Feiyue

    2010-01-01

    Objective: To screen and isolate the radioresistance related genes of IRM-2 mice. Methods: cDNA library of IRM-2 mice was constructed by SMART technique. Total RNA was isolated from spleens of IRM-2 male mice. The first-strand cDNA was synthesized by using PowerScript reverse transcriptase, and double-strand cDNA was synthesized and amplified by long PCR. The PCR products were purified, digested with restriction enzyme Sfi I. The ds-cDNA fragment less than 500 bp was fractionated and ligated to the Sfi I-digested pDNR-LIB vector. The ligation mixture was transformed into E. coil DH5 α by electroporation transformation to generate the unamplified cDNA library. The quality of cDNA library was identified by PCR technique. 130 clones from cDNA library were sequenced and compared with GenBank database. Results: The cDNA library contained 2.25 x 10 6 independent clones with an average insert size of 1.2 kb. The ratio of recombination and full-length was 95% and 55%, respectively. 21 pieces of EST sequences from cDNA library were not the same as the known mice genes and registered into GenBank EST database, with registered number DW474856-DW474876. Conclusions: cDNA library of IRM-2 mice has been constructed successfully. 21 pieces of EST implies that radioresistance correlative genes may be in IRM-2 mice, which will lay a foundation for isolating and identifying radioresistance related genes in further study. (authors)

  18. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  19. Study on a hidden protein-DNA binding in salmon sperm DNA sample by dynamic kinetic capillary isoelectric focusing

    International Nuclear Information System (INIS)

    Liang Liang; Dou Peng; Dong Mingming; Ke Xiaokang; Bian Ningsheng; Liu Zhen

    2009-01-01

    Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05 ± 0.83 x 10 -3 s -1 . The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.

  20. Hemolysis, Elevated Liver Enzymes, and Low Platelets, Severe Fetal Growth Restriction, Postpartum Subarachnoid Hemorrhage, and Craniotomy: A Rare Case Report and Systematic Review

    Directory of Open Access Journals (Sweden)

    Shadi Rezai

    2017-01-01

    Full Text Available Introduction. Hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome is a relatively uncommon but traumatic condition occurring in the later stage of pregnancy as a complication of severe preeclampsia or eclampsia. Prompt brain computed tomography (CT or magnetic resonance imaging (MRI and a multidisciplinary management approach are required to improve perinatal outcome. Case. A 37-year-old, Gravida 6, Para 1-0-4-1, Hispanic female with a history of chronic hypertension presented at 26 weeks and 6 days of gestational age. She was noted to have hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome accompanied by fetal growth restriction (FGR, during ultrasound evaluation, warranting premature delivery. The infant was delivered in stable condition suffering no permanent neurological deficit. Conclusion. HELLP syndrome is an uncommon and traumatic obstetric event which can lead to neurological deficits if not managed in a responsive and rapid manner. The central aggravating factor seems to be hypertension induced preeclamptic or eclamptic episode and complications thereof. The syndrome itself is manifested by hemolytic anemia, increased liver enzymes, and decreasing platelet counts with a majority of neurological defects resulting from hemorrhagic stroke or subarachnoid hemorrhage (SAH. To minimize adverse perinatal outcomes, obstetric management of this medical complication must include rapid clinical assessment, diagnostic examination, and neurosurgery consultation.

  1. Detection of circular telomeric DNA without 2D gel electrophoresis.

    Science.gov (United States)

    Dlaska, Margit; Anderl, Conrad; Eisterer, Wolfgang; Bechter, Oliver E

    2008-09-01

    The end of linear chromosomes forms a lasso-like structure called the t-loop. Such t-loops resemble a DNA recombination intermediate, where the single-stranded 3' overhang is arrested in a stretch of duplex DNA. Presumably, such a t-loop can also be deleted via a recombination process. This would result in the occurrence of circular extrachromosomal telomeric DNA (t-circles), which are known to be abundantly present in immortal cells engaging the recombination-based alternative lengthening of telomeres pathway (ALT pathway). Little is known about the basic mechanism of telomeric recombination in these cells and what ultimately causes the generation of such t-circles. Current standard procedures for detecting these molecules involve 2D gel electrophoresis or electron microscopy. However, both methods are labor intense and sophisticated to perform. Here, we present a simpler, faster, and equally sensitive method for detecting t-circles. Our approach is a telomere restriction fragment assay that involves the enzymatic preservation of circular DNA with Klenow enzyme followed by Bal31 degradation of the remaining linear DNA molecules. We show that with this approach t-circles can be detected in ALT cell lines, whereas no t-circles are present in telomerase-positive cell lines. We consider our approach a valid method in which t-circle generation is the experimental readout.

  2. Type II restriction endonucleases--a historical perspective and more.

    Science.gov (United States)

    Pingoud, Alfred; Wilson, Geoffrey G; Wende, Wolfgang

    2014-07-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Type II restriction endonucleases—a historical perspective and more

    Science.gov (United States)

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. PMID:24878924

  4. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Science.gov (United States)

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  5. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Directory of Open Access Journals (Sweden)

    Seetha V Balasingham

    Full Text Available XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB, a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+/Mn(2+. Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  6. Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus: cDNA cloning and primary structure of the enzymes

    Directory of Open Access Journals (Sweden)

    Rebrikov Denis V

    2004-01-01

    Full Text Available Abstract Background In this paper, we describe cDNA cloning of a new anionic trypsin and a collagenolytic serine protease from king crab Paralithodes camtschaticus and the elucidation of their primary structures. Constructing the phylogenetic tree of these enzymes was undertaken in order to prove the evolutionary relationship between them. Results The mature trypsin PC and collagenolytic protease PC contain 237 (Mcalc 24.8 kDa and 226 amino acid residues (Mcalc 23.5 kDa, respectively. Alignments of their amino acid sequences revealed a high degree of the trypsin PC identity to the trypsin from Penaeus vannamei (approximately 70% and of the collagenolytic protease PC identity to the collagenase from fiddler crab Uca pugilator (76%. The phylogenetic tree of these enzymes was constructed. Conclusions Primary structures of the two mature enzymes from P. camtschaticus were obtained and compared with those of other proteolytic proteins, including some enzymes from brachyurans. A phylogenetic analysis was also carried out. These comparisons revealed that brachyurins are closely related to their vertebrate and bacterial congeners, occupy an intermediate position between them, and their study significantly contributes to the understanding of the evolution and function of serine proteases.

  7. A new method to extract dental pulp DNA: application to universal detection of bacteria.

    Directory of Open Access Journals (Sweden)

    Lam Tran-Hung

    Full Text Available BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7% from 12 individuals (14%. Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.

  8. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  9. Phylogenomics of Phrynosomatid Lizards: Conflicting Signals from Sequence Capture versus Restriction Site Associated DNA Sequencing

    Science.gov (United States)

    Leaché, Adam D.; Chavez, Andreas S.; Jones, Leonard N.; Grummer, Jared A.; Gottscho, Andrew D.; Linkem, Charles W.

    2015-01-01

    Sequence capture and restriction site associated DNA sequencing (RADseq) are popular methods for obtaining large numbers of loci for phylogenetic analysis. These methods are typically used to collect data at different evolutionary timescales; sequence capture is primarily used for obtaining conserved loci, whereas RADseq is designed for discovering single nucleotide polymorphisms (SNPs) suitable for population genetic or phylogeographic analyses. Phylogenetic questions that span both “recent” and “deep” timescales could benefit from either type of data, but studies that directly compare the two approaches are lacking. We compared phylogenies estimated from sequence capture and double digest RADseq (ddRADseq) data for North American phrynosomatid lizards, a species-rich and diverse group containing nine genera that began diversifying approximately 55 Ma. Sequence capture resulted in 584 loci that provided a consistent and strong phylogeny using concatenation and species tree inference. However, the phylogeny estimated from the ddRADseq data was sensitive to the bioinformatics steps used for determining homology, detecting paralogs, and filtering missing data. The topological conflicts among the SNP trees were not restricted to any particular timescale, but instead were associated with short internal branches. Species tree analysis of the largest SNP assembly, which also included the most missing data, supported a topology that matched the sequence capture tree. This preferred phylogeny provides strong support for the paraphyly of the earless lizard genera Holbrookia and Cophosaurus, suggesting that the earless morphology either evolved twice or evolved once and was subsequently lost in Callisaurus. PMID:25663487

  10. DNA repair is indispensable for survival after acute inflammation

    Science.gov (United States)

    Calvo, Jennifer A.; Meira, Lisiane B.; Lee, Chun-Yue I.; Moroski-Erkul, Catherine A.; Abolhassani, Nona; Taghizadeh, Koli; Eichinger, Lindsey W.; Muthupalani, Sureshkumar; Nordstrand, Line M.; Klungland, Arne; Samson, Leona D.

    2012-01-01

    More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis. PMID:22684101

  11. Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible.

    Science.gov (United States)

    Guo, Longhua; Chen, Lichan; Hong, Seungpyo; Kim, Dong-Hwan

    2016-05-15

    The background signal is a major factor that restricts the limit of detection of biosensors. Herein, we present a zero-background DNA-sensing approach that utilizes enzyme-guided gold nanoparticle (AuNP) enlargement. This sensing strategy is based on the finding that small nanoparticles are invisible under a darkfield optical microscope, thus completely eliminating the background signal. In the event of target binding, Ag deposition is triggered and enlarges the AuNP beyond its optical diffraction limit, thereby making the invisible AuNP visible. Because the plasmon scattering of Ag is stronger than that of Au, only a thin layer of Ag is required to greatly enhance the scattering intensity of the AuNPs. Our investigation revealed that a target DNA concentration as low as 5.0×10(-21)M can transform the darkfield image of the nanoparticle from completely dark (invisible) to a blue dot (visible). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Human cellular restriction factors that target HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  13. Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair

    International Nuclear Information System (INIS)

    Dowd, D.R.; Lloyd, R.S.

    1990-01-01

    Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance

  14. Usefulness of the DNA-fingerprinting pattern and the multilocus enzyme electrophoresis profile in the assessment of outbreaks of meningococcal disease

    DEFF Research Database (Denmark)

    Weis, N; Lind, I

    1996-01-01

    cases were identical to the outbreak strain. None of the local serogroup C carrier strains isolated during the outbreak of serogroup C disease were identical to the outbreak strain. Both DNA-fingerprinting and MEE improved the differentiation of meningococci when compared with phenotypic......The objective of the study was to assess whether genotypic characterization by means of DNA-fingerprinting pattern (DFP) and multilocus enzyme electrophoresis (MEE) profile as compared to phenotypic characterization would improve the differentiation of Neisseria meningitidis strains associated...... in each outbreak were designated the index strains. Among the remaining 55 outbreak strains 52 were either DFP-identical or DFP-indistinguishable when compared with the one relevant out of the 4 index strains. This was only the case for 17 of the 37 strains isolated from sporadic cases caused by the same...

  15. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  16. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  17. Differentiation of Toxocara canis and Toxocara cati based on PCR-RFLP analyses of rDNA-ITS and mitochondrial cox1 and nad1 regions.

    Science.gov (United States)

    Mikaeili, Fattaneh; Mathis, Alexander; Deplazes, Peter; Mirhendi, Hossein; Barazesh, Afshin; Ebrahimi, Sepideh; Kia, Eshrat Beigom

    2017-09-26

    The definitive genetic identification of Toxocara species is currently based on PCR/sequencing. The objectives of the present study were to design and conduct an in silico polymerase chain reaction-restriction fragment length polymorphism method for identification of Toxocara species. In silico analyses using the DNASIS and NEBcutter softwares were performed with rDNA internal transcribed spacers, and mitochondrial cox1 and nad1 sequences obtained in our previous studies along with relevant sequences deposited in GenBank. Consequently, RFLP profiles were designed and all isolates of T. canis and T. cati collected from dogs and cats in different geographical areas of Iran were investigated with the RFLP method using some of the identified suitable enzymes. The findings of in silico analyses predicted that on the cox1 gene only the MboII enzyme is appropriate for PCR-RFLP to reliably distinguish the two species. No suitable enzyme for PCR-RFLP on the nad1 gene was identified that yields the same pattern for all isolates of a species. DNASIS software showed that there are 241 suitable restriction enzymes for the differentiation of T. canis from T. cati based on ITS sequences. RsaI, MvaI and SalI enzymes were selected to evaluate the reliability of the in silico PCR-RFLP. The sizes of restriction fragments obtained by PCR-RFLP of all samples consistently matched the expected RFLP patterns. The ITS sequences are usually conserved and the PCR-RFLP approach targeting the ITS sequence is recommended for the molecular differentiation of Toxocara species and can provide a reliable tool for identification purposes particularly at the larval and egg stages.

  18. Impact of DNA3'pp5'G capping on repair reactions at DNA 3' ends.

    Science.gov (United States)

    Das, Ushati; Chauleau, Mathieu; Ordonez, Heather; Shuman, Stewart

    2014-08-05

    Many biological scenarios generate "dirty" DNA 3'-PO4 ends that cannot be sealed by classic DNA ligases or extended by DNA polymerases. The noncanonical ligase RtcB can "cap" these ends via a unique chemical mechanism entailing transfer of GMP from a covalent RtcB-GMP intermediate to a DNA 3'-PO4 to form DNA3'pp5'G. Here, we show that capping protects DNA 3' ends from resection by Escherichia coli exonucleases I and III and from end-healing by T4 polynucleotide 3' phosphatase. By contrast, the cap is an effective primer for DNA synthesis. E. coli DNA polymerase I and Mycobacterium DinB1 extend the DNAppG primer to form an alkali-labile DNApp(rG)pDNA product. The addition of dNTP depends on pairing of the cap guanine with an opposing cytosine in the template strand. Aprataxin, an enzyme implicated in repair of A5'pp5'DNA ends formed during abortive ligation by classic ligases, is highly effective as a DNA 3' decapping enzyme, converting DNAppG to DNA3'p and GMP. We conclude that the biochemical impact of DNA capping is to prevent resection and healing of a 3'-PO4 end, while permitting DNA synthesis, at the price of embedding a ribonucleotide and a pyrophosphate linkage in the repaired strand. Aprataxin affords a means to counter the impact of DNA capping.

  19. Preventive Long-Term Effects of a Topical Film-Forming Medical Device with Ultra-High UV Protection Filters and DNA Repair Enzyme in Xeroderma Pigmentosum: A Retrospective Study of Eight Cases

    Directory of Open Access Journals (Sweden)

    Sandra Giustini

    2014-09-01

    Full Text Available Skin cancer is common in xeroderma pigmentosum (XP due to a DNA repair mechanisms genetic defect. Ultraviolet (UV exposure is the main cause of increased incidence of actinic keratosis (AK, basal cell carcinoma (BCC and squamous cell carcinoma (SCC observed in XP subjects. Photoprotection is therefore a mandatory strategy in order to reduce skin damage. A topical DNA repair enzyme has been shown to slow down the development of skin lesions in XP. However, there are no data regarding the effects of photoprotection combined with DNA repair strategies in this clinical setting. A film-forming medical device containing the DNA repair enzyme photolyase and very high-protection UV filters (Eryfotona AK-NMSC, Ery is currently available. We report retrospective data regarding the use of Ery in 8 patients (5 women, 3 men with a diagnosis of XP treated for at least 12 consecutive months, comparing the rate of new skin lesions (AK, BCC and SCC during active treatment with Ery and during 12 months just before the use of the product. New AK, BCC and SCC mean lesion numbers during the 1-year Ery treatment were 5, 3 and 0, respectively in comparison with 14, 6.8 and 3 lesions, respectively during the 1-year pre-treatment period. Ery use was associated with a 65% reduction in appearance of new AK lesions and with 56 and 100% reductions in the incidence of new BCC and SCC lesions, respectively. These data suggest that topical use of photoprotection and DNA repair enzyme could help lower skin cancer lesions in XP. Control prospective trials are advisable in this clinical setting.

  20. Restricted diffusion of DNA segments within the isolated Escherichia coli nucleoid.

    NARCIS (Netherlands)

    Cunha, S.; Woldringh, C.L.; Odijk, T.

    2005-01-01

    To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the

  1. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme.

    Science.gov (United States)

    Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua

    2017-11-01

    In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.

  2. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    Science.gov (United States)

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host

  3. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  4. Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays.

    Science.gov (United States)

    Zaia, J A; Gallez-Hawkins, G; Churchill, M A; Morton-Blackshere, A; Pande, H; Adler, S P; Schmidt, G M; Forman, S J

    1990-01-01

    The human cytomegalovirus (HCMV) a-sequence (a-seq) is located in the joining region between the long (L) and short (S) unique sequences of the virus (L-S junction), and this hypervariable junction has been used to differentiate HCMV strains. The purpose of this study was to investigate whether there are differences among strains of human cytomegalovirus which could be characterized by polymerase chain reaction (PCR) amplification of the a-seq of HCMV DNA and to compare a PCR method of strain differentiation with conventional restriction fragment length polymorphism (RFLP) methodology by using HCMV junction probes. Laboratory strains of HCMV and viral isolates from individuals with HCMV infection were characterized by using both RFLPs and PCR. The PCR assay amplified regions in the major immediate-early gene (IE-1), the 64/65-kDa matrix phosphoprotein (pp65), and the a-seq of the L-S junction region. HCMV laboratory strains Towne, AD169, and Davis were distinguishable, in terms of size of the amplified product, when analyzed by PCR with primers specific for the a-seq but were indistinguishable by using PCR targeted to IE-1 and pp65 sequences. When this technique was applied to a characterization of isolates from individuals with HCMV infection, selected isolates could be readily distinguished. In addition, when the a-seq PCR product was analyzed with restriction enzyme digestion for the presence of specific sequences, these DNA differences were confirmed. PCR analysis across the variable a-seq of HCMV demonstrated differences among strains which were confirmed by RFLP in 38 of 40 isolates analyzed. The most informative restriction enzyme sites in the a-seq for distinguishing HCMV isolates were those of MnlI and BssHII. This indicates that the a-seq of HCMV is heterogeneous among wild strains, and PCR of the a-seq of HCMV is a practical way to characterize differences in strains of HCMV. Images PMID:1980680

  5. Development of swine-specific DNA markers for biosensor-based halal authentication.

    Science.gov (United States)

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  6. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains

    Science.gov (United States)

    Sangalli, Juliano Rodrigues; Rodrigues, Thiago Bittencourt; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Chiaratti, Marcos Roberto

    2015-01-01

    Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals. PMID:26274500

  7. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  8. Determination of genotype differences through restriction ...

    African Journals Online (AJOL)

    Tyrosinase gene or C locus has long been implicated in the coat colour determination. This gene a copper-containing enzyme located on chromosome 11q14.3 is expressed in melanocytes and controls the major steps in pigment production. In camel, C locus a restriction site provoked by the T variant of the mutation was ...

  9. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    Science.gov (United States)

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  10. Identification of the "A" genome of finger millet using chloroplast DNA.

    Science.gov (United States)

    Hilu, K W

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.

  11. Molecular characterization of the rDNA-ITS sequence and a PCR diagnostic technique for Pileolaria terebinthi, the cause of pistachio rust

    Directory of Open Access Journals (Sweden)

    Hossein ALAEI

    2013-01-01

    Full Text Available Eleven samples of the most important pistachio rust (caused by Pileolaria terebinthi (DC. Cast.,, which causes disease on Beneh (Pistacia atlantica Desf. subsp. mutica (Fisch. & Mey. Rech. F and Kasoor (Pistacia khinjuk Stocks., were collected from herbarium specimens and pistachio fields at the Pistachio Research Institute in Rafsanjan, Iran. The complete sequences of ribosomal DNA internal transcribed spacers ITS1 and ITS2 (rDNA ITS from the samples were determined and analysed. In general, very little rDNA ITS sequence variation was observed between rDNA ITS sequences of P. terebinthi samples. The length of the PCR fragments was 621 bp (for ITS1F-ITS4 and 1177 bp (for ITS1F-rust1, and consisted of 67 bp at the 3 ́ end of 18S rDNA, 93 bp of ITS1 region, 154 bp of 5.8S rDNA, 246 bp of the ITS2 region, 57 bp (for ITS1F-ITS4 and 613 bp (for ITS1F-rust1 at the 5 ́ end of the 28S rDNA. Restriction fragment length polymorphisms (RFLPs of the rDNA-ITS region were used to identify Pileolaria terebinthi. Three strong bands of 105, 134 and 381 bp and five bands of 105, 134, 200, 301 and 437 bp are observed for the fragment of “ITS1F-ITS4” and “ITS1F-rust1”, respectively. A PCR-RFLP diagnostic technique provided effective identification of the species by a unique pattern with the specific restriction enzyme XapI (ApoI.

  12. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  13. cDNA cloning of a novel gene codifying for the enzyme lycopene β-cyclase from Ficus carica and its expression in Escherichia coli.

    Science.gov (United States)

    Araya-Garay, José Miguel; Feijoo-Siota, Lucía; Veiga-Crespo, Patricia; Villa, Tomás González

    2011-11-01

    Lycopene beta-cyclase (β-LCY) is the key enzyme that modifies the linear lycopene molecule into cyclic β-carotene, an indispensable carotenoid of the photosynthetic apparatus and an important source of vitamin A in human and animal nutrition. Owing to its antioxidant activity, it is commercially used in the cosmetic and pharmaceutical industries, as well as an additive in foodstuffs. Therefore, β-carotene has a large share of the carotenoidic market. In this study, we used reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE)-PCR to obtain and clone a cDNA copy of the gene Lyc-β from Ficus carica (Lyc-β Fc), which codes for the enzyme lycopene β-cyclase (β-LCY). Expression of this gene in Escherichia coli produced a single polypeptide of 56 kDa of weight, containing 496 amino acids, that was able to cycle both ends of the lycopene chain. Amino acid analysis revealed that the protein contained several conserved plant cyclase motifs. β-LCY activity was revealed by heterologous complementation analysis, with lycopene being converted to β-carotene as a result of the enzyme's action. The β-LCY activity of the expressed protein was confirmed by high-performance liquid chromatography (HPLC) identification of the β-carotene. The lycopene to β-carotene conversion rate was 90%. The experiments carried out in this work showed that β-LYC is the enzyme responsible for converting lycopene, an acyclic carotene, to β-carotene, a bicyclic carotene in F. carica. Therefore, by cloning and expressing β-LCY in E. coli, we have obtained a new gene for β-carotene production or as part of the biosynthetic pathway of astaxanthin. So far, this is the first and only gene of the carotenoid pathway identified in F. carica. © Springer-Verlag 2011

  14. Enzyme study of the separate stages in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mar Monux, D

    1968-01-01

    The precise roles of ATP, DNA, and NADP in interaction with enzymes in certain of the 11 phases of fermentation are outlined. Individual enzymes which take part in the 11 phases are: (1) hexose transferase; (2) phosphohexoseisomerase; (3) fructosinase; (4) aldolase; (5) an SH-enzyme; (6) 3-phosphoglycero-1-phosphotransferase; (7) ghosphoglyceromutosase; (8) 2-phosphoglycerohydrolase; (9) pyruvic transferase; (10) pyruvic decarboxylase; (11) alcohol dehydrogenase.

  15. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  16. Restriction fragment length polymorphism (RFLP) of two HLA-B-associated transcripts (BATs) genes in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1990-01-01

    investigated in healthy Danes. The cDNA/restriction enzyme combination BAT1/NcoI identifies polymorphic bands at 12 kb, 8 kb, 2.5 kb, and 1.1 kb, while the BAT2/RsaI combination identifies polymorphic bands at 3.3 kb, 2.7 kb, 2.3 kb, and 0.9 kb. The frequencies of these markers were determined in 90 unrelated...... Danes. Co-dominant segregation and allelic behavior was seen for the BAT1/NcoI 12 kb and 8 kb bands and the BAT2/RsaI 2.7 kb and 2.3 kb bands, respectively. It is possible that the BAT2/RsaI 3.3 kb band represents a rare allele of the BAT2/RsaI system. The BAT2/RsaI 2.3 kb marker was strongly negatively...

  17. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage

    DEFF Research Database (Denmark)

    Lafuente-Barquero, Juan; Luke-Glaser, Sarah; Graf, Marco

    2017-01-01

    of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids...

  18. DNA polymorphisms in the Sahiwal breed of Zebu cattle revealed by synthetic oligonucleotide probes

    International Nuclear Information System (INIS)

    Shashikanth; Yadav, B.R.

    2005-01-01

    Genomic DNA of 15 randomly selected unrelated animals and from two sire families (11 animals) of the Sahiwal breed of Zebu cattle were investigated. Four oligonucleotide probes - (GTG) 5 , (TCC) 5 , (GT) 8 and (GT) 12 - were used on genomic DNA digested with restriction enzymes AluI, HinfI, MboI, EcoRI and HaeIII in different combinations. All four probes produced multiloci fingerprints with differing levels of polymorphisms. Total bands and shared bands in the fingerprints of each individual were in the range of 2.5 to 23.0 KB. Band number ranged from 9 to 17, with 0.48 average band sharing. Probes (GT) 8 , (GT) 12 and (TCC) 5 produced fingerprinting patterns of medium to low polymorphism, whereas probe (GTG) 5 produced highly polymorphic patterns. Probe (GTG) 5 in combination with the HaeIII enzyme was highly polymorphic with a heterozygosity level of 0.85, followed by (GT) 8 , (TCC) 5 and (GT) 12 with heterozygosity levels of 0.70, 0.65 and 0.30, respectively. Probe GTG 5 or its complementary sequence CAC 5 produced highly polymorphic fingerprints, indicating that the probe can be used for analysing population structure, parentage verification and identifying loci controlling quantitative traits and fertility status. (author)

  19. Activity-based in vitro selection of T4 DNA ligase

    International Nuclear Information System (INIS)

    Takahashi, Fumio; Funabashi, Hisakage; Mie, Masayasu; Endo, Yaeta; Sawasaki, Tatsuya; Aizawa, Masuo; Kobatake, Eiry

    2005-01-01

    Recent in vitro methodologies for selection and directed evolution of proteins have concentrated not only on proteins with affinity such as single-chain antibody but also on enzymes. We developed a display technology for selection of T4 DNA ligase on ribosome because an in vitro selection method for DNA ligase had never been developed. The 3' end of mRNA encoding the gene of active or inactive T4 DNA ligase-spacer peptide fusion protein was hybridized to dsDNA fragments with cohesive ends, the substrate of T4 DNA ligase. After in vitro translation of the mRNA-dsDNA complex in a rabbit reticulocyte system, a mRNA-dsDNA-ribosome-ligase complex was produced. T4 DNA ligase enzyme displayed on a ribosome, through addition of a spacer peptide, is able to react with dsDNA in the complex. The complex expressing active ligase was biotinylated by ligation with another biotinylated dsDNA probe and selected with streptavidin-coated magnetic beads. We effectively selected active T4 DNA ligase from a small amount of protein. The gene of the active T4 DNA ligase was enriched 40 times from a mixture of active and inactive genes using this selection strategy. This ribosomal display strategy may have high potential to be useful for selection of other enzymes associated with DNA

  20. Synthesis and detection of 3'-OH terminal biotin-labeled DNA probes

    International Nuclear Information System (INIS)

    Brakel, C.L.; Engelhardt, D.L.

    1985-01-01

    Nick translation has been used to prepare biotin-dUTP-containing DNA probes. These stable DNA probes have been identified, following hybridization to target DNA, by fluorescence using antibiotin antibodies or by enzyme reactions in which the enzyme has been linked to avidin or streptavidin. It is probable that this technology will be applicable to certain diagnostic determinations and that, with sufficient sensitivity, this technology might provide a system for obtaining rapid and specific diagnoses in situations presently requiring time-consuming growth assays. The sensitivity of this assay can be increased in two ways: (1) by increasing the amount of biotin contained in the DNA probes, and (2) by increasing the response to individual biotin molecules in the DNA probes. This report demonstrates that terminal deoxynucleotide transferase can be employed to increase the biotin content of DNA probes. We also introduce a new streptavidin-linked enzyme system that produces a greater response to biotinylated DNA probes than does streptavidin-linked horseradish peroxidase

  1. Construction and identification of eukaryotic expression vector of pcDNA3-UHRF1

    International Nuclear Information System (INIS)

    Li Xinli; Zhu Ran; Zhu Wei; Fan Saijun; Meng Qinghui

    2011-01-01

    Objective: To generate eukaryotic expression vector of pcDNA3-UHRF1(ubiquitin-like, containing PHD and RING finger domains 1, UHRF1) and testify its expression in breast cancer cells MDA-MB-231. Methods: A 2.3 kb cDNA fragment was amplified from the total RNA of the human breast cancer cells MCF-7 by the RT-PCR method and was cloned into the plasmid pcDNA3. The vector was identified by the double digestion with restriction enzymes Kpn I and Xho I and was sequenced. The cDNA of UHRF1 was transfected into human breast cancer cells MDA-MB-231 by Lipofactamin2000. The positive clones were selected by G418. The expression of the UHRF1 was detected by RT-PCR and Western blot analysis. Results: The recombinant eukaryotic expression vector pcDNA3-UHRF1 was digested with Kpn I and BamH I, and the electrophoresis of the digested products showed two fragments; 2.3kb fragment of UHRF1 and 5.4 kb fragment of pcDNA3, and the sequence inserted was identical to the published sequence. The MDA-MB-231 cells transfected with the pcDNA3-UHRF1 plasmid expressed a high level of the UHRF1 mRNA and protein. Conclusion: The recombinant eukaryotic cell expression vector of pcDNA3-UHRF1 is constructed successfully. The recombinant plasmid pcDNA3-UHRF1 can provide a very useful tool and lay an important foundation for the research on the function of UHRF1. (authors)

  2. Use of damaged plasmid to study DNA repair in X-ray sensitive (xrs) strains of Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Smith-Ravin, J.; Jeggo, P.A.

    1989-01-01

    The effect of γ-irradiation of pSV2gpt DNA on its transfection frequency has been analysed using radiosensitive CHO xrs mutants showing a defect in double-strand break (dsb) rejoining. At low doses a sharp decrease in relative transfection frequency, i.e. transfection frequency of irradiated plasmid relative to untreated plasmid, as observed in xrs mutants compared with the parent line K1. Electrophoresis of irradiated plasmid DNA showed the decrease in transfection frequency in the xrs mutants correlated with the change of supercoiled molecules into open-circular forms. In the parent line CHO-K1, open-circular and supercoiled molecules have the same transfection frequency. The effect of linearization of pSV2gpt DNA by restriction enzymes on transfection frequency in xrs and wild-type strains was also examined. No difference in the relative transfection frequency between xrs and wild-type strains was detected. (author)

  3. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    Science.gov (United States)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  4. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  5. Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA

    International Nuclear Information System (INIS)

    De Wyngaert, M.A.; Hinkle, D.C.

    1979-01-01

    Growth of bacteriophage T7 is inhibited by the antibiotic coumermycin A 1 , an inhibitor of the Escherichia coli DNA gyrase. Since growth of the phage is insensitive to the antibiotic in strains containing a coumermycin-resistent DNA gyrase, this enzyme appears to be required for phage growth. We have investigated the effect of coumermycin on the kinetics of DNA, RNA, and protein synthesis during T7 infection. DNA synthesis is completely inhibited by the antibiotic. In addition, coumermycin significantly inhibits transcription of late but not early genes. Thus, E. coli DNA gyrase may play an important role in transcription as well as in replication of T7 DNA

  6. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  7. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  8. Dna fingerprinting - review paper

    OpenAIRE

    Blundell, Renald

    2006-01-01

    Before the Polymerase Chain Reaction (PCR) was established, DNA fingerprinting technology has relied for years on Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandom Repeats (VNTR) analysis, a very efficient technique but quite laborious and not suitable for high throughput mapping. Since its, development, PCR has provided a new and powerful tool for DNA fingerprinting.

  9. Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis.

    NARCIS (Netherlands)

    Bens, C.C.; Voss, A.; Klaassen, C.H.W.

    2006-01-01

    Genomic DNA from methicillin-resistant Staphylococcus aureus isolates recovered from pigs and their caretakers proved resistant to SmaI digestion, leading to uninterpretable results in standard pulsed-field gel electrophoresis. This is the result of a yet unknown restriction/methylation system in

  10. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  11. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  12. Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae).

    Science.gov (United States)

    Zevering, C E; Moritz, C; Heideman, A; Sturm, R A

    1991-11-01

    Analysis of mitochondrial DNAs (mtDNAs) from parthenogenetic lizards of the Heteronotia binoei complex with restriction enzymes revealed an approximately 5-kb addition present in all 77 individuals. Cleavage site mapping suggested the presence of a direct tandem duplication spanning the 16S and 12S rRNA genes, the control region and most, if not all, of the gene for the subunit 1 of NADH dehydrogenase (ND1). The location of the duplication was confirmed by Southern hybridization. A restriction enzyme survey provided evidence for modifications to each copy of the duplicated sequence, including four large deletions. Each gene affected by a deletion was complemented by an intact version in the other copy of the sequence, although for one gene the functional copy was heteroplasmic for another deletion. Sequencing of a fragment from one copy of the duplication which encompassed the tRNA(leu)(UUR) and parts of the 16S rRNA and ND1 genes, revealed mutations expected to disrupt function. Thus, evolution subsequent to the duplication event has resulted in mitochondrial pseudogenes. The presence of duplications in all of these parthenogens, but not among representatives of their maternal sexual ancestors, suggests that the duplications arose in the parthenogenetic form. This provides the second instance in H. binoei of mtDNA duplication associated with the transition from sexual to parthenogenetic reproduction. The increased incidence of duplications in parthenogenetic lizards may be caused by errors in mtDNA replication due to either polyploidy or hybridity of their nuclear genomes.

  13. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    Science.gov (United States)

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  14. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bendall, Matthew L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Luong, Khai [Pacific Biosciences, Menlo Park, CA (United States); Wetmore, Kelly M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blow, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Korlach, Jonas [Pacific Biosciences, Menlo Park, CA (United States); Deutschbauer, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Malmstrom, Rex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  15. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity

    Directory of Open Access Journals (Sweden)

    Song Peng

    2010-02-01

    Full Text Available Abstract Background NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites. Results Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity. Conclusions The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.

  16. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  17. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    International Nuclear Information System (INIS)

    Wernette, C.M.; Kaguni, L.S.

    1986-01-01

    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase γ is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase γ as partially purified from several vertebrates

  18. Crystal structure of MboIIA methyltransferase

    OpenAIRE

    Osipiuk, Jerzy; Walsh, Martin A.; Joachimiak, Andrzej

    2003-01-01

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-l-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 Å resolution the crystal structure of a β-class DNA MTase MboIIA (M·MboIIA) from the bacterium Moraxella bovis,...

  19. On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*

    Science.gov (United States)

    Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.

    2017-06-01

    Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

  20. DNA Topoisomerase-I Inhibition due to Exposure to X-Rays

    International Nuclear Information System (INIS)

    Daudee, R.; Gonen, R.; German, U.; Orion, I.; Priel, E.

    2014-01-01

    In events such as radiological terrorism, accidents involving radioactive materials and occupational exposures, there is a great need to identify exposures to relatively low radiation levels. In many situations, the evaluation of radiation doses is not possible using physical dosimeters as they are not worn, and it is desirable to achieve this based on sensitive biomarkers (1, 2, 3). DNA Topoisomerase-I (Topo-I) is an essential nuclear enzyme that is responsible for the topological state of the DNA. The enzyme is involved in a variety of DNA transactions, including replication, transcription, recombination and DNA repair (4,5). The aim of the present work was to investigate the influence of X-ray radiation on the catalytic activity of this enzyme, and to evaluate its applicability as a biological dosimeter

  1. A DNA-Based Assessment of the Phylogenetic Position of a Morphologically Distinct, Anchialine-Lake-Restricted Seahorse.

    Science.gov (United States)

    Rose, Emily; Masonjones, Heather D; Jones, Adam G

    2016-11-01

    Isolated populations provide special opportunities to study local adaptation and incipient speciation. In some cases, however, morphological evolution can obscure the taxonomic status of recently founded populations. Here, we use molecular markers to show that an anchialine-lake-restricted population of seahorses, originally identified as Hippocampus reidi, appears on the basis of DNA data to be Hippocampus erectus We collected seahorses from Sweetings Pond, on Eleuthera Island, Bahamas, during the summer of 2014. We measured morphological traits and sequenced 2 genes, cytochrome b and ribosomal protein S7, from 19 seahorses in our sample. On the basis of morphology, Sweetings Pond seahorses could not be assigned definitively to either of the 2 species of seahorse, H. reidi and H. erectus, that occur in marine waters surrounding the Bahamas. However, our DNA-based phylogenetic analysis showed that the Sweetings Pond fish were firmly nested within the H. erectus clade with a Bayesian posterior probability greater than 0.99. Thus, Sweetings Pond seahorses most recently shared a common ancestor with H. erectus populations from the Western Atlantic. Interestingly, the seahorses from Sweetings Pond differ morphologically from other marine populations of H. erectus in having a more even torso to tail length ratio. The substantial habitat differences between Sweetings Pond and the surrounding coastal habitat make Sweetings Pond seahorses particularly interesting from the perspectives of conservation, local adaptation, and incipient speciation. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush).

    Science.gov (United States)

    Zhuo, L; Reed, K M; Phillips, R B

    1995-06-01

    Variation in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) of lake trout (Salvelinus namaycush) was examined. Digestion of genomic DNA with restriction enzymes showed that almost every individual had a unique combination of length variants with most of this variation occurring within rather than between populations. Sequence analysis of a 2.3 kilobase (kb) EcoRI-DraI fragment spanning the 3' end of the 28S coding region and approximately 1.8 kb of the IGS revealed two blocks of repetitive DNA. Putative transcriptional termination sites were found approximately 220 bases (b) downstream from the end of the 28S coding region. Comparison of the 2.3-kb fragments with two longer (3.1 kb) fragments showed that the major difference in length resulted from variation in the number of short (89 b) repeats located 3' to the putative terminator. Repeat units within a single nucleolus organizer region (NOR) appeared relatively homogeneous and genetic analysis found variants to be stably inherited. A comparison of the number of spacer-length variants with the number of NORs found that the number of length variants per individual was always less than the number of NORs. Examination of spacer variants in five populations showed that populations with more NORs had more spacer variants, indicating that variants are present at different rDNA sites on nonhomologous chromosomes.

  3. The fidelity of reverse transcription differs in reactions primed with RNA versus DNA primers

    NARCIS (Netherlands)

    Oude Essink, B. B.; Berkhout, B.

    1999-01-01

    Reverse transcriptase enzymes (RT) convert single-stranded retroviral RNA genomes into double-stranded DNA. The RT enzyme can use both RNA and DNA primers, the former being used exclusively during initiation of minus- and plus-strand synthesis. Initiation of minus-strand DNA synthesis occurs by

  4. Suitability of PCR fingerprinting, infrequent-restriction-site PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library typing of Salmonella enterica serovar enteritidis

    DEFF Research Database (Denmark)

    Garaizar, J.; Lopez-Molina, N.; Laconcha, I.

    2000-01-01

    Strains of Salmonella enterica (n = 212) of different serovars and phage types were used to establish a library typing computerized system for serovar Enteritidis on the basis of PCR fingerprinting, infrequent-restriction-site PCR (IRS-PCR), or pulsed-field gel electrophoresis (PFGE). The rate...... showed an intercenter reproducibility value of 93.3%. The high reproducibility of PFGE combined with the previously determined high discrimination directed its use for library typing. The use of PFGE with enzymes XbaI, BlnI, and SpeI for library typing of serovar Enteritidis was assessed with GelCompar 4.......0 software, Three computer libraries of PFGE DNA profiles were constructed, and their ability to recognize new DNA profiles was analyzed. The results obtained pointed out that the combination of PFGE with computerized analysis could be suitable in long-term epidemiological comparison and surveillance...

  5. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  6. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  7. Genomic DNA extraction method from Annona senegalensis Pers ...

    African Journals Online (AJOL)

    Extraction of DNA in many plants is difficult because of the presence of metabolites that interfere with DNA isolation procedures and downstream applications such as DNA restriction, replications, amplification, as well as cloning. Modified procedure based on the hexadecyltrimethyl ammoniumbromide (CTAB) method is ...

  8. Electrografting of carboxyphenyl thin layer onto gold for DNA and enzyme immobilization

    International Nuclear Information System (INIS)

    Nowicka, Anna M.; Fau, Michal; Kowalczyk, Agata; Strawski, Marcin; Stojek, Zbigniew

    2014-01-01

    The convenient functionalization of metal surfaces by carboxyphenyl groups in aprotic media is not possible for two reasons. First, carboxy derivatives of diazonium salts are very unstable and, second, the electroreduction product is soluble in the solvent. So, the optimization of the conditions of the electrografting of the metal surfaces by applying aqueous solutions is much needed. Compared to earlier cyclic voltammetry approaches we have shown that the chronoamperometric deposition is more convenient. The constant potential equal to the voltammetric peak potential and the molar ratio 1:1 for the substrates: 4-aminobenzoic acid and NaNO 2 as the diazotization agent, in 0.5 M HCl, appeared to be very satisfying conditions for the deposition of a thin layer of deposit of perpendicularly oriented carboxyphenyl groups at the Au surface and for maximal elimination of the influence of the side-reactions products. Under the determined conditions the immobilization of DNA strands was optimal and the deposited laccase layer was tightly packed and very efficient toward the electroreduction of oxygen. Electrochemical impedance spectroscopy, electrochemical quartz crystal microbalance, cyclic voltammetry, chronocoulometry, atomic force microscopy, contact angle measurements and UV–Vis spectroscopy of the solution were used to characterize the electrografted carboxyphenyl layers and subsequent oligonucleotide and enzyme immobilization process

  9. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Directory of Open Access Journals (Sweden)

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  10. Laser mass spectrometry for DNA fingerprinting for forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  11. A remote palm domain residue of RB69 DNA polymerase is critical for enzyme activity and influences the conformation of the active site.

    Directory of Open Access Journals (Sweden)

    Agata Jacewicz

    Full Text Available Non-conserved amino acids that are far removed from the active site can sometimes have an unexpected effect on enzyme catalysis. We have investigated the effects of alanine replacement of residues distant from the active site of the replicative RB69 DNA polymerase, and identified a substitution in a weakly conserved palm residue (D714A, that renders the enzyme incapable of sustaining phage replication in vivo. D714, located several angstroms away from the active site, does not contact the DNA or the incoming dNTP, and our apoenzyme and ternary crystal structures of the Pol(D714A mutant demonstrate that D714A does not affect the overall structure of the protein. The structures reveal a conformational change of several amino acid side chains, which cascade out from the site of the substitution towards the catalytic center, substantially perturbing the geometry of the active site. Consistent with these structural observations, the mutant has a significantly reduced k pol for correct incorporation. We propose that the observed structural changes underlie the severe polymerization defect and thus D714 is a remote, non-catalytic residue that is nevertheless critical for maintaining an optimal active site conformation. This represents a striking example of an action-at-a-distance interaction.

  12. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  13. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  14. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  15. Genomic DNA extraction method from pearl millet ( Pennisetum ...

    African Journals Online (AJOL)

    DNA extraction is difficult in a variety of plants because of the presence of metabolites that interfere with DNA isolation procedures and downstream applications such as DNA restriction, amplification, and cloning. Here we describe a modified procedure based on the hexadecyltrimethylammonium bromide (CTAB) method to ...

  16. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA

    DEFF Research Database (Denmark)

    Boessenkool, Sanne; Epp, Laura S.; Haile, James Seymour

    2012-01-01

    the amplification of contaminant sequences to such an extent that retrieval of the endogenous DNA is severely restricted. The application of blocking primers is a promising tool to avoid this bias and can greatly enhance the quantity and the diversity of the endogenous DNA sequences that are amplified....

  17. Species attribution and strain typing of Oenococcus oeni (formerly Leuconostoc oenos) with restriction endonuclease fingerprints.

    Science.gov (United States)

    Viti, C; Giovannetti, L; Granchi, L; Ventura, S

    1996-10-01

    In several wines, malolactic fermentation is required to improve the organoleptic characters and to stabilize the final product. In order to establish a controlled malolactic fermentation in wine, easy identification and sensitive typing of strains of Oenococcus oeni (new name of the malolactic bacterium Leuconostoc oenos) used as starter cultures are necessary. To accomplish these tasks, several strains of Oenococcus oeni isolated from wines of the Chianti region (Italy), along with reference strains and strains of L. mesenteroides subsp. mesenteroides, L. carnosum, L. fallax, L. pseudomesenteroides, L. lactis and Weisella paramesenteroides, were studied with RFLP of ribosomal genes and ultrasensitive total DNA restriction pattern analysis performed on polyacrylamide gel. With each of four restriction endonucleases used, identical restriction profiles of ribosomal genes were obtained for all strains of O. oeni. These ribopatterns, being strongly dissimilar to profiles of the other lactic acid bacteria tested, appear to be well suited for the attribution of wine lactic acid bacteria to the species O. oeni. Cluster analysis performed on two total DNA restriction profile data sets showed that the species O. oeni possesses a good degree of genomic homogeneity. Very sensitive typing of strains of O. oeni was obtained with total DNA restriction profiles. The potential of an integrated approach using restriction profiles for species assignment and typing of selected malolactic bacteria is demonstrated.

  18. MIDAS: A Modular DNA Assembly System for Synthetic Biology.

    Science.gov (United States)

    van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J

    2018-04-20

    A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.

  19. Unscheduled DNA synthesis and elimination of DNA damage in liver cells of. gamma. -irradiated senescent mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A.I.; Malakhova, L.V. (AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki)

    1982-10-01

    The level of 'spontaneous' and ..gamma..-radiation-induced DNA synthesis which is not inhibited with hydroxyurea (unscheduled synthesis) is considerably lower in hepatocytes of 18-22-month-old mice than that of 1.5-2-month-old mice. The dose-dependent increase (10-300 Gy) of unscheduled DNA synthesis (UDS) in hepatocytes of senescent mice is higher than in young animals. The elimination of damage in DNA of ..gamma..-irradiated hepatocytes (100 Gy) was examined by using an enzyme system (M. luteus extract and DNA-polymerase I of E. coli). It was found that the rate of elimination of the DNA damage in hepatocytes of 20-month-old mice is lower than that of 2-month-old mice although the activities of DNA-polymerase ..beta.. and apurinic endonuclease remain equal in the liver of both senescent and young mice. However, the nucleoids from ..gamma..-irradiated liver nuclei of 2-month-old mice are relaxed to a greater extent (as judged by the criterion of ethidium-binding capacity) than those of 20-month-old mice. The results suggest that there are limitations in the functioning of repair enzymes and in their access to damaged DNA sites in the chromatin of senescent mouse liver cells.

  20. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  1. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  2. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    Science.gov (United States)

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.

    OpenAIRE

    Belyavsky, A; Vinogradova, T; Rajewsky, K

    1989-01-01

    A procedure for the construction of general cDNA libraries is described which is based on the amplification of total cDNA in vitro. The first cDNA strand is synthesized from total RNA using an oligo(dT)-containing primer. After oligo(dG) tailing the total cDNA is amplified by PCR using two primers complementary to oligo(dA) and oligo(dG) ends of the cDNA. For insertion of the cDNA into a vector a controlled trimming of the 3' ends of the cDNA by Klenow enzyme was used. Starting from 10 J558L ...

  4. Data of self-made Taq DNA polymerase prepared for screening purposes

    Directory of Open Access Journals (Sweden)

    E.V. Konovalova

    2017-04-01

    Full Text Available DNA analysis is a key procedure in genetic engineering. Nowadays the analysis is often done by PCR with Taq DNA polymerase. Although the last enzyme price is quite low, demand for numerous analyses results in much money expenditure which are not affordable for many laboratories. In a meanwhile, many screening tasks do not require the highly purified enzyme. Taking into account the enzyme unique properties it makes possible to marginally simplify its production without resorting to costly or lengthy techniques such as column chromatography and/or dialysis. Here the data of routine usage of Taq DNA polymerase prepared according to the protocol developed in our laboratory is presented. The protocol takes only several hours to realize and does not need qualified personnel or expensive equipment. Yet it gives the enzyme preparation suitable for most screening purposes. The isolated Taq DNA polymerase stock can be stored as ammonium sulfate suspension in a refrigerator for prolonged period, not less than 6 months. The working enzyme solution is prepared from the stock suspension on demand, not more than once in a month and can be stored also in a refrigerator.

  5. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  6. Symposium cellular response to DNA damage the role of poly(ADP-ribose) poly(ADP-ribose) in the cellular response to DNA damage

    International Nuclear Information System (INIS)

    Berger, N.A.

    1985-01-01

    Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Inhibitors of Poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of Poly(ADP-ribose) persists and the activated enzyme is capable of totaly consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of Poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest

  7. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors

    DEFF Research Database (Denmark)

    Fu, Yanming; Zeng, Dongdong; Chao, Jie

    2013-01-01

    nm resolution and at the single-molecule level. We attach a pair of enzymes (horseradish peroxidase and glucose oxidase) at the inner side of DNA nanotubes and observe high coupling efficiency of enzyme cascade within this confined nanospace. Hence, DNA nanostructures with such unprecedented...

  8. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  9. Analysis of pyrimidine dimer content of isolated DNA by nuclease digestion

    International Nuclear Information System (INIS)

    Farland, W.H.; Sutherland, B.M.

    1980-01-01

    Isolated DNA is highly susceptible to degradation by exogenous nucleases. Complete digestion is possible with a number of well-characterized enzymes from a variety of sources. Treatment of DNA with a battery of enzymes including both phosphodiesterase and phosphatase activities yields a mixture of nucleosides and inorganic phosphate (P/sub i/) as a final product. Unlike native DNA, ultraviolet-irradiated DNA is resistant to complete digestion. Setlow et al. demonstrated that the structural changes in the DNA responsible for the nuclease resistance were the formation of cyclobutyl pyrimidine dimers, the major photoproduct in UV-irradiated DNA. Using venom phosphodiesterase, they demonstrated that UV irradiation of DNA affected both the rate and extent of enzymatic hydrolysis. In addition, it was demonstrated that the major nuclease-resistant product of this hydrolysis was an oligonucleotide containing dimerized pyrimidines. Treatment of the DNA to split the dimers, either photochemically or photoenzymatically, rendered the polymer more susceptible to hydrolysis by the phosphodiesterase. The specificity of photoreactivating enzyme for pyrimidine dimers lends support to the role of these structures in conferring nuclease resistance to UV-irradiated DNA. The nuclease resistance of DNA containing dimers has been the basis of several assays for the measurement of these photoproducts. Sutherland and Chamberlin reported the development of a rapid and sensitive assay for dimers in 32 P-labeled DNA

  10. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  11. Presence of a Novel DNA Methylation Enzyme in Methicillin-Resistant Staphylococcus aureus Isolates Associated with Pig Farming Leads to Uninterpretable Results in Standard Pulsed-Field Gel Electrophoresis Analysis

    OpenAIRE

    Bens, Corina C. P. M.; Voss, Andreas; Klaassen, Corné H. W.

    2006-01-01

    Genomic DNA from methicillin-resistant Staphylococcus aureus isolates recovered from pigs and their caretakers proved resistant to SmaI digestion, leading to uninterpretable results in standard pulsed-field gel electrophoresis. This is the result of a yet unknown restriction/methylation system in the genus Staphylococcus with the recognition sequence CCNGG.

  12. Three-dimensional solution structure of a DNA duplex containing the BclI restriction sequence: Two-dimensional NMR studies, distance geometry calculations, and refinement by back-calculation of the NOESY spectrum

    International Nuclear Information System (INIS)

    Banks, K.M.; Hare, D.R.; Reid, B.R.

    1989-01-01

    A three-dimensional solution structure for the self-complementary dodecanucleotide [(d-GCCTGATCAGGC)] 2 has been determined by distance geometry with further refinements being performed after back-calculation of the NOESY spectrum. This DNA dodecamer contains the hexamer [d(TGATCA)] 2 recognized and cut by the restriction endonuclease BclI, and its structure was determined in hopes of obtaining a better understanding of the sequence-specific interactions which occur between proteins and DNA. Preliminary examination of the structure indicates the structure is underwound with respect to idealized B-form DNA though some of the local structural parameters (glycosyl torsion angle and pseudorotation angle) suggest a B-family type of structure is present. This research demonstrates the requirements (resonance assignments, interproton distance measurements, distance geometry calculations, and NOESY spectra back-calculation) to generate experimentally self-consistent solution structures for short DNA sequences

  13. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    Science.gov (United States)

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  14. The examination of Hevea brasiliensis plants produced by in vitro culture and mutagenesis by DNA fingerprinting techniques

    International Nuclear Information System (INIS)

    Low, F.C.; Atan, S.; Jaafar, H.

    1998-01-01

    Rubber (Hevea brasiliensis) plants derived from anther and ovule culture as well as gamma-irradiated plants were examined by several DNA marker techniques. These include restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPD), sequence tagged microsatellite sites (STMS), DNA amplification fingerprinting (DAF) and amplified fragment length polymorphisms (AFLPs). Compared to control plants produced by vegetative propagation (cutting and budding), plants produced by in vitro culture appeared to have a reduction in the number of rDNA loci. Two RAPD protocols were compared and found to be similar in amplification of the major DNA bands. After confirmation that the RAPD method adopted was reproducible, the technique was applied to the present studies. Eight out of the 60 primers screened were able to elicit polymorphisms between pooled DNA from in vitro culture plants. Variations in DNA patterns were observed between pooled DNA samples of anther-derived plants as well as between anther-derived and ovule-derived plants. Comparisons of RAPD patterns obtained between anther-derived plants exposed to increasing dosages of gamma-irradiation with non irradiated anther-derived plants revealed distinct DNA polymorphisms. The changes in DNA profiles did not appear to be correlated to the dosage of irradiation. Since somaclonal variation was detected, it was difficult to identify changes which were specifically caused by irradiation. Application of the STMS technique to tag micro satellite sequences (GA) n , (TA) n and (TTA) n in the hydroxymethylglutaryl coenzyme A reductase-1 (hmgr-1) gene failed to detect differences between plants derived from anther and ovule culture. Although restriction endonuclease digestions with methylation sensitive enzymes suggested that four in vitro culture plants examined exhibited similar digestion patterns as the controls, a change in cytosine methylation in one anther-derived plant was detected. Examination of

  15. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    Science.gov (United States)

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  16. A model for the mechanism of strand passage by DNA gyrase

    DEFF Research Database (Denmark)

    Kampranis, S C; Bates, A D; Maxwell, A

    1999-01-01

    this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment......The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires...... the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed...

  17. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    Science.gov (United States)

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  18. Conversion of DNA gyrase into a conventional type II topoisomerase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1996-01-01

    DNA gyrase is unique among topoisomerases in its ability to introduce negative supercoils into closed-circular DNA. We have demonstrated that deletion of the C-terminal DNA-binding domain of the A subunit of gyrase gives rise to an enzyme that cannot supercoil DNA but relaxes DNA in an ATP-depend...

  19. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  20. Plasmid DNA Analysis of Pasteurella multocida Serotype B isolated from Haemorrhagic Septicaemia outbreaks in Malaysia

    Directory of Open Access Journals (Sweden)

    Jamal, H.

    2005-01-01

    Full Text Available A total of 150 purified isolates of Pasteurella multocida serotype B were used (Salmah, 2004 for plasmid DNA curing experiment to determine hyaluronidase activity, antibiotic resistance pattern (ARP and mice lethality test (LD50 for their role of pathogenicity. A plasmid curing experiment was carried out by using the intercalating agent; ethidium bromide and rifampicin, where it was found all the plasmids had been cured (plasmidless from Pasteurella multocida. All of these plasmidless isolates maintained their phenotypic characteristics. They showed the same antibiotic resistancepattern as before curing, produced hyaluronidase and possessed lethality activity in mice when injected intraperitoneally(i.p. Based on this observation, the antibiotic resistance, hyaluronidase activity and mice virulence could probably be chromosomal-mediated. Plasmids were detected 100% in all P. multocida isolates with identical profile of 2 plasmids size 3.0 and 5.5 kb. No large plasmids could be detected in all isolates. Since all the isolates appeared to have identicalplasmid profiles, they were subjected to restriction enzyme(RE analysis. From RE analysis results obtained, it can be concluded that the plasmid DNA in serotype B isolates are identical. Only 4 of 32 REs were found to cleave these plasmids with identical restriction fingerprints; BglII, HaeIII, RsaI and SspI. From RE analysis results, it can be concluded that the plasmid DNA isolates are identical. This plasmid might not played any role in pathogenicity of Pasteurella multocida serotype B, however this information is important for the construction of shuttle vectors in genetic studies of the pathogenicity of haemorrhagic septicaemia(HS.

  1. Correlation between mixed-function oxidase enzyme induction and aflatoxin B1-induced unscheduled DNA synthesis in the chick embryo, in vivo

    International Nuclear Information System (INIS)

    Hamilton, J.W.; Bloom, S.E.

    1984-01-01

    The unscheduled DNA synthesis (UDS) technique has been adapted for use in the chick embryo, in vivo, to determine the relationship between induction of the mixed-function oxidase (MFO) enzyme system and genetic damage from an indirect-acting mutagen-carcinogen. Embryos were injected at 6 days of incubation (DI) with either phenobarbital (PB), a specific inducer of P-450-associated enzyme activities, or 3,4,3',4'-tetrachlorobiphenyl (TCB), a specific inducer of P 1 -450-associated enzyme activities. Aflatoxin B 1 (AFB1) was injected 24 hr later (7 DI), followed by a 5-hr continuous 3 H-thymidine exposure. The livers were removed, prepared for autoradiography, and hepatocytes were scored for an increase in grains/nucleus, indicative of UDS. Aflatoxin B 1 caused a dose-related increase in UDS in all control and induction groups. Phenobarbital-induced embryos had an increased UDS response while TCB-induced embryos had a decreased UDS response, relative to noninduced embryos, for each dosage of AFB1. This suggests that the genotoxicity of an indirect-acting mutagen-carcinogen can be either increased or decreased, in vivo, depending on the inducer used. The chick embryo provides an excellent system for studying the effect of MFO induction on the genotoxicity of promutagen-carcinogens in a developing system

  2. Damages induced in lambda phage DNA by enzyme-generated triplet acetone

    International Nuclear Information System (INIS)

    Menck, C.F.; Cabral Neto, J.B.; Gomes, R.A.; Faljoni-Alario, A.

    1985-01-01

    Exposure of lambda phage to triplet acetone, generated during the aerobic oxidation of isobutanal by peroxidase, leads to genome lesions. The majority of these lesions are detected as DNA single-strand breaks only in alkaline conditions, so true breaks were not observed. Also, no sites sensitive to UV-endonuclease from Micrococcus luteus were found in DNA from treated phage. The participation of triplet acetone in the generation of such DNA damage is discussed. (Author) [pt

  3. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  4. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  5. Facile synthesis of new carbon-11 labeled conformationally restricted rivastigmine analogues as potential PET agents for imaging AChE and BChE enzymes

    International Nuclear Information System (INIS)

    Wang Min; Wang Jiquan; Gao Mingzhang; Zheng Qihuang

    2008-01-01

    Rivastigmine is a newer-generation inhibitor with a dual inhibitory action on both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, and is used for the treatment of AChE- and BChE-related diseases such as brain Alzheimer's disease and cardiovascular disease. New carbon-11 labeled conformationally restricted rivastigmine analogues radiolabeled quaternary ammonium triflate salts, (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(methylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]8) and (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(heptylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]9), were designed and synthesized as potential positron emission tomography (PET) agents for imaging AChE and BChE enzymes. The appropriate precursors were labeled with [ 11 C]CH 3 OTf through N-[ 11 C]methylation, and the target tracers were isolated by solid-phase extraction (SPE) using a cation-exchange CM Sep-Pak cartridge in 40-50% radiochemical yields decay corrected to end of bombardment (EOB), 15-20 min overall synthesis time, and 148-222 GBq/μmol specific activity at EOB

  6. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    Science.gov (United States)

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  7. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  8. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage

    International Nuclear Information System (INIS)

    Batschauer, A.

    1993-01-01

    Photolyases are thought to be critical components of the defense of plants against damage to DNA by solar ultraviolet light, but nothing is known about their molecular or enzymatic nature. The molecular cloning of a photolyase from mustard (Sinapis alba) described here is intended to increase the knowledge about this important repair mechanism in plant species at a molecular level. The gene encodes a polypeptide of 501 amino acids with a predicted molecular mass of 57 kDa. There is a strong sequence similarity to bacterial and yeast photolyases, with a close relationship to enzymes with a deazaflavin chromophor. The plant photolyase is shown to be functional in Escherichia coli which also indicates conservation of photolyases during evolution. It is demonstrated that photolyase expression in plants is light induced, thus providing good evidence for the adaptation of plants to their environment in order to diminish the harmful effects of sunlight. (author)

  9. Non-coding RNAs and epigenome: de novo DNA methylation, allelic exclusion and X-inactivation

    Directory of Open Access Journals (Sweden)

    V. A. Halytskiy

    2013-12-01

    Full Text Available Non-coding RNAs are widespread class of cell RNAs. They participate in many important processes in cells – signaling, posttranscriptional silencing, protein biosynthesis, splicing, maintenance of genome stability, telomere lengthening, X-inactivation. Nevertheless, activity of these RNAs is not restricted to posttranscriptional sphere, but cover also processes that change or maintain the epigenetic information. Non-coding RNAs can directly bind to the DNA targets and cause their repression through recruitment of DNA methyltransferases as well as chromatin modifying enzymes. Such events constitute molecular mechanism of the RNA-dependent DNA methylation. It is possible, that the RNA-DNA interaction is universal mechanism triggering DNA methylation de novo. Allelic exclusion can be also based on described mechanism. This phenomenon takes place, when non-coding RNA, which precursor is transcribed from one allele, triggers DNA methylation in all other alleles present in the cell. Note, that miRNA-mediated transcriptional silencing resembles allelic exclusion, because both miRNA gene and genes, which can be targeted by this miRNA, contain elements with the same sequences. It can be assumed that RNA-dependent DNA methylation and allelic exclusion originated with the purpose of counteracting the activity of mobile genetic elements. Probably, thinning and deregulation of the cellular non-coding RNA pattern allows reactivation of silent mobile genetic elements resulting in genome instability that leads to ageing and carcinogenesis. In the course of X-inactivation, DNA methylation and subsequent hete­rochromatinization of X chromosome can be triggered by direct hybridization of 5′-end of large non-coding RNA Xist with DNA targets in remote regions of the X chromosome.

  10. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  11. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    Science.gov (United States)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  12. Conformational changes in DNA gyrase revealed by limited proteolysis

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    We have used limited proteolysis to identify conformational changes in DNA gyrase. Gyrase exhibits a proteolytic fingerprint dominated by two fragments, one of approximately 62 kDa, deriving from the A protein, and another of approximately 25 kDa from the B protein. Quinolone binding to the enzyme......-DNA intermediate by calcium ions does not reveal any protection, suggesting that the quinolone-induced conformational change is different from an "open-gate" state of the enzyme. A quinolone-resistant mutant of gyrase fails to give the characteristic quinolone-associated proteolytic signature. The ATP...... does not prevent dimerization since incubation of the enzyme-DNA complex with both ADPNP and quinolones gives rise to a complex whose proteolytic pattern retains the characteristic signature of dimerization but has lost the quinolone-induced protection. As a result, the quinolone-gyrase complex can...

  13. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  14. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    Science.gov (United States)

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  15. Molecular characterization of the probiotic strain Bacillus cereus var. toyoi NCIMB 40112 and differentiation from food poisoning strains.

    Science.gov (United States)

    Klein, Günter

    2011-07-01

    Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection

  16. Undermethylated DNA as a source of microsatellites from a conifer genome.

    Science.gov (United States)

    Zhou, Y; Bui, T; Auckland, L D; Williams, C G

    2002-02-01

    Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.

  17. Plasmid profilling and similarities in identities of probable microbes isolated from crude oil contaminated agricultural soil

    Directory of Open Access Journals (Sweden)

    Toochukwu Ekwutosi OGBULIE

    2013-05-01

    Full Text Available Plasmid analysis of bacteria isolated from agricultural soil experimentally contaminated with crude oil was carried out and the resultant bands’ depicting the different molecular sizes of the plasmid DNA molecules per isolate was obtained. There was no visible band observed for Klebsiella indicating that the organism lack plasmid DNA that confers degradative ability to it, possibly the gene could be borne on the chromosomal DNA which enabled its persistence in the polluted soil. Molecular characterization was undertaken to confirm the identities of the possible microorganisms that may be present in crude oil-contaminated soil. The result of the DNA extracted and amplified in a PCR using EcoRI and EcoRV restriction enzymes for cutting the DNA of the bacterial cells indicated no visible band for cuts made with EcoRV restriction enzyme showing that the enzyme is not specific for bacterial DNA of isolates in the samples, hence there was no amplification. By contrast though, visible bands of amplicons were observed using EcoRI restriction enzymes. The resultant visible bands of microbial profile obtained using the universal RAPD primer with nucleotide sequence of 5’—CTC AAA GCA TCT AGG TCC A---3’ showed that only Pseudomonas fluorescens and Bacillus mycoides had visible bands at identical position on the gel indicating that both species possibly had identical sequence or genes of negligible differences coding for degradation of hydrocarbons as shown by similar values in molecular weight and positions in the gel electrophoresis field.

  18. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  19. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands

    International Nuclear Information System (INIS)

    Kaushal, Prem Singh; Talawar, Ramappa K.; Varshney, Umesh; Vijayan, M.

    2010-01-01

    The molecule of uracil-DNA glycosylase from M. tuberculosis exhibits domain motion on binding to DNA or a proteinaceous inhibitor. The highly conserved DNA-binding region interacts with a citrate ion in the structure. Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in

  20. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.