WorldWideScience

Sample records for dna lesions implications

  1. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Gasimov, Eldar; Obrenovich, Mark E; Fischbach, Kathryn; Shenk, Justin C; Smith, Mark A; Perry, George

    2008-01-01

    The pathogenesis that is primarily responsible for Alzheimer's disease (AD) and cerebrovascular accidents (CVA) appears to involve chronic hypoperfusion. We studied the ultrastructural features of vascular lesions and mitochondria in brain vascular wall cells from human AD biopsy samples and two transgenic mouse models of AD, yeast artificial chromosome (YAC) and C57B6/SJL Tg (+), which overexpress human amyloid beta precursor protein (AbetaPP). In situ hybridization using probes for normal and 5 kb deleted human and mouse mitochondrial DNA (mtDNA) was performed along with immunocytochemistry using antibodies against the Abeta peptide processed from AbetaPP, 8-hydroxy-2'-guanosine (8OHG), and cytochrome c oxidase (COX). More amyloid deposition, oxidative stress markers as well as mitochondrial DNA deletions and structural abnormalities were present in the vascular walls of the human AD samples and the AbetaPP-YAC and C57B6/SJL Tg (+) transgenic mice compared to age-matched controls. Ultrastructural damage in perivascular cells highly correlated with endothelial lesions in all samples. Therefore, pharmacological interventions, directed at correcting the chronic hypoperfusion state, may change the natural course of the development of dementing neurodegeneration.

  2. From DNA lesions to tissue malfunction

    International Nuclear Information System (INIS)

    Denekamp, J.

    1989-01-01

    After large doses of radiation, tissues fail to function when the proliferating cells lose their clonogenic ability. This results from unrepaired or misrepaired double strand breaks in the DNA. The lesions are inflicted immediately but there is a variable latent period before tissue damage is expressed. This ranges from a few days in intestine, to weeks in skin, and to months or years in deep visceral tissues, e.g. heart, lung, kidney, spinal cord. The latency relates to the proliferation kinetics of each tissue component. Doses of 10-30 Gy do not cause serious functional defects in differentiated cells, but they prevent successful mitosis in proliferating cells. Thus each tissue continues to function until its differentiated cells are lost by normal wear and tear processes. After a time which relates to the natural lifespan of the differentiated cells, failure to provide replacement cells from the proliferating compartment becomes important and the tissue shows atrophy and eventually a functional deficit. If the radiation exposure is divided into a series of smaller exposures or is given at a low dose-rate, the biochemical repair of DNA is more effective and less damage is observed. After high LET ionizing radiation, e.g. neutrons or α particles, the response is almost linear and is not affected by doserate or fractionation. (author)

  3. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  4. Archaeal RNA polymerase arrests transcription at DNA lesions.

    Science.gov (United States)

    Gehring, Alexandra M; Santangelo, Thomas J

    2017-01-01

    Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.

  5. Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: use in lethal lesion determination

    International Nuclear Information System (INIS)

    Radford, I.R.

    1986-01-01

    The effect of three radiomodifying agents, cysteamine, hyperthermia, and hypoxia, on the induction of the major classes of X-ray-induced DNA lesions, was studied using mouse L cells and Chinese hamster V79 cells. The use of filter elution techniques allowed most of these studies to be conducted at X-ray doses within the survival-curve range. Cysteamine was found to protect against DNA single-strand breakage (ssb), DNA base damage, and DNA-protein crosslinkage. Hyperthermia had no effect on the level of DNA ssb or DNA base damage, but in L cells (but not in V79 cells) it increased the level of DNA-protein crosslinkage relative to DNA ssb. Hypoxia protected against DNA ssb, had no significant effect on the level of DNA base damage, and enhanced the level of DNA-protein crosslinkage relative to DNA ssb. These results support the previous suggestion that the X-ray-induced lethal lesion is DNA double-strand breakage. Implications of these findings for the mechanisms of formation of X-ray-induced DNA lesions are also discussed. (author)

  6. DNA Adducts aand Human Atherosclerotis Lesions

    Czech Academy of Sciences Publication Activity Database

    Strejc, Přemysl; Boubelík, O.; Stávková, Zdena; Chvátalová, Irena; Šrám, Radim

    2001-01-01

    Roč. 42, - (2001), s. 662 ISSN 0008-5472. [Annual Meeting of Proceedings /92./. 24.03.2001-28.03.2001, New Orleans] R&D Projects: GA MZd NM10 Keywords : DNA adducts * LDL cholesterol Subject RIV: DN - Health Impact of the Environment Quality

  7. Modification of radiation-induced DNA lesions by oxygen

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1984-01-01

    The efficiency of DNA strand break production by radiation under aerated and hypoxic conditions was determined in CHO cells using the technique of alkaline elution. The resulting oxygen enhancement ratio was surprisingly high, 7.8. When the pH of the elution was increased from 12.1, the normally used pH, to 12.8, a substantial increase in the strand breaks produced in the hypoxic cells was observed, resulting in an OER of 4.8. This difference in susceptibility of DNA strand break detection as a function of pH suggested a difference in the type of lesions produced in DNA when irradiated under aerated and hypoxic conditions. Further experiments to examine the DNA-protein crosslinks produced by radiation suggested that the apparent lower level of strand breaks in hypoxic cells may be due to a higher level of DNA-protein crosslinks produced under hypoxic conditions. Thus, oxygen may not only act by modifying the quantity of radiation-induced DNA lesions but may also cause qualitative changes. If the different types of DNA lesions have different contributions to lethality, the OER for cell survival may represent a complex composite of these changes at the molecular level

  8. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    Science.gov (United States)

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  9. Theoretical approach of complex DNA lesions: from formation to repair

    International Nuclear Information System (INIS)

    Bignon, Emmanuelle

    2017-01-01

    This thesis work is focused on the theoretical modelling of DNA damages, from formation to repair. Several projects have been led in this framework, which can be sorted into three different parts. One on hand, we studied complex DNA reactivity. It included a study about 8-oxo-7,8-dihydro-guanine (8oxoG) mechanisms of formation, a project concerning the UV-induced pyrimidine 6-4 pyrimidone (6-4PP) endogenous photo-sensitizer features, and another one about DNA photo-sensitization by nonsteroidal anti-inflammatory drugs (i.e. ketoprofen and ibuprofen). On the other hand, we investigated mechanical properties of damaged DNA. The structural signature of a DNA lesion is of major importance for their repair, unfortunately only few NMR and X-ray structures of such systems are available. In order to gain insights into their dynamical structure, we investigated a series of complex damages: clustered abasic sites, interstrand cross-links, and the 6-4PP photo-lesion. Likewise, we studied the interaction modes DNA with several polyamines, which are well known to interact with the double helix, but also with the perspective to model DNA-protein cross-linking. The third part concerned the study of DNA interactions with repair enzymes. In line with the structural study about clustered abasic sites, we investigated the dynamics of the same system, but this time interacting with the APE1 endonuclease. We also studied interactions between the Fpg glycosylase with an oligonucleotides containing tandem 8-oxoG on one hand and 8-oxoG - abasic site as multiply damaged sites. Thus, we shed new lights on damaged DNA reactivity, structure and repair, which provides perspectives for biomedicine and life's mechanisms understanding as we begin to describe nucleosomal DNA. (author)

  10. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  11. DNA modification by sulfur mustards and nitrosoureas and repair of these lesions

    International Nuclear Information System (INIS)

    Ludlum, D.B.; Papirmeister, B.; Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD)

    1986-01-01

    The nature and significance of DNA modifications caused by chloroethyl ethyl sulfide (CEES) is compared with those produced by chloroethyl cyclohexyl nitrosourea (CCNU). This comparison illustrates the differences in the kind of biological response which can arise from DNA modification by different agents and the role of DNA repair in determining this response. In particular, the ability of tumor cells to become resistant to therapeutic agents has some important implications for the ability of cells in general to tolerate environmental mutagens. DNA modification by CEES and CCNU can be viewed in the context of DNA modification caused by compounds which naturally react with DNA. For example, cycasin and S-adenosylmethionine both methylate DNA. Not surprisingly, a variety of repair mechanisms has evolved which serve to maintain the integrity of DNA in the presence of such naturally-occurring DNA modifiers. The ability of these enzymes to repair other DNA lesions is currently under active investigation as described here. 19 refs., 4 figs., 3 tabs

  12. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA...... lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair....

  13. Immunological probes for lesions and repoair patches in DNA

    International Nuclear Information System (INIS)

    Leadon, S.A.

    1988-01-01

    This paper describes two immunological approaches for the detection of DNA damage and its repair. The first uses a monoclonal antibody to directly measure the production and removal of one type of oxidized base, thymine glycol; the second uses an antibody to detect the repair synthesis event itself and, when combined with the use of molecular biological techniques, can be used to monitor the production and removal of lesions in specific sequences within the genome

  14. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  15. Inducible DNA-repair systems in yeast: competition for lesions.

    Science.gov (United States)

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  16. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine

    International Nuclear Information System (INIS)

    Cooke, Marcus S.; Evans, Mark D.; Dove, Rosamund; Rozalski, Rafal; Gackowski, Daniel; Siomek, Agnieszka; Lunec, Joseph; Olinski, Ryszard

    2005-01-01

    The repair of oxidatively damaged DNA is integral to the maintenance of genomic stability, and hence prevention of a wide variety of pathological conditions, such as aging, cancer and cardiovascular disease. The ability to non-invasively assess DNA repair may provide information regarding repair pathways, variability in repair capacity, and susceptibility to disease. The development of assays to measure urinary DNA lesions offered this potential, although it rapidly became clear that possible contribution from diet and cell turnover may influence urinary lesion levels. Whilst early studies attempted to address these issues, up until now, much of the data appears conflicting. However, recent work from our laboratories, in which human volunteers were fed highly oxidatively modified 15 N-labelled DNA demonstrates that diet does not appear to contribute to urinary levels of 8-hydroxyguanine and 7,8-dihydro-8-oxo-2'-deoxyguanosine. Furthermore, we propose that a number of literature reports form an argument against a contribution from cell death. Indeed we, and others, have presented evidence, which strongly suggests the involvement of cell death to be minimal. Taken together, these data would appear to rule out various confounding factors, leaving DNA repair pathways as the principal source of urinary purine, if not DNA, lesions enabling such measurements to be used as indicators of repair

  17. The (6-4) Dimeric Lesion as a DNA Photosensitizer

    OpenAIRE

    Vendrell Criado, Victoria; Rodríguez Muñiz, Gemma María; Lhiaubet ., Virginie Lyria; Cuquerella Alabort, Maria Consuelo; Miranda Alonso, Miguel Ángel

    2016-01-01

    [EN] Based on our previous investigations into the photophysical properties of the 5-methyl-2-pyrimidone (Pyo) chromophore, we now extend our studies to the photobehavior of the dimeric (6-4) thymine photoproducts (6-4 PP) to evaluate their capability to act as instrinsic DNA photosensitizers. The lesion presents significant absorption in the UVB/UVA region, weak fluorescence emission, a singlet-excited-state energy of approximately 351 kJ mol(-1), and a triplet-excited-state energy of 297 kJ...

  18. The (6-4) Dimeric Lesion as a DNA Photosensitizer.

    Science.gov (United States)

    Vendrell-Criado, Victoria; Rodríguez-Muñiz, Gemma M; Lhiaubet-Vallet, Virginie; Cuquerella, M Consuelo; Miranda, Miguel A

    2016-07-04

    Based on our previous investigations into the photophysical properties of the 5-methyl-2-pyrimidone (Pyo) chromophore, we now extend our studies to the photobehavior of the dimeric (6-4) thymine photoproducts (6-4 PP) to evaluate their capability to act as instrinsic DNA photosensitizers. The lesion presents significant absorption in the UVB/UVA region, weak fluorescence emission, a singlet-excited-state energy of approximately 351 kJ mol(-1) , and a triplet-excited-state energy of 297 kJ mol(-1) . Its triplet transient absorption has a maximum at 420-440 nm, a lifetime of around 7 μs, and a high formation quantum yield, ΦISC =0.86. This species is efficiently quenched by thymidine. Its DNA photosensitizing properties are demonstrated by a series of experiments run on a pBR322 plasmid. The lesion photoinduces both single-strand breaks and the formation of cyclobutane thymine dimers. Altogether, these results show that, the substitution of the pyrimidone ring at C4 by a 5-hydroxy-5,6-dihydrothymine does not cancel out the photosensitization properties of the chromophore. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  20. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    Science.gov (United States)

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η

    OpenAIRE

    O’Flaherty, D. K.; Patra, A.; Su, Y.; Guengerich, F. P.; Egli, M.; Wilds, C. J.

    2016-01-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O4-Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4-O4 bond on processing by human DNA polymerase η (hPol η) was studied for oligonucleotides containing O4-methylthymidine, O4-ethylthymidine, and analogs restricting the O4-methylene group in an anti-orientation. Primer extens...

  2. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available BACKGROUND: Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS: Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION: Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.

  3. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Sage, Evelyne [Institut Curie, Bat. 110, Centre Universitaire, 91405 Orsay (France); CNRS UMR3348, Bat. 110, Centre Universitaire, 91405 Orsay (France); Harrison, Lynn, E-mail: lclary@lsuhsc.edu [Department of Molecular and Cellular Physiology, LSUHSC-S, 1501 Kings Highway, Shreveport, LA 71130 (United States)

    2011-06-03

    A clustered DNA lesion, also known as a multiply damaged site, is defined as {>=}2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.

  4. Detection and repair of a UV-induced photosensitive lesion in the DNA of human cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Regan, J.D.

    1986-01-01

    Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. The authors have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. The data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells. (Auth.)

  5. Measurement and meaning of oxidatively modified DNA lesions in urine

    DEFF Research Database (Denmark)

    Cooke, Marcus S; Olinski, Ryszard; Loft, Steffen

    2008-01-01

    and cell death have minimal, if any, influence upon urinary levels of 8-oxodG and 8-oxo-7,8-dihydroguanine, although this should be assessed on a lesion-by-lesion basis. Broadly speaking, there is consensus between chromatographic techniques; however, ELISA approaches continue to overestimate 8-oxod...

  6. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  7. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  8. Epigenetic reprogramming of pericentromeric satellite DNA in premalignant and malignant lesions

    DEFF Research Database (Denmark)

    Brückmann, Nadine Heidi; Pedersen, Christina Bøg; Ditzel, Henrik Jørn

    2018-01-01

    on pericentromeric satellites in primary melanocytes. This suggests that polycomb bodies form in cancer cells with global DNA demethylation to control the stability of pericentromeric satellite DNA. These results reveal a novel epigenetic perturbation specific to premalignant and malignant cells thatmaybe used...... as an early diagnostic marker for detection of precancerous changes and a new therapeutic entry point. Implications: Pericentromeric satellite DNA is epigenetically reprogrammed into polycomb bodies as a premalignant event with implications for transcriptional activity and genomic stability. Mol Cancer Res...

  9. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  10. On the biophysical interpretation of lethal DNA lesions induced by ionising radiation

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel; Stewart, R.D.

    2006-01-01

    Roč. 122, 1-4 (2006), s. 169-172 ISSN 0144-8420 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : clustered DNA lesions * V79 cells * proton tracks * DNA damage * DNA repair * radiobiological modelling Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.446, year: 2006

  11. Fundamental study of the radiation monitoring system based on evaluation of DNA lesions

    International Nuclear Information System (INIS)

    Shimizu, K.; Matuo, Y.; Izumi, Y.; Ikeda, T.

    2011-01-01

    The biological dosemeter that measures biological responses to ionising radiation is useful for radiation protection. This paper presents the development and characterisation of a gamma ray irradiation dosimetry system based on real-time PCR (polymerase chain reaction) methodology. Real-time PCR is used to amplify and simultaneously quantify a targeted DNA molecule. If there are no limitations due to limiting substrates or reagents, at each extension step, the amount of DNA target is doubled, leading to exponential (geometric) amplification of the specific DNA fragment. The essential point of this assay is that DNA lesions caused by ionising radiation block DNA synthesis by DNA polymerase, resulting in a decrease in the amplification of a damaged DNA template compared with that of non-damaged DNA templates. (authors)

  12. Clustered DNA lesions containing 5-formyluracil and AP site: repair via the BER system.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Belousova

    Full Text Available Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1-2 helical turns (clustered lesion. Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site composed of the clustered lesion with 5-formyluracil (5-foU by the base excision repair (BER proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1 decreased under AP site excursion to the 3'-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.

  13. Lesion measurement in non-radioactive DNA by quantitative gel electrophoresis

    International Nuclear Information System (INIS)

    Sutherland, J.C.; Chen, Chun Zhang; Emrick, A.; Hacham, H; Monteleone, D.; Ribeiro, E.; Trunk, J.; Sutherland, B.M.

    1989-01-01

    The gel electrophoresis method developed during the past ten years in our laboratories makes possible the quantitation of UV induced pyrimidine dimers, gamma ray induced single- and double-strand breaks and many other types of lesions in nanogram quantities of DNA. The DNA does not have to be labeled with radionuclides or of a particular conformation, thus facilitating the use of the method in measuring damage levels and repair rates in the DNA of intact organisms -- including man. The gel method can quantitate any lesion in DNA that either is, or can be converted to a single- or double-strand break. The formation of a strand break produces two shorter DNA molecules for each molecule that existed before the treatment that produced the break. Determining the number of breaks, and hence the number of lesions, becomes a matter of comparing the average lengths of molecules in samples differing only in lesion-induced breaks. This requires that we determine the distribution of mass of DNA on a gel as a function of its distance of migration and also the dispersion function of its distance of migration and also the dispersion function (the relationship between molecular length and distance of migration) in the gel electrophoresis system. 40 refs., 5 figs

  14. Liquid biopsy in the diagnosis of HPV DNA in breast lesions.

    Science.gov (United States)

    Carolis, Sabrina De; Pellegrini, Alice; Santini, Donatella; Ceccarelli, Claudio; De Leo, Antonio; Alessandrini, Federica; Arienti, Chiara; Pignatta, Sara; Tesei, Anna; Mantovani, Vilma; Zamagni, Claudio; Taffurelli, Mario; Sansone, Pasquale; Bonafé, Massimiliano; Cricca, Monica

    2018-02-01

    HPV DNA has never been investigated in nipple discharges (ND) and serum-derived extracellular vesicles, although its presence has been reported in ductal lavage fluids and blood specimens. We analyzed 50 ND, 22 serum-derived extracellular vesicles as well as 51 pathologic breast tissues for the presence of 16 HPV DNA types. We show that the presence of HPV DNA in the ND is predictive of HPV DNA-positive breast lesions and that HPV DNA is more represented in intraductal papillomas. We also show the presence of HPV DNA in the serum-derived extracellular vesicles. Our data supports the use of liquid biopsy to detect HPV DNA in breast pathology.

  15. Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells

    Science.gov (United States)

    Reelfs, Olivier; Macpherson, Peter; Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter; Young, Antony R.

    2011-01-01

    Photochemotherapy—in which a photosensitizing drug is combined with ultraviolet or visible radiation—has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S4TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S4TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S4TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S4TdR in dilute solution, more complex lesions are formed when S4TdR-containing oligonucleotides are irradiated. One of these, a thietane/S5-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S4TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S4TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S4TdR/UVA indicating that these lesions contribute significantly to S4TdR/UVA cytotoxicity. PMID:21890905

  16. Miscoding and mutagenic properties of 8-oxoguanine and abasic sites: Ubiquitous lesions in damaged DNA

    International Nuclear Information System (INIS)

    Grollman, A.P.; Takeshita, Masaru

    1995-01-01

    More than twenty oxidatively-damaged bases, including 8-oxoguanine, have been found to occur in genomic DNA. Some of these lesions block DNA replication and are potentially lethal; others generate mutations which can initiate carcinogenesis and promote cellular aging. In this report, the authors focus attention on the mutagenicity and repair of 8-oxoguanine. Kasai and Nishimura's discovery that hydroxyl radicals react with guanine residues in DNA to form 8-oxoguanine and the development of sensitive methods for the detection and quantitation of this modified base led to the observation that approximately 1 in 10 5 guanine residues in mammalian DNA are oxidized at the C-8 position. DNA containing 8-oxoguanine and synthetic analogs of the abasic site have been used to investigate the miscoding and mutagenic potential of these ubiquitous lesions. Studies in the laboratory were facilitated by the development of solid state synthetic methods by which these lesions could be introduced at defined positions in DNA. In this paper, the authors review studies in which 8-oxoguanine and abasic sites have been used in model systems to explore various early events in the replication of selectively damaged DNA

  17. Kinetic Analysis of the Bypass of a Bulky DNA Lesion Catalyzed by Human Y-family DNA Polymerases

    Science.gov (United States)

    Sherrer, Shanen M.; Sanman, Laura E.; Xia, Cynthia X.; Bolin, Eric R.; Malik, Chanchal K.; Efthimiopoulos, Georgia; Basu, Ashis K.; Suo, Zucai

    2012-01-01

    1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolτ), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dGAP on a synthetic DNA template but hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dGAP sites (t50bypass ) encountered by hPolη, hPolκ and hPolτ was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dGAP (hPolη > hPolκ > hPolτ >> hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dGAP efficiently, replication by both hPolκ and hPolτ was strongly stalled at the lesion site and at a site immediately downstream from dGAP. By employing pre-steady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dGAP in vivo is catalyzed by a human Y-family DNA polymerase, e.g. hPolη, the process is certainly mutagenic. PMID:22324639

  18. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  19. Learning tasks as a possible treatment for DNA lesions induced by oxidative stress in hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    DragoCrneci; Radu Silaghi-Dumitrescu

    2013-01-01

    Reactive oxygen species have been implicated in conditions ranging from cardiovascular dysfunc-tion, arthritis, cancer, to aging and age-related disorders. The organism developed several path-ways to counteract these effects, with base excision repair being responsible for repairing one of the major base lesions (8-oxoG) in al organisms. Epidemiological evidence suggests that cognitive stimulation makes the brain more resilient to damage or degeneration. Recent studies have linked enriched environment to reduction of oxidative stressin neurons of mice with Alzheimer’s dis-ease-like disease, but given its complexity it is not clear what specific aspect of enriched environ-ment has therapeutic effects. Studies from molecular biology have shown that the protein p300, which is a transcription co-activator required for consolidation of memories during specific learning tasks, is at the same time involved in DNA replication and repair, playing a central role in the long-patch pathway of base excision repair. Based on the evidence, we propose that learning tasks such as novel object recognition could be tested as possible methods of base excision repair faci-litation, hence inducing DNA repair in the hippocampal neurons. If this method proves to be effective, it could be the start for designing similar tasks for humans, as a behavioral therapeutic complement to the classical drug-based therapy in treating neurodegenerative disorders. This review presents the current status of therapeutic methods used in treating neurodegenerative diseases induced by reactive oxygen species and proposes a new approach based on existing data.

  20. Oxidative DNA Damage in Neurons: Implication of Ku in Neuronal Homeostasis and Survival

    Directory of Open Access Journals (Sweden)

    Daniela De Zio

    2012-01-01

    Full Text Available Oxidative DNA damage is produced by reactive oxygen species (ROS which are generated by exogenous and endogenous sources and continuously challenge the cell. One of the most severe DNA lesions is the double-strand break (DSB, which is mainly repaired by nonhomologous end joining (NHEJ pathway in mammals. NHEJ directly joins the broken ends, without using the homologous template. Ku70/86 heterodimer, also known as Ku, is the first component of NHEJ as it directly binds DNA and recruits other NHEJ factors to promote the repair of the broken ends. Neurons are particularly metabolically active, displaying high rates of transcription and translation, which are associated with high metabolic and mitochondrial activity as well as oxygen consumption. In such a way, excessive oxygen radicals can be generated and constantly attack DNA, thereby producing several lesions. This condition, together with defective DNA repair systems, can lead to a high accumulation of DNA damage resulting in neurodegenerative processes and defects in neurodevelopment. In light of recent findings, in this paper, we will discuss the possible implication of Ku in neurodevelopment and in mediating the DNA repair dysfunction observed in certain neurodegenerations.

  1. Characterization of non-dimer DNA lesions and cellular damages caused by ultraviolet light

    International Nuclear Information System (INIS)

    Nakao, Kumi

    1989-01-01

    To understand the mechanisms of carcinogenicity and cytotoxicity induced by ultraviolet (UV) light, non-dimer DNA damages produced by near UV light (wave-length: 290∼320 nm) were examined by alkaline elution using Chinese hamster V-79 cells. UV exposure produced a dose-dependent induction of DNA single strand breaks and DNA-protein crosslinks. However, neither of these DNA lesions were repaired within a 24 hr incubation of the cells following UV exposure. Rather the number of these lesions increased. Also, UV exposure inhibited DNA and RNA synthesis. In addition, UV induced both cytotoxicity and chromosomal aberration. Electron spin resornance (ESR) studies showed that the exposure of cells to UV light resulted in the appearance of an ESR signal at -120degC. The roles of glutathione, vitamin E and vitamin B 2 , which were celluar antioxidant, on the induction of cytotoxicity by UV exposure were also examined. Pretreatment with vitamin E reduced the cytotoxicty caused by UV, whereas neither preteatment with vitamin B 2 nor the alteration of cellular gluthaione content affected the cytotoxicity. These results suggest that non-dimer DNA damages, such as DNA single strand breaks and DNA-protein crosslinks play an important role in inducing UV-carcinogenicity and UV-cytotoxicity, and that the mechanisms of these damages may be associated with the generation of free radicals. (author)

  2. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.

    Science.gov (United States)

    Gahlon, Hailey L; Romano, Louis J; Rueda, David

    2017-11-20

    Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.

  3. Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions

    DEFF Research Database (Denmark)

    Martín-Pardillos, Ana; Tsaalbi-Shtylik, Anastasia; Chen, Si

    2017-01-01

    -distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly...

  4. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II

    NARCIS (Netherlands)

    B. Steurer (Barbara); J.A. Marteijn (Jurgen)

    2016-01-01

    textabstractThe faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The

  5. DNA radio-induced tandem lesions: formation, introduction in oligonucleotides and repair

    International Nuclear Information System (INIS)

    Bourdat, Anne-Gaelle

    2000-01-01

    Cell killing induced by excited photosensitizers, ionizing radiation or radiomimetic drugs can not be only explained by the formation of single DNA lesions. Thus, multiply damaged sites, are likely to have harmful biological consequences. One example of tandem base damage induced by ".OH radical in X-irradiated aqueous solution of DNA oligomers is N-(2-deoxy-β-D-erythro-pentofuranosyl)-formyl-amine (dβF)/8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). In order to investigate the biological significance of such a tandem lesion, both 8-oxodGuo and dβF were introduced in synthetic oligonucleotides at vicinal positions using the solid phase phosphoramidite method with the 'Pac phosphoramidite' chemistry. The purity of the synthetic DNA fragments and the integrity of modified nucleosides was confirmed using different complementary techniques: HPLC, PAGE, ESI MS, MALDI-TOF MS and capillary electrophoresis. Using the above synthetic substrates, investigations were carried out in order to determine the substrate specificity and the excision mechanism of three glycosylases involved in the base excision repair pathway: endonuclease III, Fpg and yOggl. Both tandem lesions were substrates for the BER enzymes. However, the tandem lesion are not completely excised by the repair enzymes. The rates of excision as inferred from the determination of the ratios of Vm/Km Michaelis kinetics constants were not found to be significantly affected by the presence of the tandem lesions. MALDI-TOF mass spectrometry was used in order to gain insights into mechanistic aspects of oligonucleotide cleavage by the BER enzymes. During in vitro DNA synthesis by Taq DNA polymerase, Klenow fragment exo- and DNA polymerase β, tandem base damage were found to block the progression of the enzymes. Finally, the level of tandem base damage in the DNA exposed to γ-ray using the liquid chromatography coupled to electro-spray ionization tandem mass spectrometry was determined. Both dβF-8-oxodGuo and 8

  6. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    Science.gov (United States)

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage

    Science.gov (United States)

    Klungland, Arne; Rosewell, Ian; Hollenbach, Stephan; Larsen, Elisabeth; Daly, Graham; Epe, Bernd; Seeberg, Erling; Lindahl, Tomas; Barnes, Deborah E.

    1999-01-01

    DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency. PMID:10557315

  8. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  9. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  10. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η.

    Science.gov (United States)

    O'Flaherty, D K; Patra, A; Su, Y; Guengerich, F P; Egli, M; Wilds, C J

    2016-08-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O 4 -Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4- O 4 bond on processing by human DNA polymerase η (hPol η ) was studied for oligonucleotides containing O 4 -methylthymidine, O 4 -ethylthymidine, and analogs restricting the O 4 -methylene group in an anti -orientation. Primer extension assays revealed that the O 4 -alkyl orientation influences hPol η bypass. Crystal structures of hPol η •DNA•dNTP ternary complexes with O 4 -methyl- or O 4 -ethylthymidine in the template strand showed the nucleobase of the former lodged near the ceiling of the active site, with the syn - O 4 -methyl group engaged in extensive hydrophobic interactions. This unique arrangement for O 4 -methylthymidine with hPol η , inaccessible for the other analogs due to steric/conformational restriction, is consistent with differences observed for nucleotide incorporation and supports the concept that lesion conformation influences extension across DNA damage. Together, these results provide mechanistic insights on the mutagenicity of O 4 MedT and O 4 EtdT when acted upon by hPol η .

  11. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    Science.gov (United States)

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  12. Trans-Lesion DNA Polymerases May Be Involved in Yeast Meiosis

    Science.gov (United States)

    Arbel-Eden, Ayelet; Joseph-Strauss, Daphna; Masika, Hagit; Printzental, Oxana; Rachi, Eléanor; Simchen, Giora

    2013-01-01

    Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30. We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed. PMID:23550131

  13. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs

    International Nuclear Information System (INIS)

    Bounaix Morand du Puch, Ch

    2010-10-01

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  14. Detection and analysis of human papillomavirus 16 and 18 homologous DNA sequences in oral lesions.

    Science.gov (United States)

    Wen, S; Tsuji, T; Li, X; Mizugaki, Y; Hayatsu, Y; Shinozaki, F

    1997-01-01

    The prevalence of human papillomavirus (HPV) 16 and 18 was investigated in oral lesions of the population of northeast China including squamous cell carcinomas (SCCs), candida leukoplakias, lichen planuses and papillomas, by southern blot hybridization with polymerase chain reaction (PCR). Amplified HPV16 and 18 E6 DNA was analyzed by cycle sequence. HPV DNA was detected in 14 of 45 SCCs (31.1%). HPV18 E6 DNA and HPV16 E6. DNA were detected in 24.4% and 20.0% of SCCs. respectively. Dual infection of both HPV 16 and HPV 18 was detected in 6 of 45 SCCs (13.3%), but not in other oral lesions. HPV 18 E6 DNA was also detected in 2 of 3 oral candida leukoplakias, but in none of the 5 papillomas. Our study indicated that HPV 18 infection might be more frequent than HPV 16 infection in oral SCCs in northeast Chinese, dual infection of high risk HPV types was restricted in oral SCCs, and that HPV infection might be involved in the pathogenesis of oral candida leukoplakia.

  15. Base-pairing preferences, physicochemical properties and mutational behaviour of the DNA lesion 8-nitroguanine †

    OpenAIRE

    Bhamra, Inder; Compagnone-Post, Patricia; O’Neil, Ian A.; Iwanejko, Lesley A.; Bates, Andrew D.; Cosstick, Richard

    2012-01-01

    8-Nitro-2′-deoxyguanosine (8-nitrodG) is a relatively unstable, mutagenic lesion of DNA that is increasingly believed to be associated with tissue inflammation. Due to the lability of the glycosidic bond, 8-nitrodG cannot be incorporated into oligodeoxynucleotides (ODNs) by chemical DNA synthesis and thus very little is known about its physicochemical properties and base-pairing preferences. Here we describe the synthesis of 8-nitro-2′-O-methylguanosine, a ribonucleoside analogue of this lesi...

  16. Relationship of DNA lesions and their repair to chromosomal aberration production

    International Nuclear Information System (INIS)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers

  17. Relationship of DNA lesions and their repair to chromosomal aberration production

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers.

  18. Nature, frequency and duration of genital lesions after consensual sexual intercourse-Implications for legal proceedings

    DEFF Research Database (Denmark)

    Astrup, Birgitte Schmidt; Ravn, Pernille; Lauritsen, Jens

    2012-01-01

    OBJECTIVE: The purpose of this study was to make a normative description of the nature and duration of genital lesions sustained during consensual sexual intercourse, using the three most commonly used techniques; visualisation using the naked eye, colposcopy and toluidine blue dye followed....... Lesions were frequent; 34% seen with the naked eye, 49% seen with colposcopy and 52% seen with toluidine blue dye and subsequent colposcopy. The lesions lasted for several days; the median survival times for lacerations were 24, 40 and 80h, respectively. CONCLUSIONS: The legal implications...

  19. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  20. Prevalence of human papillomavirus DNA in female cervical lesions from Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    S. M. B. Cavalcanti

    1994-12-01

    Full Text Available A hundred-sixty paraffin-embedded specimens from female cervical lesions were examined for human papillomavirus (HPV types 6, 11, 16 and 18 infections by non-isotopic in situ hybridization. The data were compared with histologic diagnosis. Eighty-eight (55 biopsies contained HPV DNA sequences. In low grade cervical intraepithelial neoplasias (CIN I, HPV infection was detected in 78.7 of the cases, the benign HPV 6 was the most prevalent type. HPV DNA was detected in 58 of CIN II and CIN III cases and in 41.8 of squamous cell carcinomas (SCC. Histologically normal women presented 20 of HPV infection. Oncogenic HPV was found in 10 of these cases, what may indicate a higher risk of developing CINs and cancer. Twenty-five percent of the infected tissues contained mixed infections. HPV 16 was the most common type infecting the cervix and its prevalence raised significantly with the severity of the lesions, pointing its role in cancer pathogenesis. White women presented twice the cervical lesions of mulatto and African origin women, although HPV infection rates were nearly the same for the three groups (approximately 50. Our results showed that HPV typing by in situ hybridization is a useful tool for distinguishing between low and high risk cervical lesions. Further studies are required to elucidate risk factors associated with HPV infection and progression to malignancy in Brazilian population.

  1. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches

    International Nuclear Information System (INIS)

    Boussicault, F.

    2006-09-01

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  2. Base-pairing preferences, physicochemical properties and mutational behaviour of the DNA lesion 8-nitroguanine.

    Science.gov (United States)

    Bhamra, Inder; Compagnone-Post, Patricia; O'Neil, Ian A; Iwanejko, Lesley A; Bates, Andrew D; Cosstick, Richard

    2012-11-01

    8-Nitro-2'-deoxyguanosine (8-nitrodG) is a relatively unstable, mutagenic lesion of DNA that is increasingly believed to be associated with tissue inflammation. Due to the lability of the glycosidic bond, 8-nitrodG cannot be incorporated into oligodeoxynucleotides (ODNs) by chemical DNA synthesis and thus very little is known about its physicochemical properties and base-pairing preferences. Here we describe the synthesis of 8-nitro-2'-O-methylguanosine, a ribonucleoside analogue of this lesion, which is sufficiently stable to be incorporated into ODNs. Physicochemical studies demonstrated that 8-nitro-2'-O-methylguanosine adopts a syn conformation about the glycosidic bond; thermal melting studies and molecular modelling suggest a relatively stable syn-8-nitroG·anti-G base pair. Interestingly, when this lesion analogue was placed in a primer-template system, extension of the primer by either avian myeloblastosis virus reverse transcriptase (AMV-RT) or human DNA polymerase β (pol β), was significantly impaired, but where incorporation opposite 8-nitroguanine did occur, pol β showed a 2:1 preference to insert dA over dC, while AMV-RT incorporated predominantly dC. The fact that no 8-nitroG·G base pairing is seen in the primer extension products suggests that the polymerases may discriminate against this pairing system on the basis of its poor geometric match to a Watson-Crick pair.

  3. Base-pairing preferences, physicochemical properties and mutational behaviour of the DNA lesion 8-nitroguanine†

    Science.gov (United States)

    Bhamra, Inder; Compagnone-Post, Patricia; O’Neil, Ian A.; Iwanejko, Lesley A.; Bates, Andrew D.; Cosstick, Richard

    2012-01-01

    8-Nitro-2′-deoxyguanosine (8-nitrodG) is a relatively unstable, mutagenic lesion of DNA that is increasingly believed to be associated with tissue inflammation. Due to the lability of the glycosidic bond, 8-nitrodG cannot be incorporated into oligodeoxynucleotides (ODNs) by chemical DNA synthesis and thus very little is known about its physicochemical properties and base-pairing preferences. Here we describe the synthesis of 8-nitro-2′-O-methylguanosine, a ribonucleoside analogue of this lesion, which is sufficiently stable to be incorporated into ODNs. Physicochemical studies demonstrated that 8-nitro-2′-O-methylguanosine adopts a syn conformation about the glycosidic bond; thermal melting studies and molecular modelling suggest a relatively stable syn-8-nitroG·anti-G base pair. Interestingly, when this lesion analogue was placed in a primer-template system, extension of the primer by either avian myeloblastosis virus reverse transcriptase (AMV-RT) or human DNA polymerase β (pol β), was significantly impaired, but where incorporation opposite 8-nitroguanine did occur, pol β showed a 2:1 preference to insert dA over dC, while AMV-RT incorporated predominantly dC. The fact that no 8-nitroG·G base pairing is seen in the primer extension products suggests that the polymerases may discriminate against this pairing system on the basis of its poor geometric match to a Watson–Crick pair. PMID:22965127

  4. Role of DNA lesions and repair in the transformation of human cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1987-01-01

    Results of studies on the transformation of diploid human fibroblasts in culture into tumor-forming cells by exposure to chemical carcinogens or radiation indicate that such transformation is multi-stepped process that at least one step, acquisition of anchorage independence, occurs as a mutagenic event. Studies comparing normal-repairing human cells with DNA repair-deficient cells, such as those derived from cancer-prone xeroderma pigmentosum patients, indicate that excision repair in human fibroblasts is essentially an error-free process that the ability to excise potentially cytotoxic, mutagenic, or transforming lesions induced DNA by carcinogens determines their ultimate biological consequences. Cells deficient in excision repair are abnormally sensitive to these agents. Studies with cells treated at various times in the cell cycle show that there is a certain limited amount of time available for DNA repair between the initial exposure and the onset of the cellular event responsible for mutation induction and transformation to anchorage independence. The data suggest that DNA replication on a template containing unexcised lesions (photoproducts, adducts) is the critical event

  5. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications.

    Science.gov (United States)

    Cartenì, Fabrizio; Bonanomi, Giuliano; Giannino, Francesco; Incerti, Guido; Vincenot, Christian Ernest; Chiusano, Maria Luisa; Mazzoleni, Stefano

    2016-01-01

    DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence.

  6. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  7. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  8. Implications of DNA Methylation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ernesto Miranda-Morales

    2017-07-01

    Full Text Available It has been 200 years since Parkinson’s disease (PD was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.

  9. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita

    2008-01-01

    in the Heavy strand could explain the observed bias, a phenomenon that could be further tested with non-PCR based approaches. The characterization of the HVS1 hotspots will be of use to future Neandertal mtDNA studies, with specific regards to assessing the authenticity of new positions previously unknown...

  10. Distribution of ultraviolet-induced lesions in Simian Virus 40 DNA

    International Nuclear Information System (INIS)

    Bourre, F.; Renault, G.; Sarasin, A.; Seawell, P.C.

    1985-01-01

    In order to analyze the molecular mechanisms of mutagenesis in mammalian cells, we devised an analytical assay using Simian Virus 40 as biological probe. To study the possible correlations between the distribution of the lesions on the treated DNA and the distribution of mutations, we have located and quantified the lesions induced by ultraviolet light (254 nm) on a SV40 DNA fragment. At a fluence of 2,000J/m 2 , our results show that the formation frequency of thymine-thymine dimers (TT) is three to four times higher than the formation frequency of the other types of dimers (TC, CT, CC). On the other hand, the formation frequency of a dimer is influenced by the adjacent sequence. In particular, a pyrimidine in the 5' position of a thymine-thymine dimer enhances its formation frequency. At the dose used the formation frequency of the pyrimidine (6-4) pyrimidone photoproducts is twenty times less than the formation frequency of pyrimidine dimers. This paper shows the distribution of the major lesions induced by UV-light on a defined fragment of SV40 genome after UV irradiation. This work is necessary to get an insight in the molecular mechanisms of UV-mutagenesis

  11. Effects of radiation quality and oxygen on clustered DNA lesions and cell death.

    Science.gov (United States)

    Stewart, Robert D; Yu, Victor K; Georgakilas, Alexandros G; Koumenis, Constantinos; Park, Joo Han; Carlson, David J

    2011-11-01

    Radiation quality and cellular oxygen concentration have a substantial impact on DNA damage, reproductive cell death and, ultimately, the potential efficacy of radiation therapy for the treatment of cancer. To better understand and quantify the effects of radiation quality and oxygen on the induction of clustered DNA lesions, we have now extended the Monte Carlo Damage Simulation (MCDS) to account for reductions in the initial lesion yield arising from enhanced chemical repair of DNA radicals under hypoxic conditions. The kinetic energy range and types of particles considered in the MCDS have also been expanded to include charged particles up to and including (56)Fe ions. The induction of individual and clustered DNA lesions for arbitrary mixtures of different types of radiation can now be directly simulated. For low-linear energy transfer (LET) radiations, cells irradiated under normoxic conditions sustain about 2.9 times as many double-strand breaks (DSBs) as cells irradiated under anoxic conditions. New experiments performed by us demonstrate similar trends in the yields of non-DSB (Fpg and Endo III) clusters in HeLa cells irradiated by γ rays under aerobic and hypoxic conditions. The good agreement among measured and predicted DSBs, Fpg and Endo III cluster yields suggests that, for the first time, it may be possible to determine nucleotide-level maps of the multitude of different types of clustered DNA lesions formed in cells under reduced oxygen conditions. As particle LET increases, the MCDS predicts that the ratio of DSBs formed under normoxic to hypoxic conditions by the same type of radiation decreases monotonically toward unity. However, the relative biological effectiveness (RBE) of higher-LET radiations compared to (60)Co γ rays (0.24 keV/μm) tends to increase with decreasing oxygen concentration. The predicted RBE of a 1 MeV proton (26.9 keV/μm) relative to (60)Co γ rays for DSB induction increases from 1.9 to 2.3 as oxygen concentration

  12. In vitro enzymatic studies on the nature and repair of x-ray induced lesions in DNA

    International Nuclear Information System (INIS)

    Wallace, S.S.

    1979-01-01

    Areas studied include: purification and properties of enzyme probes for x-ray induced DNA lesions using E. Coli x-ray endonuclease and S. cerevisiae endonuclease E; use of enzymes probes; and use of physical, chemical and enzymatic probes to quantify x-ray-induced lesions in viruses and cells

  13. Repair of UVC induced DNA lesions in erythrocytes from Carassius auratus gibelio

    International Nuclear Information System (INIS)

    Bagdonas, E.; Zukas, K.

    2004-01-01

    The kinetics of UVC (254 nm) irradiation induced DNA single-strand breaks generated during the excision repair of UV induced DNA damage in erythrocytes from Carassius auratus gibelio were studied using alkaline comet assay. Nucleotide excision repair recognised DNA lesions such as UVC induced cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone photoproducts and produced DNA single-stranded breaks that were easily detected by comet assay. After irradiation of erythrocytes with 58 j/m 2 UVC dose, there was an increase in comet tail moment (CTM) at 2 hours post-radiation, whereas at 4 hours post-radiation CTM decreased and did not differ significantly from the control level (P=0,127). When erythrocytes were exposed to 173 J/m 2 UVC dose, the excision repair delayed in the beginning (0 hours), reached maximum level at 2 hours post-radiation (CTM-54,8) and showed slightly decreased level at 4 hours post-radiation (CTM=18,5). (author)

  14. Chemistry of the 8-Nitroguanine DNA Lesion: Reactivity, Labelling and Repair.

    Science.gov (United States)

    Alexander, Katie J; McConville, Matthew; Williams, Kathryn R; Luzyanin, Konstantin V; O'Neil, Ian A; Cosstick, Richard

    2018-02-26

    The 8-nitroguanine lesion in DNA is increasingly associated with inflammation-related carcinogenesis, whereas the same modification on guanosine 3',5'-cyclic monophosphate generates a second messenger in NO-mediated signal transduction. Very little is known about the chemistry of 8-nitroguanine nucleotides, despite the fact that their biological effects are closely linked to their chemical properties. To this end, a selection of chemical reactions have been performed on 8-nitroguanine nucleosides and oligodeoxynucleotides. Reactions with alkylating reagents reveal how the 8-nitro substituent affects the reactivity of the purine ring, by significantly decreasing the reactivity of the N2 position, whilst the relative reactivity at N1 appears to be enhanced. Interestingly, the displacement of the nitro group with thiols results in an efficient and specific method of labelling this lesion and is demonstrated in oligodeoxynucleotides. Additionally, the repair of this lesion is also shown to be a chemically feasible reaction through a reductive denitration with a hydride source. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    Science.gov (United States)

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  16. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

    Science.gov (United States)

    Hašplová, Katarína; Hudecová, Alexandra; Magdolénová, Zuzana; Bjøras, Magnar; Gálová, Eliška; Miadoková, Eva; Dušinská, Mária

    2012-01-05

    3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: A biomarker for the early detection of cancer

    Directory of Open Access Journals (Sweden)

    Montgomery Elizabeth A

    2006-12-01

    Full Text Available Abstract Background Somatic mutations of mitochondrial DNA (mtDNA are common in many human cancers. We have described an oligonucleotide microarray ("MitoChip" for rapid sequencing of the entire mitochondrial genome (Zhou et al, J Mol Diagn 2006, facilitating the analysis of mtDNA mutations in preneoplastic lesions. We examined 14 precancerous lesions, including seven Barrett esophagus biopsies, with or without associated dysplasia; four colorectal adenomas; and three inflammatory colitis-associated dysplasia specimens. In all cases, matched normal tissues from the corresponding site were obtained as germline control. MitoChip analysis was performed on DNA obtained from cryostat-embedded specimens. Results A total of 513,639 bases of mtDNA were sequenced in the 14 samples, with 490,224 bases (95.4% bases assigned by the automated genotyping software. All preneoplastic lesions examined demonstrated at least one somatic mtDNA sequence alteration. Of the 100 somatic mtDNA alterations observed in the 14 cases, 27 were non-synonymous coding region mutations (i.e., resulting in an amino acid change, 36 were synonymous, and 37 involved non-coding mtDNA. Overall, somatic alterations most commonly involved the COI, ND4 and ND5 genes. Notably, somatic mtDNA alterations were observed in preneoplastic lesions of the gastrointestinal tract even in the absence of histopathologic evidence of dysplasia, suggesting that the mitochondrial genome is susceptible at the earliest stages of multistep cancer progression. Conclusion Our findings further substantiate the rationale for exploring the mitochondrial genome as a biomarker for the early diagnosis of cancer, and confirm the utility of a high-throughput array-based platform for this purpose from a clinical applicability standpoint.

  19. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  20. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  1. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches; Reparation de modeles de lesions photoinduites de l'ADN. Approches electrochimiques

    Energy Technology Data Exchange (ETDEWEB)

    Boussicault, F

    2006-09-15

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  2. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  3. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  4. Towards observing the encounter of the T7 DNA replication fork with a lesion site at the Single molecule level

    KAUST Repository

    Shirbini, Afnan

    2017-05-01

    Single-molecule DNA flow-stretching assays have been a powerful approach to study various aspects on the mechanism of DNA replication for more than a decade. This technique depends on flow-induced force on a bead attached to a surface-tethered DNA. The difference in the elastic property between double-strand DNA (long) and single-strand DNA (short) at low regime force allows the observation of the beads motion when the dsDNA is converted to ssDNA by the replisome machinery during DNA replication. Here, I aim to develop an assay to track in real-time the encounter of the bacteriophage T7 replisome with abasic lesion site inserted on the leading strand template. I optimized methods to construct the DNA substrate that contains the abasic site and established the T7 leading strand synthesis at the single molecule level. I also optimized various control experiments to remove any interference from the nonspecific interactions of the DNA with the surface. My work established the foundation to image the encounter of the T7 replisome with abasic site and to characterize how the interactions between the helicase and the polymerase could influence the polymerase proofreading ability and its direct bypass of this highly common DNA damage type.

  5. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    International Nuclear Information System (INIS)

    Diao, Y; Hinson, K; Sun, Y; Arsuaga, J

    2015-01-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  6. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    Science.gov (United States)

    Diao, Y.; Hinson, K.; Sun, Y.; Arsuaga, J.

    2015-10-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  7. Aberrant DNA Methylation: Implications in Racial Health Disparity.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available Incidence and mortality rates of colorectal carcinoma (CRC are higher in African Americans (AAs than in Caucasian Americans (CAs. Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS and RNA sequencing were employed to evaluate total genome methylation of 5'-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit.DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs. Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4, and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p] in AA patients with CRC versus CA patients.DNA methylation profile and/or products of its downstream targets could serve as biomarker(s addressing racial health disparity.

  8. Use of avidin-biotin-peroxidase complex for measurement of UV lesions in human DNA by microELISA

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, B [Technischen Universitaet Muenchen (Germany, F.R.). Dermatologische Klinik; Remy, W [Max-Planck-Institut fuer Biochemie, Muenchen (Germany, F.R.)

    1984-02-10

    The avidin/biotin system was introduced into the standard enzyme-linked immunosorbent assay (ELISA) to increase its sensitivity for detecting UV lesions in human DNA. Goat anti-rabbit IgG-peroxidase used in the standard ELISA as second antibody was replaced by biotinylated goat anti-rabbit IgG plus the avidin-biotin-peroxidase complex (ABC) reagent. Sensitivity of detection of plate-fixed UV-DNA-antibody complexes was increased about 8-fold and photolesions in human DNA samples irradiated with as low a dose as 1 J/m/sup 2/ UVC or a suberythermal dose of UVB light could be detected.

  9. XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions

    Directory of Open Access Journals (Sweden)

    Leonhardt Heinrich

    2007-09-01

    Full Text Available Abstract Background Genome integrity is constantly challenged and requires the coordinated recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We investigated the dynamics of XRCC1 and PCNA that act as molecular loading platforms and play a central role in this coordination. Results Local DNA damage was introduced by laser microirradation and the recruitment of fluorescent XRCC1 and PCNA fusion proteins was monitored by live cell microscopy. We found an immediate and fast recruitment of XRCC1 preceding the slow and continuous recruitment of PCNA. Fluorescence bleaching experiments (FRAP and FLIP revealed a stable association of PCNA with DNA repair sites, contrasting the high turnover of XRCC1. When cells were repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear pool of PCNA, while XRCC1 dynamically redistributed even to lesions inflicted last. Conclusion These results show that PCNA and XRCC1 have distinct kinetic properties with functional consequences for their capacity to respond to successive DNA damage events.

  10. XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions

    Science.gov (United States)

    Mortusewicz, Oliver; Leonhardt, Heinrich

    2007-01-01

    Background Genome integrity is constantly challenged and requires the coordinated recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We investigated the dynamics of XRCC1 and PCNA that act as molecular loading platforms and play a central role in this coordination. Results Local DNA damage was introduced by laser microirradation and the recruitment of fluorescent XRCC1 and PCNA fusion proteins was monitored by live cell microscopy. We found an immediate and fast recruitment of XRCC1 preceding the slow and continuous recruitment of PCNA. Fluorescence bleaching experiments (FRAP and FLIP) revealed a stable association of PCNA with DNA repair sites, contrasting the high turnover of XRCC1. When cells were repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear pool of PCNA, while XRCC1 dynamically redistributed even to lesions inflicted last. Conclusion These results show that PCNA and XRCC1 have distinct kinetic properties with functional consequences for their capacity to respond to successive DNA damage events. PMID:17880707

  11. DNA damage signaling and apoptosis in preinvasive tubal lesions of ovarian carcinoma.

    Science.gov (United States)

    Chene, Gautier; Ouellet, Veronique; Rahimi, Kurosh; Barres, Veronique; Caceres, Katia; Meunier, Liliane; Cyr, Louis; De Ladurantaye, Manon; Provencher, Diane; Mes Masson, Anne Marie

    2015-06-01

    High-grade serous ovarian cancer (HGSC) is the most life-threatening gynecological malignancy despite surgery and chemotherapy. A better understanding of the molecular basis of the preinvasive stages might be helpful in early detection and diagnosis. Genetic instability is 1 of the characteristics shared by most human cancers, and its level is variable through precancerous lesions to advanced cancer. Because DNA damage response (DDR) has been described as 1 of the first phases in genomic instability, we investigated the level of DDR activation and the apoptosis pathway in serous tubal intraepithelial carcinoma (STIC), the potential precursor of HGSC. A tissue microarray including 21 benign fallopian tubes, 21 STICs, 17 HGSCs from patients with STICs (associated ovarian cancer [AOC]) from the same individuals, and 30 HGSCs without STICs (non-AOC) was used in this study.Immunohistochemistry was performed to evaluate the level of DDR proteins (pATM, pChk2, γH2AX, 53BP1, and TRF2), apoptosis proteins (Bcl2, BAX, and BIM), and cyclin E. The expression of all DDR proteins increased from benign fallopian tubes to STICs. The level of expression of pATM, pChk2, γH2AX, and TRF2 was also increased in STICs in comparison with AOC. BAX, BIM, and cyclin E expressions were high in STICs, whereas Bcl2 expression was low. Immunohistochemical profiles of AOC and non-AOC were also different. These results suggest an activation of the DDR and apoptosis pathways in STICs, indicating that genomic instability may occur early in the precancerous lesions of HGSC.

  12. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon

    2011-01-01

    stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies...... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...... bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....

  13. DNA Methylation of MMP9 Is Associated with High Levels of MMP-9 Messenger RNA in Periapical Inflammatory Lesions.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavalieri; Farias, Lucyana Conceição; Silva, Renato Menezes; Letra, Ariadne; Gomez, Ricardo Santiago

    2016-01-01

    Matrix metalloproteinases (MMPs) are the major class of enzymes responsible for degradation of extracellular matrix components and participate in the pathogenesis of periapical inflammatory lesions. MMP expression may be regulated by DNA methylation. The purpose of the present investigation was to analyze the expression of MMP2 and MMP9 in periapical granulomas and radicular cysts and to test the hypothesis that, in these lesions, their transcription may be modulated by DNA methylation. Methylation-specific polymerase chain reaction was used to evaluate the DNA methylation pattern of the MMP2 gene in 13 fresh periapical granuloma samples and 10 fresh radicular cyst samples. Restriction enzyme digestion was used to assess methylation of the MMP9 gene in 12 fresh periapical granuloma samples and 10 fresh radicular cyst samples. MMP2 and MMP9 messenger RNA transcript levels were measured by quantitative real-time polymerase chain reaction. All periapical lesions and healthy mucosa samples showed partial methylation of the MMP2 gene; however, periapical granulomas showed higher MMP2 mRNA expression levels than healthy mucosa (P = .014). A higher unmethylated profile of the MMP9 gene was found in periapical granulomas and radicular cysts compared with healthy mucosa. In addition, higher MMP9 mRNA expression was observed in the periapical lesions compared with healthy tissues. The present study suggests that the unmethylated status of the MMP9 gene in periapical lesions may explain the observed up-regulation of messenger RNA transcription in these lesions. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Synthesis of modified oligonucleotides for repair and replication studies of single and double radio-induced DNA lesions

    International Nuclear Information System (INIS)

    Muller, E.

    2002-01-01

    Several oxidative processes induce the formation of DNA lesions. In order to evaluate the biological and structural significance of such damage, several DNA lesions were inserted into synthetic oligonucleotides at defined sites. The research work aimed at describing the preparation of oligonucleotides t hat contained DNA damage and the evaluation of the biological properties of the lesions. A first part described the incorporation of radiation-induced lesions, namely (5'S,6S)-5',6-cyclo-5,6-dihydro-2'-deoxyuridine and (5'S,5S,6S)-5',6-cyclo-5-hydroxy-5,6-dihydro-2'-desoxyuridine into oligonucleotides. The modified DNA fragments were characterised by several spectroscopic and biochemical analyses including ESI MS, MALDI-TOF MS, CLHP and enzymatic digestions. During in vitro DNA synthesis by Taq DNA polymerase and Klenow exo fragment, the pyrimidine cyclo-nucleosides were found to block the progression of the enzymes. Then, repair studies by ADN N glycosylases, operating in the base excision repair pathway, have shown that the anhydro-nucleoside lesions were not recognised nor excised by Fpg, endo III, endo VIII, yNtg1 yNtg2 and yOgg1. Interestingly, the Latococcus lactis Fpg protein recognises (formation of a non covalent complex) but do not excise the damage. The incorporation into oligonucleotides of the (5R*) and (5S*) diastereoisomers of 1-[2-deoxy-β-D-erythro-pentofuranosyl]-5-hydroxy-hydantoin, generated by several oxidative processes was then described. In vitro DNA replication assays using modified oligonucleotides matrix showed a lethal potential of the latter base damage. Repair studies by ADN N-glycosylases showed that the damage was substrate for Fpg, endo III, endo VIII, Ntg1, Ntg2 and Fpg-L1. The rates of excision as inferred from the determination of the Michaelis kinetics constants were found to be affected by the presence of the damage. MALDI-TOF MS was used in order to gain insights into mechanistic aspects of oligonucleotides cleavage by the

  15. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  16. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    Science.gov (United States)

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.

  17. Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling.

    Science.gov (United States)

    Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge

    2009-06-01

    Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.

  18. Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology.

    Science.gov (United States)

    Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis; Wood, Emily T; Whetstone, Anna; Seigo, Michaela A; Jones, Craig K; Pham, Dzung; van Zijl, Peter; Reich, Daniel S; Calabresi, Peter A

    2015-08-01

    Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing-remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. © The Author(s), 2015.

  19. Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light

    International Nuclear Information System (INIS)

    Wood, R.D.

    1985-01-01

    Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr - host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants, derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. Thus the lesion inducing transitions is not the cyclobutyl pyrimidine dimer. Photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in targeted u.v. mutagenesis. (author)

  20. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: forensic implications.

    Science.gov (United States)

    Hall, Ashley; Sims, Lynn M; Ballantyne, Jack

    2014-01-01

    Few publications have detailed the nature of DNA damage in contemporary (i.e. non-ancient) dried biological stains. The chief concern, from a forensic standpoint, is that the damage can inhibit polymerase-mediated primer extension, ultimately resulting in DNA typing failure. In the work described here, we analyzed the effects of UVA and UVB irradiation on cell-free solubilized DNA, cell-free dehydrated DNA and dehydrated cellular DNA (from bloodstains). After UV exposure ranging from 25 J cm(-2) to 1236 J cm(-2), we assayed for the presence of bipyrimidine photoproducts (BPPPs), oxidative lesions and strand breaks, correlating the damage with the inhibition of STR profiling. Subsequent to irradiation with either UVA and UVB, the incidence of BPPPs, oxidative products and strand breaks were observed in decreasing quantities as follows: cell-free solubilized DNA>cell-free dehydrated DNA>bloodstain DNA. UVA irradiation did not result in even the partial loss of a STR profile in any sample tested. Somewhat different results were observed after genetic analysis of UVB exposed samples, in that the ability to produce a complete STR profile was affected earliest in bloodstain DNA, next in cell-free solubilized DNA and not at all in cell-free dehydrated DNA. Therefore, it is likely that other types of damage contributed to allele-drop-out in these samples but remained undetected by our assays, whereby the endonucleases did not react with the lesions or the presence of the lesions was masked by strand breaks. Under the conditions of the study, strand breaks appeared to be the predominant types of damage that ultimately resulted in DNA typing failure from physiological stains, although some evidence suggested oxidative damage may have played a role as well. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light.

    Science.gov (United States)

    Zhang, Xiaohong; Jeffs, Graham; Ren, Xiaolin; O'Donovan, Peter; Montaner, Beatriz; Perrett, Conal M; Karran, Peter; Xu, Yao-Zhong

    2007-03-01

    The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen. This conversion is prevented by antioxidants, including the dietary vitamin ascorbate. DNA G(SO3) is also the major photoproduct of 6-TG in DNA and it can be selectively introduced into DNA or oligonucleotides in vitro by mild chemical oxidation. Thermal stability measurements indicate that G(SO3) does not form stable base pairs with any of the normal DNA bases in duplex oligonucleotides and is a powerful block for elongation by Klenow DNA polymerase in primer extension experiments. In cultured human cells, DNA damage produced by 6-TG and UVA treatment is associated with replication inhibition and provokes a p53-dependent DNA damage response.

  2. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.

    Science.gov (United States)

    Kobayashi, Kaori; Guilliam, Thomas A; Tsuda, Masataka; Yamamoto, Junpei; Bailey, Laura J; Iwai, Shigenori; Takeda, Shunichi; Doherty, Aidan J; Hirota, Kouji

    2016-08-02

    PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol(-/-) and PrimPol(-/-)/Polη(-/-)/Polζ (-/-) gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol(-/-) cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol(-/-) cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol(-/-) cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol(-/-) cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol(-/-) cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol(-/-) cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.

  3. Viewing Human DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography

    Science.gov (United States)

    Vyas, Rajan; Reed, Andrew J.; Tokarsky, E. John; Suo, Zucai

    2015-01-01

    One common oxidative DNA lesion, 8-oxo-7,8-dihydro-2′-deoxyguanine (8-oxoG), is highly mutagenic in vivo due to its anti-conformation forming a Watson–Crick base pair with correct deoxycytidine 5′-triphosphate (dCTP) and its syn-conformation forming a Hoogsteen base pair with incorrect deoxyadenosine 5′-triphosphate (dATP). Here, we utilized time-resolved X-ray crystallography to follow 8-oxoG bypass by human DNA polymerase β (hPolβ). In the 12 solved structures, both Watson–Crick (anti-8-oxoG:anti-dCTP) and Hoogsteen (syn-8-oxoG:anti-dATP) base pairing were clearly visible and were maintained throughout the chemical reaction. Additionally, a third Mg2+ appeared during the process of phosphodiester bond formation and was located between the reacting α- and β-phosphates of the dNTP, suggesting its role in stabilizing reaction intermediates. After phosphodiester bond formation, hPolβ reopened its conformation, pyrophosphate was released, and the newly incorporated primer 3′-terminal nucleotide stacked, rather than base paired, with 8-oxoG. These structures provide the first real-time pictures, to our knowledge, of how a polymerase correctly and incorrectly bypasses a DNA lesion. PMID:25825995

  4. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Science.gov (United States)

    Boerkamp, Kim M.; Rutteman, Gerard R.; Kik, Marja J. L.; Kirpensteijn, Jolle; Schulze, Christoph; Grinwis, Guy C. M.

    2012-01-01

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development. PMID:24213507

  5. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Boerkamp, Kim M., E-mail: K.M.Boerkamp@uu.nl; Rutteman, Gerard R. [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Kik, Marja J. L. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands); Kirpensteijn, Jolle [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Schulze, Christoph; Grinwis, Guy C. M. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands)

    2012-12-03

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  6. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2012-12-01

    Full Text Available DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  7. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    International Nuclear Information System (INIS)

    Boerkamp, Kim M.; Rutteman, Gerard R.; Kik, Marja J. L.; Kirpensteijn, Jolle; Schulze, Christoph; Grinwis, Guy C. M.

    2012-01-01

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development

  8. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    International Nuclear Information System (INIS)

    Schiestl, R.H.; Prakash, S.; Prakash, L.

    1990-01-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6Δ) mutations and show that they also suppress the γ-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of γ-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6Δ is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6Δ SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed

  9. Interaction of DNA-lesions induced by sodium fluoride and radiation and its influence in apoptotic induction in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Santosh Podder

    2015-01-01

    Full Text Available Fluoride is an essential trace element but also an environmental contaminant with major sources of exposure being drinking water, food and pesticides. Previous studies showed that sodium fluoride (NaF at 5 mM or more is required to induce apoptosis and chromosome aberrations and proposed that DNA damage and apoptosis play an important role in toxicity of excessive fluoride. The aim of this study is directed to understand the nature of DNA-lesions induced by NaF by allowing its interaction with radiation induced DNA-lesions. NaF 5 mM was used after observing inability to induce DNA damages and apoptosis by single exposure with 50 μM or 1 mM NaF. Co-exposure to NaF and radiation significantly increased the frequency of aberrant metaphases and exchange aberrations in human lymphocytes and arrested the cells in G1 stage instead of apoptotic death. Flow cytometric analysis, DNA fragmentation and PARP-cleavage analysis clearly indicated that 5 mM NaF together with radiation (1 Gy induced apoptosis in both U87 and K562 cells due to down regulation of expression of anti-apoptotic proteins, like Bcl2 in U87 and inhibitors of apoptotic proteins like survivin and cIAP in K562 cells. This study herein suggested that single exposure with extremely low concentration of NaF unable to induce DNA lesions whereas higher concentration induced DNA lesions interact with the radiation-induced DNA lesions. Both are probably repaired rapidly thus showed increased interactive effect. Coexposure to NaF and radiation induces more apoptosis in cancer cell lines which could be due to increased exchange aberrations through lesions interaction and downregulating anti-apoptotic genes.

  10. Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2′-deoxyguanosine by Human DNA Polymerase η*

    Science.gov (United States)

    Patra, Amitraj; Zhang, Qianqian; Guengerich, F. Peter; Egli, Martin

    2016-01-01

    O6-Methyl-2′-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the “translesion” Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η. PMID:27694439

  11. The role of the HCR system in the repair of lethal lesions of Bacillus subtilis phages and their transfecting DNA damaged by radiation and alkylating agents

    International Nuclear Information System (INIS)

    Vizdalova, M.; Janovska, E.; Zhestyanikov, V.D.

    1980-01-01

    The role of the HCR system in the repair of prelethal lesions induced by UV light, γ radiation and alkylating agents was studied in the Bacillus subtilis SPP1 phage, its heat sensitive mutants (N3, N73 nad ts 1 ) and corresponding infectious DNA. The survival of phages and their transfecting DNA after treatment with UV light is substantially higher in hcr + cells than in hcr cells, the differences being more striking in intact phages than in their transfecting DNA's. Repair inhibitors reduce survival in hcr + cells: caffeine lowers the survival of UV-irradiated phage SPP1 in exponentially growing hcr + cells but has no effect on its survival in competent hcr + cells; acriflavin and ethidium bromide decrease the survival of the UV-irradiated SPP1 phage in both exponentially growing and competent hcr + cells to the level of survival observed in hcr cells; moreover, ethidium bromide lowers the number of infective centres in hcr + cells of the UV-irradiated DNA of the SPP1 phage. Repair inhibitors do not lower the survival of the UV-irradiated phages or their DNA in hcr cells. The repair mechanism under study also effectively repairs lesions induced by polyfunctional alkylating agents in the transfecting DNA's of B. subtilis phages but is not functional with lesions induced by these agents in free phages and lesions caused in the phages and their DNA by ethyl methanesulphonate or γ radiation. (author)

  12. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  13. Heavy ion-induced lesions in DNA: A theoretical model for the initial induction of DNA strand breaks and chromatin breaks

    International Nuclear Information System (INIS)

    Schmidt, J.B.

    1993-01-01

    A theoretical model has been developed and used to calculate yields and spatial distributions of DNA strand breaks resulting from the interactions of heavy ions with chromatin in aqueous systems. The three dimensional spatial distribution of ionizing events has been modeled for charged particles as a function of charge and velocity. Chromatin has been modeled as a 30 nm diameter solenoid of nucleosomal DNA. The Monte Carlo methods used by Chatterjee et al. have been applied to DNA in a chromatin conformation. Refinements to their methods include: a combined treatment of primary and low energy (<2 keV) secondary electron interactions, an improved low energy delta ray model, and the combined simulation of direct energy deposition on the DNA and attack by diffusing hydroxyl radicals. Individual particle tracks are treated independently, which is assumed to be applicable to low fluence irradiations in which multiple particle effects are negligible. Single strand break cross section open-quotes hooksclose quotes seen in experiments at very high LET appear to be due to the collapsing radial extent of the track, as predicted in the open-quotes deep sieveclose quotes hypothesis proposed by Tobias et al. Spatial distributions of lesions produced by particles have been found to depend on chromatin structure. In the future, heavy ions may be used as a tool to probe the organization of DNA in chromatin. A Neyman A-binomial variation of the open-quotes cluster modelclose quotes for the distribution of chromatin breaks per irradiated cell has been theoretically tested. The model includes a treatment of the chromatin fragment detection technique's resolution, which places a limitation on the minimum size of fragments which can be detected. The model appears to fit some of the experimental data reasonably well. However, further experimental and theoretical refinements are desirable

  14. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    DEFF Research Database (Denmark)

    Bentin, T; Nielsen, Peter E.

    1996-01-01

    The influence of DNA topology on peptide nucleic acid (PNA) binding was studied. Formation of sequence-specific PNA2/dsDNA (double-stranded DNA) complexes was monitored by a potassium permanganate probing/primer extension assay. At low ionic strengths, the binding of PNA was 2-3 times more...

  15. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions

    International Nuclear Information System (INIS)

    Rodin, S.N.; Rodin, A.S.; Juhasz, A.; Holmquist, G.P.

    2002-01-01

    The database of tumor-associated p53 base substitutions includes about 5% of tumors with two or more base substitutions. These multiplet base substitutions in one tumor are evidence for hyper-mutagenesis. Our retrospective analysis of this database indicates that most multiplets arise from a single transient hyper-mutagenic event in one cell that subsequently proliferated into a clonal tumor. The hyper-mutagenesis, 1.8x10 -4 substitutions per base pair, is detected as multiple mutations in p53 genes of tumors. It requires one strongly tumorigenic p53 substitution, usually missense, called the driver mutation. The occurrence frequencies of ancillary base substitutions, those that hitch-hike along with the driver mutation, are independent of their amino acid coding properties. In this respect, they act like neutral mutations. In support of this neutrality, we find that the frequency distribution of hitch-hiking CpG transitions along the p53 exons, their mutational spectrum, approximates the spontaneous pre-selection mutational spectrum of most human tissues and is correlated with the mutational spectrum of p53 pseudogenes in mammalian germ cells. The driver substitutions of multiplets predominantly originate along the transcribed strand while the ancillary substitutions tend to originate along the non-transcribed strand. This data is consistent with a model of time-dependent mutagenesis in non-dividing stem cells for generating multiple strand-asymmetric p53 mutations in tumors. By transcriptional bypass of DNA lesions with concomitant misincorporation, transcriptional mutagenesis generates a transient mutant p53 mRNA. The associated mutant p53 protein could allow the host cell a growth advantage, release from G 1 -arrest. Then, during subsequent DNA replication and misreading of the same lesion, the damaged base along the transcribed DNA strand would serve as the origin of the p53 base substitution that drives the hyper-mutagenic event leading to tumors with

  16. New Perspectives on the Brain Lesion Approach - Implications for Theoretical Models of Human Memory.

    NARCIS (Netherlands)

    Irish, Muireann; van Kesteren, M.T.R.

    2017-01-01

    Human lesion studies represent the cornerstone of modern day neuropsychology and provide an important adjunct to functional neuroimaging methods. The study of human lesion groups with damage to distinct regions of the brain permits the identification of underlying mechanisms and structures not only

  17. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine

    Science.gov (United States)

    Ouzon-Shubeita, Hala; Lee, Seongmin

    2014-01-01

    N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate. PMID:24966350

  18. Immunohistochemical study of DNA topoisomerase I, DNA topoisomerase II alpha, p53, and Ki-67 in oral preneoplastic lesions and oral squamous cell carcinomas.

    Science.gov (United States)

    Hafian, Hilal; Venteo, Lydie; Sukhanova, Alyona; Nabiev, Igor; Lefevre, Benoît; Pluot, Michel

    2004-06-01

    Human DNA topoisomerase I (topo I) is the molecular target of the camptothecin group of anticancer drugs. Laboratory studies have shown that the cellular response to topo I-targeted drugs depends on the topo I expression and DNA replication rate and the apoptotic pathway activity. In this study, we tested potential indicators of the sensitivity of topo I-targeted drugs in 36 cases of oral squamous cell carcinoma (OSCC). Formalin-fixed, paraffin-embedded tissue sections were immunostained with monoclonal antibodies against Ki-67, p53, and topo I, and with polyclonal antibodies against DNA topoisomerase II-alpha (topo II-alpha). These markers were also tested in 18 epithelial hyperplastic lesions and 18 mild dysplasias. Immunostaining was quantified by the percentage of stained nuclei in each sample (the labeling index); 200 immunoreactive epithelial nuclei were counted per case for each antibody. The results support the possibility of using topo II-alpha staining for assessing the proliferative activity. High expression of topo II-alpha and topo I in OSCCs suggests that they may serve as potential indicators of sensitivity to topo I inhibitors. However, the apoptotic pathway assessed by p53 immunostaining was found to be uninformative. Analysis of the relationship between immunohistochemical results and clinical and pathologic parameters (the T and N stages and differentiation) showed that only the differentiation parameter correlated with the topo I expression rate. Thus, significant increase in the topo I expression in the poorly differentiated OSCCs suggests their higher sensitivity to drug treatment.

  19. Quantitation of DNA repair in brain cell cultures: implications for autoradiographic analysis of mixed cell populations

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1979-01-01

    Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei were both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brought estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells. (author)

  20. The effect of temperature and wavelength on production and photolysis of a UV-induced photosensitive DNA lesion which is not repaired in xeroderma pigmentosum variant cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Regan, J.D.

    1988-01-01

    Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0 0 C and 37 0 C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0 0 C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and (6-4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine (6-4) photoproducts. (author)

  1. Role of exonucleolytic processing and polymerase-DNA association in bypass of lesions during replication in vitro. Significance for SOS-targeted mutagenesis

    International Nuclear Information System (INIS)

    Shwartz, H.; Shavitt, O.; Livneh, Z.

    1988-01-01

    The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level, inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected

  2. Residual γH2AX foci as an indication of lethal DNA lesions

    Directory of Open Access Journals (Sweden)

    Banuelos C Adriana

    2010-01-01

    Full Text Available Abstract Background Evidence suggests that tumor cells exposed to some DNA damaging agents are more likely to die if they retain microscopically visible γH2AX foci that are known to mark sites of double-strand breaks. This appears to be true even after exposure to the alkylating agent MNNG that does not cause direct double-strand breaks but does produce γH2AX foci when damaged DNA undergoes replication. Methods To examine this predictive ability further, SiHa human cervical carcinoma cells were exposed to 8 DNA damaging drugs (camptothecin, cisplatin, doxorubicin, etoposide, hydrogen peroxide, MNNG, temozolomide, and tirapazamine and the fraction of cells that retained γH2AX foci 24 hours after a 30 or 60 min treatment was compared with the fraction of cells that lost clonogenicity. To determine if cells with residual repair foci are the cells that die, SiHa cervical cancer cells were stably transfected with a RAD51-GFP construct and live cell analysis was used to follow the fate of irradiated cells with RAD51-GFP foci. Results For all drugs regardless of their mechanism of interaction with DNA, close to a 1:1 correlation was observed between clonogenic surviving fraction and the fraction of cells that retained γH2AX foci 24 hours after treatment. Initial studies established that the fraction of cells that retained RAD51 foci after irradiation was similar to the fraction of cells that retained γH2AX foci and subsequently lost clonogenicity. Tracking individual irradiated live cells confirmed that SiHa cells with RAD51-GFP foci 24 hours after irradiation were more likely to die. Conclusion Retention of DNA damage-induced γH2AX foci appears to be indicative of lethal DNA damage so that it may be possible to predict tumor cell killing by a wide variety of DNA damaging agents simply by scoring the fraction of cells that retain γH2AX foci.

  3. Residual γH2AX foci as an indication of lethal DNA lesions

    International Nuclear Information System (INIS)

    Banáth, Judit P; Klokov, Dmitry; MacPhail, Susan H; Banuelos, C Adriana; Olive, Peggy L

    2010-01-01

    Evidence suggests that tumor cells exposed to some DNA damaging agents are more likely to die if they retain microscopically visible γH2AX foci that are known to mark sites of double-strand breaks. This appears to be true even after exposure to the alkylating agent MNNG that does not cause direct double-strand breaks but does produce γH2AX foci when damaged DNA undergoes replication. To examine this predictive ability further, SiHa human cervical carcinoma cells were exposed to 8 DNA damaging drugs (camptothecin, cisplatin, doxorubicin, etoposide, hydrogen peroxide, MNNG, temozolomide, and tirapazamine) and the fraction of cells that retained γH2AX foci 24 hours after a 30 or 60 min treatment was compared with the fraction of cells that lost clonogenicity. To determine if cells with residual repair foci are the cells that die, SiHa cervical cancer cells were stably transfected with a RAD51-GFP construct and live cell analysis was used to follow the fate of irradiated cells with RAD51-GFP foci. For all drugs regardless of their mechanism of interaction with DNA, close to a 1:1 correlation was observed between clonogenic surviving fraction and the fraction of cells that retained γH2AX foci 24 hours after treatment. Initial studies established that the fraction of cells that retained RAD51 foci after irradiation was similar to the fraction of cells that retained γH2AX foci and subsequently lost clonogenicity. Tracking individual irradiated live cells confirmed that SiHa cells with RAD51-GFP foci 24 hours after irradiation were more likely to die. Retention of DNA damage-induced γH2AX foci appears to be indicative of lethal DNA damage so that it may be possible to predict tumor cell killing by a wide variety of DNA damaging agents simply by scoring the fraction of cells that retain γH2AX foci

  4. The diagnostic and prognostic implications of silver-binding nucleolar organizer regions in periodontal lesions

    Directory of Open Access Journals (Sweden)

    Saluja Mini

    2008-01-01

    Full Text Available Background: The periodontal lesions with cellular proliferation can be assessed by various methods. One of the most recent methods to determine the proliferative activity is silver-staining nucleolar organizer region (AgNOR staining. The purpose of the present study was to evaluate, if AgNOR count can act as a proliferative marker and can aid in the diagnosis and prognosis of periodontal lesions. Materials and Methods: For this study, subjects with healthy gingival status, non-neoplastic lesions, neoplastic lesions, and plaque-induced gingivitis were included. Following the provisional diagnosis of clinical entity, biopsies were taken from the respective selected sites for histopathological diagnosis. In plaque-induced gingivitis cases, a second biopsy was taken from the selected sites 3 weeks following scaling. After histological confirmation, one more section was prepared, which was subjected to AgNOR staining, and AgNOR numbers were counted by individual and cluster counts and statistically analyzed. Results: Results showed the highest AgNOR count in neoplastic lesions. Non-neoplastic lesions showed a higher AgNOR count as compared to clinically healthy gingiva. Plaque-induced gingivitis showed a considerable reduction in AgNOR count after treatment. Conclusion: Results of this study confirmed that AgNOR count reflects the cellular proliferation and has a limited diagnostic value. However, the prognostic value of AgNOR for periodontal lesions is dependable.

  5. PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction

    International Nuclear Information System (INIS)

    Samarin, Andrei; Burger, Cyrill; Crook, David W.; Burger, Irene A.; Schmid, Daniel T.; Schulthess, Gustav K. von; Kuhn, Felix P.; Wollenweber, Scott D.

    2012-01-01

    Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging. In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference. Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2 ± 5.4 % (range 1.5-30.8 %) and 3.2 ± 1.7 % (range 0.2-4 %), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9 ± 3.4 % (range 9.9-23.5 %) and for osteolytic spine lesions, 7.2 ± 1.7 % (range 4.9-9.3 %), respectively. CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake

  6. Bone lesions in Chinese POEMS syndrome patients: imaging characteristics and clinical implications.

    Science.gov (United States)

    Wang, Fengdan; Huang, Xufei; Zhang, Yan; Li, Jian; Zhou, Daobin; Jin, Zhengyu

    2016-01-01

    Objective. Bone lesion is crucial for diagnosing and management of polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, and skin change (POEMS) syndrome, a rare plasma cell disorder. This study is to compare the effectiveness of X-ray skeletal survey (SS) and computed tomography (CT) for detecting bone lesions in Chinese POEMS syndrome patients, and to investigate the relationship between bone lesion features and serum markers. Methods. SS and chest/abdomen/pelvic CT images of 38 Chinese patients (26 males, 12 females, aged 21-70 years) with POEMS syndrome recruited at our medical center between January 2013 and January 2015 were retrospectively analyzed. Bone lesions identified by CT were further categorized according to the size (10 mm) and appearance (osteosclerotic, lytic, mixed). The percentage of plasma cells in bone marrow smears, type of immunoglobulin, platelet (Plt), and levels of serum bone metabolic markers and inflammatory factors including alkaline phosphatase (ALP), calcium, phosphate, parathyroid hormone (PTH), beta-isomerized C-telopeptide (β-CTx), vascular endothelial growth factor (VEGF), and interleukin (IL)-6 levels were also recorded. Results. Of the 38 POEMS syndrome patients, the immunoglobulin heavy chain isotypes were IgA in 25 patients (65.8%; 25/38) and IgG in 13 patients (34.2%; 13/38), and the light chain isotypes were λ in 35 patients (92.1%; 35/38) and κ in 3 patients (7.9%; 3/38). There were 23 patients with thrombocytosis. More patients with bone lesions were detected by CT than by SS (97.4% vs. 86.8%). The most commonly affected location was the pelvis (89.5%), followed by the spine, clavicle/scapula/sternum/ribs, skull, and long bones. Of the 38 POEMS syndrome patients, 35 (94.6%) had osteosclerotic and 32 (86.5%) had mixed lesions. Osteosclerotic lesions were typically scattered, variable in size, and plaque-like, whereas mixed lesions were pouch-shaped or soup bubble-like with a clear sclerotic margin and were

  7. Bone lesions in Chinese POEMS syndrome patients: imaging characteristics and clinical implications

    Directory of Open Access Journals (Sweden)

    Fengdan Wang

    2016-08-01

    Full Text Available Objective. Bone lesion is crucial for diagnosing and management of polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, and skin change (POEMS syndrome, a rare plasma cell disorder. This study is to compare the effectiveness of X-ray skeletal survey (SS and computed tomography (CT for detecting bone lesions in Chinese POEMS syndrome patients, and to investigate the relationship between bone lesion features and serum markers. Methods. SS and chest/abdomen/pelvic CT images of 38 Chinese patients (26 males, 12 females, aged 21–70 years with POEMS syndrome recruited at our medical center between January 2013 and January 2015 were retrospectively analyzed. Bone lesions identified by CT were further categorized according to the size (10 mm and appearance (osteosclerotic, lytic, mixed. The percentage of plasma cells in bone marrow smears, type of immunoglobulin, platelet (Plt, and levels of serum bone metabolic markers and inflammatory factors including alkaline phosphatase (ALP, calcium, phosphate, parathyroid hormone (PTH, beta-isomerized C-telopeptide (β-CTx, vascular endothelial growth factor (VEGF, and interleukin (IL-6 levels were also recorded. Results. Of the 38 POEMS syndrome patients, the immunoglobulin heavy chain isotypes were IgA in 25 patients (65.8%; 25/38 and IgG in 13 patients (34.2%; 13/38, and the light chain isotypes were λ in 35 patients (92.1%; 35/38 and κ in 3 patients (7.9%; 3/38. There were 23 patients with thrombocytosis. More patients with bone lesions were detected by CT than by SS (97.4% vs. 86.8%. The most commonly affected location was the pelvis (89.5%, followed by the spine, clavicle/scapula/sternum/ribs, skull, and long bones. Of the 38 POEMS syndrome patients, 35 (94.6% had osteosclerotic and 32 (86.5% had mixed lesions. Osteosclerotic lesions were typically scattered, variable in size, and plaque-like, whereas mixed lesions were pouch-shaped or soup bubble-like with a clear sclerotic margin and were

  8. The caretakers of the genome. Repair of DNA lesions induced by ultraviolet-light and ionizing radiation

    International Nuclear Information System (INIS)

    Boiteux, S.; Radicella, J.P.

    2000-01-01

    The DNA contained in the nucleus of each of our cells daily suffers of thousand damages caused by solar ultraviolet radiations or ionizing radiations, with a natural or not origin, agents able to modify the genetic information. This information stays stable. True caretakers of the genome repair the DNA, provided that the cell is not over-taken by the level of the attack. Alterations of the repair mechanism are at the origin of extremely severe syndromes. The failure of one of these caretakers of the genome, the O.G.G.1 gene, seems implicated in the cancer development. It can be a lead to discover a predisposition to radioinduced or caused by other toxic agents cancers. (N.C.)

  9. Real-time PCR detection of Brucella spp. DNA in lesions and viscera of bovine carcasses.

    Science.gov (United States)

    Sola, Marília Cristina; da Veiga Jardim, Eurione A G; de Freitas, Marcius Ribeiro; de Mesquita, Albenones José

    2014-09-01

    This study reports a real-time PCR assay for the detection of Brucella spp. associated with the FTA® Elute method in lesions observed during sanitary inspections in beef slaughter. Of the total 276 samples, 78 (28.3%) tested positive and 198 (71.7%) negative for Brucella spp. The real-time PCR technique associated with the FTA® Elute method proved to be an important tool for the diagnosis, judgment about and disposal of carcasses and viscera of slaughtered animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  11. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Directory of Open Access Journals (Sweden)

    Masudur Rahman

    2016-10-01

    Full Text Available Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material.

  12. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Science.gov (United States)

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324

  13. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Zuzana; Renčiuk, Daniel; Kejnovská, Iva; Školáková, Petra; Bednářová, Klára; Sagi, J.; Vorlíčková, Michaela

    2018-01-01

    Roč. 46, č. 4 (2018), s. 1624-1634 ISSN 1362-4962 R&D Projects: GA ČR(CZ) GA15-06785S; GA ČR GA17-12075S; GA ČR(CZ) GJ17-19170Y; GA MŠk EF15_003/0000477 Institutional support: RVO:68081707 Keywords : pair opening kinetics * g-quadruplex dna Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  14. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments.

    Science.gov (United States)

    Ulmer, John L; Hacein-Bey, Lotfi; Mathews, Vincent P; Mueller, Wade M; DeYoe, Edgar A; Prost, Robert W; Meyer, Glenn A; Krouwer, Hendrikus G; Schmainda, Kathleen M

    2004-09-01

    To illustrate how lesion-induced neurovascular uncoupling at functional magnetic resonance imaging (fMRI) can mimic hemispheric dominance opposite the side of a lesion preoperatively. We retrospectively reviewed preoperative fMRI mapping data from 50 patients with focal brain abnormalities to establish patterns of hemispheric dominance of language, speech, visual, or motor system functions. Abnormalities included gliomas (31 patients), arteriovenous malformations (AVMs) (11 patients), other congenital lesions (4 patients), encephalomalacia (3 patients), and tumefactive encephalitis (1 patient). A laterality ratio of fMRI hemispheric dominance was compared with actual hemispheric dominance as verified by electrocortical stimulation, Wada testing, postoperative and posttreatment deficits, and/or lesion-induced deficits. fMRI activation maps were generated with cross-correlation (P frontal gyrus gliomas and in one patient with focal tumefactive meningoencephalitis, fMRI incorrectly suggested strong right hemispheric speech dominance. In two patients with lateral precentral gyrus region gliomas and one patient with a left central sulcus AVM, the fMRI pattern incorrectly suggested primary corticobulbar motor dominance contralateral to the side of the lesion. In a patient with a right superior frontal gyrus AVM, fMRI revealed pronounced left dominant supplementary motor area activity in response to a bilateral complex motor task, but right superior frontal gyrus perilesional hemorrhage and edema subsequently caused left upper-extremity plegia. Pathophysiological factors that might have caused neurovascular uncoupling and facilitated pseudo-dominance at fMRI in these patients included direct tumor infiltration, neovascularity, cerebrovascular inflammation, and AVM-induced hemodynamic effects. Sixteen patients had proven (1 patient), probable (2 patients), or possible (13 patients) but unproven lesion-induced homotopic cortical reorganization. Lesion-induced neurovascular

  15. Direct assay of radiation-induced DNA base lesions in mammalian cells

    International Nuclear Information System (INIS)

    1992-01-01

    Adenine (Ade), 2'-deoxyadenosine (dAdo), 5'-deoxyadenosine monophosphate (dAUT), single stranded poly adenylic acid [poly (dA)], double stranded deoxyadenylic-thymidylic acid [ds poly (dA-T)] and salmon testis DNA were irradiated with 500 Gy under oxic and anoxic conditions. The major damage products were analyzed by BPLC with optical detection and quantitated in terms of the percentage of the adenosine in each model compound found as a specific damage product. Outside of the Ade free base, 8-OH-dAdo was the major oxic damage product from each model compound. The type and quantity of the major damage products depended on the sequence and conformation of the model compounds under anoxic conditions. When dAdo and dAMP were irradiated under anoxic conditions, the major damage product was either the R or S isomer of 8,5'cdAdo and little Ade or α-dAdo was observed. However, when poly(dA), poly(dA-dT), and salmon testis DNA were γ-irradiated under nitrogen, the major deoxyadenosine damage product was identified as the α-anomer of deoxyadenosine. No α-deoxyadenosine was detected after irradiation under oxic conditions. The presence of nucleotides with the α-configuration at the anomeric carbon atom in the DNA chain may have a significant effect on its tertiary structure and possibly modify its biological activity

  16. New Perspectives on the Brain Lesion Approach - Implications for Theoretical Models of Human Memory.

    Science.gov (United States)

    Irish, Muireann; van Kesteren, Marlieke T R

    2018-03-15

    Human lesion studies represent the cornerstone of modern day neuropsychology and provide an important adjunct to functional neuroimaging methods. The study of human lesion groups with damage to distinct regions of the brain permits the identification of underlying mechanisms and structures not only associated with, but essential for, complex cognitive processes. Here, we consider a recent review by McCormick et al., 2018 in which the power of the lesion model approach is elegantly presented with respect to a host of sophisticated cognitive endeavors, including autobiographical memory, future thinking, spatial navigation, and decision-making. By comparing profiles of loss and sparing in hippocampal (HC) and ventromedial prefrontal cortex (vmPFC) lesion groups, the authors provide new insights into the underlying neuroarchitecture of these diverse cognitive functions. Building on this framework, we consider how vmPFC and HC degeneration, in the context of large-scale network dysfunction in dementia, impacts discrete facets of memory and social cognition. Notably, we find remarkable concordance between the available evidence in dementia and that of the HC and vmPFC lesion literature. We further assess the role of the prefrontal cortex in modulating aspects of spatial navigation and discuss the role of schema-related processing in the service of memory more broadly. Far from being obsolete, we contend that human lesion work occupies a crucial position in cognitive neuroscience and offers an array of exciting areas for future study within this field. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  18. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  19. Identification of an Unfolding Intermediate for a DNA Lesion Bypass Polymerase

    Science.gov (United States)

    Sherrer, Shanen M.; Maxwell, Brian A.; Pack, Lindsey R.; Fiala, Kevin A.; Fowler, Jason D.; Zhang, Jun; Suo, Zucai

    2012-01-01

    Sulfolobus solfataricusDNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C. PMID:22667759

  20. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications.

    Science.gov (United States)

    Shukla, Pallavi; Solanki, Avani; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-11-01

    Interstrand cross-links (ICLs) are extremely toxic DNA lesions that prevent DNA double-helix separation due to the irreversible covalent linkage binding of some agents on DNA strands. Agents that induce these ICLs are thus widely used as chemotherapeutic drugs but may also lead to tumor growth. Fanconi anemia (FA) is a rare genetic disorder that leads to ICL sensitivity. This review provides update on current understanding of the role of FA proteins in repairing ICLs at various stages of cell cycle. We also discuss link between DNA cross-link genotoxicity caused by aldehydes in FA pathway. Besides this, we summarize various ICL agents that act as drugs to treat different types of tumors and highlight strategies for modulating ICL sensitivity for therapeutic interventions that may be helpful in controlling cancer and life-threatening disease, FA. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Lesion mapping in acute stroke aphasia and its implications for recovery.

    Science.gov (United States)

    Forkel, Stephanie J; Catani, Marco

    2018-03-29

    Patients with stroke lesions offer a unique window into understanding human brain function. Studying stroke lesions poses several challenges due to the complexity of the lesion anatomy and the mechanisms causing local and remote disruptions on brain networks. In this prospective longitudinal study, we compare standard and advanced approaches to white matter lesion mapping applied to acute stroke patients with aphasia. Eighteen patients with acute left hemisphere stroke were recruited and scanned within two weeks from symptom onset. Aphasia assessment was performed at baseline and six-month follow-up. Structural and diffusion MRI contrasts indicated an area of maximum overlap in the anterior external/extreme capsule with diffusion images showing a larger overlap extending into posterior perisylvian regions. Predictors of recovery included damage to ipsilesional tracts (as shown by both structural and diffusion images) and contralesional tracts (as shown by diffusion images only). These findings indicate converging results from structural and diffusion lesions mapping analysis but clear differences between the two approaches in their ability to identify predictors of recovery. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    The cycling time of DNA polymerase III holoenzyme during replication of UV-irradiated single-stranded (ss) DNA was longer than with unirradiated DNA (8 versus 3 min, respectively), most likely due to slow dissociation from lesion-terminated nascent DNA strands. Initiation of elongation on primed ssDNA was not significantly inhibited by the presence of UV lesions as indicated by the identical distribution of replication products synthesized at early and late reaction times and by the identical duration of the initial synthesis bursts on both unirradiated and UV-irradiated DNA templates. When replication was performed with DNA polymerase III* supplemented with increasing quantities of purified beta 2 subunit, the cycling time on UV-irradiated DNA decreased from 14.8 min at 1.7 nM beta 2 down to 6 min at 170 nM beta 2, a concentration in which beta 2 was in large excess over the polymerase. In parallel to the reduction in cycling time, also the bypass frequency of cyclobutane-photodimers decreased with increasing beta 2 concentration, and at 170 nM beta 2, bypass of photodimers was essentially eliminated. It has been shown that polymerase complexes with more than one beta 2 per polymerase molecule were formed at high beta 2 concentrations. It is plausible that polymerase complexes obtained under high beta 2 concentration dissociate from lesion-terminated primers faster than polymerase complexes formed at a low beta 2 concentration. This is expected to favor termination over bypass at pyrimidine photodimers and thus decrease their bypass frequency. These results suggest that the beta 2 subunit might act as a sensor for obstacles to replication caused by DNA damage, and that it terminates elongation at these sites by promoting dissociation. The intracellular concentration of beta 2 was estimated to be 250 nM

  3. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair.

    Science.gov (United States)

    Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Nieminuszczy, Jadwiga; Wrzesinski, Michal; Grzesiuk, Elzbieta

    2010-03-01

    Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.

  4. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: An immunohistochemical study

    Science.gov (United States)

    Giaginis, Constantinos; Michailidi, Christina; Stolakis, Vasileios; Alexandrou, Paraskevi; Tsourouflis, Gerasimos; Klijanienko, Jerzy; Delladetsima, Ioanna; Theocharis, Stamatios

    2011-01-01

    Summary Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia. PMID:21358597

  5. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of γ-endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Barenfeld, L.S.

    1979-01-01

    γ-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in γ-irradiated (N 2 , tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO 4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. γ-endonuclease Y induces breaks in OsO 4 -treated poly(dA-dT) and apparently is specific towards γ-ray-induced base lesions of the t' type. The complete excision repair of γ-endonuclease Y substrate sites has been performed in vitro by γ-endonuclease Y, DNA polymerase and ligase. (author)

  6. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of. gamma. -endonuclease from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, N V; Barenfeld, L S [AN SSSR, Leningrad. Inst. Tsitologii

    1979-03-01

    ..gamma..-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in ..gamma..-irradiated (N/sub 2/, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO/sub 4/ termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. ..gamma..-endonuclease Y induces breaks in OsO/sub 4/-treated poly(dA-dT) and apparently is specific towards ..gamma..-ray-induced base lesions of the t' type. The complete excision repair of ..gamma..-endonuclease Y substrate sites has been performed in vitro by ..gamma..-endonuclease Y, DNA polymerase and ligase.

  7. NMR studies of abasic sites in DNA duplexes: Deoxyadenosine stacks into the helix opposite acyclic lesions

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, Chienneng; Johnson, F.; Grollman, A.P.; Patel, D.J.

    1989-01-01

    Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C)·d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated AP P 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C-)·d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated AP E 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the AP P 9-mer and AP E 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution between -5 and 5 degree C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and El14) and stacks between the flanking G4·C15 and G6·C13 Watson-Crick base pairs in both the AP P 9-mer and AP E 9-mer duplexes. Proton NMR parameters for the Ap P 9-mer and AP E 9-mer duplexes are similar to those reported previously. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the AP P 9-mer and AP E 9-mer duplexes (5 degree C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles

  8. Reasoning by analogy requires the left frontal pole: lesion-deficit mapping and clinical implications.

    Science.gov (United States)

    Urbanski, Marika; Bréchemier, Marie-Laure; Garcin, Béatrice; Bendetowicz, David; Thiebaut de Schotten, Michel; Foulon, Chris; Rosso, Charlotte; Clarençon, Frédéric; Dupont, Sophie; Pradat-Diehl, Pascale; Labeyrie, Marc-Antoine; Levy, Richard; Volle, Emmanuelle

    2016-06-01

    SEE BURGESS DOI101093/BRAIN/AWW092 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : Analogical reasoning is at the core of the generalization and abstraction processes that enable concept formation and creativity. The impact of neurological diseases on analogical reasoning is poorly known, despite its importance in everyday life and in society. Neuroimaging studies of healthy subjects and the few studies that have been performed on patients have highlighted the importance of the prefrontal cortex in analogical reasoning. However, the critical cerebral bases for analogical reasoning deficits remain elusive. In the current study, we examined analogical reasoning abilities in 27 patients with focal damage in the frontal lobes and performed voxel-based lesion-behaviour mapping and tractography analyses to investigate the structures critical for analogical reasoning. The findings revealed that damage to the left rostrolateral prefrontal region (or some of its long-range connections) specifically impaired the ability to reason by analogies. A short version of the analogy task predicted the existence of a left rostrolateral prefrontal lesion with good accuracy. Experimental manipulations of the analogy tasks suggested that this region plays a role in relational matching or integration. The current lesion approach demonstrated that the left rostrolateral prefrontal region is a critical node in the analogy network. Our results also suggested that analogy tasks should be translated to clinical practice to refine the neuropsychological assessment of patients with frontal lobe lesions. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision.

    Science.gov (United States)

    Liu, Tina T; Behrmann, Marlene

    2017-10-01

    Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multiple effects of fluorescent light on repair of ultraviolet-induced DNA lesions in cultured goldfish cells

    International Nuclear Information System (INIS)

    Uchida, Nobuhiro; Mitani, Hiroshi; Shima, Akihiro

    1995-01-01

    It is known that fluorescent light illumination prior to UV irradiation (FL preillumination) of cultured fish cells increases photorepair (PR) ability. In the present study, it was found that FL preillumination also enhanced UV resistance of logarithmically growing cells in the dark. This enhancement of UV resistance differs from induction of PR because it was not suppressed by cyclohexamide (CH) and it occurred immediately after FL preillumination. The effects of FL preillumination on repair of UV-induced DNA lesions in the dark were examined by an endonuclease-sensitive site assay to measure the repair of cyclobutyl pyrimidine dimers, and by enzyme-linked immunosorbent assay to quantitate the repair of (6-4) photoproducts. It was found that excision repair ability for (6-4) photoproducts in the genome overall was increased by FL preillumination. Moreover, a decrease in (6-4) photoproducts by FL illumination immediately after UV irradiation of the cells was found, the decrement being enhanced by FL preillumination with or without CH. (author)

  11. Multiple effects of fluorescent light on repair of ultraviolet-induced DNA lesions in cultured goldfish cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Nobuhiro; Mitani, Hiroshi; Shima, Akihiro [Tokyo Univ. (Japan). Lab. of Radiation Biology

    1995-01-01

    It is known that fluorescent light illumination prior to UV irradiation (FL preillumination) of cultured fish cells increases photorepair (PR) ability. In the present study, it was found that FL preillumination also enhanced UV resistance of logarithmically growing cells in the dark. This enhancement of UV resistance differs from induction of PR because it was not suppressed by cyclohexamide (CH) and it occurred immediately after FL preillumination. The effects of FL preillumination on repair of UV-induced DNA lesions in the dark were examined by an endonuclease-sensitive site assay to measure the repair of cyclobutyl pyrimidine dimers, and by enzyme-linked immunosorbent assay to quantitate the repair of (6-4) photoproducts. It was found that excision repair ability for (6-4) photoproducts in the genome overall was increased by FL preillumination. Moreover, a decrease in (6-4) photoproducts by FL illumination immediately after UV irradiation of the cells was found, the decrement being enhanced by FL preillumination with or without CH. (author).

  12. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Directory of Open Access Journals (Sweden)

    Fabrizio Gentile

    2017-04-01

    Full Text Available Oxidative stress and lipid peroxidation (LPO induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity.

  13. Are dinucleoside monophosphates relevant models for the study of DNA intrastrand cross-link lesions? The example of g[8-5m]T.

    Science.gov (United States)

    Garrec, Julian; Dumont, Elise

    2014-07-21

    Oxidatively generated tandem lesions such as G[8-5m]T pose a potent threat to genome integrity. Direct experimental studies of the kinetics and thermodynamics of a specific lesion within DNA are very challenging, mostly due to the variety of products that can be formed in oxidative conditions. Dinucleoside monophosphates (DM) involving only the reactive nucleobases in water represent appealing alternative models on which most physical chemistry and structural techniques can be applied. However, it is not yet clear how relevant these models are. Here, we present QM/MM MD simulations of the cyclization step involved in the formation of G[8-5m]T from the guanine-thymine (GpT) DM in water, with the aim of comparing our results to our previous investigation of the same reaction in DNA ( Garrec , J. , Patel , C. , Rothlisberger , U. , and Dumont , E. ( 2012 ) J. Am. Chem. Soc. 134 , 2111 - 2119 ). We show that, despite the different levels of preorganization of the two systems, the corresponding reactions share many energetic and structural characteristics. The main difference lies in the angle between the G and T bases, which is slightly higher in the transition state (TS) and product of the reaction in water than in the reaction in DNA. This effect is due to the Watson-Crick H-bonds, which are absent in the {GpT+water} system and restrain the relative positioning of the reactive nucleobases in DNA. However, since the lesion is accommodated easily in the DNA macromolecule, the induced energetic penalty is relatively small. The high similarity between the two reactions strongly supports the use of GpT in water as a model of the corresponding reaction in DNA.

  14. Ultrasonographic features and clinical implications of benign palpable breast lesions in young women

    Directory of Open Access Journals (Sweden)

    Richard Ha

    2015-01-01

    Full Text Available Purpose: The purpose of this study was to describe the breast ultrasonography (US features and to investigate whether performing a core biopsy is warranted in young women having palpable solid breast masses. Methods: A total of 76 solid palpable masses in 68 consecutive women (≤25 years old underwent tissue diagnosis by percutaneous core biopsy. Two radiologists, who were blinded to the clinical history and histopathology, independently evaluated the US features according to Breast Imaging-Reporting and Data System (BI-RADS lexicon. The frequency of benign and malignant descriptor terms that were used to characterize the lesions were compared to the final pathology. Results: All 76 palpable solid masses yielded benign pathology. On the US, the shape of the mass was described by radiologists 1 and 2 as oval or round (63.2% and 71.1%, margin as circumscribed (68.4% and 77.6% and orientation as parallel (85.5% and 90.8%; the frequency of using all three benign descriptors was 61.8% and 68.5%, respectively. Suspicious descriptors were used less frequently by radiologists 1 and 2 including irregular shape (9.2% and 13.1%, non-circumscribed margin (31.6% and 22.4% and non-parallel orientation (14.5% and 9.2%; the frequency of using all three suspicious descriptors was 9.2% and 11.8%, respectively. Conclusion: Despite the variable US features, breast malignancy seems extremely low in 25 years or younger women for palpable breast lesions. Using the BI-RADS lexicon, US accurately predicted benignity in about two thirds of our patients, supporting US surveillance as a safe alternative to invasive tissue sampling in this setting.

  15. Ultrasonographic features and clinical implications of benign palpable breast lesions in young women

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Richard; Kim, Hyon Ah; Mango, Victoria; Wynn, Ralph [Dept. of Radiology, Columbia University Medical Center, New York (United States); Comstock, Christopher [Dept. of Radiology, Memorial Sloan Kettering Cancer Center, New York (United States)

    2015-01-15

    The purpose of this study was to describe the breast ultrasonography (US) features and to investigate whether performing a core biopsy is warranted in young women having palpable solid breast masses. A total of 76 solid palpable masses in 68 consecutive women (≤25 years old) underwent tissue diagnosis by percutaneous core biopsy. Two radiologists, who were blinded to the clinical history and histopathology, independently evaluated the US features according to Breast Imaging-Reporting and Data System (BI-RADS) lexicon. The frequency of benign and malignant descriptor terms that were used to characterize the lesions were compared to the final pathology. All 76 palpable solid masses yielded benign pathology. On the US, the shape of the mass was described by radiologists 1 and 2 as oval or round (63.2% and 71.1%), margin as circumscribed (68.4% and 77.6%) and orientation as parallel (85.5% and 90.8%); the frequency of using all three benign descriptors was 61.8% and 68.5%, respectively. Suspicious descriptors were used less frequently by radiologists 1 and 2 including irregular shape (9.2% and 13.1%), non-circumscribed margin (31.6% and 22.4%) and non-parallel orientation (14.5% and 9.2%); the frequency of using all three suspicious descriptors was 9.2% and 11.8%, respectively. Despite the variable US features, breast malignancy seems extremely low in 25 years or younger women for palpable breast lesions. Using the BI-RADS lexicon, US accurately predicted benignity in about two thirds of our patients, supporting US surveillance as a safe alternative to invasive tissue sampling in this setting.

  16. Ultrasonographic features and clinical implications of benign palpable breast lesions in young women

    International Nuclear Information System (INIS)

    Ha, Richard; Kim, Hyon Ah; Mango, Victoria; Wynn, Ralph; Comstock, Christopher

    2015-01-01

    The purpose of this study was to describe the breast ultrasonography (US) features and to investigate whether performing a core biopsy is warranted in young women having palpable solid breast masses. A total of 76 solid palpable masses in 68 consecutive women (≤25 years old) underwent tissue diagnosis by percutaneous core biopsy. Two radiologists, who were blinded to the clinical history and histopathology, independently evaluated the US features according to Breast Imaging-Reporting and Data System (BI-RADS) lexicon. The frequency of benign and malignant descriptor terms that were used to characterize the lesions were compared to the final pathology. All 76 palpable solid masses yielded benign pathology. On the US, the shape of the mass was described by radiologists 1 and 2 as oval or round (63.2% and 71.1%), margin as circumscribed (68.4% and 77.6%) and orientation as parallel (85.5% and 90.8%); the frequency of using all three benign descriptors was 61.8% and 68.5%, respectively. Suspicious descriptors were used less frequently by radiologists 1 and 2 including irregular shape (9.2% and 13.1%), non-circumscribed margin (31.6% and 22.4%) and non-parallel orientation (14.5% and 9.2%); the frequency of using all three suspicious descriptors was 9.2% and 11.8%, respectively. Despite the variable US features, breast malignancy seems extremely low in 25 years or younger women for palpable breast lesions. Using the BI-RADS lexicon, US accurately predicted benignity in about two thirds of our patients, supporting US surveillance as a safe alternative to invasive tissue sampling in this setting.

  17. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    Science.gov (United States)

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  18. The time course of repair of ultraviolet-induced DNA damage; implications for the structural organization of repair

    International Nuclear Information System (INIS)

    Collins, A.; Squires, S.

    1986-01-01

    Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the 'random collision' model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a 'processive' mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate until scanning is complete. The authors have examined the time course of DNA repair in human fibroblasts given low doses of UV light. Using 3 distinct assays, the authors find no sign of a constant repair rate after 4 J/m 2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. (Auth.)

  19. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed

  20. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  1. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Fry, R.J.M.

    1987-01-01

    An overview of presentations and discussions which took place at the US Department of Energy/Commission of European Communities (DOE/CEC) workshop on ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection,'' held at San Diego, California, January 21-22, 1987, is provided. The Department has traditionally supported fundamental research on interactions of ionizing radiation with different biological systems and at all levels of biological organization. The aim of this workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection

  2. Recurring DNA copy number gain at chromosome 9p13 plays a role in the activation of multiple candidate oncogenes in progressing oral premalignant lesions

    International Nuclear Information System (INIS)

    Towle, Rebecca; Tsui, Ivy F L; Zhu, Yuqi; MacLellan, Sara; Poh, Catherine F; Garnis, Cathie

    2014-01-01

    Genomic alteration at chromosome 9p has been previously reported as a frequent and critical event in oral premalignancy. While this alteration is typically reported as a loss driven by selection for CDKN2A deactivation (at 9p21.3), we detect a recurrent DNA copy number gain of ∼2.49 Mbp at chromosome 9p13 in oral premalignant lesions (OPLs) that later progressed to invasive lesions. This recurrent alteration event has been validated using fluorescence in situ hybridization in an independent set of OPLs. Analysis of publicly available gene expression datasets aided in identifying three oncogene candidates that may have driven selection for DNA copy number increases in this region (VCP, DCTN3, and STOML2). We performed in vitro silencing and activation experiments for each of these genes in oral cancer cell lines and found that each gene is independently capable of upregulating proliferation and anchorage-independent growth. We next analyzed the activity of each of these genes in biopsies of varying histological grades that were obtained from a diseased oral tissue field in a single patient, finding further molecular evidence of parallel activation of VCP, DCTN3, and STOML2 during progression from normal healthy tissue to invasive oral carcinoma. Our results support the conclusion that DNA gain at 9p13 is important to the earliest stages of oral tumorigenesis and that this alteration event likely contributes to the activation of multiple oncogene candidates capable of governing oral cancer phenotypes

  3. Detection of the Epstein-Barr Virus and DNA-Topoisomerase II-α in Recurrent and Nonrecurrent Giant Cell Lesion of the Jawbones

    Directory of Open Access Journals (Sweden)

    Manal M. Zyada

    2013-01-01

    Full Text Available The aims of this study were to determine whether the expression of Topo II- correlates with presence of EBV in giant cell lesion of the jawbones and whether it is predictive of clinical biologic behavior of these lesions. Paraffin-embedded tissues from 8 recurrent and 7 nonrecurrent cases of bony GCLs and 9 peripheral giant cell lesions (PGCLs as a control group were assessed for the expression of EBV and Topo II- using immunohistochemistry. The results showed positive staining for Topo II- in mononuclear stromal cells (MSCs and multinucleated giant cells (MGCs. Student t-test showed that mean Topo II- labelling index (LI in recurrent cases was significantly higher than that in non-recurrent cases (. Moreover, Spearman's correlation coefficients method showed a significant correlation between DNA Topo II- LI and both of gender and site in these lesions. Moderate EBV expression in relation to the highest Topo II- LI was observed in two cases of GCT. It was concluded that high Topo II- LIs could be identified as reliable predicators for the clinical behavior of GCLs. Moreover, EBV has no etiological role in the benign CGCLs in contrast to its role in the pathogenesis of GCTs.

  4. Ex vivo assessment of protective effects of carvacrol against DNA lesions induced in primary rat cells by visible light excited methylene blue (VL+MB).

    Science.gov (United States)

    Slamenova, D; Horvathova, E; Chalupa, I; Wsolova, L; Navarova, J

    2011-01-01

    Carvacrol belongs to frequently occurring phenolic components of essential oils (EOs) and it is present in many kinds of plants. Biological effect of this phenol derivative on human beings is however not sufficiently known. The present study was undertaken to evaluate the level of VL+MB-induced oxidative DNA lesions in hepatocytes and testicular cells (freshly isolated from control or carvacrol-watered rats) by the modified single cell gel electrophoresis (SCGE). The results showed that carvacrol significantly reduced the level of VL+MB-induced oxidized bases (EndoIII- and Fpg-sensitive sites) only in hepatocytes but not in testicular cells. Chromosomal aberration assay of primary hepatocytes, isolated from control or carvacrol-watered rats did not testify any genotoxic activity of carvacrol. We suggest that in vivo applied synthetic carvacrol, whose antioxidative activity was confirmed by DPPH assay, exhibits primarily a strong hepatoprotective activity against oxidative damage to DNA.

  5. Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.

    Directory of Open Access Journals (Sweden)

    Lygia T Budnik

    Full Text Available There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD but (mostly lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001. The decreased integrity of mtDNA (mtDNA-230/mtDNA-79 in exposed individuals implicates apoptotic processes (p = 0.015. The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001. Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.

  6. Towards observing the encounter of the T7 DNA replication fork with a lesion site at the Single molecule level

    KAUST Repository

    Shirbini, Afnan

    2017-01-01

    and established the T7 leading strand synthesis at the single molecule level. I also optimized various control experiments to remove any interference from the nonspecific interactions of the DNA with the surface. My work established the foundation to image

  7. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    Science.gov (United States)

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  9. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU.

    Science.gov (United States)

    Li, Fanghua; Cheng, Yanlei; Iliakis, George

    2015-04-01

    Radiosensitization by bromodeoxyuridine (BrdU) is commonly attributed to an increase in the yield of double-strand breaks (DSB) in the DNA and an associated decrease in the reparability of these lesions. Radiation chemistry provides a mechanism for the increased yield of DSB through the generation, after bromine loss, of a highly reactive uracilyl radical that attacks the sugar moiety of the nucleotide to produce a single-strand break (SSB). The effects underpinning DSB repair inhibition remain, in contrast, incompletely characterized. A possible source of reduced reparability is a change in the nature or complexity of the DSB in BrdU-substituted DNA. Recent studies show that DSB-complexity or DSB-nature may also be affected by the presence within the cluster of thermally labile sugar lesions (TLSL) that break the DNA backbone only if they chemically evolve to SSB, a process thought to occur within the first hour post-irradiation. Since BrdU radiosensitization might be associated with increased yields and reduced reparability of DSB, we investigated whether BrdU underpins these effects by shifting the balance in the generation of TLSL. We employed asymmetric-field-inversion gel electrophoresis (AFIGE), a pulsed-field gel electrophoresis (PFGE) method to quantitate DSB in a battery of five cells lines grown in the presence of different concentrations of BrdU. We measured specifically the yields of promptly forming DSB (prDSB) using low temperature lysis protocols, and the yields of total DSB (tDSB = prDSB + tlDSB; tlDSB form after evolution to SSB of TLSL) using high temperature lysis protocols. We report that incorporation of BrdU generates similar increases in the formation of tlDSB and prDSB, but variations are noted among the different cell lines tested. The similar increase in the yields of tlDSB and prDSB in BrdU substituted DNA showed that shifts in the yields of these forms of lesions could not be invoked to explain BrdU radiosensitization.

  10. Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions

    International Nuclear Information System (INIS)

    Pei, Qiuling; Ma, Ning; Zhang, Jing; Xu, Wenchao; Li, Yong; Ma, Zhifeng; Li, Yunyun; Tian, Fengjie; Zhang, Wenping; Mu, Jinjun; Li, Yuanfei; Wang, Dongxing; Liu, Haifang; Yang, Mimi; Ma, Caifeng; Yun, Fen

    2013-01-01

    8-OHdG staining of PMN nuclei was paralleled by increased debris of cells. ► Oxidative DNA damage of PMNs is associated with arsenic-related skin lesions.

  11. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of gammaH2AX- and NBS1-positive repair foci

    Czech Academy of Sciences Publication Activity Database

    Suchánková, Jana; Kozubek, Stanislav; Legartová, Soňa; Sehnalová, Petra; Kuntzinger, T.; Bártová, Eva

    2015-01-01

    Roč. 107, č. 12 (2015), s. 440-454 ISSN 0248-4900 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA ČR(CZ) GA13-07822S Institutional support: RVO:68081707 Keywords : Cell cycle * DNA repair * Interphase Subject RIV: BO - Biophysics Impact factor: 2.552, year: 2015

  12. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Science.gov (United States)

    2011-01-01

    Background Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging. Methods We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients. Results We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells. PMID:21232124

  13. Establishing the distribution of satellite lesions in intermediate- and high-risk prostate cancer: implications for focused radiotherapy.

    Science.gov (United States)

    Hegde, J V; Margolis, D J; Wang, P-C; Reiter, R E; Huang, J; Steinberg, M L; Kamrava, M

    2017-06-01

    In focused radiotherapy for prostate cancer (PC), a full dose of radiation is delivered to the index lesion while reduced dose is delivered to the remaining prostate to reduce morbidity. As PC is commonly multifocal, we investigated whether baseline clinical characteristics or multiparametric magnetic resonance imaging (mpMRI) may be useful to predict the actual pathologic distribution of PC in men with intermediate- or high-risk PC, which may better inform how to deliver focused radiotherapy. A retrospective single-institutional study was performed on 71 consecutive men with clinically localized, intermediate- or high-risk PC who underwent mpMRI followed by radical prostatectomy (RP) from January 2012 to December 2012. Logistic regression analysis was performed to evaluate preoperative predictors for satellite lesions. Performance characteristics of mpMRI to detect satellite lesions and the extent of prostate disease (one hemi-gland vs both) were also evaluated. In all, 50.7% had satellite lesions on mpMRI. On RP specimen analysis, 66.2% had satellite lesions and 55.3% of these satellite lesions had pathologic Gleason score (pGS)⩾3+4. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy for mpMRI detecting a satellite lesion being present in the RP specimen were 59.6%, 66.7%, 77.8%, 45.7% and 62.0%, respectively. The presence of MRI satellite lesions was the only preoperative predictor significantly associated with finding satellite lesions on final pathology (hazard ratio (HR), 2.95, P=0.040). There was agreement in 76.1% of the entire cohort for unilateral vs bilateral disease when incorporating both biopsy and mpMRI information and comparing with the RP specimen. In intermediate risk or greater PC, only the presence of mpMRI satellite lesions could predict for pathologic satellite lesions. While combining biopsy and mpMRI information may improve preoperative disease localization, the relatively high incidence of

  14. DNA repair kinetic of hydrogen peroxide and UVA/B induced lesions in peripheral blood leucocytes from xeroderma pigmentosum patients and healthy subjects.

    Science.gov (United States)

    Gonzalez, Elio A Prieto; Mudry, Marta D; Palermo, Ana Maria

    2014-01-01

    The objective of the present work was to study the fine kinetics of DNA repair in xeroderma pigmentosum (XP) syndrome, a complex disorder linked to a deficiency in repair that increases cancer susceptibility. The repair process was evaluated by the comet assay (CA) in cells from 2 XP patients and 9 controls exposed to UVA/B (UVA 366/UVB 280 nm) and H2O2 (150 μM) at temperatures of 4, 15, and 37°C. Samples were taken at 2-min intervals during the first 10 min to analyze the "fine kinetics" repair during the initial phase of the curve, and then at 15, 20, 25, 30, 45, 60, and 120 min. CA evaluation of DNA repair activity points to BER/NER initiation in the first 30 min with both inductors at 37°C and 15°C, but final comet length showed differences according to treatment. Repair kinetics during 120 min showed a good correlation with clinical features in both XP patients. Differences in final comet length were less pronounced in XP cells treated with H2O2 than with UVA/B, probably because the peroxide produces mainly base oxidation but less bulky lesions; UVA/B generates a mixture of both. These findings reinforce the value of CA in testing in DNA repair ability or exposure monitoring.

  15. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.

    Science.gov (United States)

    Hishiki, Asami; Hara, Kodai; Ikegaya, Yuzu; Yokoyama, Hideshi; Shimizu, Toshiyuki; Sato, Mamoru; Hashimoto, Hiroshi

    2015-05-22

    HLTF (helicase-like transcription factor) is a yeast RAD5 homolog found in mammals. HLTF has E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. HLTF has an N-terminal domain that has been designated the HIRAN (HIP116 and RAD5 N-terminal) domain. The HIRAN domain has been hypothesized to play a role in DNA binding; however, the structural basis of, and functional evidence for, the HIRAN domain in DNA binding has remained unclear. Here we show for the first time the crystal structure of the HIRAN domain of human HLTF in complex with DNA. The HIRAN domain is composed of six β-strands and two α-helices, forming an OB-fold structure frequently found in ssDNA-binding proteins, including in replication factor A (RPA). Interestingly, this study reveals that the HIRAN domain interacts with not only with a single-stranded DNA but also with a duplex DNA. Furthermore, the structure unexpectedly clarifies that the HIRAN domain specifically recognizes the 3'-end of DNA. These results suggest that the HIRAN domain functions as a sensor to the 3'-end of the primer strand at the stalled replication fork and that the domain facilitates fork regression. HLTF is recruited to a damaged site through the HIRAN domain at the stalled replication fork. Furthermore, our results have implications for the mechanism of template switching. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications.

    Science.gov (United States)

    Hall, Alison; Bostanci, A; Wright, C F

    2010-01-01

    Cell-free fetal DNA and RNA circulating in maternal blood can be used for the early non-invasive prenatal diagnosis (NIPD) of an increasing number of genetic conditions, both for pregnancy management and to aid reproductive decision-making. Here we present a brief review of the scientific and clinical status of the technology, and an overview of key ethical, legal and social issues raised by the analysis of cell-free fetal DNA for NIPD. We suggest that the less invasive nature of the technology brings some distinctive issues into focus, such as the possibility of broader uptake of prenatal diagnosis and access to the technology directly by the consumer via the internet, which have not been emphasised in previous work in this area. We also revisit significant issues that are familiar from previous debates about prenatal testing. Since the technology seems to transect existing distinctions between screening and diagnostic tests, there are important implications for the form and process involved in obtaining informed consent or choice. This analysis forms part of the work undertaken by a multidisciplinary group of experts which made recommendations about the implementation of this technology within the UK National Health Service. Copyright 2010 S. Karger AG, Basel.

  17. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base

  18. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  19. Effectiveness of core biopsy for screen-detected breast lesions under 10 mm: implications for surgical management.

    Science.gov (United States)

    Farshid, Gelareh; Downey, Peter; Pieterse, Steve; Gill, P Grantley

    2017-09-01

    Technical advances have improved the detection of small mammographic lesions. In the context of mammographic screening, accurate sampling of these lesions by percutaneous biopsy is crucial in limiting diagnostic surgical biopsies, many of which show benign results. Women undergoing core biopsy between January 1997 and December 2007 for core histology, 345 women (43.0%) were immediately cleared of malignancy and 300 (37.4%) were referred for definitive cancer treatment. A further 157 women (19.6%) required diagnostic surgical biopsy because of indefinite or inadequate core results or radiological-pathological discordance, and one woman (0.1%) needed further imaging in 12 months. The open biopsies were malignant in 46 (29.3%) cases. The positive predictive value of malignant core biopsy was 100%. The negative predictive value for benign core results was 97.7%, and the false-negative rate was 2.6%. The lesion could not be visualized after core biopsy in 5.1% of women and in 4.0% of women with malignant core biopsies excision specimens did not contain residual malignancy. Excessive delays in surgery because of complications of core biopsy were not reported. Even at this small size range, core biopsy evaluation of screen-detected breast lesions is highly effective and accurate. A lesion miss rate of 3.1% and under-representation of lesions on core samples highlight the continued need for multidisciplinary collaboration and selective use of diagnostic surgical biopsy. © 2015 Royal Australasian College of Surgeons.

  20. Implication for second primary cancer from visible oral and oropharyngeal premalignant lesions in betel-nut chewing related oral cancer.

    Science.gov (United States)

    Liu, Shyun-Yu; Feng, I-Jung; Wu, Yu-Wei; Chen, Ching-Yuan; Hsiung, Chao-Nan; Chang, Hsueh-Wei; Lin, Che-Yi; Chang, Min-Te; Yu, Hsi-Chien; Lee, Sheng-Yang; Yen, Ching-Yu

    2017-07-01

    Visible oral and oropharyngeal premalignant lesions may be used to monitor for a second primary oral cancer. To control for bias, we focused on the visible oral and oropharyngeal premalignant lesions of patients with oral cancer with a positive betel-nut chewing habit. Visible oral and oropharyngeal premalignant lesions that can predict second primary oral cancers were studied. Nine hundred ninety-seven patients with positive betel-nut chewing habits and oral cancer were enrolled in this retrospective cohort study. We analyzed the relevance of their visible oral and oropharyngeal premalignant lesion incidence and relative clinicopathological variables to the development of a second primary oral cancer. Second primary oral cancer risk was significantly higher in patients with positive visible oral and oropharyngeal premalignant lesions (P oral and oropharyngeal premalignant lesions make it a potentially valuable marker in follow-ups of patients with a positive betel-nut chewing habit with oral cancer, especially young patients with heterogeneous leukoplakia. © 2017 Wiley Periodicals, Inc.

  1. Coexposure to benzo[a]pyrene plus UVA induced DNA double strand breaks: visualization of Ku assembly in the nucleus having DNA lesions

    International Nuclear Information System (INIS)

    Toyooka, Tatsushi; Ibuki, Yuko; Koike, Manabu; Ohashi, Norio; Takahashi, Sentaro; Goto, Rensuke

    2004-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant with potential carcinogenicity. It has been shown that BaP, upon UVA irradiation, synergistically induced oxidative DNA damage, but other DNA damage was not confirmed. In this study, we examined whether coexposure to BaP plus UVA induces double strand breaks (DSBs) using xrs-5 cells, deficient in the repair of DSBs (Ku80 mutant), and whether Ku translocates involving the formation of DSBs. BaP plus UVA had a significant cytotoxic effect on CHO-K1 cells and an even more drastic effect on Ku80-deficient, xrs-5 cells, suggesting that the DSBs were generated by coexposure to BaP plus UVA. The DSBs were repaired in CHO-K1 cells within 30 min, but not in xrs-5 cells, indicating the involvement of a non-homologous end joining, which needs Ku proteins. Furthermore, we succeeded in visualizing that Ku80 rapidly assembled to the exposed region, in which DSBs might be generated, and clarified that the presence of both Ku70 and Ku80 was important for their accumulation

  2. Association between human papillomavirus and Epstein - Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: a transversal study.

    Science.gov (United States)

    McCormick, Thaís M; Canedo, Nathalie H S; Furtado, Yara L; Silveira, Filomena A; de Lima, Roberto J; Rosman, Andréa D F; Almeida Filho, Gutemberg L; Carvalho, Maria da Glória da C

    2015-06-02

    Human papillomavirus (HPV) inactivates the retinoblastoma 1 (RB1) gene by promoter methylation and reduces cellular E-cadherin expression by overexpression of DNA methyltransferase 1 (DNMT1). The Epstein-Barr virus (EBV) is an oncogenic virus that may be related to cervical carcinogenesis. In gastric cancer, it has been demonstrated that E-cadherin gene (CDH1) hypermethylation is associated with DNMT1 overexpression by EBV infection. Our aim was to analyze the gene promoter methylation frequency of RB1 and CDH1 and verify the association between that methylation frequency and HPV and EBV infection in cervical lesions. Sixty-five samples were obtained from cervical specimens: 15 normal cervices, 17 low-grade squamous intraepithelial lesions (LSIL), 15 high-grade squamous intraepithelial lesions (HSIL), and 18 cervical cancers. HPV and EBV DNA testing was performed by PCR, and the methylation status was verified by MSP. HPV frequency was associated with cervical cancer cases (p = 0.005) but not EBV frequency (p = 0.732). Viral co-infection showed a statistically significant correlation with cancer (p = 0.027). No viral infection was detected in 33.3% (5/15) of controls. RB1 methylated status was associated with cancer (p = 0.009) and HPV infection (p = 0.042). CDH1 methylation was not associated with cancer (p = 0.181). Controls and LSIL samples did not show simultaneous methylation, while both genes were methylated in 27.8% (5/18) of cancer samples. In the presence of EBV, CDH1 methylation was present in 27.8% (5/18) of cancer samples. Only cancer cases presented RB1 promoter methylation in the presence of HPV and EBV (33.3%). The methylation status of both genes increased with disease progression. With EBV, RB1 methylation was a tumor-associated event because only the cancer group presented methylated RB1 with HPV infection. HPV infection was shown to be significantly correlated with cancer conditions. The global methylation frequency was

  3. Dynamics of bleomycin interaction with a strongly bound hairpin DNA substrate, and implications for cleavage of the bound DNA.

    Science.gov (United States)

    Bozeman, Trevor C; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J; Zaleski, Paul A; Wilson, W David; Hecht, Sidney M

    2012-10-31

    Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe·BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B(2) binding to a strongly bound hairpin DNA, to define the effects of Fe(3+), salt, and temperature on BLM-DNA interaction. One strong primary DNA binding site, and at least one much weaker site, were documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus, enhanced binding to a given site does not necessarily result in increased DNA degradation at that site; i.e., for strongly bound DNAs, the facility of DNA cleavage must involve other parameters in addition to the intrinsic rate of C-4' H atom abstraction from DNA sugars.

  4. HPV16-E2 induces prophase arrest and activates the cellular DNA damage response in vitro and in precursor lesions of cervical carcinoma.

    Science.gov (United States)

    Xue, Yuezhen; Toh, Shen Yon; He, Pingping; Lim, Thimothy; Lim, Diana; Pang, Chai Ling; Abastado, Jean-Pierre; Thierry, Françoise

    2015-10-27

    Cervical intraepithelial neoplasia (CIN) is caused by human papillomavirus (HPV) infection and is the precursor to cervical carcinoma. The completion of the HPV productive life cycle depends on the expression of viral proteins which further determines the severity of the cervical neoplasia. Initiation of the viral productive replication requires expression of the E2 viral protein that cooperates with the E1 viral DNA helicase. A decrease in the viral DNA replication ability and increase in the severity of cervical neoplasia is accompanied by simultaneous elevated expression of E6 and E7 oncoproteins. Here we reveal a novel and important role for the HPV16-E2 protein in controlling host cell cycle during malignant transformation. We showed that cells expressing HPV16-E2 in vitro are arrested in prophase alongside activation of a sustained DDR signal. We uncovered evidence that HPV16-E2 protein is present in vivo in cells that express both mitotic and DDR signals specifically in CIN3 lesions, immediate precursors of cancer, suggesting that E2 may be one of the drivers of genomic instability and carcinogenesis in vivo.

  5. A component of DNA double-strand break repair is dependent on the spatial orientation of the lesions within the higher-order structures of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.J.; Bryant, P.E. (Saint Andrews Univ. (United Kingdom))

    1994-11-01

    By the use of a modified neutral filter elution procedure variations in the repair of DNA dsb have been observed between the ionising radiation sensitive mutant xrs-5 and the parent cell line CHO-K1. Conventional neutral filter elution requires harsh lysis conditions to remove higher-order chromatin structures which interfere with elution of DNA containing dsb. By lysing cells with non-ionic detergent in the presence of 2 mol dm[sup -3] salt, histone-depleted structures that retain the higher-order nuclear matrix organization, including chromatin loops, can be produced. Elution from these structures will only occur if two or more dsb lie within a single-looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of dsb in loops containing multiple dsb are repaired with slow kinetics whilst dsb occurring in loops containing single dsb are repaired with fast kinetics. Xrs-5 cells are defective in the repair of multiply damaged loops. This work indicates that the spatial orientation of dsb in the higher-order structures of chromatin are a possible factor in the repair of these lesions. (Author).

  6. A component of DNA double-strand break repair is dependent on the spatial orientation of the lesions within the higher-order structures of chromatin

    International Nuclear Information System (INIS)

    Johnston, P.J.; Bryant, P.E.

    1994-01-01

    By the use of a modified neutral filter elution procedure variations in the repair of DNA dsb have been observed between the ionising radiation sensitive mutant xrs-5 and the parent cell line CHO-K1. Conventional neutral filter elution requires harsh lysis conditions to remove higher-order chromatin structures which interfere with elution of DNA containing dsb. By lysing cells with non-ionic detergent in the presence of 2 mol dm -3 salt, histone-depleted structures that retain the higher-order nuclear matrix organization, including chromatin loops, can be produced. Elution from these structures will only occur if two or more dsb lie within a single-looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of dsb in loops containing multiple dsb are repaired with slow kinetics whilst dsb occurring in loops containing single dsb are repaired with fast kinetics. Xrs-5 cells are defective in the repair of multiply damaged loops. This work indicates that the spatial orientation of dsb in the higher-order structures of chromatin are a possible factor in the repair of these lesions. (Author)

  7. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    Science.gov (United States)

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our

  8. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li Ziqiang; Zhang Hong; McManus, Terrence P.; McCormick, J. Justin; Lawrence, Christopher W.; Maher, Veronica M

    2002-12-29

    In S. cerevisiae, the REV3 gene, encoding the catalytic subunit of polymerase zeta, is involved in translesion synthesis and required for the production of mutations induced by ultraviolet radiation (UV) photoproducts and other DNA fork-blocking lesions, and for the majority of spontaneous mutations. To determine whether hREV3, the human homolog of yeast REV3, is similarly involved in error-prone translesion synthesis past UV photoproducts and other lesions that block DNA replication, an hREV3 antisense construct under the control of the TetP promoter was transfected into an infinite life span human fibroblast cell strain that expresses a high level of tTAk, the activator of that promoter. Three transfectant strains expressing high levels of hREV3 antisense RNA were identified and compared with their parental cell strain for sensitivity to the cytotoxic and mutagenic effects of UV. The three hREV3 antisense-expressing cell strains were not more sensitive than the parental strain to the cytotoxic effect of UV, but the frequency of mutants induced by UV in their HPRT gene was significantly reduced, i.e. to 14% that of the parent. Two of these hREV3 antisense-expressing cell strains were compared with the parental strain for sensitivity to ({+-})-7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy-7,8,9,10-tetrahydro= benzo[a]pyrene (BPDE). They were not more sensitive than the parent strain to the cytotoxic effect of BPDE, but the frequency of mutants induced was significantly reduced, i.e. in one strain, to 17% that of the parent, and in the other, to 24%. DNA sequencing showed that the kinds of mutations induced by BPDE in the parental and the derivative strains did not differ and were similar to those found previously with finite life span human fibroblasts. The data strongly support the hypothesis that hRev3 plays a critical role in the induction of mutations by UV or BPDE. Because the level of hRev3 protein in human fibroblasts is below the level of antibody

  9. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhang Hong; McManus, Terrence P.; McCormick, J. Justin; Lawrence, Christopher W.; Maher, Veronica M.

    2002-01-01

    In S. cerevisiae, the REV3 gene, encoding the catalytic subunit of polymerase zeta, is involved in translesion synthesis and required for the production of mutations induced by ultraviolet radiation (UV) photoproducts and other DNA fork-blocking lesions, and for the majority of spontaneous mutations. To determine whether hREV3, the human homolog of yeast REV3, is similarly involved in error-prone translesion synthesis past UV photoproducts and other lesions that block DNA replication, an hREV3 antisense construct under the control of the TetP promoter was transfected into an infinite life span human fibroblast cell strain that expresses a high level of tTAk, the activator of that promoter. Three transfectant strains expressing high levels of hREV3 antisense RNA were identified and compared with their parental cell strain for sensitivity to the cytotoxic and mutagenic effects of UV. The three hREV3 antisense-expressing cell strains were not more sensitive than the parental strain to the cytotoxic effect of UV, but the frequency of mutants induced by UV in their HPRT gene was significantly reduced, i.e. to 14% that of the parent. Two of these hREV3 antisense-expressing cell strains were compared with the parental strain for sensitivity to (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). They were not more sensitive than the parent strain to the cytotoxic effect of BPDE, but the frequency of mutants induced was significantly reduced, i.e. in one strain, to 17% that of the parent, and in the other, to 24%. DNA sequencing showed that the kinds of mutations induced by BPDE in the parental and the derivative strains did not differ and were similar to those found previously with finite life span human fibroblasts. The data strongly support the hypothesis that hRev3 plays a critical role in the induction of mutations by UV or BPDE. Because the level of hRev3 protein in human fibroblasts is below the level of antibody detection, it was not

  10. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: implications of the DNA repair deficiencies in attenuation of mycobacteria.

    Science.gov (United States)

    Rex, Kervin; Kurthkoti, Krishna; Varshney, Umesh

    2013-10-01

    Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Causes and consequences of plant radio-resistance. Formation of DNA basis lesions and self-repairing activity of one of them, the 8-oxo-7,8-dihydro-guanine in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Dany, A.L.

    2001-01-01

    In this research thesis, the author first explains how and why DNA is injured when it is submitted to an oxidizing stress, and describes precisely the formation and the biological consequences of lesions of DNA bases, the 8-oxo-7,8-dihydro-guanine (8-oxoGua). She describes the repairing activities of the oxidized DNA, and more particularly the repairing of 8-oxoGua, in prokaryotes as well as in yeast, mammals and plants. Methodologies used are described, together with the repair activities of the 8-oxo-7,8-dihydro-guanine following a biochemical type approach and a molecular biology approach

  12. Oral Nodular Lesions in Patients with Sjögren's Syndrome: Unusual Oral Implications of a Systemic Disorder.

    Science.gov (United States)

    Pinheiro, Juliana Barchelli; Tirapelli, Camila; Silva, Claudia Helena Lovato da; Komesu, Marilena Chinali; Petean, Flávio Calil; Louzada Junior, Paulo; León, Jorge Esquiche; Motta, Ana Carolina Fragoso

    2017-01-01

    Sjögren's syndrome (SS) is a systemic chronic autoimmune disorder affecting the lacrimal and salivary glands. SS may manifest as primary SS (pSS) or secondary SS (sSS), the latter occurring in the context of another autoimmune disorder. In both cases, the dry eyes and mouth affect the patient's quality of life. Late complications may include blindness, dental tissue destruction, oral candidiasis and lymphoma. This paper reports two cases of SS, each of them presenting unusual oral nodular lesion diagnosed as relapsed MALT lymphoma and mucocele. The importance of the diagnosis, treatment and management of the oral lesions by a dentist during the care of SS patients is emphasized, as the oral manifestations of SS may compromise the patient's quality of life.

  13. Prognostic implication of the metastatic lesion-to-ovarian cancer standardised uptake value ratio in advanced serous epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chung, Hyun Hoon; Lee, Maria; Kim, Hee-Seung; Kim, Jae-Weon; Park, Noh-Hyun; Song, Yong Sang; Cheon, Gi Jeong

    2017-01-01

    To evaluate the prognostic value of metabolic activity of metastatic lesions measured by 18 F-flurodeoxyglucose ( 18 F-FDG) uptake on preoperative positron emission tomography/computed tomography (PET/CT) in patients with advanced serous epithelial ovarian cancer (EOC). Clinico-pathological variables and PET/CT parameters such as the maximum standardised uptake value of the ovarian cancer (SUV ovary ), metastatic lesions (SUV meta ), and the metastatic lesion-to-ovarian cancer standardised uptake value ratio (SUV meta /SUV ovary ) were assessed in International Federation of Gynaecology and Obstetrics (FIGO) stage III, IV patients. Clinico-pathological data were retrospectively reviewed for 94 eligible patients. The median progression-free survival (PFS) was 18.5 months (range, 6-90 months), and 57 (60.6%) patients experienced recurrence. Older age [P = 0.017, hazard ratio (HR) 1.036, 95% CI 1.006-1.066], residual disease after surgery (P = 0.024, HR 1.907, 95% CI 1.087-3.346), and high SUV meta /SUV ovary (P = 0.019, HR 2.321, 95% CI 1.148-4.692) were independent risk factors of recurrence. Patients with high SUV meta /SUV ovary showed a significantly worse PFS than those with low SUV meta /SUV ovary (P = 0.007, log-rank test). Preoperative SUV meta /SUV ovary was significantly associated with recurrence and has an incremental prognostic value for PFS in patients with advanced serous EOC. (orig.)

  14. Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles.

    Science.gov (United States)

    Yurek, D M; Hasselrot, U; Cass, W A; Sesenoglu-Laird, O; Padegimas, L; Cooper, M J

    2015-01-22

    In previous studies that used compacted DNA nanoparticles (DNP) to transfect cells in the brain, we observed higher transgene expression in the denervated striatum when compared to transgene expression in the intact striatum. We also observed that long-term transgene expression occurred in astrocytes as well as neurons. Based on these findings, we hypothesized that the higher transgene expression observed in the denervated striatum may be a function of increased gliosis. Several aging studies have also reported an increase of gliosis as a function of normal aging. In this study we used DNPs that encoded for human glial cell line-derived neurotrophic factor (hGDNF) and either a non-specific human polyubiquitin C (UbC) or an astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The DNPs were injected intracerebrally into the denervated or intact striatum of young, middle-aged or aged rats, and glial cell line-derived neurotrophic factor (GDNF) transgene expression was subsequently quantified in brain tissue samples. The results of our studies confirmed our earlier finding that transgene expression was higher in the denervated striatum when compared to intact striatum for DNPs incorporating either promoter. In addition, we observed significantly higher transgene expression in the denervated striatum of old rats when compared to young rats following injections of both types of DNPs. Stereological analysis of GFAP+ cells in the striatum confirmed an increase of GFAP+ cells in the denervated striatum when compared to the intact striatum and also an age-related increase; importantly, increases in GFAP+ cells closely matched the increases in GDNF transgene levels. Thus neurodegeneration and aging may lay a foundation that is actually beneficial for this particular type of gene therapy while other gene therapy techniques that target neurons are actually targeting cells that are decreasing as the disease progresses. Copyright © 2014 IBRO. Published by

  15. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control

    Directory of Open Access Journals (Sweden)

    Francois M Lambert

    2012-04-01

    Full Text Available Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the CNS to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the central nervous system include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims towards a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of

  16. Florid cemento-osseous dysplasia: review of an uncommon fibro-osseous lesion of the jaw with important clinical implications.

    Science.gov (United States)

    Fenerty, Sarah; Shaw, Wei; Verma, Rahul; Syed, Ali B; Kuklani, Riya; Yang, Jie; Ali, Sayed

    2017-05-01

    Florid cemento-osseous dysplasia (FCOD) is a rare, benign, multifocal fibro-osseous dysplastic process affecting tooth-bearing areas of the jaw, characterized by replacement of normal trabecular bone with osseous tissue and dense acellular cementum in a fibrous stroma. It is one clinicopathologic variant in a spectrum of related non-neoplastic fibro-osseous lesions known as cemento-osseous dysplasias (CODs), thought to arise from elements of the periodontal ligament. Diagnosis primarily relies upon radiographic and clinical findings; unnecessary biopsy should be avoided, as inoculation with oral pathogens may precipitate chronic infection in these hypovascular lesions. Appropriate management of uncomplicated FCOD consists of periodic radiographic follow-up. Accordingly, it is important that both radiologists and clinicians performing endodontic interventions possess familiarity with this entity in order to prevent misdiagnosis and inappropriate intervention, which may result in a protracted clinical course. Lesions are usually asymptomatic in the absence of infection, typically discovered on routine dental radiographs or imaging performed for unrelated indications. Radiographically, the condition typically manifests as widespread non-expansile intraosseous masses of varying internal lucency and sclerosis that surround the root apices of vital teeth or edentulous areas in the posterior jaw. While all CODs share similar microscopic features, FCOD is distinguished by its multifocal distribution, involving two or more quadrants of the maxilla and mandible, often in a bilateral symmetric fashion. The vast majority of cases are sporadic, though few exhibit an autosomal dominant familial inheritance pattern. In this pictorial review, we discuss the radiologic characteristics of this entity, pertinent clinical and histologic features, differential diagnoses, and management options.

  17. Prognostic implication of the metastatic lesion-to-ovarian cancer standardised uptake value ratio in advanced serous epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Hoon; Lee, Maria; Kim, Hee-Seung; Kim, Jae-Weon; Park, Noh-Hyun; Song, Yong Sang [Seoul National University College of Medicine, Department of Obstetrics and Gynaecology, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University College of Medicine, Department of Nuclear Medicine, Cancer Research Institute, Seoul (Korea, Republic of)

    2017-11-15

    To evaluate the prognostic value of metabolic activity of metastatic lesions measured by {sup 18}F-flurodeoxyglucose ({sup 18}F-FDG) uptake on preoperative positron emission tomography/computed tomography (PET/CT) in patients with advanced serous epithelial ovarian cancer (EOC). Clinico-pathological variables and PET/CT parameters such as the maximum standardised uptake value of the ovarian cancer (SUV{sub ovary}), metastatic lesions (SUV{sub meta}), and the metastatic lesion-to-ovarian cancer standardised uptake value ratio (SUV{sub meta}/SUV{sub ovary}) were assessed in International Federation of Gynaecology and Obstetrics (FIGO) stage III, IV patients. Clinico-pathological data were retrospectively reviewed for 94 eligible patients. The median progression-free survival (PFS) was 18.5 months (range, 6-90 months), and 57 (60.6%) patients experienced recurrence. Older age [P = 0.017, hazard ratio (HR) 1.036, 95% CI 1.006-1.066], residual disease after surgery (P = 0.024, HR 1.907, 95% CI 1.087-3.346), and high SUV{sub meta}/SUV{sub ovary} (P = 0.019, HR 2.321, 95% CI 1.148-4.692) were independent risk factors of recurrence. Patients with high SUV{sub meta}/SUV{sub ovary} showed a significantly worse PFS than those with low SUV{sub meta}/SUV{sub ovary} (P = 0.007, log-rank test). Preoperative SUV{sub meta}/SUV{sub ovary} was significantly associated with recurrence and has an incremental prognostic value for PFS in patients with advanced serous EOC. (orig.)

  18. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    Science.gov (United States)

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Chemical repair activity of free radical scavenger edaravone. Reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Hata, Kuniki; Katsumura, Yosuke; Urushibara, Ayumi; Yamashita, Shinichi; Lin Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu Haiying

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10 8 dm 3 mol -1 s -1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm -3 ) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. (author)

  20. Chemical repair activity of free radical scavenger edaravone: reduction reactions with dGMP hydroxyl radical adducts and suppression of base lesions and AP sites on irradiated plasmid DNA.

    Science.gov (United States)

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke

    2015-01-01

    Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.

    Science.gov (United States)

    An, Hongjie; Jin, Bo

    2012-01-01

    Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    Directory of Open Access Journals (Sweden)

    Andaine Seguin-Orlando

    Full Text Available Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  3. The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes

    International Nuclear Information System (INIS)

    Schynts, Frederic; McVoy, Michael A.; Meurens, Francois; Detry, Bruno; Epstein, Alberto L.; Thiry, Etienne

    2003-01-01

    Herpesvirus genomes are often characterized by the presence of direct and inverted repeats that delineate their grouping into six structural classes. Class D genomes consist of a long (L) segment and a short (S) segment. The latter is flanked by large inverted repeats. DNA replication produces concatemers of head-to-tail linked genomes that are cleaved into unit genomes during the process of packaging DNA into capsids. Packaged class D genomes are an equimolar mixture of two isomers in which S is in either of two orientations, presumably a consequence of homologous recombination between the inverted repeats. The L segment remains predominantly fixed in a prototype (P) orientation; however, low levels of genomes having inverted L (I L ) segments have been reported for some class D herpesviruses. Inefficient formation of class D I L genomes has been attributed to infrequent L segment inversion, but recent detection of frequent inverted L segments in equine herpesvirus 1 concatemers [Virology 229 (1997) 415-420] suggests that the defect may be at the level of cleavage and packaging rather than inversion. In this study, the structures of virion and concatemeric DNA of another class D herpesvirus, bovine herpesvirus 1, were determined. Virion DNA contained low levels of I L genomes, whereas concatemeric DNA contained significant amounts of L segments in both P and I L orientations. However, concatemeric termini exhibited a preponderance of L termini derived from P isomers which was comparable to the preponderance of P genomes found in virion DNA. Thus, the defect in formation of I L genomes appears to lie at the level of concatemer cleavage. These results have important implications for the mechanisms by which herpesvirus DNA cleavage and packaging occur

  4. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    Science.gov (United States)

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  5. Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach.

    Science.gov (United States)

    Thakur, Roshan Singh; Desingu, Ambika; Basavaraju, Shivakumar; Subramanya, Shreelakshmi; Rao, Desirazu N; Nagaraju, Ganesh

    2014-09-05

    The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5' → 3' polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5' → 3' polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Reduction of postreplication DNA repair in two Escherichia coli mutants with temperature-sensitive polymerase III activity: implications for the postreplication repair pathway

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1978-01-01

    Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of uv-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 0 C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps

  7. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Schøler, Lone V; Reinert, Thomas; Ørntoft, Mai-Britt W

    2017-01-01

    .007). Changes in ctDNA levels induced by relapse intervention (n = 19) showed good agreement with changes in tumor volume (κ = 0.41; Spearman ρ = 0.4).Conclusions: Postoperative ctDNA detection provides evidence of residual disease and identifies patients at very high risk of relapse. Longitudinal surveillance...

  8. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  9. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  10. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  11. Evolutionary implications of inversions that have caused intra-strand parity in DNA

    Directory of Open Access Journals (Sweden)

    Wei John

    2007-06-01

    Full Text Available Abstract Background Chargaff's rule of DNA base composition, stating that DNA comprises equal amounts of adenine and thymine (%A = %T and of guanine and cytosine (%C = %G, is well known because it was fundamental to the conception of the Watson-Crick model of DNA structure. His second parity rule stating that the base proportions of double-stranded DNA are also reflected in single-stranded DNA (%A = %T, %C = %G is more obscure, likely because its biological basis and significance are still unresolved. Within each strand, the symmetry of single nucleotide composition extends even further, being demonstrated in the balance of di-, tri-, and multi-nucleotides with their respective complementary oligonucleotides. Results Here, we propose that inversions are sufficient to account for the symmetry within each single-stranded DNA. Human mitochondrial DNA does not demonstrate such intra-strand parity, and we consider how its different functional drivers may relate to our theory. This concept is supported by the recent observation that inversions occur frequently. Conclusion Along with chromosomal duplications, inversions must have been shaping the architecture of genomes since the origin of life.

  12. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modulates estradiol-induced aldehydic DNA lesions in human breast cancer cells through alteration of CYP1A1 and CYP1B1 expression.

    Science.gov (United States)

    Chen, Shou-Tung; Chen, Dar-Ren; Fang, Ju-Pin; Lin, Po-Hsiung

    2015-05-01

    Many genes responsible for the bioactivation of endogenous estrogen to reactive quinonoid metabolites, including cytochrome P450 (CYP) 1A1, 1A2, and 1B1, are well-known target genes of the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The purpose of this research was to investigate the roles of TCDD-mediated altered gene expression in the induction of aldehydic DNA lesions (ADLs) by 17β-estradiol (E2) in human MDA-MB-231 and MCF-7 breast cancer cells. We demonstrated that increases in the number of oxidant-mediated ADLs, including abasic sites and aldehydic base/sugar lesions, were detected in MDA-MB-231 cells exposed to E2. The DNA-damaging effects of E2 in MDA-MB-231 cells were prevented by pretreatment of cells with TCDD. In contrast, we did not observe statistically significant increases in the number of ADLs in MCF-7 cells exposed to E2. However, with TCDD pretreatment, an approximately twofold increase in the number of ADLs was detected in MCF-7 cells exposed to E2. TCDD pretreatment induces disparity in the disposition of E2 to reactive quinonoid metabolites and the subsequent formation of oxidative DNA lesions through alteration of CYP1A1 and CYP1B1 expression in human breast cancer cells.

  13. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1976-01-01

    It has been previously reported that an inducible form of post-replication repair appeared to be required for UV induced mutagenesis in an uvrA strain of Escherichia coli. It is shown here that the numbers of daughter strand gaps requiring inducible repair were similar to the numbers calculated to be overlapping one another in opposite daughter chromosomes. An estimation of survival with no repair of these gaps resembled the survival predicted with mutagenesis. It is thus proposed that inducible post-replication repair causes mutagenesis by the repair of overlapping daughter strand gaps. A general model for induced mutagenesis is presented. It is proposed that (a) some DNA lesions introduced by any DNA damaging agent may be close enough to interfere with constitutive repair replication of each other, (b) these lesions induce a repair system (SOS repair) which involves the recA + . lexA + and polC + genes (c) repair, and noncomitant mutagenesis occurs during repair replication by the insertion of mismatched bases oppposite the noncoding DNA lesions

  14. Stories in Genetic Code. The contribution of ancient DNA studies to anthropology and their ethical implications

    Directory of Open Access Journals (Sweden)

    Cristian M. Crespo

    2010-12-01

    Full Text Available For several decades, biological anthropology has employed different molecular markers in population research. Since 1990 different techniques in molecular biology have been developed allowing preserved DNA extraction and its typification in different samples from museums and archaeological sites. Ancient DNA studies related to archaeological issues are now included in the field of Archaeogenetics. In this work we present some of ancient DNA applications in archaeology. We also discuss advantages and limitations for this kind of research and its relationship with ethic and legal norms.

  15. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.

    Science.gov (United States)

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-10-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  16. Developmentally Regulated Ribosomal rDNA Genes in Plasmodium vivax: Biological Implications and Practical Applications

    Science.gov (United States)

    1994-08-10

    technological advances, especially DNA polymerase chain reaction (peR), molecular cloning and rapid nuc1eotide sequencing. These advances have allowed...containing 0.15% saponin and set on ice for 2· minutes. After washing and centrifugation twice, as described above, the pellets were dissolved in...incubated at 370C for 60 minutes. DNA was further processed by standard procedures [Maniatis et al., 1982]. Briefly, the lysed sample was extracted

  17. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania.

    Science.gov (United States)

    Nagle, Nano; Ballantyne, Kaye N; van Oven, Mannis; Tyler-Smith, Chris; Xue, Yali; Wilcox, Stephen; Wilcox, Leah; Turkalov, Rust; van Oorschot, Roland A H; van Holst Pellekaan, Sheila; Schurr, Theodore G; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R John

    2017-03-01

    Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

  18. Transcriptome Analysis Reveals Markers of Aberrantly Activated Innate Immunity in Vitiligo Lesional and Non-Lesional Skin

    Science.gov (United States)

    Huang, Yuanshen; Wang, Yang; Yu, Jie; Gao, Min; Levings, Megan; Wei, Shencai; Zhang, Shengquan; Xu, Aie; Su, Mingwan; Dutz, Jan; Zhang, Xuejun; Zhou, Youwen

    2012-01-01

    Background Vitiligo is characterized by the death of melanocytes in the skin. This is associated with the presence of T cell infiltrates in the lesional borders. However, at present, there is no detailed and systematic characterization on whether additional cellular or molecular changes are present inside vitiligo lesions. Further, it is unknown if the normal appearing non-lesional skin of vitiligo patients is in fact normal. The purpose of this study is to systematically characterize the molecular and cellular characteristics of the lesional and non-lesional skin of vitiligo patients. Methods and Materials Paired lesional and non-lesional skin biopsies from twenty-three vitiligo patients and normal skin biopsies from sixteen healthy volunteers were obtained with informed consent. The following aspects were analyzed: (1) transcriptome changes present in vitiligo skin using DNA microarrays and qRT-PCR; (2) abnormal cellular infiltrates in vitiligo skin explant cultures using flow cytometry; and (3) distribution of the abnormal cellular infiltrates in vitiligo skin using immunofluorescence microscopy. Results Compared with normal skin, vitiligo lesional skin contained 17 genes (mostly melanocyte-specific genes) whose expression was decreased or absent. In contrast, the relative expression of 13 genes was up-regulated. The up-regulated genes point to aberrant activity of the innate immune system, especially natural killer cells in vitiligo. Strikingly, the markers of heightened innate immune responses were also found to be up-regulated in the non-lesional skin of vitiligo patients. Conclusions and Clinical Implications As the first systematic transcriptome characterization of the skin in vitiligo patients, this study revealed previously unknown molecular markers that strongly suggest aberrant innate immune activation in the microenvironment of vitiligo skin. Since these changes involve both lesional and non-lesional skin, our results suggest that therapies targeting

  19. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  20. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus

    Science.gov (United States)

    Gorički, Špela; Stanković, David; Snoj, Aleš; Kuntner, Matjaž; Jeffery, William R.; Trontelj, Peter; Pavićević, Miloš; Grizelj, Zlatko; Năpăruş-Aljančič, Magdalena; Aljančič, Gregor

    2017-03-01

    Europe’s obligate cave-dwelling amphibian Proteus anguinus inhabits subterranean waters of the north-western Balkan Peninsula. Because only fragments of its habitat are accessible to humans, this endangered salamander’s exact distribution has been difficult to establish. Here we introduce a quantitative real time polymerase chain reaction-based environmental DNA (eDNA) approach to detect the presence of Proteus using water samples collected from karst springs, wells or caves. In a survey conducted along the southern limit of its known range, we established a likely presence of Proteus at seven new sites, extending its range to Montenegro. Next, using specific molecular probes to discriminate the rare black morph of Proteus from the closely related white morph, we detected its eDNA at five new sites, thus more than doubling the known number of sites. In one of these we found both black and white Proteus eDNA together. This finding suggests that the two morphs may live in contact with each other in the same body of groundwater and that they may be reproductively isolated species. Our results show that the eDNA approach is suitable and efficient in addressing questions in biogeography, evolution, taxonomy and conservation of the cryptic subterranean fauna.

  1. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells.

    Science.gov (United States)

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  2. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    Directory of Open Access Journals (Sweden)

    Xin-Shu eChen

    2015-12-01

    Full Text Available Schizophrenia (SZ)is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  3. X-ray effects of lens DNA-implications of superoxide (O2.-)

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Richards, R.D.; Varma, S.D.

    1983-01-01

    The photocemical generation of superoxide (O 2 .-) during in vitro exposure of bovine lenses induced damage in the structure of lens DNA as indicated by hyperchromicity and Tm measurements. The damage in lens DNA was significantly protected by the inclusion of superoxide dismutase (SOD), glutathione (GSH) and ascorbate in the incubation medium before X-ray exposure. The protection by SOD, GSH and ascorbate occurred due to their interaction with O 2 .- radicals. These results thus indicate the deleterious effect of O 2 .- in lens physiology and the protective role of such compounds against radiation damage. (author)

  4. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2012-04-01

    About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. The implications of non-linearity for excitation transfer in DNA

    International Nuclear Information System (INIS)

    Baverstock, K.F.; Cundall, R.B.

    1990-01-01

    Non-linear effects which arise from the coupling of anharmonic interactions can completely change excitation transport through molecular chains. The consequences of this for an understanding of the effect of ionising radiation on DNA are discussed. We consider that these effects should be taken into account in the interpretation of experimental data. (author)

  6. Implications of storing urinary DNA from different populations for molecular analyses.

    Directory of Open Access Journals (Sweden)

    Angela Cannas

    2009-09-01

    Full Text Available Molecular diagnosis using urine is established for many sexually transmitted diseases and is increasingly used to diagnose tumours and other infectious diseases. Storage of urine prior to analysis, whether due to home collection or bio-banking, is increasingly advocated yet no best practice has emerged. Here, we examined the stability of DNA in stored urine in two populations over 28 days.Urine from 40 (20 male healthy volunteers from two populations, Italy and Zambia, was stored at four different temperatures (RT, 4 degrees C, -20 degrees C & -80 degrees C with and without EDTA preservative solution. Urines were extracted at days 0, 1, 3, 7 and 28 after storage. Human DNA content was measured using multi-copy (ALU J and single copy (TLR2 targets by quantitative real-time PCR. Zambian and Italian samples contained comparable DNA quantity at time zero. Generally, two trends were observed during storage; no degradation, or rapid degradation from days 0 to 7 followed by little further degradation to 28 days. The biphasic degradation was always observed in Zambia regardless of storage conditions, but only twice in Italy.Site-specific differences in urine composition significantly affect the stability of DNA during storage. Assessing the quality of stored urine for molecular analysis, by using the type of strategy described here, is paramount before these samples are used for molecular prognostic monitoring, genetic analyses and disease diagnosis.

  7. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.

    Science.gov (United States)

    Bignon, Emmanuelle; Chan, Chen-Hui; Morell, Christophe; Monari, Antonio; Ravanat, Jean-Luc; Dumont, Elise

    2017-09-18

    Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, PutDNA-polyamine cross-link formation through the extraction of average approaching distances between the C8 atom of guanines and the ammonium group. These results imply that the formation of DNA-polyamine cross-links involves deprotonation of the guanine radical cation to attack the polyamines, which must be positively charged to lie in the vicinity of the B-helix. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of the diagnostic value of cervical cytology and HPV HR DNA testing for the diagnosis of low-grade and high-grade squamous intraepithelial lesions across different age groups.

    Science.gov (United States)

    Paluszkiewicz, Aleksandra; Pruski, Dominik; Iwaniec, Kinga; Kędzia, Witold

    2017-01-01

    To assess the diagnostic value of cervical cytology and HPV HR DNA testing for the diagnosis of low grade and high-grade squamous intraepithelial lesions across different age groups. The study included 1103 patients, age 25-70 years. All patients underwent in-depth diagnostic tests following either an abnormal Pap test result or a clinically suspicious cervical lesion. In all women the following examinations were performed: a molecular test detecting 14 high-risk types of HPV, a colposcopy examination, as well as directed-biopsy of the cervix. The studied population was subdivided into four age groups. It was observed that the percentage of high grade squamous intraepithelial lesions (HSIL) and cancers increased with women's age. Sensitivity of both methods for detecting high-grade squamous intraepithelial lesions was highest for women aged 40-49 years. Sensitivity values of HPV testing was higher than that of cervical cytology among women under age 50. Specificity of HPV testing increased significantly with age of women and was several fold higher across all age groups than the specificity of cervical cytology.

  9. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  10. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Science.gov (United States)

    Jenkins, Timothy G; Aston, Kenneth I; Pflueger, Christian; Cairns, Bradley R; Carrell, Douglas T

    2014-07-01

    Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc.), trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc.) and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  11. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Timothy G Jenkins

    2014-07-01

    Full Text Available Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc., trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc. and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body. Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  12. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  13. Structural plasticity in Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) and its functional implications.

    Science.gov (United States)

    Arif, S M; Geethanandan, K; Mishra, P; Surolia, A; Varshney, U; Vijayan, M

    2015-07-01

    17 independent crystal structures of family I uracil-DNA glycosylase from Mycobacterium tuberculosis (MtUng) and its complexes with uracil and its derivatives, distributed among five distinct crystal forms, have been determined. Thermodynamic parameters of binding in the complexes have been measured using isothermal titration calorimetry. The two-domain protein exhibits open and closed conformations, suggesting that the closure of the domain on DNA binding involves conformational selection. Segmental mobility in the enzyme molecule is confined to a 32-residue stretch which plays a major role in DNA binding. Uracil and its derivatives can bind to the protein in two possible orientations. Only one of them is possible when there is a bulky substituent at the 5' position. The crystal structures of the complexes provide a reasonable rationale for the observed thermodynamic parameters. In addition to providing fresh insights into the structure, plasticity and interactions of the protein molecule, the results of the present investigation provide a platform for structure-based inhibitor design.

  14. Differential Tus-Ter binding and lock formation: implications for DNA replication termination in Escherichia coli.

    Science.gov (United States)

    Moreau, Morgane J J; Schaeffer, Patrick M

    2012-10-01

    In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).

  15. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications.

    Science.gov (United States)

    Wani, Gowher A; Shah, Manzoor A; Reshi, Zafar A; Atangana, Alain R; Khasa, Damase P

    2014-07-01

    A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.

  16. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1

    Science.gov (United States)

    Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.

    2014-01-01

    • Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636

  17. cpDNA Microsatellite Markers for Lemna minor (Araceae: Phylogeographic Implications

    Directory of Open Access Journals (Sweden)

    Gowher A. Wani

    2014-07-01

    Full Text Available Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.

  18. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  19. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  20. Genes Involved in DNA Double-Strand Break Repair: Implications for Breast Cancer.

    Science.gov (United States)

    1996-10-01

    dependent kinase (p350) as a cietv of America Scholar. W.K.R. is a Howard Hughes Medical Insti- candidate gene for the murine SCID defect. Science 267:1178...Howard Hughes Medical Institute (W. K. R.). 26), are rescued by transfection of Ku86 cDNA (27, 28), and have 2 To whom requests for reprints should be... Jackman . J.. Wang. M. G., McBride. 0. W., and Fornace, 40. Papathanasiou. M. A.. Kerr, N. C. K., Robbins, J. H., McBride. 0. W., Alamo, I., A. J

  1. Lesion bacterial communities in American lobsters with diet-induced shell disease.

    Science.gov (United States)

    Quinn, Robert A; Metzler, Anita; Tlusty, Michael; Smolowitz, Roxanna M; Leberg, Paul; Chistoserdov, Andrei Y

    2012-04-26

    In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets. The Bacteroidetes and Proteobacteria predominated in both spots and lesions and included members of the orders Flavobacteriales (Bacteriodetes), Rhodobacterales, Rhodospirillales and Rhizobiales (Alphaproteobacteria), Xanthomonadales (Gammaproteobacteria) and unclassified Gammaproteobacteria. Bacterial communities in spot lesions displayed more diversity than communities with larger (older) lesions, indicating that the lesion communities stabilize over time. At least 8 bacterial types persisted as lesions developed from spots. Aquimarina 'homaria', a species commonly cultured from lesions present on wild lobsters with epizootic shell disease, was found ubiquitously in spots and lesions, as was the 'Candidatus Kopriimonas aquarianus', implicating putative roles of these species in diet-induced shell disease of captive lobsters.

  2. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs; Analyse des interactions ADN lese / proteines: Optimisations methodologiques et applications aux dommages de l'ADN engendres par les derives du platine

    Energy Technology Data Exchange (ETDEWEB)

    Bounaix Morand du Puch, Ch

    2010-10-15

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  3. Effect of quinolinic acid-induced lesions of the nucleus accumbens core on performance on a progressive ratio schedule of reinforcement: implications for inter-temporal choice.

    Science.gov (United States)

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Deakin, J F W; Anderson, I M; Szabadi, E; Bradshaw, C M

    2008-04-01

    The nucleus accumbens core (AcbC) is believed to contribute to the control of operant behaviour by reinforcers. Recent evidence suggests that it is not crucial for determining the incentive value of immediately available reinforcers, but is important for maintaining the values of delayed reinforcers. This study aims to examine the effect of AcbC lesions on performance on a progressive-ratio schedule using a quantitative model that dissociates effects of interventions on motor and motivational processes (Killeen 1994 Mathematical principles of reinforcement. Behav Brain Sci 17:105-172). Rats with bilateral quinolinic acid-induced lesions of the AcbC (n = 15) or sham lesions (n = 14) were trained to lever-press for food-pellet reinforcers under a progressive-ratio schedule. In Phase 1 (90 sessions) the reinforcer was one pellet; in Phase 2 (30 sessions), it was two pellets; in Phase 3, (30 sessions) it was one pellet. The performance of both groups conformed to the model of progressive-ratio performance (group mean data: r2 > 0.92). The motor parameter, delta, was significantly higher in the AcbC-lesioned than the sham-lesioned group, reflecting lower overall response rates in the lesioned group. The motivational parameter, a, was sensitive to changes in reinforcer size, but did not differ significantly between the two groups. The AcbC-lesioned group showed longer post-reinforcement pauses and lower running response rates than the sham-lesioned group. The results suggest that destruction of the AcbC impairs response capacity but does not alter the efficacy of food reinforcers. The results are consistent with recent findings that AcbC lesions do not alter sensitivity to reinforcer size in inter-temporal choice schedules.

  4. Assessing the geographic origin of the invasive grey squirrel using DNA sequencing: Implications for management strategies

    Directory of Open Access Journals (Sweden)

    Claire D. Stevenson-Holt

    2015-01-01

    Full Text Available The invasive grey squirrel Sciurus carolinensis has become a major pest species causing negative effects to forestry and biodiversity. This study aims to assess the origin of grey squirrel within Cumbria using phylogeographic analysis to aid in management and control. The work reported analysed mitochondrial DNA sequences in the D-Loop gene of 73 grey squirrel individuals from multiple locations in the UK. The results indicate that individuals in north Cumbria are derived from individuals from Scotland and North East England. Other individuals in north Cumbria share a unique haplotype with south Cumbria and Lancashire suggesting a southerly origin and movement around or over the Cumbrian Mountain range which is thought of as a barrier to movements. The assessment of invasive species geographical origin and the identification of potential wildlife transit corridors through natural barriers are becoming more important as species shift range in response to environmental and ecological changes. With the grey squirrel population expansion also occurring in Italy, the European red squirrel may become threatened across its entire range. It is crucial to understand the population origins of the invasive grey squirrel and landscape usage to successfully manage the incursion routes and control the population.

  5. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats - Implications for Conservation

    Science.gov (United States)

    Gebremedhin, Berihun; Flagstad, Øystein; Bekele, Afework; Chala, Desalegn; Bakkestuen, Vegar; Boessenkool, Sanne; Popp, Magnus; Gussarova, Galina; Schrøder-Nielsen, Audun; Nemomissa, Sileshi; Brochmann, Christian; Stenseth, Nils Chr.

    2016-01-01

    Human population expansion and associated degradation of the habitat of many wildlife species cause loss of biodiversity and species extinctions. The small Simen Mountains National Park in Ethiopia is one of the last strongholds for the preservation of a number of afro-alpine mammals, plants and birds, and it is home to the rare endemic Walia ibex, Capra walie. The narrow distribution range of this species as well as potential competition for resources with livestock, especially with domestic goat, Capra hircus, may compromise its future survival. Based on a curated afro-alpine taxonomic reference library constructed for plant taxon identification, we investigated the diet of the Walia ibex and addressed the dietary overlap with domestic goat using DNA metabarcoding of faecal samples. Faeces of both species were collected from different localities in the National Park. We show that both species are browsers, with forbs, shrubs and trees comprising the largest proportion of their diet, supplemented by grasses. There was a considerable overlap in dietary preferences. Several of the preferred diet items of the Walia ibex (Alchemilla sp., Hypericum revolutum, Erica arborea and Rumex sp.) were also among the most preferred diet items of the domestic goat. These results indicate that there is potential for competition between the two species, especially during the dry season, when resources are limited. Our findings, in combination with the expected increase in domestic herbivores, suggest that management plans should consider the potential threat posed by domestic goats to ensure future survival of the endangered Walia ibex. PMID:27416020

  6. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    Science.gov (United States)

    Waller, Rosalie G; Darlington, Todd M; Wei, Xiaomu; Madsen, Michael J; Thomas, Alun; Curtin, Karen; Coon, Hilary; Rajamanickam, Venkatesh; Musinsky, Justin; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S Vincent; Kumar, Shaji; Slager, Susan; Middha, Mridu; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; McKay, James; Offit, Kenneth; Klein, Robert J; Lipkin, Steven M; Dumontet, Charles; Vachon, Celine M; Camp, Nicola J

    2018-02-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  7. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    Directory of Open Access Journals (Sweden)

    Rosalie G Waller

    2018-02-01

    Full Text Available The high-risk pedigree (HRP design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS method in 11 extended, Utah, multiple myeloma (MM HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu, a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val, a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  8. DNA apoptosis and stability in B-cell chronic lymphoid leukaemia: implication of the DNA double-strand breaks repair system by non homologous recombination

    International Nuclear Information System (INIS)

    Deriano, L.

    2005-01-01

    After an introduction presenting the diagnosis and treatment of chronic lymphoid leukaemia, its molecular and genetic characteristics, and its cellular origin and clonal evolution, this research thesis describes the apoptosis (definition and characteristics, cancer and chemotherapy, apoptotic ways induced by gamma irradiation), the genotoxic stresses, the different repair mechanisms for different damages, and the DNA repair processes. It reports how human chronic lymphocytic leukaemia B cells can escape DNA damage-induced apoptosis through the non-homologous end-joining DNA repair pathway, and presents non-homologous end-joining DNA repair as a potent mutagenic process in human chronic lymphocytic leukaemia B cells

  9. Redox-sensitive structural change in the A-domain of HMGB1 and its implication for the binding to cisplatin modified DNA

    International Nuclear Information System (INIS)

    Wang, Jing; Tochio, Naoya; Takeuchi, Aya; Uewaki, Jun-ichi; Kobayashi, Naohiro; Tate, Shin-ichi

    2013-01-01

    Highlights: •The structure of the oxidized A-domain of human HMGB1 was solved. •Phe38 ring was flipped in the oxidized structure from that in the reduced form. •The flipped ring disables the intercalation into the cisplatinated lesions. •The functionally relevant redox-dependent structural change was described. -- Abstract: HMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions. The A-domain with the disulfide bond shows reduced affinity to cisplatin modified DNA. We have solved the oxidized A-domain structure by NMR. In the structure, Phe38 has a flipped ring orientation from that found in the reduced form; the phenyl ring in the reduced form intercalates into the platinated lesion in DNA. The phenyl ring orientation in the oxidized form is stabilized through intramolecular hydrophobic contacts. The reorientation of the Phe38 ring by the disulfide bond in the A-domain may explain the reduced HMGB1 binding affinity towards cisplatinated DNA

  10. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.

    Science.gov (United States)

    Simmons, J M; Ackermann, R F; Gallistel, C R

    1998-10-15

    Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.

  11. AN UPWARD TREND IN DNA P16INK4A METHYLATION PATTERN AND HIGH RISK HPV INFECTION ACCORDING TO THE SEVERITY OF THE CERVICAL LESION

    Directory of Open Access Journals (Sweden)

    Fernanda Nahoum Carestiato

    2013-09-01

    Full Text Available SUMMARY High-risk human papillomavirus (hr-HPV infection is necessary but not sufficient for cervical cancer development. Recently, P16INK4A gene silencing through hypermethylation has been proposed as an important cofactor in cervical carcinogenesis due to its tumor suppressor function. We aimed to investigate P16INK4A methylation status in normal and neoplastic epithelia and evaluate an association with HPV infection and genotype. This cross-sectional study was performed with 141 cervical samples from patients attending Hospital Moncorvo Filho, Rio de Janeiro. HPV detection and genotyping were performed through PCR and P16INK4A methylation by nested-methylation specific PCR (MSP. HPV frequency was 62.4% (88/141. The most common HPV were HPV16 (37%, HPV18 (16.3% and HPV33/45(15.2%. An upward trend was observed concerning P16INK4A methylation and lesion degree: normal epithelia (10.7%, low grade lesions (22.9%, high grade (57.1% and carcinoma (93.1% (p < 0.0001. A multivariate analysis was performed to evaluate an association between methylation, age, tobacco exposure, HPV infection and genotyping. A correlation was found concerning methylation with HPV infection (p < 0.0001, hr-HPV (p = 0.01, HSIL (p < 0.0007 and malignant lesions (p < 0.0001. Since viral infection and epigenetic alterations are related to cervical carcinoma, we suggest that P16INK4A methylation profile maybe thoroughly investigated as a biomarker to identify patients at risk of cancer.

  12. Comparison of Onclarity Human Papillomavirus (HPV) Assay with Hybrid Capture II HPV DNA Assay for Detection of Cervical Intraepithelial Neoplasia Grade 2 and 3 Lesions

    DEFF Research Database (Denmark)

    Bottari, F; Sideri, M; Gulmini, C

    2015-01-01

    and negative HC2 results, were prospectively enrolled for the study. The overall agreement between Onclarity and HC2 was 94.6% (95% confidence intervals [CI], 92.3% to 96.2%). In this population with a high prevalence of disease, the relative sensitivities (versus adjudicated cervical intraepithelial neoplasia......, to concurrent cytology and histology results, in order to evaluate its performance in detecting high-grade cervical lesions. A population of 567 women, including 325 with ≥ASCUS (where ASCUS stands for atypical cells of undetermined significance) and any HC2 result and 242 with both negative cytology...

  13. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    Science.gov (United States)

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  14. Direct assays of radiation-induced DNA base lesions in mammalian cells: Technical progress report, July 1, 1986--December 1, 1988

    International Nuclear Information System (INIS)

    Wheeler, K.T. Jr.

    1988-01-01

    Our cesium irradiator was installed in April 1987 and has the capability of irradiating DNA solutions, cells and animals at dose rates from >60 Gy/min to <10/sup /minus/2/ Gy/min. By early summer all of the dosimetry and set-ups were established to perform this research. In may 1987, Dr. Krystyna Lesiak left to return to the National Institutes of Health. However, she has remained a collaborator over the past 1/1/2/ years. She has synthesized a large lot of α-deoxyadenosine, isolated a large batch of both the R and S isomer of cyclodeoxyadenosine and has capped the α-deoxyadenonsine for use in a DNA synthesizer that uses phosphoramidite chemistry. In November 1987, Dr. Andrzej Surowiec joined our unit as a Visiting Research Assistant Professor. Dr. Surowiec has a MS degree in electrical engineering and did his Ph.D. in Biophysics studying the conductivity of DNA in dilute solution. He has been performing the helix-coil transition experiments. In November 1987, Dr. Steven Swarts also joined our unit as a Postdoctoral Fellow. He received his Ph.D. from Oakland University under Dr. Michael Sevilla with whom we have a collaboration studying the induction of base damage in hydrated DNA. Dr. Swarts has a strong background in spectroscopy and, therefore, was a key individual for determination of the limitations of the HPLC assays and the establishment of a GC/MS capability equivalent to Dr. M. Dizdaroglu at the National Bureau of Standards. 9 refs., 1 tab

  15. (UVB)-induced DNA damage

    African Journals Online (AJOL)

    Jane

    2011-08-17

    dependent cytogenetic lesions were assessed by the micronucleus test (MNT). It was found that POE effectively reduced the extent of DNA breakages and cytogenetic lesions upon exposure to UVB (erythemal ultraviolet (EUV);.

  16. DNA damage and repair in peripheral blood lymphocytes from healthy individuals and cancer patients: a pilot study on the implications in the clinical response to chemotherapy.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2006-07-28

    Drug resistance is considered the main impediment to successful cancer chemotherapy. The quest for a method useful to predict individual responses to chemotherapy prior to treatment is highly desired. This study was designed to determine the individual influences of doxorubicin and cisplatin on the degree of DNA damage, DNA repair and hMSH2 and the hMLH1 protein expression in peripheral blood lymphocytes (PBL) and their correlations with the clinical response. PBL were obtained from 25 cancer patients (pre- and post-chemotherapy) and from 10 healthy persons, cultured and exposed to doxorubicin or cisplatin. Cells were collected at T0 (immediately after drug treatment) and 24h after damage (T24). The alkaline comet assay was employed to assess the DNA damage and repair function, and immunocytochemistry to study hMLH1 and hMSH2 expression. Clinical response was evaluated after three cycles of chemotherapy. Pre-chemotherapy PBL from cancer patients showed significantly higher levels of basal DNA damage than healthy persons, with appreciable interindividual variations between them. The in vivo administration of antineoplasic drugs was accompanied by significant DNA damage, and an increased in the number of apoptotic cells. Cancer patients with complete response showed a high number of apoptotic cells. The DNA migration increased at T0 and at T24 in cisplatin-treated patients, reflecting a decreased rate of cisplatin adducts repair than that observed in healthy individuals. The ability to repair DNA lesions in doxorubicin-damaged cells was very similar between healthy individuals and cancer patients. Cisplatin-treated patients that died by the disease showed lower DNA migration than the mean value. The expression of hMLH1 and hMSH2 was practically identical between healthy individuals and cancer patients. Nevertheless, chemotherapy induced a depletion mostly of hMLH1. In 83% of cisplatin-treated patients with CR the hMLH1 and hMSH2 expression at T24 was higher than the

  17. Human papillomavirus in oral lesions Virus papiloma humano en lesiones orales

    OpenAIRE

    Joaquín V. Gónzalez; Rafael A. Gutiérrez; Alicia Keszler; Maria Del Carmen Colacino; Lidia V. Alonio; Angélica R. Teyssie; Maria Alejandra Picconi

    2007-01-01

    Growing evidence suggests a role for human papillomavirus (HPV) in oral cancer; however its involvement is still controversial. This study evaluates the frequency of HPV DNA in a variety of oral lesions in patients from Argentina. A total of 77 oral tissue samples from 66 patients were selected (cases); the clinical-histopathological diagnoses corresponded to: 11 HPV- associated benign lesions, 8 non-HPV associated benign lesions, 33 premalignant lesions and 25 cancers. Sixty exfoliated cell ...

  18. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·T pairing in dodecanucloetide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O 6 etG·T 12-mer) containing two symmetrically related O 6 etG·T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O 6 meG·T lesion sites (designated O 6 meG·T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G·T mismatch sites (designated G·T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O 6 etG·T 12-mer, O 6 meG·T 12-mer, and G·T 12-mer duplexes in H 2 O and D 2 O solutions. The distance connectivities observed in the NOESY spectra of the O 6 alkG·T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O 6 alkG4 and T9 bases at the lesion site. These observations establish that the O 6 alkG4 and T9 residues are stacked into the duplex and that the O 6 CH 3 and O 6 CH 2 CH 3 groups of O 6 alkG4 adopt a syn orientation with respect to the N 1 of the alkylated guanine. Since the O 6 -alkyl group adopts a syn orientation, the separation between the O 6 of O 6 alkG4 and the O 4 of T9 in the major groove is increased, preventing the formation of a short hydrogen bond between the N 1 ring nitrogen of O 6 alkG4 and the imino proton of T9

  19. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  20. ATR-Chk1-APC/C-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress

    DEFF Research Database (Denmark)

    Yamada, M.; Watanabe, K.; Mistrik, M.

    2013-01-01

    replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosomeCdh1 (APC/C) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C through...... degradation of Cdh1 upon replication block, thereby stabilizing APC/C substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4...

  1. A new sensitive 32P-postlabeling assay based on the specific enzymatic conversion of bulky DNA lesions to radiolabeled dinucleotides and nucleoside 5'-monophosphates

    International Nuclear Information System (INIS)

    Randerath, Kurt; Randerath, Erika; Danna, T.F.; Van Golen, K.L.; Putman, K.L.

    1989-01-01

    A new sensitive 32 P-postlabelling assay for DNA adducts has been developed. When DNA containing bulky adducts, X 1 , X 2 , .....X n , is digested with nuclease P1 at pH 5, normal nucleotides are released as 5'-monophosphates, pN, while adducts are excised as 5'-phosphorylated dinucleotides, pX i pN, because inter-nucleotide linkages on the 3' side of X resist attack by nuclease P1. Addition of prostatic acid phosphatase to such a digest results in 5'-dephosphorylation of the nucleotides to normal nucleosides, N, and adducted dinucleotides, X i pN, carrying a 5'-terminal free hydroxyl group. The dinucleotides but not nucleosides are converted to 5'- 32 P-labeled dinucleotides,[ 32 P]pX i pN, by T4 polynucleotide kinase-catalyzed [ 32 P]posphate transfer from [γ- 32 P]ATP. Upon mapping on polyethyleneimine-cellulose anion-exchange TLC, the labeled dinucleotide adducts produce characteristic autoradiographic fingerprints. Alternatively, they are further digested with snake venom phosphodiesterase to yield 5'-monophosphates, [ 32 P]pX i and pN. TLC profiles of the monophosphate adducts are distinct from those of the dinucleotides. These reactions provide the basis of the new 32 P-postlabeling scheme, which is compared in this paper with a previously reported protocol yielding adducts in the form of 5'- 32 P-labeled 3',5'-bisphosphates, [ 32 P]pX i p. (author)

  2. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Zhu, Hong; Jia, Zhenquan [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Li, Jianrong [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Misra, Hara P. [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Zhou, Kequan, E-mail: kzhou@wayne.edu [Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202 (United States); Li, Yunbo, E-mail: yli@vcom.vt.edu [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States)

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  3. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    International Nuclear Information System (INIS)

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  4. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·C pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    The pairing of O 6 etG with C located four base pairs in from either end of the self-complementary d(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-C9-G10-C11-G12) duplex (designated O 6 etG·C 12-mer) has been investigated from an analysis of proton and phosphorus two-dimensional NMR experiments. The structural consequences of increasing the alkyl group size were elucidated from a comparative study of the pairing of O 6 meG4 with C9 in a related sequence (designated O 6 meG·C 12-mer). The NMR parameters for both O 6 alkG-containing dodecanucleotides are also compared with those of the control sequence containing G4·C9 base pairs (designated G·C 12-mer). The NOE cross-peaks detected in the two-dimensional NOESY spectra of the O 6 alkG·C 12-mer duplexes in H 2 O solution establish that the O 6 etG4/O 6 meG4 and C9 bases at the lesion site stack into the helix between the flanking C3·G10 and A5·T8 Watson-Crick base pairs. The observed NOEs between the amino protons of C9 and the CH 3 protons of O 6 alkG4 establish a syn orientation of the O 6 -alkyl group with respect to the N 1 of alkylated guanine. A wobble alignment of the O 6 alkG4·C9 base pair stabilized by two hydrogen bonds, one between the amino group of C9 and N 1 of O 6 alkG and the other between the amino group of O 6 alkG and N 3 of C9, is tentatively proposed on the basis of the NOEs between the amino protons of C9 at the lesion site and the imino protons of flanking Watson-Crick base pairs

  5. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    The application of capillary gas chromatography-mass spectrometry (GC-MS) to the chemical characterization of radiation-induced base products of calf thymus DNA is presented. Samples of calf thymus DNA irradiated in N 2 O-saturated aqueous solution were hydrolyzed with HCOOH, trimethylsilylated, and subjected to GC-MS analysis using a fused-silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC properties and easily interpretable mass spectra; an intense molecular ion (M+.) and a characteristic (M-CH 3 )+ ion were observed. The complementary use of t-butyldimethylsilyl derivatives was also demonstrated. These derivatives provided an intense characteristic (M-57)+ ion, which appeared as either the base peak or the second most intense ion in the spectra. All mass spectra obtained are discussed

  6. [Direct assays of radiation-induced DNA base lesions in mammalian cells.] Final progress report, February 1, 1984-June 30, 1986

    International Nuclear Information System (INIS)

    Wheeler, K.T.

    1986-01-01

    Adenine (Ade), 2'-deoxyadenosine (dAdo) and 5'-deoxyadenosine monophosphate (5'-dAMP) were irradiated with 50 to 15,000 Gy under oxic and hypoxic conditions. HPLC procedures providing satisfactory separation of the adenine damage products formed during irradiation of DNA model compounds were found. Structures of some of the damage products were confirmed to include 8-OHAde, 4,6-diamino-5-formamidopyrimidine, and 8-OH-5'-dAMP. Two damage products of dAdo (8-OHdAdo and the major isomer of 8,5'-cdAdo), the formation of which depends on the presence or absence of oxygen, were determined quantitatively by HPLC. The limit for HPLC detection was estimated as 4 to 50 pmoles for these compounds. This corresponds to a detection limit of about 50 Gy in radiation dose units. These two products were also detected in mixtures of all four nucleosides irradiated with 50 Gy

  7. The nucleotide sequence of the right-hand terminus of adenovirus type 5 DNA: Implications for the mechanism of DNA replication

    NARCIS (Netherlands)

    Steenbergh, P.H.; Sussenbach, J.S.

    The nucleotide sequence of the right-hand terminal 3% of adenovirus type 5 (Ad5) DNA has been determined, using the chemical degradation technique developed by Maxam and Gilbert (1977). This region of the genome comprises the 1003 basepair long HindIII-I fragment and the first 75 nucleotides of the

  8. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  9. Progression and Regression of Hepatic Lesions in a Mouse Model of NASH Induced by Dietary Intervention and Its Implications in Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Zhi-Ming Ding

    2018-05-01

    Full Text Available Understanding of the temporal changes of hepatic lesions in the progression and regression of non-alcoholic steatohepatitis (NASH is vital to elucidation of the pathogenesis of NASH, and critical to the development of a strategy for NASH pharmacotherapy. There are challenges in studying hepatic lesion progression and regression in NASH patients due to the slow development of NASH in humans, one being the requirement for multiple biopsies during the longitudinal follow-up. Here we studied lesion progression and regression in the diet-induced animal model of NASH by application or removal of the pathogenic diet for multiple time periods. Male C57BL/6 mice fed Western diet developed progressive hepatic steatosis/macrovesicular vacuolation, inflammation, and hepatocyte degeneration, as well as perisinusoidal fibrosis and occasionally portal fibrosis as early as 2 months after initiation of the Western diet. In the same period, the mice exhibited elevated ALT (alanine aminotransferase and AST (aspartate aminotransferase enzyme activities, CK18 (cytokeratin−18, PIIINP (N-terminal propeptide of type III collagen, and TIMP-1 (tissue inhibitor of metalloproteinase−1. Hepatic steatosis diminished rapidly when the Western diet was replaced by normal rodent chow diet and hepatic inflammation and hepatocyte degeneration were also reduced. Interestingly, perisinusoidal fibrosis and portal fibrosis regressed 8 months after chow diet replacement. To understand pharmacotherapy for NASH, mice with established NASH hepatic lesions were treated with either FXR agonist obeticholic acid (Ocaliva, or CCR2/5 antagonist Cenicriviroc. Similar to the diet replacement, metabolic modulator Ocaliva markedly reduced steatosis/macrovesicular vacuolation, hepatic inflammation, and hepatocyte degeneration effectively, but exhibited no significant effect on liver fibrosis. Anti-inflammation drug Cenicriviroc, on the other hand, markedly decreased inflammation and hepatocyte

  10. NMR studies of the exocyclic 1,N6-ethenodeoxyadenosine adduct (εdA) opposite thymidine in a DNA duplex. Nonplanar alignment of εdA(anti) and dT(anti) at the lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Eisenberg, M.; Yarema, K.; Basu, A.; Essigmann, J.

    1991-01-01

    Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C)·d(G-T-A-C-εA-C-A-T-G) nonanucleotide duplex (designated εdA·dT 9-mer duplex) containing 1,N 6 -ethenodeoxyadenosine (εdA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. The authors NMR studies have focused on the conformation of the εdA·dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5·εdA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and εdA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4·dC15 and dG6·dC13 pairs. Furthermore, the d(G4-T5-G6)·d(C13-εA14-C15) trinucleotide segment centered about the dT5·εdA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and εdA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the εdA·dT 9-mer duplex. The NMR data are consistent with a nonplanar alignment of εdA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4·dC15 base pair within the d(G4-T5-G6)·d(C13-εA14-C15) segment of the εdA·dT 9-mer duplex

  11. Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off.

    Science.gov (United States)

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2012-08-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.

  12. Replication-mediated disassociation of replication protein A–XPA complex upon DNA damage: implications for RPA handing off

    Science.gov (United States)

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2013-01-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086

  13. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    Science.gov (United States)

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. High and increasing Oxa-51 DNA load predict mortality in Acinetobacter baumannii bacteremia: implication for pathogenesis and evaluation of therapy.

    Directory of Open Access Journals (Sweden)

    Yu-Chung Chuang

    Full Text Available BACKGROUND: While quantification of viral loads has been successfully employed in clinical medicine and has provided valuable insights and useful markers for several viral diseases, the potential of measuring bacterial DNA load to predict outcome or monitor therapeutic responses remains largely unexplored. We tested this possibility by investigating bacterial loads in Acinetobacter baumannii bacteremia, a rapidly increasing nosocomial infection characterized by high mortality, drug resistance, multiple and complicated risk factors, all of which urged the need of good markers to evaluate therapeutics. METHODS AND FINDINGS: We established a quantitative real-time PCR assay based on an A. baumannii-specific gene, Oxa-51, and conducted a prospective study to examine A. baumannii loads in 318 sequential blood samples from 51 adults patients (17 survivors, 34 nonsurvivors with culture-proven A. baumannii bacteremia in the intensive care units. Oxa-51 DNA loads were significantly higher in the nonsurvivors than survivors on day 1, 2 and 3 (P=0.03, 0.001 and 0.006, respectively. Compared with survivors, nonsurvivors had higher maximum Oxa-51 DNA load and a trend of increase from day 0 to day 3 (P<0.001, which together with Pitt bacteremia score were independent predictors for mortality by multivariate analysis (P=0.014 and 0.016, for maximum Oxa-51 DNA and change of Oxa-51 DNA, respectively. Kaplan-Meier analysis revealed significantly different survival curves in patients with different maximum Oxa-51 DNA and change of Oxa-51 DNA from day 0 to day 3. CONCLUSIONS: High Oxa-51 DNA load and its initial increase could predict mortality. Moreover, monitoring Oxa-51 DNA load in blood may provide direct parameters for evaluating new regimens against A. baumannii in future clinical studies.

  15. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  16. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    DEFF Research Database (Denmark)

    De Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B

    2015-01-01

    The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP...... the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding....... free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along...

  17. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    Directory of Open Access Journals (Sweden)

    Christensen Bruce M

    2009-11-01

    Full Text Available Abstract Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool and non-vector (Culex pipiens mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies.

  18. Molecular and Bioenergetic Differences between Cells with African versus European Inherited Mitochondrial DNA Haplogroups: Implications for Population Susceptibility to Diseases

    Science.gov (United States)

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres del Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis P.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2015-01-01

    The geographic origins of populations can be identified by their maternally inherited mitochondrial DNA (mtDNA) haplogroups. This study compared human cybrids (cytoplasmic hybrids), which are cell lines with identical nuclei but mitochondria from different individuals with mtDNA from either the H haplogroup or L haplogroup backgrounds. The most common European haplogroup is H while individuals of maternal African origin are of the L haplogroup. Despite lower mtDNA copy numbers, L cybrids had higher expression levels for nine mtDNA-encoded respiratory complex genes, decreased ATP turnover rates and lower levels of ROS production, parameters which are consistent with more efficient oxidative phosphorylation. Surprisingly, GeneChip arrays showed that the L and H cybrids had major differences in expression of genes of the canonical complement system (5 genes), dermatan/chondroitin sulfate biosynthesis (5 genes) and CCR3 signaling (9 genes). Quantitative nuclear gene expression studies confirmed that L cybrids had (a) lower expression levels of complement pathway and innate immunity genes and (b) increased levels of inflammation-related signaling genes, which are critical in human diseases. Our data support the hypothesis that mtDNA haplogroups representing populations from different geographic origins may play a role in differential susceptibilities to diseases. PMID:24200652

  19. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    Science.gov (United States)

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  20. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  1. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  2. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  3. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  4. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  5. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    Science.gov (United States)

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p atherectomy;  restenosis PMID:9616351

  6. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  7. B-DNA model systems in non-terran bio-solvents : Implications for structure, stability and replication

    NARCIS (Netherlands)

    Hamlin, Trevor A.; Poater, Jordi; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias

    2017-01-01

    We have computationally analyzed a comprehensive series of Watson-Crick and mismatched B-DNA base pairs, in the gas phase and in several solvents, including toluene, chloroform, ammonia, methanol and water, using dispersion-corrected density functional theory and implicit solvation. Our analyses

  8. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data.

    Science.gov (United States)

    Barker, F Keith; Barrowclough, George F; Groth, Jeff G

    2002-02-07

    Passerine birds comprise over half of avian diversity, but have proved difficult to classify. Despite a long history of work on this group, no comprehensive hypothesis of passerine family-level relationships was available until recent analyses of DNA-DNA hybridization data. Unfortunately, given the value of such a hypothesis in comparative studies of passerine ecology and behaviour, the DNA-hybridization results have not been well tested using independent data and analytical approaches. Therefore, we analysed nucleotide sequence variation at the nuclear RAG-1 and c-mos genes from 69 passerine taxa, including representatives of most currently recognized families. In contradiction to previous DNA-hybridization studies, our analyses suggest paraphyly of suboscine passerines because the suboscine New Zealand wren Acanthisitta was found to be sister to all other passerines. Additionally, we reconstructed the parvorder Corvida as a basal paraphyletic grade within the oscine passerines. Finally, we found strong evidence that several family-level taxa are misplaced in the hybridization results, including the Alaudidae, Irenidae, and Melanocharitidae. The hypothesis of relationships we present here suggests that the oscine passerines arose on the Australian continental plate while it was isolated by oceanic barriers and that a major northern radiation of oscines (i.e. the parvorder Passerida) originated subsequent to dispersal from the south.

  9. A nuclear ribosomal DNA pseudogene in triatomines opens a new research field of fundamental and applied implications in Chagas disease

    Directory of Open Access Journals (Sweden)

    María Angeles Zuriaga

    2015-05-01

    Full Text Available A pseudogene, designated as "ps(5.8S+ITS-2", paralogous to the 5.8S gene and internal transcribed spacer (ITS-2 of the nuclear ribosomal DNA (rDNA, has been recently found in many triatomine species distributed throughout North America, Central America and northern South America. Among characteristics used as criteria for pseudogene verification, secondary structures and free energy are highlighted, showing a lower fit between minimum free energy, partition function and centroid structures, although in given cases the fit only appeared to be slightly lower. The unique characteristics of "ps(5.8S+ITS-2" as a processed or retrotransposed pseudogenic unit of the ghost type are reviewed, with emphasis on its potential functionality compared to the functionality of genes and spacers of the normal rDNA operon. Besides the technical problem of the risk for erroneous sequence results, the usefulness of "ps(5.8S+ITS-2" for specimen classification, phylogenetic analyses and systematic/taxonomic studies should be highlighted, based on consistence and retention index values, which in pseudogenic sequence trees were higher than in functional sequence trees. Additionally, intraindividual, interpopulational and interspecific differences in pseudogene amount and the fact that it is a pseudogene in the nuclear rDNA suggests a potential relationships with fitness, behaviour and adaptability of triatomine vectors and consequently its potential utility in Chagas disease epidemiology and control.

  10. [Diverse histological lesions in a patient with antiphospholipid syndrome (APS)].

    Science.gov (United States)

    Salvatore, Ermanno; Luciani, Remo; Di Palma, Annamaria; Aversano, Arturo; Stellato, Davide; Liuzzi, Marco; Iele, Emilio; Martignetti, Vinicio; Spagnuolo, Enrico; Morrone, Luigi

    2011-01-01

    Antiphospholipid syndrome (APS) is a rare autoimmune disorder. It can be secondary to systemic lupus erythematosus (SLE) or occur in the absence of autoimmune disease. The hallmark of this so-called primary APS is the presence of circulating antiphospholipid antibodies. Renal involvement in primary APS is caused by thrombosis within the renal vasculature. Recently, nonthrombotic glomerulonephritic renal lesions have been described in primary APS as a new histological entity. We here report a patient with primary APS in whom both lesion types were present. A 58-year-old Caucasian man with no significant past medical history presented to our nephrology unit with diffuse edema. Urinalysis showed proteinuria exceeding 400 mg/dL. The autoantibody panel (p-ANCA, c- ANCA, anti-nucleus, anti-DS-DNA) was negative except for anticardiolipin antibodies, which tested positive in two different samples. The diagnostic workup included a kidney biopsy that revealed thrombotic lesions compatible with primary APS and a typical pattern of focal segmental glomerulosclerosis. The kidney is a major target in APS but the exact mechanism underlying the pathogenesis of APS nephropathy has been poorly recognized. The use of kidney biopsy is a fundamental diagnostic tool in this setting, with possible implications also from a prognostic and therapeutic viewpoint.

  11. Presence of High-Risk HPV mRNA in Relation to Future High-Grade Lesions among High-Risk HPV DNA Positive Women with Minor Cytological Abnormalities.

    Directory of Open Access Journals (Sweden)

    Hanna Johansson

    Full Text Available Continuous expression of E6- and E7-oncogenes of high-risk human papillomavirus (HPV types is necessary for the development and maintenance of the dysplastic phenotype. The aim of the study was to determine the sensitivity and specificity of the APTIMA HPV mRNA assay (Hologic in predicting future development of high-grade cervical intraepithelial neoplasia (CIN among high-risk HPV-DNA-positive women with atypical squamous cells of undetermined significance (ASCUS or low-grade squamous epithelial lesion (LSIL cytology.Archived SurePath cervical samples of women ≥ 35 years of age with high-risk HPV DNA-positive ASCUS (n = 211 or LSIL, (n = 131 were tested for the presence of high-risk HPV E6/E7 mRNA using the APTIMA HPV assay, and the women were monitored for development of histopathologically verified CIN2+.Twenty-nine percent (61/211 of the women in the ASCUS group, and 34.3% (45/131 in the LSIL group developed CIN2+ within 4.5 years of follow-up. The prevalence of HPV mRNA was 90.0% (95% CI 85.9-94.0 among women with ASCUS and 95.4% (95% CI 91.8-99.0 among women with LSIL. The presence of HPV E6/E7 mRNA was associated with future development of CIN2+ among women with ASCUS and LSIL (p=0.02. The mRNA assay demonstrated high sensitivity in predicting future CIN2+ and CIN3 for index ASCUS (96.7%; 95% CI 87.6-99.4 and 100%; 95% CI 82.2-100, respectively and LSIL (97.8%, 95% CI 86.8-99.9 and 100%, 95% CI 79.9-100, respectively. The corresponding specificity was low, 12.7% (95% CI 7.9-19.3 and 5.8% (95% CI 2.2-13.6, for future CIN2+, respectively. The negative predictive value of the HPV mRNA assay for detecting future CIN3 was 100%, since no mRNA-negative woman developed CIN3 (0/27 as compared to 13.6% (43/315 of the mRNA-positive women (p = 0.03.The APTIMA mRNA assay demonstrated high sensitivity but low specificity in predicting future CIN2+ among women with minor cytological abnormalities. The assay had high negative predictive value for future

  12. Presence of High-Risk HPV mRNA in Relation to Future High-Grade Lesions among High-Risk HPV DNA Positive Women with Minor Cytological Abnormalities

    Science.gov (United States)

    Johansson, Hanna; Bjelkenkrantz, Kaj; Darlin, Lotten; Dilllner, Joakim; Forslund, Ola

    2015-01-01

    Objective Continuous expression of E6- and E7-oncogenes of high-risk human papillomavirus (HPV) types is necessary for the development and maintenance of the dysplastic phenotype. The aim of the study was to determine the sensitivity and specificity of the APTIMA HPV mRNA assay (Hologic) in predicting future development of high-grade cervical intraepithelial neoplasia (CIN) among high-risk HPV-DNA-positive women with atypical squamous cells of undetermined significance (ASCUS) or low-grade squamous epithelial lesion (LSIL) cytology. Methods Archived SurePath cervical samples of women ≥ 35 years of age with high-risk HPV DNA-positive ASCUS (n = 211) or LSIL, (n = 131) were tested for the presence of high-risk HPV E6/E7 mRNA using the APTIMA HPV assay, and the women were monitored for development of histopathologically verified CIN2+. Results Twenty-nine percent (61/211) of the women in the ASCUS group, and 34.3% (45/131) in the LSIL group developed CIN2+ within 4.5 years of follow-up. The prevalence of HPV mRNA was 90.0% (95% CI 85.9-94.0) among women with ASCUS and 95.4% (95% CI 91.8-99.0) among women with LSIL. The presence of HPV E6/E7 mRNA was associated with future development of CIN2+ among women with ASCUS and LSIL (p=0.02). The mRNA assay demonstrated high sensitivity in predicting future CIN2+ and CIN3 for index ASCUS (96.7%; 95% CI 87.6-99.4 and 100%; 95% CI 82.2-100, respectively) and LSIL (97.8%, 95% CI 86.8-99.9 and 100%, 95% CI 79.9-100, respectively). The corresponding specificity was low, 12.7% (95% CI 7.9-19.3) and 5.8% (95% CI 2.2-13.6), for future CIN2+, respectively. The negative predictive value of the HPV mRNA assay for detecting future CIN3 was 100%, since no mRNA-negative woman developed CIN3 (0/27) as compared to 13.6% (43/315) of the mRNA-positive women (p = 0.03). Conclusion The APTIMA mRNA assay demonstrated high sensitivity but low specificity in predicting future CIN2+ among women with minor cytological abnormalities. The assay had

  13. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction

    Science.gov (United States)

    Furda, Amy M.; Marrangoni, Adele M.; Lokshin, Anna; Van Houten, Bennett

    2013-01-01

    Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H2O2) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60 min treatment with H2O2 causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60 min treatment with 2 mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction. PMID:22766155

  14. DNA adducts and human atherosclerotic lesions

    Czech Academy of Sciences Publication Activity Database

    Binková, Blanka; Strejc, P.; Boubelík, O.; Stávková, Zdena; Chvátalová, Irena; Šrám, Radim

    2001-01-01

    Roč. 204, - (2001), s. 49-54 ISSN 1438-4639 R&D Projects: GA MŽP SI/340/00 Institutional research plan: CEZ:AV0Z5039906 Keywords : atherosclerosis * autopsy thoracic aortas Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.480, year: 2001

  15. Effects of ionizing radiations on DNA-protein complexes

    International Nuclear Information System (INIS)

    Gillard, N.

    2005-11-01

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  16. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  17. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  18. The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Achilli

    Full Text Available Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s contributed only six (successful founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.

  19. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  1. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    2010-08-01

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  2. Prevalent bacterial species and novel phylotypes in advanced noma lesions.

    Science.gov (United States)

    Paster, B J; Falkler Jr, W A; Enwonwu, C O; Idigbe, E O; Savage, K O; Levanos, V A; Tamer, M A; Ericson, R L; Lau, C N; Dewhirst, F E

    2002-06-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or closest relatives by comparison with sequences of known species or phylotypes. Nearly complete sequences of approximately 1,500 bases were obtained for most of the potentially novel species. A total of 67 bacterial species or phylotypes were detected, 25 of which have not yet been grown in vitro. Nineteen of the species or phylotypes, including Propionibacterium acnes, Staphylococcus spp., and the opportunistic pathogens Stenotrophomonas maltophilia and Ochrobactrum anthropi were detected in more than one subject. Other known species that were detected included Achromobacter spp., Afipia spp., Brevundimonas diminuta, Capnocytophaga spp., Cardiobacterium sp., Eikenella corrodens, Fusobacterium spp., Gemella haemoylsans, and Neisseria spp. Phylotypes that were unique to noma infections included those in the genera Eubacterium, Flavobacterium, Kocuria, Microbacterium, and Porphyromonas and the related Streptococcus salivarius and genera Sphingomonas and TREPONEMA: Since advanced noma lesions are infections open to the environment, it was not surprising to detect species not commonly associated with the oral cavity, e.g., from soil. Several species previously implicated as putative pathogens of noma, such as spirochetes and Fusobacterium spp., were detected in at least one subject. However, due to the limited number of available noma subjects, it was not possible at this time to associate specific species with the disease.

  3. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chao Xu

    Full Text Available Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU ribosomal DNA (rDNA sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF for encoding the homing endonuclease (HE, whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron and genotype IV (Bdo.S1199-B were each found in only one strain, whereas genotype I (Bdo.S1199-A and genotype II (Bdo.S943 and Bdo.S1506 occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.

  4. Comparison of manual methods of extracting genomic DNA from dried blood spots collected on different cards: implications for clinical practice.

    Science.gov (United States)

    Molteni, C G; Terranova, L; Zampiero, A; Galeone, C; Principi, N; Esposito, S

    2013-01-01

    Isolating genomic DNA from blood samples is essential when studying the associations between genetic variants and susceptibility to a given clinical condition, or its severity. This study of three extraction techniques and two types of commercially available cards involved 219 children attending our outpatient pediatric clinic for follow-up laboratory tests after they had been hospitalised. An aliquot of venous blood was drawn into plastic tubes without additives and, after several inversions, 80 microL were put on circles of common paper cards and Whatman FTA-treated cards. Three extraction methods were compared: the Qiagen Investigator, Gensolve, and Masterpure. The best method in terms of final DNA yield was Masterpure, which led to a significantly higher yield regardless of the type of card (p less than 0.001), followed by Qiagen Investigator and Gensolve. Masterpure was also the best in terms of price, seemed to be simple and reliable, and required less hands-on time than other techniques. These conclusions support the use of Masterpure in studies that evaluate the associations between genetic variants and the severity or prevalence of infectious diseases.

  5. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations.

    Science.gov (United States)

    Gilmore, Simon; Peakall, Rod; Robertson, James

    2003-01-09

    Short tandem repeat (STR) markers are the DNA marker of choice in forensic analysis of human DNA. Here we extend the application of STR markers to Cannabis sativa and demonstrate their potential for forensic investigations. Ninety-three individual cannabis plants, representing drug and fibre accessions of widespread origin were profiled with five STR makers. A total of 79 alleles were detected across the five loci. All but four individuals from a single drug-type accession had a unique multilocus genotype. An analysis of molecular variance (AMOVA) revealed significant genetic variation among accessions, with an average of 25% genetic differentiation. By contrast, only 6% genetic difference was detected between drug and fibre crop accessions and it was not possible to unequivocally assign plants as either drug or fibre type. However, our results suggest that drug strains may typically possess lower genetic diversity than fibre strains, which may ultimately provide a means of genetic delineation. Our findings demonstrate the promise of cannabis STR markers to provide information on: (1) agronomic type, (2) the geographical origin of drug seizures, and (3) evidence of conspiracy in production of clonally propagated drug crops.

  6. DNA Barcoding Evaluation and Its Taxonomic Implications in the Recently Evolved Genus Oberonia Lindl. (Orchidaceae in China

    Directory of Open Access Journals (Sweden)

    Yuling Li

    2016-12-01

    Full Text Available The orchid genus Oberonia Lindl., is a taxonomically complex genus characterized by recent species radiations and many closely related species. All Oberonia species are under conservation as listed in the CITES and the IUCN Red List Categories and Criteria. Given its difficulties in taxonomy and conservation status, Oberonia is an excellent model for developing DNA barcodes. Three analytical methods and five DNA barcoding regions (rbcL, matK, trnH-psbA, ITS and ITS2 were evaluated on 127 individuals representing 40 species and 1 variety of Oberonia from China. All the three plastid candidates tested (rbcL, matK and trnH-psbA have a lower discriminatory power than the nuclear regions (ITS and ITS2, and ITS had the highest resolution rate (82.14%. Two to four combinations of these gene sets were not better than the ITS alone, but when considering modes of inheritance, rbcL+ITS and matK+ITS were the best barcodes for identifying Oberonia species. Furthermore, the present barcoding system has many new insights in the current Oberonia taxonomy, such as correcting species identification, resolving taxonomic uncertainties, and the underlying presence of new or cryptic species in a genus with a complex speciation history.

  7. DNA barcoding implicates 23 species and four orders as potential pollinators of Chinese knotweed (Persicaria chinensis) in Peninsular Malaysia.

    Science.gov (United States)

    Wong, M-M; Lim, C-L; Wilson, J-J

    2015-08-01

    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.

  8. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.

    Science.gov (United States)

    Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd

    2017-08-01

    Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure.

    Science.gov (United States)

    Koureas, Michalis; Tsezou, Aspasia; Tsakalof, Andreas; Orfanidou, Timoklia; Hadjichristodoulou, Christos

    2014-10-15

    The widespread use of pesticides substances nowadays largely guarantees the protection of crops and people from undesired pests. However, exposure to pesticides was related to a variety of human health effects. The present study was conducted in the region of Thessaly which is characterized by intensive agricultural activities and wide use of pesticides. The study aimed at estimating the oxidative damage to DNA in different subpopulations in Thessaly region (Greece) and investigating its correlation with exposure to pesticides and other potential risk factors. In total, the study involved 80 pesticide sprayers, 85 rural residents and 121 individuals, inhabitants of the city of Larissa. Demographic characteristics, habits, medical history and exposure history of the participants to pesticides were recorded by personal interviews. Blood and urine samples were collected from all participants. For the measurement of exposure to organophosphorus insecticides, dialkylphosphate (DAP) metabolites were quantified in urine, by gas chromatography-mass spectrometry. Genomic DNA was extracted from peripheral blood samples and the oxidation by-product 8-hydroxydeoxyguanosine (8-OHdG) was determined by Enzyme Immuno-Assay. Urinary metabolite concentrations were not associated with 8-OHdG levels but it was found that pesticide sprayers had significantly higher levels of 8-OHdG (p=0.007) in comparison to the control group. Last season's exposure to insecticides and fungicides, expressed as total area treated multiplied by the number of applications, showed a statistically significant association with the risk of having high 8-OHdG levels [RR: 2.19 (95%CI:1.09-4.38) and RR: 2.32 (95% CI:1.16-4.64) respectively]. Additionally, from the subgroups of pesticides examined, seasonal exposure to neonicotinoid insecticides [RR: 2.22 (95% CI:1.07-4.63)] and glufosinate ammonium [RR: 3.26 (95% CI:1.38-7.69)] was found to have the greater impact on 8-OHdG levels. This study produced findings

  10. Prevalence and activity of Epstein-Barr virus and human cytomegalovirus in symptomatic and asymptomatic apical periodontitis lesions.

    Science.gov (United States)

    Hernádi, Katinka; Szalmás, Anita; Mogyorósi, Richárd; Czompa, Levente; Veress, György; Csoma, Eszter; Márton, Ildikó; Kónya, József

    2010-09-01

    Apical periodontitis is a polymicrobial inflammation with a dominant flora of opportunistic Gram-negative bacteria; however, a pathogenic role of human herpesviruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) has been implicated recently. The aims of this study were to determine the prevalence, activity, and disease association of EBV and HCMV in apical periodontitis in an Eastern Hungarian population. Forty samples with apical periodontitis (17 symptomatic and 23 asymptomatic) and 40 healthy pulp controls were collected. EBV and HCMV prevalences were measured by polymerase chain reaction (PCR) detection of the viral DNA and viral activity was tested by reverse-transcription PCR amplification of viral messenger RNA. EBV DNA and EBNA-2 messenger RNA were found in apical periodontitis lesions at significantly (p apical lesions (10%) and controls (0%). The presence of EBV DNA in apical lesions was associated significantly with large (> or = 5 mm) lesion size (p = 0.02) but not with symptoms (p = 0.30). Symptomatic manifestation was significantly associated with the co-occurrence (odds ratio [OR], 8.80; 95% confidence interval [CI], 1.69-45.76) but not the sole occurrences of EBNA-2 messenger RNA (OR, 2.29; 95% CI, 0.48-11.06) and large lesion size (OR, 4.02; 95% CI, 0.81-19.89). EBV infection is a frequent event in apical periodontitis, whereas the involvement of HCMV still remains to be elucidated. This study showed that symptomatic manifestation was likely to occur if a large-sized apical periodontitis lesion is aggravated with active EBV infection. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma

    Directory of Open Access Journals (Sweden)

    Fernando A Monteiro

    1999-09-01

    Full Text Available DNA sequence comparison of 412 base-pairs fragments of the mitochondrial cytochrome B gene was used to infer the genetic structure of nine geographical Triatoma infestans populations and their phylogenetic relationship with T. melanosoma and T. brasiliensis. T. infestans and T. melanosoma were compared by morphometry, allozyme and cytogenetic analyses, as well as subjected to reciprocal crosses, in order to clarify the taxonomic status of the latter. No differences were found to distinguish the two species and the crosses between them yielded progeny. T. infestans populations presented four haplotypes that could be separated in two clusters: one formed by the samples from Bolivia (Andes and Chaco and the other formed by samples from Argentina and Brazil. Silvatic and domestic T. infestans populations from Bolivia (Andes were genetically identical.

  12. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    Science.gov (United States)

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  13. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  14. Oropharynx lesion biopsy

    Science.gov (United States)

    ... as papilloma) Fungal infections (such as candida) Histoplasmosis Oral lichen planus Precancerous sore (leukoplakia) Viral infections (such as Herpes simplex) Risks Risks of the procedure may ... Throat lesion biopsy; Biopsy - mouth or throat; Mouth lesion biopsy; Oral cancer - biopsy ...

  15. Managing Carious Lesions

    DEFF Research Database (Denmark)

    Schwendicke, F; Frencken, J E; Bjørndal, L

    2016-01-01

    should be prioritized, while in shallow or moderately deep lesions, restoration longevity becomes more important. For teeth with shallow or moderately deep cavitated lesions, carious tissue removal is performed according toselective removal to firm dentine.In deep cavitated lesions in primary......The International Caries Consensus Collaboration undertook a consensus process and here presents clinical recommendations for carious tissue removal and managing cavitated carious lesions, including restoration, based on texture of demineralized dentine. Dentists should manage the disease dental...

  16. Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution

    Directory of Open Access Journals (Sweden)

    Kishima Yuji

    2004-10-01

    Full Text Available Abstract Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV-like sequences (ERTBVs have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.

  17. Prevalent Bacterial Species and Novel Phylotypes in Advanced Noma Lesions

    OpenAIRE

    Paster, B. J.; Falkler, Jr., W. A.; Enwonwu, C. O.; Idigbe, E. O.; Savage, K. O.; Levanos, V. A.; Tamer, M. A.; Ericson, R. L.; Lau, C. N.; Dewhirst, F. E.

    2002-01-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or cl...

  18. Mitochondrial DNA phylogeography of Semisulcospira libertina (Gastropoda: Cerithioidea: Pleuroceridae): implications the history of landform changes in Taiwan.

    Science.gov (United States)

    Hsu, Kui-Ching; Bor, Hor; Lin, Hung-Du; Kuo, Po-Hsun; Tan, Mian-Shin; Chiu, Yuh-Wen

    2014-06-01

    The mitochondrial DNA cytochrome c oxidase subunit I sequences from 95 specimens of Semisulcospira libertina in Taiwan were identified as two major phylogroups, exhibiting a southern and northern distribution, north of Formosa Bank and south of Miaoli Plateau. The genetic distance between these two phylogroups was 12.20%, and the distances within-phylogroups were 4.97 and 5.56%. According to a molecular clock of 1.56% per lineage per million years, the divergence time between these two major phylogroups was estimated at 4.94 million years ago (mya), with the two phylogroups forming at 3.64 and 3.75 mya, respectively. Moreover, the geological events have suggested that Taiwan Island emerged above sea level at 4-5 mya, and became its present shape at 2 mya. These results suggested that these two phylogroups might originate from two independent ancestral populations or divergent before colonizing Taiwan. Within South phylogroup, the initial colonization was hypothesized to be in Kaoping River (WT), followed by its northward. The high divergence between south- and north of WT River was influenced by the formation of the Kaoping foreland basins. Within North phylogroup, the colonization was from central sub-region through paleo-Miaoli Plateau to northern and northeastern sub-regions. This study showed that the landform changes might have shaped the genetic structure of S. libertina in concert. Apparently, two cryptic species or five different genetic stocks of S. libertina could be identified; these results are useful for the evaluation and conservation of S. libertina in Taiwan.

  19. Periodontal bone lesions

    International Nuclear Information System (INIS)

    Linden, L.W.J. van der.

    1985-01-01

    In the course of life the periodontum is subject to changes which may be physiological or pathological. Intraoral radiographs give insight into the hard structures of the dentomaxillar region and provides information on lesions in the bone of the periodontum in that they show radiopacities and radiolucencies caused by such lesions. In this thesis the relation is investigated between the true shape and dimensions of periodontal bone lesions and their radiographic images. A method is developed and tested of making standardized and reproducible radiographs suitable for longitudinal studies of periodontal lesions. Also the possibility is demonstrated of an objective and reproducible interpretation of radiographic characteristics of periodontal bone lesions. (Auth.)

  20. Implications of failure to achieve a result from prenatal maternal serum cell-free DNA testing: a historical cohort study.

    Science.gov (United States)

    Chan, N; Smet, M-E; Sandow, R; da Silva Costa, F; McLennan, A

    2017-11-01

    To investigate the pregnancy outcomes in a cohort of women who failed to obtain a result in non-invasive prenatal testing (NIPT). Historical cohort study. A multicentre private practice in Sydney, Australia. Women who failed to obtain a result from NIPT (n = 131). The maternal characteristics, antenatal investigations and pregnancy outcomes for these women were compared with those who obtained a result at the same practice and to the general Australian obstetric population. Antenatal investigations: pregnancy-associated plasma protein-A (PAPP-A), free β-human chorionic gonadotrophin (β-hCG), placental growth factor (PlGF), uterine artery pulsatility index (PI), mean arterial pressure (MAP). Pregnancy outcomes: chromosomal abnormality, pre-eclampsia, gestational diabetes, small-for-gestational-age (SGA), preterm delivery. Only 1.1% of NIPT samples failed to return a result. This cohort was significantly older and had significantly increased weight compared with the general Australian obstetric population. Pregnancy outcomes were available for 94% of the cohort. There were significantly higher rates of chromosomal aneuploidies (6.5% versus 0.2%, P < 0.0001), pre-eclampsia (11% versus 1.5%, P < 0.0001) and gestational diabetes (23% versus 7.5%, P < 0.0001) compared with the general obstetric population. Rates of preterm delivery and SGA were elevated but did not reach significance. Antenatal investigations demonstrated decreased PAPP-A MoM (0.75 versus 1.14, P < 0.0001), decreased free β-hCG (0.71 versus 1.01, P < 0.0001) and increased uterine artery PI (1.79 versus 1.65, P = 0.02). Women who fail to obtain a result from NIPT are at increased risk of adverse pregnancy outcomes, in particular chromosomal aneuploidy, gestational diabetes and pre-eclampsia. None received. Women who fail to obtain a result from cell-free DNA NIPT are at increased risk of adverse pregnancy outcomes. © 2017 Royal College of Obstetricians and Gynaecologists.

  1. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  2. Radiosensitive xrs-5 and parental CHO cells show identical DNA neutral filter elution dose-response: implications for a relationship between cell radiosensitivity and induction of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Iliakis, George; Okayasu, Ryuichi; Seaner, Robert

    1988-01-01

    The purpose of this work was to investigate a possible correlation between DNA elution dose-response and cell radiosensitivity. For this purpose neutral (pH 9.6) DNA filter elution dose-response curves were measured with radiosensitive xrs-5 and the parental Chinese hamster ovary (CHO) cells in the logarithmic and plateau phase of growth. No difference was observed between the two cell types in the DNA elution dose-response curves either in logarithmic or plateau phase, despite the dramatic differences in cell radiosensitivity. This observation indicates that the shape of the DNA elution dose-response curve and the shape of the cell survival curve are not causally related. It is proposed that the shoulder observed in the DNA elution dose-response curve reflects either partial release of DNA from chromatin, or cell cycle-specific alterations in the physicochemical properties of the DNA. (author)

  3. Variations in the spectrum of lesions produced in the DNA of cells from mouse tissues after exposure to γ-rays in air-breathing or in artificially anoxic animals

    International Nuclear Information System (INIS)

    Murray, D.; Meyn, R.E.; Vanankeren, S.C.

    1988-01-01

    Few DNA-protein crosslinks (dpc) were detected in the DNA from tumor cells γ-irradiated in vitro; however, in cells from both FSa and NFSa tumors irradiated in situ there was a significant level of protein-concealed ssb, and thus of dpc. These data are most likely the result of the relative hypoxia of a proportion of cells from both the FSa and NFSa tumor in the air-breathing animals. Induction of dpc was further enhanced in the DNA from tumor cells irradiated under anoxic conditions. A significant level of dpc was also observed in jejunal and spleen cells irradiated in vivo; however, since a significant level of protein-concealed breaks was also observed in cells irradiated in vitro, oxygenation appears not to be the only parameter capable of modifying the proportion of protein-concealed ssb, and the effects of proteinase K on the DNA elution rate for normal mouse tissues may be complex. (author)

  4. Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P J; Paterson, M C [Atomic Energy of Canada Ltd., Chalk River, Ontario. Radiation Biology Branch

    1982-01-01

    Rothmund Thomson syndrome (RTS) is an oculocutaneous and cancer-prone disorder in which enhanced carcinogen sensitivity, mediated through abnormal DNA metabolism, may be an associated factor. Cultured fibroblasts from 4 RTS patients have been examined for their colony-forming abilities and DNA repair capacities following ..gamma..-irradiation. 2 of the 4 RTS strains showed enhanced sensitivity following hypoxic ..gamma..-irradiation, and 1 of these 2 strains also showed enhanced sensitivity under oxic conditions. Defective DNA repair was implicated in the above abnormal responses to ..gamma..-radiation since both strains displayed reduced levels of repair synthesis and slow removal of radiogenic DNA lesions (assayed by their sensitivity to strand-incising activities present in protein extracts of Micrococcus luteus cells). A hypothesis is presented to rationalize the origin and heterogeneity of these laboratory phenotypes of RTS.

  5. Repair of Clustered Damage and DNA Polymerase Iota.

    Science.gov (United States)

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  6. Verruco-papillary lesions in relation to human papilloma virus

    Directory of Open Access Journals (Sweden)

    Charu Kapoor

    2013-01-01

    Full Text Available Plethora of pathologic conditions may affect the normal morphologic characteristics and intactness of the oral mucosa, presenting as surface alterations.The prevalence of the different types of HPV worldwide has implications for the effectiveness of HPV vaccinations against HPV-induced carcinogenesis. This article discusses HPV related lesions with emphasis on verrucopapillary lesions.

  7. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  8. Molecular Triage of Premalignant Lesions in Liquid-Based Cervical Cytology and Circulating Cell-Free DNA from Urine, Using a Panel of Methylated Human Papilloma Virus and Host Genes

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Valle, Blanca L.; Jedlicka, Anne; Turaga, Nitesh; Folawiyo, Oluwasina; Pirini, Francesca; Lawson, Fahcina; Vergura, Angelo; Noordhuis, Maartje; Dziedzic, Amanda; Perez, Gabriela; Renehan, Marisa; Guerrero-Diaz, Carolina; Rodriguez, Edgar De Jesus; Diaz-Montes, Teresa; Orengo, Jose Rodriguez; Mendez, Keimari; Romaguera, Josefina; Trock, Bruce J.; Florea, Liliana; Sidransky, David

    2016-01-01

    Clinically useful molecular tools to triage women for a biopsy upon referral to colposcopy are not available. We aimed to develop a molecular panel to detect cervical intraepithelial neoplasia (CIN) grade 2 or higher lesions (CIN2(+)) in women with abnormal cervical cytology and high-risk HPV

  9. Aneuploidy in benign tumors and nonneoplastic lesions of musculoskeletal tissues.

    Science.gov (United States)

    Alho, A; Skjeldal, S; Pettersen, E O; Melvik, J E; Larsen, T E

    1994-02-15

    Aneuploidy in DNA flow cytometry (FCM) of musculoskeletal tumors is generally considered to be a sign of malignancy. Previously, giant cell tumor of the bone has been reported to contain aneuploid (near-diploid) DNA stemlines. Otherwise, only spordic cases have been reported. The authors wanted to study the relationships among DNA FCM, histology, and clinical course of nonmalignant musculoskeletal lesions. Twenty-eight histologically benign tumors and seven nonneoplastic lesions were subjected to DNA FCM: After tissue preparation mechanically and with ribonuclease and trypsin, the isolated nuclei were stained with propidium iodine using chicken and rainbow trout erythrocytes as controls. In the DNA FCM histograms, ploidy and cell cycle fractions were determined using a computerized mathematical model. The histologic diagnoses were made without knowledge of the DNA FCM results. Aneuploidy was found in eight lesions. A shoulder in the diploid peak, suggesting a diploid and a near-diploid population, was found in DNA histograms of a condensing osteitis of the clavicle (a benign inflammatory process) and of a giant cell tumor of bone. The latter lesion also had a tetraploid population. Six benign tumors--two enchondromas, one osteochondroma, one subcutaneous and one intramuscular lipoma, and a calcifying aponeurotic fibroma--showed clear aneuploidy with separate peaks. The S-phase fraction was less than 10% in all cases. The highest aneuploid population, DNA index = 1.70, in a subcutaneous lipoma, was small, with an undetectable S phase. Despite nonradical operations in seven lesions, no recurrences were observed during a median follow-up of 49 months (range, 28-73 months). Small aneuploid populations with low DNA synthetic activity may be compatible with a benign histologic picture and uneventful clinical course of the musculoskeletal lesion.

  10. The chemical basis of DNA damage by the direct pathway of ionizing radiation

    International Nuclear Information System (INIS)

    Sharma, Kiran Kumar K.

    2013-01-01

    Free radicals in living system has been implicated as playing a major role in the etiology of variety of diseases. The mechanism of free radicals in vivo involves predominantly the reaction with the DNA, producing different types of damage to the DNA. These lesions induced to the DNA could lead to mutation and even cell death. Radiolysis techniques, which uses ionizing radiation has proven to be one of the most advanced and excellent tool for studying the free radical reaction mechanisms as it can produce a host of well characterized free radicals. The effects of ionizing radiation on DNA have been studied for many years. Ionizing radiation interacts with DNA in vivo by two pathways, direct and indirect. The indirect accounts for 50-60% while the direct effect accounts for 40-50%. The chemical mechanism of the former reaction arising mainly from the reactive species produced by radiolysis of water has been extensively studied, however with respect to the later pathway, which creates holes and electrons to the DNA molecule using DNA films and crystals is an active area of research as both the pathways plays important roles in DNA damage in vivo particularly in chromosomal DNA which are tightly bound with histones and compartmentalized

  11. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  12. The proofreading 3'→5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis

    International Nuclear Information System (INIS)

    Khare, Vineeta; Eckert, Kristin A.

    2002-01-01

    The 3'→5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'→5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity

  13. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  14. Lesion activity assessment

    DEFF Research Database (Denmark)

    Ekstrand, K R; Zero, D T; Martignon, S

    2009-01-01

    in response to cariogenic plaque as well as lesion arrest. Based on this understanding, different clinical scoring systems have been developed to assess the severity/depth and activity of lesions. A recent system has been devised by the International Caries Detection and Assessment System Committee...

  15. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  16. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  17. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    Science.gov (United States)

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  18. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Legartová, Soňa; Krejčí, Jana; Řezníčková, Petra; Kovaříková, Alena; Suchánková, Jana; Fedr, Radek; Smirnov, E.; Hornáček, M.; Raška, I.

    2018-01-01

    Roč. 2018, č. 2018 (2018) ISSN 0730-2312 R&D Projects: GA ČR GBP302/12/G157; GA MŠk 7F14369 Institutional support: RVO:68081707 Keywords : DAPI * DNA damage response * FLIM Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 3.085, year: 2016

  19. Insights into the Structure of Intrastrand Cross-Link DNA Lesion-Containing Oligonucleotides: G[8-5m]T and G[8-5]C from Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Dumont, E.; Dršata, Tomáš; Guerra, C. F.; Lankaš, Filip

    2015-01-01

    Roč. 54, č. 5 (2015), s. 1259-1267 ISSN 0006-2960 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : hydrogen bonds * abasic sites * duplex DNA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.876, year: 2015

  20. Imaging findings of papillary breast lesions: A pictorial review

    International Nuclear Information System (INIS)

    Kestelman, F.P.; Gomes, C.F.A.; Fontes, F.B.; Marchiori, E.

    2014-01-01

    The aim of this review is to describe the different imaging appearances of benign and malignant papillary breast lesions on mammography, ultrasound, and magnetic resonance imaging, according to the World Health Organization histopathological classifications. The classification and morphological imaging characteristics of papillary lesions remain challenging for pathologists and radiologists. Despite the difficulty of classifying these lesions, our review and those of others suggest that morphology is associated with clinically meaningful staging and outcome implications. Imaging can help to differentiate the forms of papillary lesion, but surgical specimens are required for definitive diagnosis in the majority of cases

  1. Intraosseous osteolytic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Adler, C.P.; Wenz, W.

    1981-10-01

    Any pathological damage occurring in a bone will produce either an osteolytic or osteosclerotic lesion which can be seen in the macroscopic specimen as well as in the roentgenogram. Various bone lesions may lead to local destructions of the bone. An osteoma or osteoplastic osteosarcoma produces an osteosclerotic lesion showing a dense mass in the roentgenogram; a chondroblastoma or an osteoclastoma, on the other hand, induces an osteolytic focal lesion. This paper presents examples of different osteolytic lesions of the humerus. An osteolytic lesion seen in the roentgenogram may be either produced by an underlying non-ossifying fibroma of the bone, by fibrous dysplasia, osteomyelitis or Ewing's sarcoma. Differential diagnostic considerations based on the radiological picture include eosinophilic bone granuloma, juvenile or aneurysmal bone cyst, multiple myeloma or bone metastases. Serious differential diagnostic problems may be involved in case of osteolytic lesions occurring in the humerus. Cases of this type involving complications have been reported and include the presence of an teleangiectatic osteosarcoma as well as that of a hemangiosarcoma of the bone.

  2. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs.

    Science.gov (United States)

    Rizzi, Aurora; Raddadi, Noura; Sorlini, Claudia; Nordgrd, Lise; Nielsen, Kaare Magne; Daffonchio, Daniele

    2012-01-01

    The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.

  3. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  4. Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ)

    International Nuclear Information System (INIS)

    Ferk, Franziska; Huber, Wolfgang W.; Filipic, Metka; Bichler, Julia; Haslinger, Elisabeth; Misik, Miroslav; Nersesyan, Armen; Grasl-Kraupp, Bettina; Zegura, Bojana; Knasmueller, Siegfried

    2010-01-01

    Xanthohumol (XN) is a hop derived prenylated flavonoid contained in beer. Earlier findings indicated that it has promising chemopreventive properties and protects cells against DNA damage by carcinogens via inhibition of their activation. Furthermore, it was found that XN inhibits DNA synthesis and proliferation of cancer cells in vitro, inactivates oxygen radicals and induces apoptosis. Since evidence for its chemoprotective properties is restricted to results from in vitro experiments, we monitored the impact of XN on the formation of amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced preneoplastic foci in livers and colons of rats (9/group). Additionally, we studied its effects on IQ-induced DNA damage in colonocytes and hepatocytes in single cell gel electrophoresis assays and on the activities of a panel of drug metabolising enzymes. Consumption of the drinking water supplemented with XN (71 μg/kg b.w.) before and during carcinogen treatment led to a significant reduction of the number of GST-p + foci in the liver by 50% and also to a decrease of the foci area by 44%. DNA migration was decreased significantly in both, colon mucosa and liver cells, but no alterations of the activities of different phases I and II enzymes were found in hepatic tissue. Our findings indicate that XN protects against DNA damage and cancer induced by the cooked food mutagen. Since the effects were observed with low doses of XN which are reached after consumption of brews with high XN levels, our findings may be relevant for humans.

  5. Theory of pairwise lesion interaction

    International Nuclear Information System (INIS)

    Harder, Dietrich; Virsik-Peuckert, Patricia; Bartels, Ernst

    1992-01-01

    A comparison between repair time constants measured both at the molecular and cellular levels has shown that the DNA double strand break is the molecular change of key importance in the causation of cellular effects such as chromosome aberrations and cell inactivation. Cell fusion experiments provided the evidence that it needs the pairwise interaction between two double strand breaks - or more exactly between the two ''repair sites'' arising from them in the course of enzymatic repair - to provide the faulty chromatin crosslink which leads to cytogenetic and cytolethal effects. These modern experiments have confirmed the classical assumption of pairwise lesion interaction (PLI) on which the models of Lea and Neary were based. It seems worthwhile to continue and complete the mathematical treatment of their proposed mechanism in order to show in quantitative terms that the well-known fractionation, protraction and linear energy transfer (LET) irradiation effects are consequences of or can at least be partly attributed to PLI. Arithmetic treatment of PLI - a second order reaction - has also the advantage of providing a prerequisite for further investigations into the stages of development of misrepair products such as chromatin crosslinks. It has been possible to formulate a completely arithmetic theory of PLI by consequently applying three biophysically permitted approximations - pure first order lesion repair kinetics, dose-independent repair time constants and low yield of the ionization/lesion conversion. The mathematical approach will be summarized here, including several formulae not elaborated at the time of previous publications. We will also study an application which sheds light on the chain of events involved in PLI. (author)

  6. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  7. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  8. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  9. Diffuse cavitary lung lesions

    Energy Technology Data Exchange (ETDEWEB)

    Grunzke, Mindy; Garrington, Timothy [University of Colorado Denver, Department of Pediatrics, Aurora, CO (United States); The Children' s Hospital, Rick Wilson Center for Cancer and Blood Disorders, Aurora, CO (United States); Hayes, Kari [The Children' s Hospital, Pediatric Radiology, Aurora, CO (United States); Bourland, Wendy [Children' s Hospital at St. Francis, Warren Clinic, Inc., Tulsa, OK (United States)

    2010-02-15

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for {sup 18}F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  10. Diffuse cavitary lung lesions

    International Nuclear Information System (INIS)

    Grunzke, Mindy; Garrington, Timothy; Hayes, Kari; Bourland, Wendy

    2010-01-01

    An 11-year-old girl presented with a 2-month history of progressively worsening cough, daily fevers, and weight loss. A chest radiograph revealed multiple cystic cavitary lung lesions. An extensive infectious work-up was negative. Chest CT verified multiple cavitary lung lesions bilaterally, and [F-18]2-fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography with CT (PET/CT) showed increased uptake in the lung lesions as well as regional lymph nodes. Subsequent biopsy of an involved lymph node confirmed classical Hodgkin lymphoma, nodular sclerosis type. This case represents an unusual presentation for a child with Hodgkin lymphoma and demonstrates a role for 18 F-FDG PET/CT in evaluating a child with cavitary lung lesions. (orig.)

  11. Uterine Vascular Lesions

    Science.gov (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  12. Male breast lesions

    International Nuclear Information System (INIS)

    Matushita, J.P.K.; Andrade, L.G. de; Carregal, E.; Marimatsu, R.I.; Matushita, J.S.

    1989-01-01

    Roentgenographic examination of the male breast is an important aspect of the continued, intensive investigation of the radiologic morphology of the normal and diseased breast conducted in 17 cases examined at the Instituto Nacional do Cancer - RJ. It is purpose of this report to present the Roentgen appearance of various lesions of the male breast as they have been found in our practice and also to stress some of the difficulties in the differential diagnosis of these lesions. (author) [pt

  13. Benign fibroosseous lesions

    Directory of Open Access Journals (Sweden)

    Cansu Köseoğlu Seçgin

    2016-05-01

    Full Text Available Benign fibroosseous lesions represent a group of lesions that share the same basic evolutive mechanism and are characterized by replacement of normal bone with a fibrous connective tissue that gradually undergoes mineralization. These lesions are presented by a variety of diseases including developmental, reactive-dysplastic processes and neoplasms. Depending on the nature and amount of calcified tissue, they can be observed as radiolucent, mixed or radiopaque. Their radiographic features could be well-defined or indistinguishable from the surrounding bone tissue. They can be asymptomatic as in osseous dysplasias and can be detected incidentally on radiographs, or they can lead to expansion in the affected bone as in ossifying fibroma. All fibroosseous lesions seen in the jaws and face are variations of the same histological pattern. Therefore, detailed clinical and radiographic evaluation in differential diagnosis is important. In this review, fibroosseous benign lesions are classified as osseous dysplasia, fibrous dysplasia and fibroosseous tumors; and radiographic features and differential diagnosis of these lesions are reviewed taking into account this classification.

  14. PREVALENCE OF HUMAN PAPILLOMAVIRUS GENOTYPES IN LOW AND HIGH GRADE SQUAMOUS INTRAEPITHELIAL LESIONS AT CERVICAL TISSUE

    OpenAIRE

    Prasetyo, Rizki Eko; Mastutik, Gondo; Mustokoweni, Sjahjenny

    2017-01-01

    HPV infection is known to cause cervical cancer. This study aimed to identify the variant of HPV genotypes of cervical precancerous lesions from low grade squamous intraepithelial lesion  (LSIL) and high grade squamous intraepithelial lesion (HSIL). This was an explorative study using formalin fix paraffin embedded (FFPE) from cervical precancerous lesions at Dr. Soetomo Hospital, Surabaya. DNA was extracted from FFPE and hybridized for HPV genotyping using Ampliquality HPV Type Express kit (...

  15. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  16. Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells

    International Nuclear Information System (INIS)

    Huselton, C.A.; Hill, H.Z.

    1990-01-01

    Melanins, pigments of photoprotection and camouflage, are very photoreactive and can both absorb and emit active oxygen species. Nevertheless, black skinned individuals rarely develop skin cancer and melanin is assumed to act as a solar screen. Since DNA is the target for solar carcinogenesis, the effect of melanin on Ultraviolet (UV)-induced thymine lesions was examined in mouse melanoma and carcinoma cells that varied in melanin content. Cells prelabeled with 14C-dThd were irradiated with UVC; DNA was isolated, purified, degraded to bases by acid hydrolysis and analyzed by HPLC. Thymine dimers were detected in all of the extracts of irradiated cells. Melanotic and hypomelanotic but not mammary carcinoma cell DNA from irradiated cells contained hydrophilic thymine derivatives. The quantity of these damaged bases was a function of both the UVC dose and the cellular melanin content. One such derivative was identified by gas chromatography-mass spectroscopy as thymine glycol. The other appears to be derived from thymine glycol by further oxidation during acid hydrolysis of the DNA. The finding of oxidative DNA damage in melanin-containing cells suggests that melanin may be implicated in the etiology of caucasian skin cancer, particularly melanoma. Furthermore, the projected decrease in stratospheric ozone could impact in an unanticipated deleterious manner on dark-skinned individuals

  17. Use of human papillomavirus DNA, E6/E7 mRNA, and p16 immunocytochemistry to detect and predict anal high-grade squamous intraepithelial lesions in HIV-positive and HIV-negative men who have sex with men.

    Directory of Open Access Journals (Sweden)

    Nittaya Phanuphak

    Full Text Available Men who have sex with men (MSM are at high risk of having anal cancer. Anal high-grade squamous intraepithelial lesion (HSIL is the precursor of anal cancer. We explored the use of different biomarkers associated with human papillomavirus (HPV infection and HPV-mediated cell transformation to detect and predict HSIL among HIV-positive and HIV-negative MSM.A total of 123 HIV-positive and 123 HIV-negative MSM were enrolled and followed for 12 months. High-resolution anoscopy (HRA with biopsies were performed at every visit along with anal sample collection for cytology, high-risk HPV DNA genotyping, HPV E6/E7 mRNA, and p16 immunocytochemistry. Performance characteristics and area under the receiver operator characteristics curve were calculated for these biomarkers at baseline, and Cox regression compared the usefulness of these biomarkers in predicting incident HSIL. High-risk HPV DNA, E6/E7 mRNA, and p16 immunocytochemistry each identified 43-46% of MSM whose baseline test positivity would trigger HRA referral. E6/E7 mRNA had the highest sensitivity (64.7% and correctly classified the highest number of prevalent HSIL cases. With the exception of p16 immunochemistry, most tests showed significant increases in sensitivity but decreases specificity versus anal cytology, while the overall number of correctly classified cases was not significantly different. Baseline or persistent type 16 and/or 18 HPV DNA was the only test significantly predicting incident histologic HSIL within 12 months in models adjusted for HIV status and low-grade squamous intraepithelial lesions at baseline.Countries with a high HIV prevalence among MSM and limited HRA resources may consider using biomarkers to identify individuals at high risk of HSIL. E6/E7 mRNA had the highest sensitivity for prevalent HSIL detection regardless of HIV status, whereas type 16 and/or 18 HPV DNA performed best in predicting development of incident HSIL within 12 months.

  18. Tumor‐associated DNA mutation detection in individuals undergoing colonoscopy

    OpenAIRE

    Fleshner, Phillip; Braunstein, Glenn D.; Ovsepyan, Gayane; Tonozzi, Theresa R.; Kammesheidt, Anja

    2017-01-01

    Abstract The majority of colorectal cancers (CRC) harbor somatic mutations and epigenetic modifications in the tumor tissue, and some of these mutations can be detected in plasma as circulating tumor DNA (ctDNA). Precancerous colorectal lesions also contain many of these same mutations. This study examined plasma for ctDNA from patients undergoing a screening or diagnostic colonoscopy to determine the sensitivity and specificity of the ctDNA panel for detecting CRC and precancerous lesions. T...

  19. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    Science.gov (United States)

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Processing of UV-induced DNA damage in diverse biological systems

    International Nuclear Information System (INIS)

    Galloway, A.M.

    1992-01-01

    A novel protocol has been developed allowing direct evaluation and accurate quantitation of UV lesions contained with both genomic DNA and the small oligonucleotides excised by a living cell during nucleotide excision repair. Using this methodology, the repair capacity of normal and UV-sensitive cells of human, Chinese hamster, and Escherichia coli origin, has been assessed. Several conclusions have been reached: (1) severage of the interpyrimidine phosphodiester linkage of cyclobutane dimers appears to be an evolutionarily conserved phenomenon; (2) the kinetics of cyclobutane dimer repair differ markedly from both (6-4) photoproduct and TA* lesion removal; (3) the ability to excise cyclobutane dimers is independent of (6-4) photoproduct repair capacity, suggesting that the lesions are not repaired/recognized by identical mechanisms; (4) fibroblast strains representing the eight xeroderma pigmentosum complementation groups each show a unique proficiency/deficiency to repair the different photolesions under study, implicating that a defect in a different locus underlies each genetic form of this disease; (5) the repair deficiency in UV-sensitive strains of trichothiodystrophy appears to be completely unrelated to that of non-complementing XP-D cells. To allow direct assessment of an IDP-altered photoproduct, substrates have been constructed which contain, at a defined dithymidine site, no lesion, a conventional cyclobutane dimer, or a cyclobutane dimer modified by severage of the intradimer phosphodiester bond. Bacteriophage T4 UV endonuclease has no activity towards a modified lesion, questioning the interpretation of experiments which utilize the strand-incising activity of this enzyme to monitor repair. Furthermore, although this altered lesion acts as a block to E. coli DNA polymerase I, it allows SP6 RNA polymerase to bypass the otherwise RNA polymerase-blocking lesion

  1. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  2. Effects of ionizing radiations on DNA-protein complexes; Effets des radiations ionisantes sur des complexes ADN-proteine

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, N

    2005-11-15

    The radio-induced destruction of DNA-protein complexes may have serious consequences for systems implicated in important cellular functions. The first system which has been studied is the lactose operon system, that regulates gene expression in Escherichia coli. First of all, the repressor-operator complex is destroyed after irradiation of the complex or of the protein alone. The damaging of the domain of repressor binding to DNA (headpiece) has been demonstrated and studied from the point of view of peptide chain integrity, conformation and amino acids damages. Secondly, dysfunctions of the in vitro induction of an irradiated repressor-unirradiated DNA complex have been observed. These perturbations, due to a decrease of the number of inducer binding sites, are correlated to the damaging of tryptophan residues. Moreover, the inducer protects the repressor when they are irradiated together, both by acting as a scavenger in the bulk, and by the masking of its binding site on the protein. The second studied system is formed by Fpg (for Formamido pyrimidine glycosylase), a DNA repair protein and a DNA with an oxidative lesion. The results show that irradiation disturbs the repair both by decreasing its efficiency of DNA lesion recognition and binding, and by altering its enzymatic activity. (author)

  3. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    Science.gov (United States)

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  4. Human papillomavirus in oral lesions Virus papiloma humano en lesiones orales

    Directory of Open Access Journals (Sweden)

    Joaquín V. Gónzalez

    2007-08-01

    Full Text Available Growing evidence suggests a role for human papillomavirus (HPV in oral cancer; however its involvement is still controversial. This study evaluates the frequency of HPV DNA in a variety of oral lesions in patients from Argentina. A total of 77 oral tissue samples from 66 patients were selected (cases; the clinical-histopathological diagnoses corresponded to: 11 HPV- associated benign lesions, 8 non-HPV associated benign lesions, 33 premalignant lesions and 25 cancers. Sixty exfoliated cell samples from normal oral mucosa were used as controls. HPV detection and typing were performed by polymerase chain reaction (PCR using primers MY09, 11, combined with RFLP or alternatively PCR using primers GP5+, 6+ combined with dot blot hybridization. HPV was detected in 91.0% of HPV- associated benign lesions, 14.3% of non-HPV associated benign lesions, 51.5% of preneoplasias and 60.0% of cancers. No control sample tested HPV positive. In benign HPV- associated lesions, 30.0% of HPV positive samples harbored high-risk types, while in preneoplastic lesions the value rose to 59.9%. In cancer lesions, HPV detection in verrucous carcinoma was 88.9% and in squamous cell carcinoma 43.8%, with high-risk type rates of 75.5% and 85.6%, respectively. The high HPV frequency detected in preneoplastic and neoplastic lesions supports an HPV etiological role in at least a subset of oral cancers.Crecientes evidencias sugieren que el virus Papiloma humano (HPV tiene un rol en el cáncer oral; sin embargo su participación es todavía controvertida. Este estudio evalúa la frecuencia de ADN de HPV en una variedad de lesiones orales de pacientes de Argentina. Se seleccionaron 77 muestras de tejido oral de 66 pacientes (casos; el diagnóstico histo-patológico correspondió a: 11 lesiones benignas asociadas a HPV, 8 lesiones benignas no asociadas a HPV, 33 lesiones premalignas y 25 cánceres. Como controles se usaron 60 muestras de células exfoliadas de mucosa oral normal. La

  5. Precancerous Skin Lesions.

    Science.gov (United States)

    Ferrándiz, C; Malvehy, J; Guillén, C; Ferrándiz-Pulido, C; Fernández-Figueras, M

    Certain clinically and histologically recognizable skin lesions with a degree of risk of progression to squamous cell carcinoma have been traditionally grouped as precancerous skin conditions but now tend to be classified as in situ carcinomas. This consensus statement discusses various aspects of these lesions: their evaluation by means of clinical and histopathologic features, the initial evaluation of the patient, the identification of risk factors for progression, and the diagnostic and treatment strategies available today. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Mitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration

    Science.gov (United States)

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Pavlis, Janelle M.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Hsu, Tiffany; Woo, Grace; Soe, Kyaw; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2013-01-01

    Background Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid) model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD) versus J haplogroup (high risk for AMD). Methodology/Principal Findings Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19) that was devoid of mitochondrial DNA (Rho0). In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism. Conclusion/Significance Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD. PMID:23365660

  7. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    M Cristina Kenney

    Full Text Available Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD. Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt DNA haplogroups (as defined by combinations of mtDNA polymorphisms that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD versus J haplogroup (high risk for AMD.Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19 that was devoid of mitochondrial DNA (Rho0. In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism.Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD.

  8. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  9. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  10. Common conjunctival lesions

    African Journals Online (AJOL)

    Conjunctival lesions are frequently seen in the eye clinic, because the conjunctiva is readily ... anti-histamine drops and mast cell stabilisers can be used. e more severe cases have to be .... Ehlers J, Shah C . The Wills Eye Manual. Office and.

  11. Skin lesion removal

    Science.gov (United States)

    ... likely to be done when there is a concern about a skin cancer. Most often, an area the shape of an ellipse is removed, as this makes it easier to close with stitches. The entire lesion is removed, going as deep as the fat, if needed, to ...

  12. Genital lesions following bestiality

    Directory of Open Access Journals (Sweden)

    Mittal A

    2000-01-01

    Full Text Available A 48-year-old man presented with painful genital lesions with history of bestiality and abnor-mal sexual behaviour. Examination revealed multiple irregular tender ulcers and erosions, with phimosis and left sided tender inguinal adenopathy. VDRL, TPHA, HIV-ELISA were negative. He was treated with ciprofloxacin 500mg b.d. along with saline compresses with complete resolution.

  13. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  14. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  15. Morel-Lavallee lesion.

    Science.gov (United States)

    Li, Hui; Zhang, Fangjie; Lei, Guanghua

    2014-01-01

    To review current knowledge of the Morel-Lavallee lesion (MLL) to help clinicians become familiar with this entity. Familiarization may decrease missed diagnoses and misdiagnoses. It could also help steer the clinician to the proper treatment choice. A search was performed via PubMed and EMBASE from 1966 to July 2013 using the following keywords: Morel-Lavallee lesion, closed degloving injury, concealed degloving injury, Morel-Lavallee effusion, Morel-Lavallee hematoma, posttraumatic pseudocyst, posttraumatic soft tissue cyst. Chinese and English language literatures relevant to the subject were collected. Their references were also reviewed. Morel-Lavallee lesion is a relatively rare condition involving a closed degloving injury. It is characterized by a filled cystic cavity created by separation of the subcutaneous tissue from the underlying fascia. Apart from the classic location over the region of the greater trochanter, MLLs have been described in other parts of the body. The natural history of MLL has not yet been established. The lesion may decrease in volume, remain stable, enlarge progressively or show a recurrent pattern. Diagnosis of MLL was often missed or delayed. Ultrasonography, computed tomography, and magnetic resonance imaging have great value in the diagnosis of MLL. Treatment of MLL has included compression, local aspiration, open debridement, and sclerodesis. No standard treatment has been established. A diagnosis of MLL should be suspected when a soft, fluctuant area of skin or chronic recurrent fluid collection is found in a region exposed to a previous shear injury. Clinicians and radiologists should be aware of both the acute and chronic appearances to make the correct diagnosis. Treatment decisions should base on association with fractures, the condition of the lesion, symptom and desire of the patient.

  16. Maxillomandibular giant osteosclerotic lesions

    Directory of Open Access Journals (Sweden)

    Constantino LEDESMA-MONTES

    2018-06-01

    Full Text Available Abstract Giant Osteosclerotic Lesions (GOLs are a group of rarely reported intraosseous lesions. Their precise diagnosis is important since they can be confused with malignant neoplasms. Objective This retrospective study aimed to record and analyze the clinical and radiographic Giant Osteosclerotic Lesions (GOLs detected in the maxillomandibular area of patients attending to our institution. Materials and Methods: Informed consent from the patients was obtained and those cases of 2.5 cm or larger lesions with radiopaque or mixed (radiolucid-radiopaque appearance located in the maxillofacial bones were selected. Assessed parameters were: age, gender, radiographic aspect, shape, borders, size, location and relations to roots. Lesions were classified as radicular, apical, interradicular, interradicular-apical, radicular-apical or located in a previous teeth extraction area. Additionally, several osseous and dental developmental alterations (DDAs were assessed. Results Seventeen radiopacities in 14 patients were found and were located almost exclusively in mandible and were two types: idiopathic osteosclerosis and condensing osteitis. GOLs were more frequent in females, and in the anterior and premolar zones. 94.2% of GOLs were qualified as idiopathic osteosclerosis and one case was condensing osteitis. All studied cases showed different osseous and dental developmental alterations (DDAs. The most common were: Microdontia, hypodontia, pulp stones, macrodontia and variations in the mental foramina. Conclusions GOLs must be differentiated from other radiopaque benign and malignant tumors. Condensing osteitis, was considered an anomalous osseous response induced by a chronic low-grade inflammatory stimulus. For development of idiopathic osteosclerosis, two possible mechanisms could be related. The first is modification of the normal turnover with excessive osseous deposition. The second mechanism will prevent the normal bone resorption, arresting the

  17. Interactions between Al₁₂X (X = Al, C, N and P) nanoparticles and DNA nucleobases/base pairs: implications for nanotoxicity.

    Science.gov (United States)

    Jin, Peng; Chen, Yongsheng; Zhang, Shengbai B; Chen, Zhongfang

    2012-02-01

    The interactions between neutral Al(12)X(I ( h )) (X = Al, C, N and P) nanoparticles and DNA nucleobases, namely adenine (A), thymine (T), guanine (G) and cytosine (C), as well as the Watson-Crick base pairs (BPs) AT and GC, were investigated by means of density functional theory computations. The Al(12)X clusters can tightly bind to DNA bases and BPs to form stable complexes with negative binding Gibbs free energies at room temperature, and considerable charge transfers occur between the bases/BPs and the Al(12)X clusters. These strong interactions, which are also expected for larger Al nanoparticles, may have potentially adverse impacts on the structure and stability of DNA and thus cause its dysfunction.

  18. LET-effects in DNA

    International Nuclear Information System (INIS)

    Kraft, G.; Taucher-Scholz, G.; Heilmann, J.

    1994-11-01

    In this contribution, an introductory view on the physical properties of ions is given and the cellular response to high LET radiation is summarized. Then the measurements of strand break induction of DNA in solution and in intracellular DNA are reported and compared to cell survival. The possibility of changes in the quality of the lesions is discussed and finally the present status of model calculations in comparison to the experiments is given. (orig./HSI)

  19. Nuclear and Mitochondrial DNA Analyses of Golden Eagles (Aquila chrysaetos canadensis from Three Areas in Western North America; Initial Results and Conservation Implications.

    Directory of Open Access Journals (Sweden)

    Erica H Craig

    Full Text Available Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA D-loop sequences and 16 nuclear DNA (nDNA microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026. Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97% was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.

  20. Nuclear and Mitochondrial DNA Analyses of Golden Eagles (Aquila chrysaetos canadensis) from Three Areas in Western North America; Initial Results and Conservation Implications.

    Science.gov (United States)

    Craig, Erica H; Adams, Jennifer R; Waits, Lisette P; Fuller, Mark R; Whittington, Diana M

    2016-01-01

    Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.

  1. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.

    Science.gov (United States)

    Murakami, K; Haneda, M; Makino, T; Yoshino, M

    2007-07-01

    Prooxidant properties of furanone compounds including 2,5-furanone (furaneol, 4-hydroxy-2,5-dimethyl-furan-3-one), 4,5-furanone (4,5-dimethyl-3-hydroxy-2(5H)-furanone) (sotolone) and cyclotene (2-hydroxy-3-methyl-2-cyclopenten-1-one) were analyzed in relation to the metal-reducing activity. Only 2.5-furanone known as a "strawberry or pineapple furanone" inactivated aconitase the most sensitive enzyme to active oxygen in the presence of ferrous sulfate, suggesting the furaneol/iron-mediated generation of reactive oxygen species. 2,5-Furanone caused strand scission of pBR322 DNA in the presence of copper. Treatment of calf thymus DNA with 2,5-furanone plus copper produced 8-hydroxy-2'-deoxyguanosine in DNA. 2,5-Furanone showed a potent copper-reducing activity, and thus, DNA strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine by 2,5-furanone can be initiated by the production of superoxide radical through the reduction of cupric ion to cuprous ion, resulting in the conversion to hydrogen peroxide and hydroxyl radical. However, an isomer and analog of 2,5-furanone, 4,5-furanone and cyclotene, respectively, did not show an inactivation of aconitase, DNA injuries including strand breakage and the formation of 8-hydroxy-2'-deoxyguanosine, and copper-reducing activity. Cytotoxic effect of 2,5-furanone with hydroxyketone structure can be explained by its prooxidant properties: furaneol/transition metal complex generates reactive oxygen species causing the inactivation of aconitase and the formation of DNA base damage by hydroxyl radical.

  2. Nuclear and mitochondrial DNA analyses of golden eagles (Aquila chrysaetos canadensis) from three areas in western North America; initial results and conservation implications

    Science.gov (United States)

    Craig, Erica H; Adams, Jennifer R.; Waits, Lisette P.; Fuller, Mark R.; Whittington, Diana M.

    2016-01-01

    Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.

  3. Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt(II): implications for anticancer therapy.

    Science.gov (United States)

    Hou, Ming-Hon; Lu, Wen-Je; Huang, Chun-Yu; Fan, Ruey-Jane; Yuann, Jeu-Ming P

    2009-06-09

    Few studies have examined the effects of polyamines on the action of DNA-binding anticancer drugs. Here, a Co(II)-mediated dimeric mithramycin (Mith) complex, (Mith)(2)-Co(II), was shown to be resistant to polyamine competition toward the divalent metal ion when compared to the Fe(II)-mediated drug complexes. Surface plasmon resonance experiments demonstrated that polyamines interfered with the binding capacity and association rates of (Mith)(2)-Co(II) binding to DNA duplexes, while the dissociation rates were not affected. Although (Mith)(2)-Co(II) exhibited the highest oxidative activity under physiological conditions (pH 7.3 and 37 degrees C), polyamines (spermine in particular) inhibited the DNA cleavage activity of the (Mith)(2)-Co(II) in a concentration-dependent manner. Depletion of intracellular polyamines by methylglyoxal bis(guanylhydrazone) (MGBG) enhanced the sensitivity of A549 lung cancer cells to (Mith)(2)-Co(II), most likely due to the decreased intracellular effect of polyamines on the action of (Mith)(2)-Co(II). Our study suggests a novel method for enhancing the anticancer activity of DNA-binding metalloantibiotics through polyamine depletion.

  4. Hepatitis B virus DNA in saliva from children with chronic hepatitis B infection: implications for saliva as a potential mode of horizontal transmission

    DEFF Research Database (Denmark)

    Heiberg, Ida Louise; Hoegh, Mette; Ladelund, Steen

    2010-01-01

    To explore the mechanism of horizontal transmission of hepatitis B virus (HBV) among children, we investigated the quantitative relationship between HBV in saliva and blood from 46 children with chronic hepatitis B. We found high levels of HBV DNA in saliva of HBeAg (+) children, suggesting saliva...... as a vehicle for horizontal transmission of HBV among children....

  5. HEPATITIS B VIRUS DNA IN SALIVA FROM CHILDREN WITH CHRONIC HEPATITIS B INFECTION IMPLICATIONS FOR SALIVA AS A POTENTIAL MODE OF HORIZONTAL TRANSMISSION

    NARCIS (Netherlands)

    Heiberg, Ida Louise; Hoegh, Mette; Ladelund, Steen; Niesters, Hubert G. M.; Hogh, Birthe

    2010-01-01

    To explore the mechanism of horizontal transmission of hepatitis B virus (HBV) among children, we investigated the quantitative relationship between HBV in saliva and blood from 46 children with chronic hepatitis B. We found high levels of HBV DNA in saliva of HBeAg (+) children, suggesting saliva

  6. Hepatitis B virus DNA in saliva from children with chronic hepatitis B infection: implications for saliva as a potential mode of horizontal transmission

    DEFF Research Database (Denmark)

    Heiberg, Ida Louise; Hoegh, Mette; Ladelund, Steen

    2010-01-01

    To explore the mechanism of horizontal transmission of hepatitis B virus (HBV) among children, we investigated the quantitative relationship between HBV in saliva and blood from 46 children with chronic hepatitis B. We found high levels of HBV DNA in saliva of HBeAg (+) children, suggesting saliva...

  7. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.

    Science.gov (United States)

    Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O

    2011-07-01

    Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.

  8. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  9. Lesion progression in post-treatment persistent endodontic lesions.

    Science.gov (United States)

    Yu, Victoria Soo Hoon; Messer, Harold Henry; Shen, Liang; Yee, Robert; Hsu, Chin-ying Stephen

    2012-10-01

    Radiographic lesions related to root-filled teeth may persist for long periods after treatment and are considered to indicate failure of initial treatment. Persistent lesions are found in a proportion of cases, but information on lesion progression is lacking. This study examined the incidence of lesion improvement, remaining unchanged, and deterioration among persistent lesions in a group of patients recruited from a university-based clinic and identified potential predictors for lesion progression. Patients of a university clinic with persistent endodontic lesions at least 4 years since treatment and with original treatment radiographs available were recruited with informed consent. Data were obtained by interview and from dental records and clinical and radiographic examinations. Univariate and multivariate statistical analyses were carried out by using SPSS (version 19). One hundred fifty-one persistent lesions were identified in 114 patients. A majority of the lesions (107, 70.9%) received treatment between 4 and 5 years prior. Eighty-six lesions (57.0%) improved, 18 (11.9%) remained unchanged, and 47 (31.1%) deteriorated since treatment. Potential predictors for lesions that did not improve included recall lesion size, pain on biting at recall examination, history of a postobturation flare-up, and a non-ideal root-filling length (P < .05). Lesions that had persisted for a longer period appeared less likely to be improving (relative risk, 1.038; 95% confidence interval, 1.000-1.077). A specific time interval alone should not be used to conclude that a lesion will not resolve without intervention. This study identified several clinical factors that are associated with deteriorating persistent lesions, which should aid in identifying lesions that require further intervention. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  11. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  12. Interpreting sperm DNA damage in a diverse range of mammalian sperm by means of the two-tailed comet assay

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; López-Fernández, Carmen; Fernández, José Luis; Dávila-Rodríguez, Martha I.; Johnston, Stephen D.; Gosálvez, Jaime

    2014-01-01

    Key Concepts The two-dimensional Two-Tailed Comet assay (TT-comet) protocol is a valuable technique to differentiate between single-stranded (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell.Protein lysis inherent with the TT-comet protocol accounts for differences in sperm protamine composition at a species-specific level to produce reliable visualization of sperm DNA damage.Alkaline treatment may break the sugar–phosphate backbone in abasic sites or at sites with deoxyribose damage, transforming these lesions into DNA breaks that are also converted into ssDNA. These lesions are known as Alkali Labile Sites “ALSs.”DBD–FISH permits the in situ visualization of DNA breaks, abasic sites or alkaline-sensitive DNA regions.The alkaline comet single assay reveals that all mammalian species display constitutive ALS related with the requirement of the sperm to undergo transient changes in DNA structure linked with chromatin packing.Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome.The TT is a valuable tool for identifying SSBs or DSBs in sperm cells with DNA fragmentation and can be therefore used for the purposes of fertility assessment. Sperm DNA damage is associated with fertilization failure, impaired pre-and post- embryo implantation and poor pregnancy outcome. A series of methodologies to assess DNA damage in spermatozoa have been developed but most are unable to differentiate between single-stranded DNA breaks (SSBs) and double-stranded DNA breaks (DSBs) on the same sperm cell. The two-dimensional Two-Tailed Comet assay (TT-comet) protocol highlighted in this review overcomes this limitation and emphasizes the importance in accounting for the difference in sperm protamine composition at a species-specific level for the appropriate preparation of the assay. The TT-comet is a modification of the original comet assay that uses a two dimensional electrophoresis to

  13. Introduction to DNA methods

    International Nuclear Information System (INIS)

    Delincee, H.

    1991-01-01

    The purpose of this session is to discuss the various possibilities for detecting modifications in DNA after irradiation and whether these changes can be utilized as an indicator for the irradiation treatment of foods. The requirement to be fulfilled is that the method be able to distinguish irradiated food without the presence of a control sample, thus the measured response after irradiation must be large enough to supersede background levels from other treatments. Much work has been performed on the effects of radiation on DNA, particularly due to its importance in radiation biology. The main lesions of DNA as a result of irradiation are base damage, damage of the sugar moiety, single strand and double strand breaks. Crosslinking between bases also occurs, e.g. production of thymine dimers, or between DNA and protein. A valuable review on how to utilize these DNA changes for detection purposes has already appeared. Tables 1, 2 and 3 list the proposed methods of detecting changes in irradiated DNA, some identified products as examples for a possible irradiation indicator, in the case of immunoassay the substance used as antigen, and some selected literature references. In this short review, it is not intended to provide a complete literature survey

  14. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    Science.gov (United States)

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be

  15. Acute periodontal lesions.

    Science.gov (United States)

    Herrera, David; Alonso, Bettina; de Arriba, Lorenzo; Santa Cruz, Isabel; Serrano, Cristina; Sanz, Mariano

    2014-06-01

    This review provides updates on acute conditions affecting the periodontal tissues, including abscesses in the periodontium, necrotizing periodontal diseases and other acute conditions that cause gingival lesions with acute presentation, such as infectious processes not associated with oral bacterial biofilms, mucocutaneous disorders and traumatic and allergic lesions. A periodontal abscess is clinically important because it is a relatively frequent dental emergency, it can compromise the periodontal prognosis of the affected tooth and bacteria within the abscess can spread and cause infections in other body sites. Different types of abscesses have been identified, mainly classified by their etiology, and there are clear differences between those affecting a pre-existing periodontal pocket and those affecting healthy sites. Therapy for this acute condition consists of drainage and tissue debridement, while an evaluation of the need for systemic antimicrobial therapy will be made for each case, based on local and systemic factors. The definitive treatment of the pre-existing condition should be accomplished after the acute phase is controlled. Necrotizing periodontal diseases present three typical clinical features: papilla necrosis, gingival bleeding and pain. Although the prevalence of these diseases is not high, their importance is clear because they represent the most severe conditions associated with the dental biofilm, with very rapid tissue destruction. In addition to bacteria, the etiology of necrotizing periodontal disease includes numerous factors that alter the host response and predispose to these diseases, namely HIV infection, malnutrition, stress or tobacco smoking. The treatment consists of superficial debridement, careful mechanical oral hygiene, rinsing with chlorhexidine and daily re-evaluation. Systemic antimicrobials may be used adjunctively in severe cases or in nonresponding conditions, being the first option metronidazole. Once the acute

  16. Localization of lesions in aphasia

    International Nuclear Information System (INIS)

    Hojo, Kei; Watanabe, Shunzo; Tasaki, Hiroichi; Sato, Tokijiro; Metoki, Hirobumi.

    1984-01-01

    Using a microcomputer, the locus and extent of the lesions, as demonstrated by computed tomography for 127 cases with various types of aphasia were superimposed onto standardized marices. The relationship between the foci of the lesions and the types of aphasia was investigated. Broca aphasics (n=39) : Since the accumulated site of the lesions highly involved the deep structures of the lower part of the precentral gyrus as well as the insula and lenticular nucleus, only 60% of the Broca aphasics had lesions on these areas. This finding has proved to have little localizing value. Wernicke aphasics (n=23) : The size of the lesion was significantly smaller than Broca's aphasia. At least 70% of the patients had the superior temporal lesions involving Wernicke's area and subcortical lesions of the superior and middle temporal gyri. Amnestic aphasics (n=18) : The size of the lesion was smaller than any other types. While there was some concentration of the lesions (maximum 40%) in the area of the subcortical region of the anterior temporal gyrus adjacent to Wernicke's area and the lenticular nucleus, the lesions were distributed throughout the left hemisphere. Amnestic aphasia was thought to be the least localizable. Conduction aphasics (n=11) : The lesions were relatively small in size. Many patients had posterior speech area lesions involving at least partially Wernicke's area. In particular, more than 80% of the conduction aphasics had lesions of the supramarginal gyrus and it's adjacent deep structures. Global aphasics (n=36) : In general, the size of the lesion was very large and 70% of the global aphasics had extensive lesions involving both Broca's and Wernicke's areas. However, there were observations showing that the lesions can be small and confined. (J.P.N.)

  17. Fanconi anemia (cross)linked to DNA repair.

    Science.gov (United States)

    Niedernhofer, Laura J; Lalai, Astrid S; Hoeijmakers, Jan H J

    2005-12-29

    Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.

  18. A disappearing neonatal skin lesion.

    LENUS (Irish Health Repository)

    Hawkes, Colin Patrick

    2012-01-31

    A preterm baby girl was noted at birth to have a firm, raised, non-tender skin lesion located over her right hip. She developed three similar smaller lesions on her ear, buttock and right knee. All lesions had resolved by 2 months of age.

  19. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  20. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  1. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Science.gov (United States)

    Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James

    2016-01-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation. PMID:26390057

  2. Differential protein expression, DNA binding and interaction with SV40 large tumour antigen implicate the p63-family of proteins in replicative senescence.

    Science.gov (United States)

    Djelloul, Siham; Tarunina, Marina; Barnouin, Karin; Mackay, Alan; Jat, Parmjit S

    2002-02-07

    P53 activity plays a key role in mammalian cells when they undergo replicative senescence at their Hayflick limit. To determine whether p63 proteins, members of the family of p53-related genes, are also involved in this process, we examined their expression in serially passaged rat embryo fibroblasts. Upon senescence, two truncated DeltaNp63 proteins decreased in abundance whereas two TAp63 isoforms accumulated. 2-D gel analysis showed that the DeltaNp63 proteins underwent post-translational modifications in both proliferating and senescent cells. Direct binding of DeltaNp63 proteins to a p53 consensus motif was greater in proliferating cells than senescent cells. In contrast p63alpha isoforms bound to DNA in a p53 dependent manner and this was higher in senescent cells than proliferating cells. An interaction of p63alpha proteins with SV40 large tumour antigen was also detected and ectopic expression of DeltaNp63alpha can extend the lifespan of rat embryo fibroblasts. Taken together the results indicate that p63 proteins may play a role in replicative senescence either by competition for p53 DNA binding sites or by direct interaction with p53 protein bound to DNA.

  3. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T.

    1989-01-01

    Bacterial resistance to mercuric compounds is controlled by the MerR metalloregulatory protein. The MerR protein functions as both a transcriptional repressor and a mercuric ion dependent transcriptional activator. Chemical mutagenesis of the cloned merR structural gene has led to the identification of mutant proteins that are specifically deficient in transcriptional repression, activation, or both. Five mutant proteins have been overproduced, purified to homogeneity, and assayed for ability to dimerize, bind mer operator DNA, and bind mercuric ion. A mutation in the recognition helix of a proposed helix-turn-helix DNA binding motif (E22K) yields protein deficient in both activation and repression in vivo (a - r - ) and deficient in operator binding in vitro. In contrast, mutations in three of the four MerR cysteine residues are repression competent but activation deficient (a - r + ) in vivo. In vitro, the purified cysteine mutant proteins bind to the mer operator site with near wild-type affinity but are variable deficient in binding the in vivo inducer mercury(II) ion. A subset of the isolated proteins also appears compromised in their ability to form dimers at low protein concentrations. These data support a model in which DNA-bound MerR dimer binds one mercuric ion and transmits this occupancy information to a protein region involved in transcriptional activation

  4. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-02-12

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.

  5. Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine

    Directory of Open Access Journals (Sweden)

    Tong Joanna HM

    2011-05-01

    Full Text Available Abstract Background Bladder cancer is the sixth most common cancer in the world and the incidence is particularly high in southwestern Taiwan. Previous studies have identified several tumor-related genes that are hypermethylated in bladder cancer; however the DNA methylation profile of bladder cancer in Taiwan is not fully understood. Methods In this study, we compared the DNA methylation profile of multiple tumor suppressor genes (APC, DAPK, E-cadherin, hMLH1, IRF8, p14, p15, RASSF1A, SFRP1 and SOCS-1 in bladder cancer patients from different Chinese sub-populations including Taiwan (104 cases, Hong Kong (82 cases and China (24 cases by MSP. Two normal human urothelium were also included as control. To investigate the diagnostic potential of using DNA methylation in non-invasive detection of bladder cancer, degree of methylation of DAPK, IRF8, p14, RASSF1A and SFRP1 was also accessed by quantitative MSP in urine samples from thirty bladder cancer patients and nineteen non-cancer controls. Results There were distinct DNA methylation epigenotypes among the different sub-populations. Further, samples from Taiwan and China demonstrated a bimodal distribution suggesting that CpG island methylator phentotype (CIMP is presented in bladder cancer. Moreover, the number of methylated genes in samples from Taiwan and Hong Kong were significantly correlated with histological grade (P SFRP1, IRF8, APC and RASSF1A were significantly associated with increased tumor grade, stage. Methylation of RASSF1A was associated with tumor recurrence. Patients with methylation of APC or RASSF1A were also significantly associated with shorter recurrence-free survival. For methylation detection in voided urine samples of cancer patients, the sensitivity and specificity of using any of the methylated genes (IRF8, p14 or sFRP1 by qMSP was 86.7% and 94.7%. Conclusions Our results indicate that there are distinct methylation epigenotypes among different Chinese sub

  6. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  7. Infected Atopic Dermatitis Lesions Contain Pharmacologic Amounts of Lipoteichoic Acid

    Science.gov (United States)

    Travers, Jeffrey B.; Kozman, Amal; Mousdicas, Nico; Saha, Chandan; Landis, Megan; Al-Hassani, Mohammed; Yao, Weiguo; Yao, Yongxue; Hyatt, Ann-Marie; Sheehan, Michael P.; Haggstrom, Anita N.; Kaplan, Mark H.

    2009-01-01

    Background Bacterial infection with Staphylococcus aureus is a known trigger for worsening of atopic dermatitis (AD); the exact mechanisms by which bacterial infection worsens dermatitis are unknown. Objective We sought to characterize the amounts of the biologically active bacterial lipoprotein lipoteichoic acid (LTA) in infected AD lesions. Methods Eighty-nine children with clinically impetiginized lesions of AD were enrolled in this study. A lesion was graded clinically using the Eczema Area and Severity Index (EASI), and then wash fluid obtained from the lesion for quantitative bacterial culture, and measurement of LTA and cytokines. The staphylococcal isolate was tested for antibiotic susceptibilities. The patients were treated with a regimen that included topical corticosteroids and systemic antibiotics and the lesion was re-analyzed after two weeks. Results S. aureus was identified in 79 of 89 children enrolled in the study. The bacterial CFU correlated with the EASI lesional score (p = 0.04). LTA levels up to 9.8 μg/ml were measured in the wash fluid samples and the amounts correlated with the lesional EASI scores (p = 0.01) and S. aureus CFU (p < 0.001). Approximately 30% of clinically impetiginized AD lesions contained greater than 1 μg/ml LTA, amounts that exert effects on various cell types in vitro. Moreover, injection of skin tissue ex vivo with amounts of LTA found in AD lesions resulted in epidermal cytokine gene expression. Conclusions Pharmacologic levels of LTA are found in many infected atopic dermatitis lesions. Clinical Implications These findings suggest that staphylococcal LTA could be an important mediator of the increased skin inflammation associated with infected AD. Capsule Summary These studies demonstrate high levels of staphylococcal LTA are found on impetiginized AD lesions. Moreover, subjects harboring MRSA exhibited greater total body involvement of AD. PMID:19962742

  8. Lesiones deportivas Sports injuries

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Gallego Ching

    2007-04-01

    Full Text Available El estrés generado por la práctica deportiva ha originado una mayor probabilidad de que los atletas presenten lesiones agudas y crónicas. En el ámbito mundial existen diferentes investigaciones acerca de la incidencia de lesiones deportivas. La comparación de sus resultados es difícil por las diferencias en las características de la población y en la forma de reportar los datos, que varía ampliamente entre los estudios (proporciones o tasas de incidencia o tasas por cada 100 ó 1.000 participantes o tasas por horas de juego o por número de partidos jugados. Las tasas varían entre 1,7 y 53 lesiones por 1.000 horas de práctica deportiva, entre 0,8 y 90,9 por 1.000 horas de entrenamiento, entre 3,1 y 54,8 por 1.000 horas de competición y de 6,1 a 10,9 por 100 juegos. La gran variación entre las tasas de incidencia se explica por las diferencias existentes entre los deportes, los países, el nivel competitivo, las edades y la metodología empleada en los estudios. Se ha definido la lesión deportiva como la que ocurre cuando los atletas están expuestos a la práctica del deporte y se produce alteración o daño de un tejido, afectando el funcionamiento de la estructura. Los deportes de contacto generan mayor riesgo de presentar lesiones; se destacan al respecto los siguientes: fútbol, rugby, baloncesto, balonmano, artes marciales y jockey. Las lesiones ocurren con mayor probabilidad en las competencias que en el entrenamiento. Stress generated by sports practice has increased the probability that athletes suffer from acute and chronic injuries. Worldwide, there have been many different investigations concerning the incidence of sport injuries. The different ways in which results have been presented makes it difficult to compare among them. Rates of sports injuries vary between 1.7 and 53 per 1.000 hours of sports practice; 0.8 and 90.9 per 1.000 hours of training; 3.1 and 54.8 per 1.000 hours of competition, and 6.1 and 10.9 per 100

  9. Analysis of pulmonary coin lesions

    International Nuclear Information System (INIS)

    Kim, O; Kim, K. H.; Oh, K. K.; Park, C. Y.

    1979-01-01

    For A long time the solitary pulmonary nodule has remained a difficult problem to solve and has attracted a great deal of attension in recent years. Circumscribed coin lesions of the lung were generally peripheral in location with respect to the pulmonary hilus. Because of this, important clinical problem in management and diagnosis arise. Such a lesion is discovered through roentgenologic examination. So the roentgenologists is the first be in a position to offer advise. This presentation is an attempt to correlate a useful diagnosis with roentgenologic findings of pulmonary coin lesion which enables us to get differential diagnosis of benign and malignant lesion. Histologically proven 120 cases of the pulmonary coin lesion during the period of 8 years were reviewed through plain film, tomogram, bronchoscopy, variable laboratory findings, and clinical history. The results are as follows: 1. Male to female sex ratio was 3 : 1. In age distribution, most of the malignant pulmonary coin lesion appeared in 6th decade (39%) and 5th decade (27%). In benign lesion, the most cases were in 3 rd decade. 2. Pathological cell type are as follows: Primary bronchogenic cancer 43.3%, tuberculoma 25.8%, inflammatory lesion 17.5%, benign tumor 10%, and bronchial adenoma, harmartoma, A.V. malformation, mesothelioma, are 1 case respectively. As a result benign and malignant lesion showed equal distribution (49.1% : 50.3%). 3. In symptom analysis ; cough is the most common (43.5%) symptom in malignant lesion, next follows hemoptysis (20.9%) and chest pain (14.5%). In benign lesion, most of the patient (32.7%) did not complain any symptom. 4. In malignant lesion, the most common nodular size was 4 cm (32.3%), and in benign lesion 2 cm sized coin was most common (39.3%). 5. In general, margin of nodule was very sharp and well demarcated in benign lesion (83.3%), and in malignant lesion that was less demarcated and poorly defined. 6. Most case of calcification (82.7%) was seen in benign

  10. Managing Carious Lesions

    DEFF Research Database (Denmark)

    Innes, N P T; Frencken, J E; Bjørndal, L

    2016-01-01

    Variation in the terminology used to describe clinical management of carious lesions has contributed to a lack of clarity in the scientific literature and beyond. In this article, the International Caries Consensus Collaboration presents 1) issues around terminology, a scoping review of current...... manifestations to the histopathology, we have based the terminology around the clinical consequences of disease (soft, leathery, firm, and hard dentine). Approaches to carious tissue removal are defined: 1)selective removal of carious tissue-includingselective removal to soft dentineandselective removal to firm...

  11. Study of genital lesions

    Directory of Open Access Journals (Sweden)

    Anand Kumar B

    2003-03-01

    Full Text Available A total of one hundred patients (75 males and 25 females age ranged from 17-65 years with genital lesions attending the STD clinic of Bowring and LC Hospitals Bangalore constituted the study group. Based on clinical features, the study groups were classified as syphilis (39, chancroid (30, herpes genitolis (13, condylomato lato (9, LGV (7t condylomata acuminata (5, genital scabies (3, granuloma inguinole (2 and genital candidiasis (1. In 68% microbiological findings confirmed the clinical diagnosis. Of the 100 cases 13% and 2% were positive for HIV antibodies and HbsAg respectively.

  12. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    Directory of Open Access Journals (Sweden)

    Elisabetta eCitterio

    2015-09-01

    Full Text Available Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin are crucial for the cellular response to DNA double-strand breaks (DSBs, one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ubiquitin ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs, as supported by the implication of a growing number of DUBs in DNA damage response (DDR processes. Here, we discuss the current knowledge of how ubiquitin-mediated signaling at DSBs is controlled by deubiquitinating enzymes, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.

  13. Structural basis for the inhibition of human alkyladenine DNA glycosylase (AAG) by 3,N4-ethenocytosine-containing DNA.

    Science.gov (United States)

    Lingaraju, Gondichatnahalli M; Davis, C Ainsley; Setser, Jeremy W; Samson, Leona D; Drennan, Catherine L

    2011-04-15

    Reactive oxygen and nitrogen species, generated by neutrophils and macrophages in chronically inflamed tissues, readily damage DNA, producing a variety of potentially genotoxic etheno base lesions; such inflammation-related DNA damage is now known to contribute to carcinogenesis. Although the human alkyladenine DNA glycosylase (AAG) can specifically bind DNA containing either 1,N(6)-ethenoadenine (εA) lesions or 3,N(4)-ethenocytosine (εC) lesions, it can only excise εA lesions. AAG binds very tightly to DNA containing εC lesions, forming an abortive protein-DNA complex; such binding not only shields εC from repair by other enzymes but also inhibits AAG from acting on other DNA lesions. To understand the structural basis for inhibition, we have characterized the binding of AAG to DNA containing εC lesions and have solved a crystal structure of AAG bound to a DNA duplex containing the εC lesion. This study provides the first structure of a DNA glycosylase in complex with an inhibitory base lesion that is induced endogenously and that is also induced upon exposure to environmental agents such as vinyl chloride. We identify the primary cause of inhibition as a failure to activate the nucleotide base as an efficient leaving group and demonstrate that the higher binding affinity of AAG for εC versus εA is achieved through formation of an additional hydrogen bond between Asn-169 in the active site pocket and the O(2) of εC. This structure provides the basis for the design of AAG inhibitors currently being sought as an adjuvant for cancer chemotherapy.

  14. UDP-glucuronosyltransferase-dependent bioactivation of clofibric acid to a DNA-damaging intermediate in mouse hepatocytes.

    Science.gov (United States)

    Ghaoui, Roula; Sallustio, Benedetta C; Burcham, Philip C; Fontaine, Frank R

    2003-05-06

    Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.

  15. Cheek tooth morphology and ancient mitochondrial DNA of late Pleistocene horses from the western interior of North America: Implications for the taxonomy of North American Late Pleistocene Equus.

    Directory of Open Access Journals (Sweden)

    Christina I Barrón-Ortiz

    Full Text Available Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus and a non-caballine (E. conversidens species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study.

  16. Vascular lesions following radiation

    International Nuclear Information System (INIS)

    Fajardo, L.F.; Berthrong, M.

    1988-01-01

    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury

  17. Protection by DABCO against inactivation of transforming DNA by near-ultraviolet light: action spectra and implications for involvement of singlet oxygen

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Foote, C.S.

    1981-01-01

    Diazobicyclo (2.2.2) octane (DABCO) protects the genetic activity of purified transforming Bacillus subtilis DNA against inactivation by near-, but not far-, UV light. The maximum dose-modifying factor is 0.4, at 0.1 M DABCO. Maximal protection is at about 350 nm and no protection occurs below 313 nm. The spectrum for protection is similar to that described for 2-aminoethylisothiouronium bromide hydrobromide. The relevance of these observations with regard to the role of singlet oxygen in near-UV effects is discussed. (author)

  18. Eukaryotic Plankton Species Diversity in the Western Channel of the Korea Strait using 18S rDNA Sequences and its Implications for Water Masses

    Science.gov (United States)

    Lee, Sang-Rae; Song, Eun Hye; Lee, Tongsup

    2018-03-01

    Organisms entering the East Sea (Sea of Japan) through the Korea Strait, together with water, salt, and energy, affect the East Sea ecosystem. In this study, we report on the biodiversity of eukaryotic plankton found in the Western Channel of the Korea Strait for the first time using small subunit ribosomal RNA gene (18S rDNA) sequences. We also discuss the characteristics of water masses and their physicochemical factors. Diverse taxonomic groups were recovered from 18S rDNA clone libraries, including putative novel, higher taxonomic entities affiliated with Cercozoa, Raphidophyceae, Picozoa, and novel marine Stramenopiles. We also found that there was cryptic genetic variation at both the intraspecific and interspecific levels among arthropods, diatoms, and green algae. Specific plankton assemblages were identified at different sampling depths and they may provide useful information that could be used to interpret the origin and the subsequent mixing history of the water masses that contribute to the Tsushima Warm Current waters. Furthermore, the biological information highlighted in this study may help improve our understanding about the complex water mass interactions that were highlighted in the Korea Strait.

  19. Uniparental (mtDNA, Y-chromosome) polymorphisms in French Guiana and two related populations--implications for the region's colonization.

    Science.gov (United States)

    Mazières, S; Guitard, E; Crubézy, E; Dugoujon, J-M; Bortolini, M C; Bonatto, S L; Hutz, M H; Bois, E; Tiouka, F; Larrouy, G; Salzano, F M

    2008-01-01

    Blood samples collected in four Amerindian French Guiana populations (Palikur, Emerillon, Wayampi and Kali'na) in the early 1980s were screened for selected mtDNA and Y-chromosome length polymorphisms, and sequenced for the mtDNA hypervariable segment I (HVS-I). In addition, two other Amerindian populations (Apalaí and Matsiguenga) were examined for the same markers to establish the genetic relationships in the area. Strong dissimilarities were observed in the distribution of the founding Amerindian haplogroups, and significant p-values were obtained from F(ST) genetic distances. Interpopulation similarities occurred mainly due to geography. The Palikur did not show obvious genetic similarity to the Matsiguenga, who speak the same language and live in a region from where they could have migrated to French Guiana. The African-origin admixture observed in the Kali'na probably derives from historical contacts they had with the Bushinengue (Noir Marron), a group of escaped slaves who now lead independent lives in a nearby region. This analysis has identified significant clues about the Amerindian peopling of the North-East Amazonian region.

  20. Repairability during G1 of the inductor leisure of exchanges in the sister chromatid induced by alkylating agents in DNA substituted and no substituted with BUDR, in cells of the salivary gland of mouse In vivo; Reparabilidad durante G1 de las lesiones inductoras de intercambios en las cromatidas hermanas inducidos por agentes alquilantes en ADN sustituido y no sustituido con BrdU, en celulas de la glandula salival de raton In vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez B, F

    2004-07-01

    In this work you determines the repair of the lesions inductoras of Sister chromatid exchange (ICHs) generated in the cells of the salivary gland of mouse, for the treatment with the N-Methyl-N-Nitrosourea (MNU), the N-Ethyl-N-Nitrosourea (ENU), the Methyl methanesulfonate (MMS) and the Ethyl methanesulfonate (EMS) in early and slow G1 of the first one and the second cellular division, that is to say before and after the cells incorporate 5-bromine-2 -Desoxyuridine (BrdU) in the DNA. Groups witness non treaties were included with mutagen. The cells of the salivary gland repaired the generated lesions partially by the MNU, the MMS and the EMS in the 1st division, and only the lesions induced by the ENU and MMS were repaired partially in the 2nd division. The ENU generates injure that they were not repaired in the 1st division and those taken place by the EMS were little repaired in the 2nd division. The methylating agents generated but ICHs that the ethylating. One observes that the BrdU makes to the molecule of the DNA but susceptible to the damage generated by the alkylating agents that induce the formation of the ICHs. This susceptibility was incremented around 150% for the treatment with the MNU, the ENU and the MMS, on the other hand for the EMS it was 3 times minor. It is proposed that the one electronegative atom of this analog of the timine would to work as a nucleophyllic center with which the electrophyllic compounds react. (Author)

  1. Standing on shaky ground- US patent-eligibility of isolated DNA and genetic diagnostics after AMP v. USPTO - Part II (practical implications & chances for Supreme Court Review)

    DEFF Research Database (Denmark)

    Minssen, Timo; Nilsson, David

    2012-01-01

    This is the second part of a four-partite article discussing the US Federal Circuit decision in AMP v. USPTO , also known as the ACLU /Myriad "gene patenting" case ("Myriad"). Part I commenced with a description of the legal framework and an explanation of how the decision relates to the recently...... of the outcome, i.e. the three different opinions of the Federal Circuit judges Lourie, Moore & Bryson who comprised the panel (3). Part II will now continue the tale with a detailed analysis of the decision's practical implications (4), which is followed by a closer look on the chances for an ultimate Supreme...

  2. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1994-01-01

    Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. (author)

  3. White matter lesion progression

    DEFF Research Database (Denmark)

    Hofer, Edith; Cavalieri, Margherita; Bis, Joshua C

    2015-01-01

    10 cohorts. To assess the relative contribution of genetic factors to progression of WML, we compared in 7 cohorts risk models including demographics, vascular risk factors plus single-nucleotide polymorphisms that have been shown to be associated cross-sectionally with WML in the current......BACKGROUND AND PURPOSE: White matter lesion (WML) progression on magnetic resonance imaging is related to cognitive decline and stroke, but its determinants besides baseline WML burden are largely unknown. Here, we estimated heritability of WML progression, and sought common genetic variants...... associated with WML progression in elderly participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. METHODS: Heritability of WML progression was calculated in the Framingham Heart Study. The genome-wide association study included 7773 elderly participants from...

  4. Management of Preinvasive Lesions.

    Science.gov (United States)

    Patrono, Maria G; Corzo, Camila; Iniesta, Maria; Ramirez, Pedro T

    2017-12-01

    Serous tubal intraepithelial carcinoma is considered the precursor lesion of high-grade serous carcinoma, and found in both low-risk and high-risk populations. Isolated serous tubal intraepithelial carcinomas in patients with BRCA1/2 mutations are detected in ∼2% of patients undergoing risk-reducing bilateral salpingo-oophorectomy and even with removal of the tubes and ovaries the rate of developing primary peritoneal carcinoma following remains up to 7.5%. Postoperative recommendations after finding incidental STICs remain unclear and surgical staging, adjuvant chemotherapy, or observation have been proposed. Discovery of STIC should prompt consideration of hereditary cancer program referral for BRCA1/2 mutation screening.

  5. DNA methylation and memory formation.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2010-11-01

    Memory formation and storage require long-lasting changes in memory-related neuronal circuits. Recent evidence indicates that DNA methylation may serve as a contributing mechanism in memory formation and storage. These emerging findings suggest a role for an epigenetic mechanism in learning and long-term memory maintenance and raise apparent conundrums and questions. For example, it is unclear how DNA methylation might be reversed during the formation of a memory, how changes in DNA methylation alter neuronal function to promote memory formation, and how DNA methylation patterns differ between neuronal structures to enable both consolidation and storage of memories. Here we evaluate the existing evidence supporting a role for DNA methylation in memory, discuss how DNA methylation may affect genetic and neuronal function to contribute to behavior, propose several future directions for the emerging subfield of neuroepigenetics, and begin to address some of the broader implications of this work.

  6. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r. Implications for growth delay

    Energy Technology Data Exchange (ETDEWEB)

    Ramabhadran, T V [Texas Univ., Dallas (USA). Inst. for Molecular Biology

    1975-09-01

    Fluences (21 to 32 kJ/m/sup 2/) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA.

  7. Parietal lesion effects on cued recall following pair associate learning.

    Science.gov (United States)

    Ben-Zvi, Shir; Soroker, Nachum; Levy, Daniel A

    2015-07-01

    We investigated the involvement of the posterior parietal cortex in episodic memory in a lesion-effects study of cued recall following pair-associate learning. Groups of patients who had experienced first-incident stroke, generally in middle cerebral artery territory, and exhibited damage that included lateral posterior parietal regions, were tested within an early post-stroke time window. In three experiments, patients and matched healthy comparison groups executed repeated study and cued recall test blocks of pairs of words (Experiment 1), pairs of object pictures (Experiment 2), or pairs of object pictures and environmental sounds (Experiment 3). Patients' brain CT scans were subjected to quantitative analysis of lesion volumes. Behavioral and lesion data were used to compute correlations between area lesion extent and memory deficits, and to conduct voxel-based lesion-symptom mapping. These analyses implicated lateral ventral parietal cortex, especially the angular gyrus, in cued recall deficits, most pronouncedly in the cross-modal picture-sound pairs task, though significant parietal lesion effects were also found in the unimodal word pairs and picture pairs tasks. In contrast to an earlier study in which comparable parietal lesions did not cause deficits in item recognition, these results indicate that lateral posterior parietal areas make a substantive contribution to demanding forms of recollective retrieval as represented by cued recall, especially for complex associative representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanism of radiation tolerance in higher plants. Radiation damage of DNA in cultured tobacco BY-2 cells and implication from its repair process

    International Nuclear Information System (INIS)

    Yokota, Yuichiro; Narumi, Issay; Funayama, Tomoo; Kobayashi, Yasuhiko; Tanaka, Jun; Inoue, Masayoshi

    2007-01-01

    This paper describes the mechanism of radiation tolerance at the cellular level in higher plants, of which fundamental study basis is rather poor, in cultured cells in the title (BY-2 cells, Nicotiana tabacum L., allotetraploid). When compared with LD 50 of radiation in higher animals (2.4-8.6 Gy), higher plants are generally tolerant to radiation (known LD 50 , >360-2000 Gy). Authors have made unicellular BY-2 cells (protoplasts) by enzyme treatment to see their colony forming ability (CFA) and have found those cells are also resistant to radiation: D 10 (10% CFA dose) (Gy) is found to be 8.2-47.2 by radiation with various linear energy transfer (LET)s like gamma ray and heavy ion beams, in contrast to human D 10 (1.17-8.12, by X-ray and carbon beam). Double strand break (DSB) of DNA by radiation per one BY-2 cell initially occurs 7-10 times more frequently than mammalian cells (CHO-K1). However, DSB repair in BY-2 cells is found only as efficient as in mammalian cells: a slow repair relative to DSB number. Checkpoint mechanism of DNA damage is found poorly working in BY-cells, which results in frequent chromosome aberration like micronucleus. Authors consider that, for an herbaceous plant, to precede the cell cycle rather than to recover from the genomic instability can be profitable for growing more rapidly to have more sunlight energy than other individuals. Improvement of plants by gene technological approach with such a mean as mutation by radiation is conceivably important from aspects of food supply and of ecological environment. (R.T.)

  9. DNA Profiling of Convicted Offender Samples for the Combined DNA Index System

    Science.gov (United States)

    Millard, Julie T

    2011-01-01

    The cornerstone of forensic chemistry is that a perpetrator inevitably leaves trace evidence at a crime scene. One important type of evidence is DNA, which has been instrumental in both the implication and exoneration of thousands of suspects in a wide range of crimes. The Combined DNA Index System (CODIS), a network of DNA databases, provides…

  10. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  11. MALIGNANCY IN LARGE COLORECTAL LESIONS

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Oliveira dos SANTOS

    2014-09-01

    Full Text Available Context The size of colorectal lesions, besides a risk factor for malignancy, is a predictor for deeper invasion Objectives To evaluate the malignancy of colorectal lesions ≥20 mm. Methods Between 2007 and 2011, 76 neoplasms ≥20 mm in 70 patients were analyzed Results The mean age of the patients was 67.4 years, and 41 were women. Mean lesion size was 24.7 mm ± 6.2 mm (range: 20 to 50 mm. Half of the neoplasms were polypoid and the other half were non-polypoid. Forty-two (55.3% lesions were located in the left colon, and 34 in the right colon. There was a high prevalence of III L (39.5% and IV (53.9% pit patterns. There were 72 adenomas and 4 adenocarcinomas. Malignancy was observed in 5.3% of the lesions. Thirty-three lesions presented advanced histology (adenomas with high-grade dysplasia or early adenocarcinoma, with no difference in morphology and site. Only one lesion (1.3% invaded the submucosa. Lesions larger than 30 mm had advanced histology (P = 0.001. The primary treatment was endoscopic resection, and invasive carcinoma was referred to surgery. Recurrence rate was 10.6%. Conclusions Large colorectal neoplasms showed a low rate of malignancy. Endoscopic treatment is an effective therapy for these lesions.

  12. A numerical investigation of the functionality of coronary bifurcation lesions with respect to lesion configuration and stenosis severity.

    Science.gov (United States)

    Pagiatakis, Catherine; Tardif, Jean-Claude; L'Allier, Philippe L; Mongrain, Rosaire

    2015-09-18

    The intervention of coronary bifurcation lesions is associated with higher rates of peri- and post-procedural clinical events compared to the treatment of isolated lesions. Overall, the factors that influence the dynamics of these types of configurations are still not well understood. A geometric multiscale model, consisting of a 3D representation of the left main coronary artery bifurcation and a 0D representation of the rest of the cardiovascular system, was developed. Computational fluid dynamics simulations of the 3D domain were executed by implementing the multiscale algorithm, in order to characterize the functionality of different multilesional configurations as a function of stenosis severity. The investigation found that coronary branch steal has a significant impact on the functionality of the disease and can render a two-lesion configuration more severe compared to a three-lesion configuration. As a result of the complexity of this phenomenon, it was also suggested that certain lesion configurations could result in false negatives in diagnosis when employing a pullback pressure recording across the tandem lesions. In conclusion, this study showed that coronary bifurcation lesions are subject to intricate haemodynamic interactions which render the characterization of their functionality complex and could have significant clinical implications with regards to their diagnosis and prognosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Push back to respond better: regulatory inhibition of the DNA double-strand break response.

    Science.gov (United States)

    Panier, Stephanie; Durocher, Daniel

    2013-10-01

    Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.

  14. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn)·dA(anti) alignment at lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Bodepudi, V.; Shibutani, S.; Eisenberg, M.; Johnson, F.; Grollman, A.P.

    1991-01-01

    Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12)·d(G13-G14-T15-G16-A17-A18-T19-A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG·dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. The authors have assigned the exchangeable NH1, NH7, and NH 2 -2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG·dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H 2 O solution. They were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8)·d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn)·dA(anti) pair between stable Watson-Crick dA6·dT19 and dT8·A17 base pairs with minimal perturbation of the helix. The structural studies demonstrate that 8-oxo-7H-dG(syn)·dA(anti) forms a stable pair in the interior of the helix, providing a basis for the observed incorporation of dA opposite 8-oxo-7H-dG when readthrough occurs past this oxidized nucleoside base

  15. Repair of DNA damage in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Evans, D.M.

    1984-01-01

    The repair of DNA lesions in Deinococcus radiodurans was examined with particular reference to DNA excision repair of ultraviolet light (UV) induced pyrimidine dimers. The characteristics of excision repair via UV endonucleases α and β in vivo varied with respect to (a) the substrate range of the enzymes, (b) the rate of repair of DNA damage (c) the requirement for a protein synthesised in response to DNA damage to attenuate exonuclease action at repairing regions. UV endonuclease α is postulated to incise DNA in a different manner from UV endonuclease β thus defining the method of subsequent repair. Several DNA damage specific endonuclease activities independent of α and β are described. Mutations of the uvsA, uvsF and uvsG genes resulted in an increase in single-strand breaks in response to DNA damage producing uncontrolled DNA degradation. Evidence is presented that these genes have a role in limiting the access of UV endonuclease β to DNA lesions. uvsF and uvsG are also shown to be linked to the mtoA gene. Mutation of uvsH and reo-1 produces further distinct phenotypes which are discussed. An overall model of excision repair of DNA damage in Deinococcus radiodurans is presented. (author)

  16. DNA oxidation and DNA repair in gills of zebra mussels exposed to cadmium and benzo(a)pyrene.

    Science.gov (United States)

    Michel, Cécile; Vincent-Hubert, Françoise

    2015-11-01

    Freshwater bivalve molluscs are considered as effective indicators of environmental pollution. The comet assay allows the detection of DNA damage such as DNA strand breaks and alkali-labile sites. The main oxidative lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is a pre-mutagenic lesion, can be detected by the comet assay coupled with the hOGG1 DNA repair enzyme. With this modified assay we recently observed that BaP induced 8-oxodG lesions and with the modified comet-Fpg assay we observed that Cd induced oxidative DNA damage. The aim of this study was to determine the stability of DNA lesions in Cd and BaP exposed zebra mussels using the comet-hOGG1 assay. Mussels were exposed for 24 h to these two chemicals and then placed in clean water for 6 days. We observed that BaP (7, 12 and 18 µg/L) induced an increase of DNA strand break levels as soon as 6 h of exposure and that the two highest concentrations of BaP induced a low level of hOGG1-sensitive sites. After 2 days of depuration, BaP induced DNA lesions returned to the basal level, indicating an effective DNA repair. Cd (3, 32 and 81 µg/L) induced an increase of the DNA strand break levels and a low level of hOGG1-sensitive sites. This study revealed that BaP-induced DNA lesions are repaired more efficiently than Cd-induced DNA lesions. As the level of hOGG1 sensitive sites was increased in Cd and BaP exposed mussels, it seems that these chemicals induce 8-oxo-dG.

  17. Pre-cancerous (DNA and chromosomal lesions in professional sports

    Directory of Open Access Journals (Sweden)

    Radhika Sharma

    2012-01-01

    Conclusion: Significantly increased genomic instability in players of both sports was observed. Both repaired and repairable genetic damage cells were observed in different tissues of the same subject. The presence of such genetic damage implies that these players are at an individual risk from cancer- and age-related diseases.

  18. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. DNA adducts in senescent cells

    International Nuclear Information System (INIS)

    Gaubatz, J.W.

    1987-01-01

    Perturbations in DNA repair and other metabolic processes during development and aging might affect the steady-state level of genomic damage. The persistence or accumulation of DNA lesions in postmitotic cells could have a significant impact on proper cellular function, interfering with gene regulation for example. To test the notion that DNA damage increases as a function of age in non-dividing cells, DNA was purified from heart tissue of C57BL/6Nia mice at different ages and analyzed by post labeling techniques to detect DNA adducts. In the present experiments, four-dimensional, thin-layer chromatography was used to isolate aromatic adducts that were labeled with carrier-free (γ- 32 P) ATP under DNA-P excess conditions. The complexity and frequency of aromatic adducts varied between DNA samples. Several adducts were present in all preparations and were clearly more abundant in nucleotide maps of mature and old heart DNA. However, a direct correlation with age was not observed. In contrast, experiments in which aromatic adducts were first isolated by phase-transfer to 1-butanol, then labeled with excess (γ- 32 P)ATP indicated that there was an age-related increase in these adducts. The results are consistent with their earlier studies that showed alkyl adducts increased during aging of mouse myocardium and suggest that a common repair pathway might be involved

  20. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  1. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    2010-08-01

    Full Text Available Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control.Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2.We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  2. Distinct roles of FANCO/RAD51C in DNA damage signaling and repair: implications for fanconi anemia and breast cancer susceptibility

    International Nuclear Information System (INIS)

    Nagaraju, G.; Somyajit, K.; Subramanya, S.

    2012-01-01

    Unrepaired or misrepaired chromosomal double-strand breaks (DSBs) can cause gross chromosomal rearrangements which eventually can lead to tumorigenesis through inactivation of tumor suppressor genes or activation of oncogenes. There are two major mechanisms of DSB repair: non-homologous end joining (NHEJ) and homologous recombination (HR). DSBs that are generated during S and G2 phase of the cell are preferentially repaired by sister chromatid recombination (SCR), an HR pathway that utilizes neighboring sister chromatid as a template. Since the copied information is accurate, SCR is potentially an error-free pathway. HR also plays a critical role in the repair of daughter strand gaps (DSGs) that arise as a result of replication fork stalling and facilitates replication fork recovery. Furthermore, in collaboration with nucleotide excision repair and translesion synthesis, HR is involved in the repair of DNA interstrand cross-links (ICLs). Thus, HR is important for the maintenance of genome integrity and its dysfunction can lead to various genetic disorders and cancer

  3. TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Acharyya, Swarnali; Sharma, Sudarshana M.; Cheng, Alfred S.; Ladner, Katherine J.; He, Wei; Kline, William; Wang, Huating; Ostrowski, Michael C.; Huang, Tim H.; Guttridge, Denis C.

    2010-01-01

    Background Classical NF-κB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFα on skeletal muscle differentiation are mediated in part through sustained NF-κB activity. In dystrophic muscles, NF-κB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFα that is also under IKKβ and NF-κB control. Methodology/Principal Findings Based on these findings we speculated that in DMD, TNFα secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFα is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-κB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFα stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. Conclusions/Significance We propose that in dystrophic muscles, elevated levels of TNFα and NF-κB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene. PMID:20814569

  4. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    Science.gov (United States)

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preoperative nonpalpable breast lesions localization

    Energy Technology Data Exchange (ETDEWEB)

    Gardellin, G; Natale, F; Perin, B

    1986-01-01

    The effectiveness of real time sonography and mammography are examined in localizing with a hookwire (introduced via a straight needle) the nonpalpable breast lesions. The method, used for surgery or biopsy, was successful in a series of 13 patients with nonpalpable breast lesions, 4 affectd by carcinoma. 18 refs.

  6. The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation.

    Science.gov (United States)

    Uson, Maria Loressa; Ghosh, Shreya; Shuman, Stewart

    2017-09-01

    We characterize Mycobacterium smegmatis FenA as a manganese-dependent 5'-flap endonuclease homologous to the 5'-exonuclease of DNA polymerase I. FenA incises a nicked 5' flap between the first and second nucleotides of the duplex segment to yield a 1-nucleotide gapped DNA, which is then further resected in dinucleotide steps. Initial FenA cleavage at a Y-flap or nick occurs between the first and second nucleotides of the duplex. However, when the template 3' single strand is eliminated to create a 5'-tailed duplex, FenA incision shifts to between the second and third nucleotides. A double-flap substrate with a mobile junction (mimicking limited strand displacement synthesis during gap repair) is preferentially incised as the 1-nucleotide 3'-flap isomer, with the scissile phosphodiester shifted by one nucleotide versus a static double flap. FenA efficiently removes the 5' App(dN) terminus of an aborted nick ligation reaction intermediate, thereby highlighting FenA as an agent of repair of such lesions, which are formed under a variety of circumstances by bacterial NAD + -dependent DNA ligases and especially by mycobacterial DNA ligases D and C. IMPORTANCE Structure-specific DNA endonucleases are implicated in bacterial DNA replication, repair, and recombination, yet there is scant knowledge of the roster and catalytic repertoire of such nucleases in Mycobacteria This study identifies M. smegmatis FenA as a stand-alone endonuclease homologous to the 5'-exonuclease domain of mycobacterial DNA polymerase 1. FenA incises 5' flaps, 5' nicks, and 5' App(dN) intermediates of aborted nick ligation. The isolated N-terminal domain of M. smegmatis Pol1 is also shown to be a flap endonuclease. Copyright © 2017 American Society for Microbiology.

  7. Visualization of complex DNA damage along accelerated ions tracks

    Science.gov (United States)

    Kulikova, Elena; Boreyko, Alla; Bulanova, Tatiana; Ježková, Lucie; Zadneprianetc, Mariia; Smirnova, Elena

    2018-04-01

    The most deleterious DNA lesions induced by ionizing radiation are clustered DNA double-strand breaks (DSB). Clustered or complex DNA damage is a combination of a few simple lesions (single-strand breaks, base damage etc.) within one or two DNA helix turns. It is known that yield of complex DNA lesions increases with increasing linear energy transfer (LET) of radiation. For investigation of the induction and repair of complex DNA lesions, human fibroblasts were irradiated with high-LET 15N ions (LET = 183.3 keV/μm, E = 13MeV/n) and low-LET 60Co γ-rays (LET ≈ 0.3 keV/μm) radiation. DNA DSBs (γH2AX and 53BP1) and base damage (OGG1) markers were visualized by immunofluorecence staining and high-resolution microscopy. The obtained results showed slower repair kinetics of induced DSBs in cells irradiated with accelerated ions compared to 60Co γ-rays, indicating induction of more complex DNA damage. Confirming previous assumptions, detailed 3D analysis of γH2AX/53BP1 foci in 15N ions tracks revealed more complicated structure of the foci in contrast to γ-rays. It was shown that proteins 53BP1 and OGG1 involved in repair of DNA DSBs and modified bases, respectively, were colocalized in tracks of 15N ions and thus represented clustered DNA DSBs.

  8. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  9. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  10. DNA repair is indispensable for survival after acute inflammation

    Science.gov (United States)

    Calvo, Jennifer A.; Meira, Lisiane B.; Lee, Chun-Yue I.; Moroski-Erkul, Catherine A.; Abolhassani, Nona; Taghizadeh, Koli; Eichinger, Lindsey W.; Muthupalani, Sureshkumar; Nordstrand, Line M.; Klungland, Arne; Samson, Leona D.

    2012-01-01

    More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis. PMID:22684101

  11. Environmental influences on DNA curvature

    DEFF Research Database (Denmark)

    Ussery, David; Higgins, C.F.; Bolshoy, A.

    1999-01-01

    DNA curvature plays an important role in many biological processes. To study environmentalinfluences on DNA curvature we compared the anomalous migration on polyacrylamide gels ofligation ladders of 11 specifically-designed oligonucleotides. At low temperatures (25 degreesC and below) most......, whilst spermine enhanced theanomalous migration of a different set of sequences. Sequences with a GGC motif exhibitedgreater curvature than predicted by the presently-used angles for the nearest-neighbour wedgemodel and are especially sensitive to Mg2+. The data have implications for models...... for DNAcurvature and for environmentally-sensitive DNA conformations in the regulation of geneexpression....

  12. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  13. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Association between selected oral pathogens and gastric precancerous lesions.

    Directory of Open Access Journals (Sweden)

    Christian R Salazar

    Full Text Available We examined whether colonization of selected oral pathogens is associated with gastric precancerous lesions in a cross-sectional study. A total of 119 participants were included, of which 37 were cases of chronic atrophic gastritis, intestinal metaplasia, or dysplasia. An oral examination was performed to measure periodontal indices. Plaque and saliva samples were tested with real-time quantitative PCR for DNA levels of pathogens related to periodontal disease (Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, Actinobacillus actinomycetemcomitans and dental caries (Streptococcus mutans and S. sobrinus. There were no consistent associations between DNA levels of selected bacterial species and gastric precancerous lesions, although an elevated but non-significant odds ratio (OR for gastric precancerous lesions was observed in relation to increasing colonization of A. actinomycetemcomitans (OR = 1.36 for one standard deviation increase, 95% Confidence Interval = 0.87-2.12, P. gingivalis (OR = 1.12, 0.67-1.88 and T. denticola (OR = 1.34, 0.83-2.12 measured in plaque. To assess the influence of specific long-term infection, stratified analyses by levels of periodontal indices were conducted. A. actinomycetemcomitans was significantly associated with gastric precancerous lesions (OR = 2.51, 1.13-5.56 among those with ≥ median of percent tooth sites with PD ≥ 3 mm, compared with no association among those below the median (OR = 0.86, 0.43-1.72. A significantly stronger relationship was observed between the cumulative bacterial burden score of periodontal disease-related pathogens and gastric precancerous lesions among those with higher versus lower levels of periodontal disease indices (p-values for interactions: 0.03-0.06. Among individuals with periodontal disease, high levels of colonization of periodontal pathogens are associated with an increased risk of gastric precancerous lesions.

  15. Changing activity in MS lesions

    International Nuclear Information System (INIS)

    Kermode, A.G.; Tofts, P.S.; Thompson, A.J.; Rudge, P.; MacManus, D.G.; Kendall, B.E.; Moseley, I.F.; Kingsley, D.P.E.; McDonald, W.I.

    1989-01-01

    Gd-DTPA enhanced T1 weighted MRI is a discriminating test for a defective blood-brain barrier, with MS lesions showing considerable variation in the pattern of enhancement. Since little is known of the changes in the blood-brain barrier in the active plaque over time, the natural history of blood-brain barrier disturbance in the MS lesion was examined to confirm earlier reports that Gd-DTPA enhancement is a consistent early event in new lesions of relapsing/remitting MS. This knowledge is essential for the use of MRI in monitoring treatment. (author). 9 refs

  16. PHAEOHYPHOMYCOSIS: CUTANEOUS, SUBCUTANEOUS, NASOPHARYNGEAL LESIONS

    Directory of Open Access Journals (Sweden)

    M. Rasoolinejad

    1999-06-01

    Full Text Available Phaeohyphomycosis is an amalgam of clinical diseases caused by a wide variety of dematiaceous fungi. We are reporting on a 16 year-old patient from Amol with subcutaneous cervical nodes and nasopharyngeal lesions of phaeohypho"nmycosis that were confirmed by pathological examination, direct smear, and culture. After treatment with an oral triazole (Itraconazole for 4 months, all nodes and lesions disappeared and treatment was stopped A new lesion appeared on his chest wall 8 months, therapy with itraconazole was restarted and commuted for a long time.

  17. OCT investigation of dental lesions

    Science.gov (United States)

    Osiac, Eugen; Popescu, Sanda Mihaela; Scrieciu, Monica; Mercuţ, Rǎzvan; Mercuţ, Veronica; Vǎtu, Mihaela

    2018-03-01

    There are several important non carious lesions affecting the tooth structure, lesions which may be classified into four clinical forms of dental wear: abfraction, erosion, attrition and abrasion, and different types of root resorption. Search for new, non-invasive and fast methods able to detect and describe such injuries is of utmost importance. Optical coherence tomography (OCT) proved itself as an appropriate investigation method for several medical fields including ophthalmology, dermatology, cardiology etc. Our study reveals OCT preliminary investigations as a promising tool for detecting and evaluating of the mentioned lesions.

  18. The essential DNA polymerases δ and ε are involved in repair of UV-damaged DNA in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Halas, A.; Policinska, Z.; Baranowska, H.; Jachymczyk, W.J.

    1999-01-01

    We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases δ and ε showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases δ and ε are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair. (author)

  19. Differential recruitment of DNA Ligase I and III to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Rothbauer, Ulrich; Cardoso, M. Cristina; Leonhardt, Heinrich

    2006-01-01

    DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair. PMID:16855289

  20. DNA Damage, Mutagenesis and Cancer

    Directory of Open Access Journals (Sweden)

    Ashis K. Basu

    2018-03-01

    Full Text Available A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.

  1. DNA repair in bacterial cultures and plasmid DNA exposed to infrared laser for treatment of pain

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Marciano, R S; Guimarães, O R; Polignano, G A C; Geller, M; Fonseca, A S; Paoli, F

    2013-01-01

    Biostimulation of tissues by low intensity lasers has been described on a photobiological basis and clinical protocols are recommended for treatment of various diseases, but their effects on DNA are controversial. The objective of this work was to evaluate effects of low intensity infrared laser exposure on survival and bacterial filamentation in Escherichia coli cultures, and induction of DNA lesions in bacterial plasmids. In E. coli cultures and plasmids exposed to an infrared laser at fluences used to treat pain, bacterial survival and filamentation and DNA lesions in plasmids were evaluated by electrophoretic profile. Data indicate that the infrared laser (i) increases survival of E. coli wild type in 24 h of stationary growth phase, (ii) induces bacterial filamentation, (iii) does not alter topological forms of plasmids and (iv) does not alter the electrophoretic profile of plasmids incubated with exonuclease III or formamidopyrimidine DNA glycosylase. A low intensity infrared laser at the therapeutic fluences used to treat pain can alter survival of E. coli wild type, induce filamentation in bacterial cells, depending on physiologic conditions and DNA repair, and induce DNA lesions other than single or double DNA strand breaks or alkali-labile sites, which are not targeted by exonuclease III or formamidopyrimidine DNA glycosylase. (letter)

  2. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer

    International Nuclear Information System (INIS)

    Melchior, Patrick Wilhelm

    2011-01-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated residual γ-H2AX foci

  3. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.