WorldWideScience

Sample records for dna breakage induced

  1. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  2. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    Science.gov (United States)

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  3. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross sec...

  4. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  5. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  6. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  7. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    Science.gov (United States)

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  8. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.

    Science.gov (United States)

    Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P

    2004-01-01

    Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel

  9. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin

    International Nuclear Information System (INIS)

    Orta, Manuel Luis; Mateos, Santiago; Cantero, Gloria; Wolff, Lisa J.; Cortes, Felipe

    2008-01-01

    The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortes, N. Pastor, S. Mateos, I. Dominguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortes, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA

  10. Molecular targets, DNA breakage, DNA repair: Their roles in mutation induction in mammalian germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.

    1989-01-01

    Variability in genetic sensitivity among different germ-cell stages in the mammal to various mutagens could be the result of how much chemical reaches the different stages, what molecular targets may be affected in the different stages and whether or not repair of lesions occurs. Several chemicals have been found to bind very strongly to protamine in late-spermatid and early-spermatozoa stages in the mouse. The chemicals also produce their greatest genetic damage in these same germ-cell stages. While chemical binding to DNA has not been correlated with the level of induced genetic damage, DNA breakage in the sensitive stages has been shown to increase. This DNA breakage is believed to indirectly result from chemical binding to sulfhydryl groups in protamine which prevents normal chromatin condensation within the sperm nucleus. 22 refs., 5 figs

  11. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  12. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    International Nuclear Information System (INIS)

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.; Wang, Yuh-Hwa

    2015-01-01

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  13. Estimates of DNA strand breakage in bottlenose dolphin (Tursiops truncatus leukocytes measured with the Comet and DNA diffusion assays

    Directory of Open Access Journals (Sweden)

    Adriana Díaz

    2009-01-01

    Full Text Available The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1 to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2 to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3 to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29% of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.

  14. DNA strand breakage by 125I-decay in oligoDNA

    International Nuclear Information System (INIS)

    Lobachevsky, P.; Martin, R.F.

    1996-01-01

    Full text: A double-stranded oligodeoxynucleotide containing 125 I-dC in a defined location, with 5'- or 3'- 32 P-end-labelling of either strand, was used to investigate DNA strand breakage resulting from 125 I decay. Samples of the 32 P-end-labelled and 125 I-dC containing oligoDNA were incubated in 20 mM phosphate buffer (PB), or PB + 2 M dimethylsulphoxide (DMSO) at 4 deg during 18-20 days. The 32 P-end-labelled DNA fragments produced by 125 I decays were separated on denaturing polyacrylamide gels, and the 3P activity in each fragment was determined by scintillation counting after elution from the gel. The fragment size distribution was then converted to a distribution of single stranded break probabilities at each nucleotide position. The results indicate that each 125 I decay event produces at least one break in the 125 I-dC containing strand, and causes breakage of the opposite strand in 75-80% of events. Thus, the double stranded break is produced by 125 I decay with probability ∼0.8. Most of single stranded breaks (around 90%) occurred within 5-6 nucleotides of the 125 I-dC, however DNA breaks were detected up to 18-20 nucleotides from the decay site. The average numbers of single stranded breaks per decay are 3.7 (PB) and 3.3 (PB+DMSO) in 125 I-dC containing strand, and 1.5 (PB) and 1.3 (PB+DMSO) in the opposite strand. Deconvolution of strand break probabilities as a function of separation from the 125 I, in terms of both distance (to target deoxyribosyl carbon atoms, in B-DNA) and nucleotide number, show that the latter is an important parameter for the shorter-range damage. This could indicate a role for attenuation/dissipation of damage through the stacked bases. In summary, the results represent a much more extensive set of data than available from earlier experiments on DNA breakage from l25 I-decay, and may provide new mechanistic insights

  15. Protection of DNA strand breakage by radiation exposure

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Shim, Hae Won

    1997-12-01

    Human ceruloplasmin, the plasma copper containing protein, is thought to play an essential role in iron metabolism, but it also has antioxidant properties. Ceruloplasmin directly scavenged hydroxyl radicals (.OH) generated in dithiothreitol/FeCl 3 system besides inhibitory function of hydroxyl radical formation and lipid peroxidation. Polyamines, spermidine and spermine, significantly protected the supercoiled DNA strand breakage by hydroxyl radicals and DNA strand breakage by UV was highly protected by all four polyamines used in this study. In polyamine deficient mutant KL527. It was shown that cell survivability following UV irradiation was slightly increased by exogenous polyamines putrescine and spermidine supplement. However the cell survivability of wild type (MG 1655) was not influenced by polyamine supplement. In γ-irradiated cells, cell survivability of polyamine-deficient mutant strain KL527 was significantly increased by exogenous putrescine supplement and that of wild type strain MG1655 was similar irrespective of polyamine supplement. These results implicate the possibility that polyamines play a potent role in radioprotection of cell and DNA level. (author). 32 refs., 8 figs

  16. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A.

    Science.gov (United States)

    Ullah, Mohd Fahad; Shamim, Uzma; Hanif, Sarmad; Azmi, Asfar S; Hadi, Sheikh M

    2009-11-01

    Epidemiological studies have indicated that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. The isoflavone polyphenol genistein in soybean is considered to be a potent chemopreventive agent against cancer. In order to explore the chemical basis of chemopreventive activity of genistein, in this paper we have examined the structure-activity relationship between genistein and its structural analogue biochanin A. We show that both genistein and its methylated derivative biochanin A are able to mobilize nuclear copper in human lymphocyte, leading to degradation of cellular DNA. However, the relative rate of DNA breakage was greater in the case of genistein. Further, the cellular DNA degradation was inhibited by copper chelator (neocuproine/bathocuproine) but not by compounds that specifically bind iron and zinc (desferrioxamine mesylate and histidine, respectively). We also compared the antioxidant activity of the two isoflavones against tert-butylhydroperoxide-induced oxidative breakage in lymphocytes. Again genistein was found to be more effective than biochanin A in providing protection against oxidative stress induced by tert-butylhydroperoxide. It would therefore appear that the structural features of isoflavones that are important for antioxidant properties are also the ones that contribute to their pro-oxidant action through a mechanism that involves redox cycling of chromatin-bound nuclear copper.

  17. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  18. Amifostine Protection Against Mitomycin-induced Chromosomal Breakage in Fanconi Anaemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Miriam T. P. Lopes

    2008-08-01

    Full Text Available Fanconi anaemia (FA is a rare genetic chromosomal instability syndrome caused by impairment of DNA repair and reactive oxygen species (ROS imbalance. This disease is also related to bone marrow failure and cancer. Treatment of these complications with radiation and alkylating agents may enhance chromosomal breakage. We have evaluated the effect of amifostine (AMF on basal and mitomycin C (MMC-induced chromosomal breakage in FA blood cells using the micronucleus assay. The basal micronuclei count was higher among FA patients than healthy subjects. Pre-treatment with AMF significantly inhibited micronucleation induced by MMC in healthy subjects (23.4 ± 4.0 – MMC vs 12.3 ± 2.9 – AMF →MMC MN/1000CB, p < 0.01, one way ANOVA as well as in FA patients (80.0 ± 5.8 – MMC vs 40.1 ± 5.8 – AMF →MMC MN/1000CB, p < 0.01, ANOVA. Release of ROS by peripheral blood mononuclear cells treated with AMF →MMC and measured by chemoluminometry showed that AMF-protection was statistically higher among FA patients than in healthy individuals. Based on these results we suggest that AMF prevents chromosomal breakage induced by MMC, probably by its antioxidant effect.

  19. Adaptive responses on chromosome aberration and DNA breakage of peripheral lymphocytes from workers exposed to thorium and rare earth mixed dust in Baotou steel plant

    International Nuclear Information System (INIS)

    Liu Qingjie; Feng Jiangbing; Lu Xue; Chen Deqing; Lv Huimin; Su Xu; Liu Yufei; Jia Kejun

    2008-01-01

    Objective: To explore if the occupational exposure to low dose thorium could induce adaptive response in peripheral lymphocytes. Methods: 40 individuals, who exposed to thorium and rare earth mixed dust (exposure group) or control in Baotou Steel Plant, were selected, and chromosome aberrations were analyzed. Then the peripheral blood samples were irradiated in vitro with 2 Gy 60 Co γ-rays, and unstable chromosome aberration or DNA stand breakage analysis using single cell gel electrophoresis was performed. Results: The dicentrics before 2 Gy exposure in exposure group was higher than that in control (P>0.05). But the dicentrics after 2 Gy exposure in exposure group was lower than that in control, but not significantly (P >0.05). The tricentrics in exposure group was significantly lower than that in control (U=3.1622, 0.001< P<0.002). The DNA strand breakage in control group was significantly higher than that in exposure group (t=25, P<0.001). Conclusions: Occupational exposure to low dose thorium could induce the adaptive response on chromosome aberration and DNA strand breakage in peripheral lymphocytes. (authors)

  20. Use of orthogonal field alternational gel electrophoresis (OFAGE) for studying DNA double strand breakage and repair

    International Nuclear Information System (INIS)

    Contopoulou, C.R.; Cook, V.; Mortimer, R.K.

    1987-01-01

    The study of DNA double strand breakage and repair has normally been carried by using neutral sucrose gradient or neutral elution techniques. The authors have applied OFAGE procedures to study x-ray induced double strand breaks and repair. Breakage of chromosomes is seen by a decrease in intensity of individual chromosome bands; as expected, this decrease becomes more pronounced as chromosome size increases. The fragments of broken chromosomes appears as a broad smear in the size range 100 kb to 1000 kb. Following repair, these fragments partially disappear and the chromosomal bands increase in intensity. In four repair deficient mutants, rad51, rad52, rad54, rad55, no increase in chromosomal band intensity was seen. These results have been confirmed by blotting for a specific chromosome

  1. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  2. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study

    Science.gov (United States)

    Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz

    2015-01-01

    Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids. PMID:26569217

  4. The validity of sedimentation data from high molecular weight DNA and the effects of additives on radiation-induced single-strand breakage

    International Nuclear Information System (INIS)

    Dugle, D.L.

    1979-10-01

    The optimization of many of the factors governing reproducible sedimentation behaviour of high molecular weight single-strand DNA in a particular alkaline sucrose density gradient system is described. A range of angular momenta is defined for which a constant strand breakage efficiency is required, despite a rotor speed effect which increases the measured molecular weights at decreasing rotor speeds for larger DNA molecules. The possibility is discussed that the bimodal control DNA profiles obtained after sedimentation at 11 500 rev/min (12 400 g) or less represent structural subunits of the chromatid. The random induction of single-strand DNA breaks by ionizing radiation is demonstrated by the computer-derived fits to the experimental profiles. The enhancement of single-strand break (SSB) yields in hypoxic cells by oxygen, para-nitroacetophenone (PNAP), or any of the three nitrofuran derivatives used was well correlated with increased cell killing. Furthermore, reductions in SSB yields for known hydroxyl radical (OH.) scavengers correlates with the reactivities of these compounds toward OH.. This supports the contention that some type of OH.-induced initial lesion, which may ultimately be expressed as an unrepaired or misrepaired double-strand break, constitutes a lethal event. (author)

  5. Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study

    Directory of Open Access Journals (Sweden)

    Hussain Arif

    2015-11-01

    Full Text Available Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN, fisetin (FN, quercetin (QN, kaempferol (KL and galangin (GN. Using single cell alkaline gel electrophoresis (comet assay, we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.

  6. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  8. Phleomycin-induced lethality and DNA degradation in Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H

    1975-01-01

    The cell lethality and DNA fragmentation caused by phleomycin (PM) were studied in E. coli K12 strains with special reference to the effects of repair or recombination deficiencies and metabolic inhibitors. Unlike excision-defective derivatives of E. coli B, uvrA, uvrB, and uvrC mutants of strain K12 showed no peculiarities compared with wild type in regard to cell survival. Likewise, mutant alleles at uvrD and polA loci had no effect. In contrast, rec mutants were more sensitive to PM-killing than were rec/sup +/ strains. PM-induced strand breakage in DNA was observed in all strains tested including the above-mentioned mutants. There was no significant distinction between the uvr mutants and the wild type strain, indicating that the uvr-endonuclease was not responsible for the strand breaks. Involvement of endonuclease I was also ruled out. At least some of the PM-induced strand breaks were repairable. PM-induced lethality and strand breakage were totally dependent on energy supply. Inhibition of protein synthesis resulted in a partial and parallel suppression of the two effects. Our results suggest that the lethality is due to DNA strand breakage and the repair of such damage is postulated to be controlled by rec genes.

  9. Genetic ecotoxicology IV: survival and DNA strand breakage is dependent on genotype in radionuclide-exposed mosquitofish

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, C.W. [Texas A and M University, Department of Wildlife and Fisheries Sciences, College Station, TX 77843-2258 (United States); Elbl, T. [University of Pennsylvania, Department of Cell and Molecular Biology, Philadelphia, PA 19102 (United States); Shugart, L.R. [L.R. Shugart and Associates, Oak Ridge, TN 37831 (United States)

    1999-05-01

    Western mosquitofish (Gambusia affinis) were caged in situ in a radioactively-contaminated pond in order to determine if survival and amount of DNA strand breakage were dependent on genotype. Genotypes of fish were determined using the randomly amplified polymorphic (RAPD) technique, and DNA strand breakage was determined using agarose gel electrophoresis. This study is a continuation of research undertaken at the Oak Ridge National Laboratory, which examined the effects of radionuclide contamination on the population genetic structure of mosquitofish. The previous research found 17 RAPD markers that were present at a higher frequency in contaminated than in reference populations ('contaminant-indicative bands'), and fish from contaminated sites which possessed these markers had higher fecundity and fewer strand breaks than fish which did not. One of the contaminated populations (Pond 3513) was colonized from one of the reference populations (Crystal Springs) in 1977. In the present study, fish were obtained from Crystal Springs and an additional reference site, and caged in Pond 3513. The percent survival and amount of DNA strand breakage were then determined for fish with and without the contaminant-indicative markers. When Crystal Springs fish were caged in Pond 3513, it was found that the genotypic distribution of the survivors was more similar to the native Pond 3513 population than to the Crystal Springs population. Furthermore, for nine of the contaminant-indicative markers, the percent survival was greater for fish which possessed these markers than for fish which did not. For five of these markers, fish which possessed them had higher DNA integrity (fewer strand breaks) than fish which did not. These data indicate that probability of survival and degree of DNA strand breakage in radionuclide-exposed mosquitofish are dependent on RAPD genotype, and are consistent with the hypothesis that the contaminant-indicative RAPD bands are markers of loci

  10. Purification, crystallization and preliminary X-ray diffraction experiments on the breakage-reunion domain of the DNA gyrase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Piton, Jérémie; Matrat, Stéphanie; Petrella, Stéphanie; Jarlier, Vincent; Aubry, Alexandra; Mayer, Claudine

    2009-01-01

    The breakage-reunion domain of M. tuberculosis DNA gyrase was crystallized using the hanging-drop vapour-diffusion method. One of the four crystal forms obtained belonged to space group C2 and diffraction data were collected to a resolution of 2.7 Å. Mycobacterium tuberculosis DNA gyrase, a nanomachine that is involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and hence is the sole target for fluoroquinolone action. The breakage-reunion domain of the A subunit plays an essential role in DNA binding during the catalytic cycle. Two constructs of 53 and 57 kDa (termed GA53BK and GA57BK) corresponding to this domain have been overproduced, purified and crystallized. Diffraction data were collected from four crystal forms. The resolution limits ranged from 4.6 to 2.7 Å depending on the crystal form. The best diffracting crystals belonged to space group C2, with a biological dimer in the asymmetric unit. This is the first report of the crystallization and preliminary X-ray diffraction analysis of the breakage-reunion domain of DNA gyrase from a species containing one unique type II topoisomerase

  11. Aphidicolin synchronization of mouse L cells perturbs the relationship between cell killing and DNA double-strand breakage after X-irradiation

    International Nuclear Information System (INIS)

    Radford, I.R.; Broadhurst, S.

    1988-01-01

    The relationship between X-ray-induced cell killing and DNA double-strand breakage was examined for synchronized mouse L cells that had entered S-phase, G2-phase, mitosis, and G1-phase following release from aphidicolin and compared to asynchronous culture response. Aphidicolin-synchronized cells showed cycle phase-dependent changes in dose-responses for both killing and DNA dsb. However, on the basis of DNA dsb per unit length of DNA required to produce a lethal lesion, aphidicolin-synchronized cells were more sensitive to X-rays than asynchronous cultures. This sensitivity peaked 2 h after release from aphidicolin treatment, and then progressively declined towards the asynchronous culture value. It is argued that results are due to deregulation of the temporal order of DNA replication following aphidicolin treatment, and can be incorporated into the critical DNA target size model by postulating that the targets for radiation action in mammalian cells are DNA-associated with potentially transcriptionally active proto-oncogenes or constitutive fragile sites. (author)

  12. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  13. Mechanism of resistance of noncycling mammalian cells to 4'-(9-acridinylamino)methanesulfon-m-anisidide: comparison of uptake, metabolism, and DNA breakage in log- and plateau-phase Chinese hamster fibroblast cell cultures

    International Nuclear Information System (INIS)

    Robbie, M.A.; Baguley, B.C.; Denny, W.A.; Gavin, J.B.; Wilson, W.R.

    1988-01-01

    Resistance of noncycling cells to amsacrine (m-AMSA) has been widely reported and may limit the activity of this drug against solid tumors. The biochemical mechanism(s) for this resistance have been investigated using spontaneously transformed Chinese hamster fibroblasts (AA8 cells, a subline of Chinese hamster ovary-cells) in log- and plateau-phase spinner cultures. In early plateau phase most cells entered a growth-arrested state with a G1-G0 DNA content and showed a marked decrease in sensitivity to cytotoxicity induced by a 1-h exposure to m-AMSA or to its solid tumor-active analogue, CI-921. Studies with radiolabeled m-AMSA established that similar levels of drug were accumulated by log- and plateau-phase cells and that there was no significant drug metabolism in either of these cultures after 1 h. However, marked differences in sensitivity to m-AMSA-induced DNA breakage were observed using a fluorescence assay for DNA unwinding. Changes in sensitivity to DNA breakage occurred in parallel with changes in sensitivity to m-AMSA-induced cell killing. DNA breaks disappeared rapidly after drug removal (half-time approximately 4 min), suggesting that these lesions were probably mediated by DNA topoisomerase II. Resistance to m-AMSA may therefore be associated with changes in topoisomerase II activity in noncycling cells

  14. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    Science.gov (United States)

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  15. Influence of DNA conformation on radiation-induced single-strand breaks

    International Nuclear Information System (INIS)

    Barone, F.; Belli, M.; Mazzei, F.

    1994-01-01

    We performed experiments on two DNA fragments of about 300 bp having different conformation to test whether radiation-induced single-strand breakage is dependent on DNA conformation. Breakage analysis was carried out by denaturing polyacrylamide gel electrophoresis, which allows determination of the broken site at single nucleotide resolution. We found uniform cutting patterns in B-form regions. On the contrary, X- or γ-irradiation of curved fragments of kinetoplast DNA showed that the distribution of single-strand breaks was not uniform along the fragment, as the cleavage pattern was modulated in phase with the runs of A-T pairs. This modulation likely reflected the reduced accessibility of the sites which on hydroxyl-radical attack give rise to strand breaks. The cleavage pattern was phased with the runs of A-T pairs. Moreover, the overall yield of strand breaks was considerably lower in curved DNA fragments than in those with extended straight regions. The conformation effect found here indicates that the cleavage pattern reflects the fine structural features of DNA. (orig./MG)

  16. Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: use in lethal lesion determination

    International Nuclear Information System (INIS)

    Radford, I.R.

    1986-01-01

    The effect of three radiomodifying agents, cysteamine, hyperthermia, and hypoxia, on the induction of the major classes of X-ray-induced DNA lesions, was studied using mouse L cells and Chinese hamster V79 cells. The use of filter elution techniques allowed most of these studies to be conducted at X-ray doses within the survival-curve range. Cysteamine was found to protect against DNA single-strand breakage (ssb), DNA base damage, and DNA-protein crosslinkage. Hyperthermia had no effect on the level of DNA ssb or DNA base damage, but in L cells (but not in V79 cells) it increased the level of DNA-protein crosslinkage relative to DNA ssb. Hypoxia protected against DNA ssb, had no significant effect on the level of DNA base damage, and enhanced the level of DNA-protein crosslinkage relative to DNA ssb. These results support the previous suggestion that the X-ray-induced lethal lesion is DNA double-strand breakage. Implications of these findings for the mechanisms of formation of X-ray-induced DNA lesions are also discussed. (author)

  17. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage.

    Science.gov (United States)

    Denissova, Natalia G; Nasello, Cara M; Yeung, Percy L; Tischfield, Jay A; Brenneman, Mark A

    2012-01-01

    Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.

  18. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress

    OpenAIRE

    Pourrut, Bertrand; Jean, Séverine; Silvestre, Jérôme; Pinelli, Eric

    2011-01-01

    Genotoxic effects of lead (0–20 µM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10 µM. In addition, at th...

  19. (UVB)-induced DNA damage

    African Journals Online (AJOL)

    Jane

    2011-08-17

    dependent cytogenetic lesions were assessed by the micronucleus test (MNT). It was found that POE effectively reduced the extent of DNA breakages and cytogenetic lesions upon exposure to UVB (erythemal ultraviolet (EUV);.

  20. The sensitivity of active and inactive chromatin to ionizing radiation-induced DNA strand breakage

    International Nuclear Information System (INIS)

    Chiu, S.-M.; Oleinick, N.L.

    1982-01-01

    The sensitivity of DNA in actively transcribing and inactive states has been compared with regard to γ-radiation-induced single-strand break (SSB) induction. The results indicate that chromatin organization is important in the determination of the sensitivity of cellular DNA toward γ-radiation: Not only the yield but also the rate of repair of SSB is greater in the actively transcribing genes than in the total nuclear DNA. (author)

  1. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  2. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  3. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  4. The role of nibrin in doxorubicin-induced apoptosis and cell senescence in Nijmegen Breakage Syndrome patients lymphocytes.

    Directory of Open Access Journals (Sweden)

    Olga Alster

    Full Text Available Nibrin plays an important role in the DNA damage response (DDR and DNA repair. DDR is a crucial signaling pathway in apoptosis and senescence. To verify whether truncated nibrin (p70, causing Nijmegen Breakage Syndrome (NBS, is involved in DDR and cell fate upon DNA damage, we used two (S4 and S3R spontaneously immortalized T cell lines from NBS patients, with the founding mutation and a control cell line (L5. S4 and S3R cells have the same level of p70 nibrin, however p70 from S4 cells was able to form more complexes with ATM and BRCA1. Doxorubicin-induced DDR followed by cell senescence could only be observed in L5 and S4 cells, but not in the S3R ones. Furthermore the S3R cells only underwent cell death, but not senescence after doxorubicin treatment. In contrary to doxorubicin treatment, cells from all three cell lines were able to activate the DDR pathway after being exposed to γ-radiation. Downregulation of nibrin in normal human vascular smooth muscle cells (VSMCs did not prevent the activation of DDR and induction of senescence. Our results indicate that a substantially reduced level of nibrin or its truncated p70 form is sufficient to induce DNA-damage dependent senescence in VSMCs and S4 cells, respectively. In doxorubicin-treated S3R cells DDR activation was severely impaired, thus preventing the induction of senescence.

  5. DNA damages induced by Ar F laser

    Energy Technology Data Exchange (ETDEWEB)

    Chapel, C.; Rose, S.; Chevrier, L.; Cordier, E.; Courant, D. [CEA Fontenay-aux-Roses, 92 (France). Dept. de Radiobiologie et de Radiopathologie

    2006-07-01

    The photo ablation process used in corneal refractive surgery by the Argon Fluoride (Ar F) laser emitting in ultraviolet C at 193 nm, exposes viable cells round the irradiated zone to sub ablative doses (< 400 joules.m -2). Despite that DNA absorption is higher at 193 nm than 254 nm, cytotoxicity of 193 nm laser radiation is lower than radiation emitted by 254 nm UV-C lamps. In situ, DNA could be protected of laser radiation by cellular components. Consequently, some authors consider that this radiation does not induce genotoxic effect whereas others suspect it to be mutagenic. These lasers are used for fifteen years but many questions remain concerning the long term effects on adjacent cells to irradiated area. The purpose of this study is to describe the effect of 193 nm laser radiation on DNA of stromal keratocytes which are responsible of the corneal structure. The 193 nm laser irradiation induces directly DNA breakage in keratocytes as it has been shown by the comet assay under alkaline conditions. Two hours post irradiation, damages caused by the highest exposure (150 J.m-2) are not repaired as it has been measured with the Olive Tail Moment (product of tail length and tail DNA content). They give partly evidence of induction of an apoptotic process in cells where DNA could be too damaged. In order to characterize specifically double strand breaks, a comparative analysis by immunofluorescence of the H2 Ax histone phosphorylation (H2 Ax) has been performed on irradiated keratocytes and unirradiated keratocytes. Results show a dose dependent increase of the number of H2 Ax positive cells. Consequences of unrepaired DNA lesions could be observed by the generation of micronuclei in cells. Results show again an increase of micronuclei in laser irradiated cells. Chromosomal aberrations have been pointed out by cytogenetic methods 30 mn after irradiation. These aberrations are dose dependent (from 10 to 150 J.m-2). The number of breakage decreases in the long run

  6. An extended sequence specificity for UV-induced DNA damage.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Monitoring of DNA breakage in embryonic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay.

    Science.gov (United States)

    Osman, Alaa G M; Mekkawy, Imam A; Verreth, Johan; Wuertz, Sven; Kloas, Werner; Kirschbaum, Frank

    2008-12-01

    Increasing lead contamination in Egyptian ecosystems and high lead concentrations in food items have raised concern for human health and stimulated studies on monitoring ecotoxicological impact of lead-caused genotoxicity. In this work, the alkaline comet assay was modified for monitoring DNA strand breakage in sensitive early life stages of the African catfish Clarias gariepinus. Following exposure to 100, 300, and 500 microg/L lead nitrate, DNA strand breakage was quantified in embryos at 30, 48, 96, 144, and 168 h post-fertilization (PFS). For quantitative analysis, four commonly used parameters (tail % DNA, %TDNA; head % DNA, %HDNA; tail length, TL; tail moment, TM) were analyzed in 96 nuclei (in triplicates) at each sampling point. The parameter %TDNA revealed highest resolution and lowest variation. A strong correlation between lead concentration, time of exposure, and DNA strand breakage was observed. Here, genotoxicity detected by comet assay preceded the manifested malformations assessed with conventional histology. Qualitative evaluation was carried out using five categories are as follows: undamaged (%TDNA 75%) nuclei confirming a dose and time-dependent shift towards increased frequencies of highly and extremely damaged nuclei. A protective capacity provided by a hardened chorion is a an interesting finding in this study as DNA damage in the prehatching stages 30 h-PFS and 48 h-PFS was low in all treatments (qualitative and quantitative analyses). These results clearly show that the comet assay is a sensitive tool for the detection of genotoxicity in vulnerable early life stages of the African catfish and is a method more sensitive than histological parameters for monitoring genotoxic effects. 2008 Wiley Periodicals, Inc.

  8. Investigations into the molecular mechanism of chromatid breakage in the G2-phase of mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.; Armstrong, G.N.; Gray, L.; Frankenberg, D.; Mozdarani, H.

    2003-01-01

    Chromatid breakage following irradiation of cells in the G2-phase of the cell cycle results from the induction of DNA double-strand breaks (dsb). The conversion of dsb into chromatid breaks (cb) has a genetic basis, seemingly different from that of dsb rejoining. The variation in extent of this conversion is exemplified by the stiking variation in frequency of cb in irradiated cycling T-lymphocytes between different normal individuals. Elevated cb frequency in lymphocytes of around 40% of breast cancer patients and their first-degree relatives suggests the presence of mutations in low penetrance cancer predisposing genes that also affect conversion of dsb to cb. Investigation of the mechanism of chromatid radiosensitivity using genetically engineered rodent cell lines containing unique dsb break sites indicate that a single isolated dsb is sufficient to cause a cb. The single-event nature of chromatid breakage is confirmed by the fact that cb are induced as a linear function of radiation dose. Moreover, we have recently shown that ultrasoft carbon-K X-rays also induce chromatid breakage. In this case the energy of the secondary electrons produced by carbon-K X-rays is too low to span more than one DNA double helix, thus further supporting our conclusion that a single dsb is responsible for the formation of a cb. Chromatid breakage is thought to involve a rearrangement between DNA strands at the crossover points of chromatin loop(s) triggered by the presence of a dsb within the loop structure. The occasional observation of 'looped-out' sections of chromatin at cb sites supports this hypothesis. The occurrence of 'colour-switches' between FPG stained chromatids at a proportion of break sites (e.g. about 16% in CHO cells) shows that a significant proportion of cb definitely result from chromatin rearrangements. Measurements of altered colour-switch ratio (csr) in mutant rodent and human cells (irs1 and AT cells respectively) also indicate a genetic basis for the

  9. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  10. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaäc J.; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome

  11. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    Science.gov (United States)

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  12. Radiation sensitization by an iodine-labelled DNA ligand

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R F; Murray, V; D' Cunha, G; Pardee, M; Haigh, A; Hodgson, G S [Peter MacCallum Cancer Inst., Melbourne (Australia); Kampouris, E; Kelly, D P [Melbourne Univ., Parkville (Australia)

    1990-05-01

    An iodinated DNA ligand, iodoHoechst 33258, which binds in the minor groove of DNA, enhances DNA strand breakage and cell killing by UV-A irradiation. The sites of UV-induced strand breaks reflect the known sequence specificity of the ligand. (author).

  13. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  14. DNA damage and mutagenesis of lambda phage induced by gamma-rays

    International Nuclear Information System (INIS)

    Bertram, Heidi

    1988-01-01

    Lambda phage DNA was gamma irradiated in aqueous solution and strand breakage determined. Twice as much minor structural damage per lethal hit was found in this DNA compared with DNA from irradiated phage suspensions. The in vitro irradiated DNA was repackaged into infectious particles. Induction of mutations in the cI or cII cistron was scored using SOS-induced host cells. In vitro prepared particles were found to have second-order kinetics for mutagenesis induced by gamma rays indicating two pre-mutational events were necessary to produce a mutation, but bacteria-free phage suspensions ('lys-phage') showed single hit kinetics for mutagenesis after irradiation. Increase in the mutation rate in the phage particles was mainly due to minor lesions, i.e. ssb, als and unidentified base damage. In lys-phage, mutagenesis might be enhanced by clustered DNA damage - configuration not existing in pack-phage. Loss of infectivity was analysed in comparison with structural damage. All lesions contributed to biological inactivation. Minor lesions were tolerated by lambda phage to a limited extent. Major lesions (e.g. dsb) contributed most to infectivity loss and were considered lethal events. (U.K.)

  15. Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2016-08-01

    Full Text Available Nijmegen breakage syndrome (NBS results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs. NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs. Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.

  16. Monophosphate end groups produced in radiation induced strand breakage in DNA

    International Nuclear Information System (INIS)

    Kay, E.; Ward, J.F.

    1976-01-01

    A solution of DNA was gamma-irradiated and treated with monophosphatase for studies on the amount of inorganic phosphate released as a function of time. Studies were also conducted on: effect of alkali on yield of monophosphate end groups; induction of DNA strand breaks by treatment with DNAase; initial G values for monophosphate termini; and effect of alkali on radioinduced DNA damage

  17. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    Science.gov (United States)

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  18. Paravertebral block catheter breakage by electrocautery during thoracic surgery.

    Science.gov (United States)

    Saeki, Noboru; Sugimoto, Yuki; Mori, Yoko; Kato, Takahiro; Miyoshi, Hirotsugu; Nakamura, Ryuji; Koga, Tomomichi

    2017-06-01

    Advantages of thoracic paravertebral analgesia (TPA) include placement of the catheter closer to the surgical field; however, the catheter can become damaged during the operation. We experienced a case of intraoperative TPA catheter breakage that prompted us to perform an experiment to investigate possible causes. A 50-year-old male underwent a thoracoscopic lower lobectomy under general anesthesia with TPA via an intercostal approach. Following surgery, it was discovered that the catheter had become occluded, as well as cut and fused, so we reopened the incision and removed the residual catheter. From that experience, we performed an experiment to examine electrocautery-induced damage in normal (Portex™, Smith's Medical), radiopaque (Perifix SoftTip™, BBraun), and reinforced (Perifix FX™, BBraun) epidural catheters (n = 8 each). Chicken meat was penetrated by each catheter and then cut by electrocautery. In the normal group, breakage occurred in 8 and occlusion in 6 of the catheters, and in the radiopaque group breakage occurred in 8 and occlusion in 7. In contrast, breakage occurred in only 3 and occlusion in none in the reinforced group, with the 5 without breakage remaining connected only by the spring coil. Furthermore, in 7 of the reinforced catheters, electric arc-induced thermal damage was observed at the tip of the catheter. A TPA catheter for thoracic surgery should be inserted via the median approach, or it should be inserted after surgery to avoid catheter damage during surgery.

  19. The role of glutathione in DNA damage by potassium bromate in vitro.

    Science.gov (United States)

    Parsons, J L; Chipman, J K

    2000-07-01

    We have investigated the role of reduced glutathione (GSH) in the genetic toxicity of the rodent renal carcinogen potassium bromate (KBrO(3)). A statistically significant increase in the concentration of 8-oxodeoxyguanosine (8-oxodG) relative to deoxyguanosine was measured following incubation of calf thymus DNA with KBrO(3) and GSH or N-acetylcysteine (NACys). This was dependent on these thiols and was associated with the loss of GSH and production of oxidized glutathione. A short-lived (potassium chlorate (KClO(3)) or potassium iodate (KIO(3)) were used instead of KBrO(3), though GSH depletion also occurred with KIO(3), but not with KClO(3). Other reductants and thiols in combination with KBrO(3) did not cause a significant increase in DNA oxidation. DNA strand breakage was also induced by KBrO(3) in human white blood cells (5 mM) and rat kidney epithelial cells (NRK-52E, 1.5 mM). This was associated with an apparent small depletion of thiols in NRK-52E cells at 15 min and with an elevation of 8-oxodG at a delayed time of 24 h. Depletion of intra-cellular GSH by diethylmaleate in human lymphocytes decreased the amount of strand breakage induced by KBrO(3). Extracellular GSH, however, protected against DNA strand breakage by KBrO(3), possibly due to the inability of the reactive product to enter the cell. In contrast, membrane-permeant NACys enhanced KBrO(3)-induced DNA strand breakage in these cells. DNA damage by KBrO(3) is therefore largely dependent on access to intracellular GSH.

  20. Kazinol Q from Broussonetia kazinoki Enhances Cell Death Induced by Cu(ll through Increased Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Hsue-Yin Hsu

    2011-04-01

    Full Text Available The ability of the flavan kazinol Q (KQ to induce DNA breakage in the presence of Cu(II was examined by agarose gel electrophoresis using supercoiled plasmid DNA. In KQ-mediated DNA breakage reaction, the involvement of reactive oxygen species (ROS, H2O2 and O2 - was established by the inhibition of DNA breakage by catalase and revealed DNA breakage by superoxide dismutase (SOD. The cell viability of gastric carcinoma SCM-1 cells treated with various concentrations of KQ was significantly decreased by cotreatment with Cu(II. Treatment of SCM-1 cells with 300 μM Cu(II enhanced the necrosis induced by 100 μM KQ. Treatment of SCM-1 cells with 100 mM KQ in the presence of 300 mM Cu(II increased the generation of H2O2. Taken together, the above finding suggested that KQ cotreatment with Cu(II produced increased amounts of H2O2, thus enhancing subsequent cell death due to necrosis.

  1. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2013-02-01

    Full Text Available We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH. A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL, 10 with high-grade SIL (HG-SIL, and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  2. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  3. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    International Nuclear Information System (INIS)

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-01-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 μgml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  4. Responding to chromosomal breakage during M-phase: insights from a cell-free system

    Directory of Open Access Journals (Sweden)

    Costanzo Vincenzo

    2009-07-01

    Full Text Available Abstract DNA double strand breaks (DSBs activate ATM and ATR dependent checkpoints that prevent the onset of mitosis. However, how cells react to DSBs occurring when they are already in mitosis is poorly understood. The Xenopus egg extract has been utilized to study cell cycle progression and DNA damage checkpoints. Recently this system has been successfully used to uncover an ATM and ATR dependent checkpoint affecting centrosome driven spindle assembly. These studies have led to the identification of XCEP63 as major target of this pathway. XCEP63 is a coiled-coil rich protein localized at centrosome essential for proper spindle assembly. ATM and ATR directly phosphorylate XCEP63 on serine 560 inducing its delocalization from centrosome, which in turn delays spindle assembly. This pathway might contribute to regulate DNA repair or mitotic cell survival in the presence of chromosome breakage.

  5. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.

    Directory of Open Access Journals (Sweden)

    Greicy H Goto

    2015-08-01

    Full Text Available Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.

  6. X-ray-induced breakage and rejoining of human interphase chromosomes

    International Nuclear Information System (INIS)

    Cornforth, M.N.; Bedford, J.S.

    1983-01-01

    A method was developed for the high-resolution measurement of breaks in prematurely condensed chromosomes at the G 1 phase of the cell cycle. The dose response for fragments (breaks) produced immediately after x-irradiation of confluent cultures of normal human cells was linear down to 10.9 rad (0.109 Gy) and extrapolated to zero effect at zero dose. The curve had a slope of 0.063 breaks per cell per rad, which is at least an order of magnitude greater than that for breaks scored in the same cells after they have progressed to mitosis following subculture. When incubated at 37 0 C half of the breaks disappeared in 2 hours. A slower, perhaps nonrejoining component was apparent at later incubation times. The initial rate of break rejoining was similar to the rate of increase in survival after incubation because of the repair of potentially lethal damage and is also in close agreement with recently reported values for the rejoining of double-strand breakage in DNA

  7. [Correlation of single-cell gel electrophoresis and mitomycin C-induced chromosomal breakage for chromosomal instabiligy in children with Fanconi anemia].

    Science.gov (United States)

    Zhang, Li; Liu, Qiang; Zou, Yao; Liu, Xiao-ming; Zhang, Jia-yuan; Wang, Shu-chun; Chen, Xiao-juan; Guo, Ye; Yang, Wen-yu; Ruan, Min; Liu, Tian-feng; Liu, Fang; Cai, Xiao-jin; Chen, Yu-mei; Zhu, Xiao-fan

    2013-02-01

    Fanconi anemia (FA) is characterized by bone marrow failure, congenital abnormalities and predisposition to neoplasia. Hypersensitivity of FA cells to the clastogenic effect of mitomycin C (MMC) provides a unique marker for the diagnosis before the beginning of hematological manifestations. The aim of this study was to evaluate the relationship between Single-Cell Gel Electrophoresis (SCGE) and mitomycin C-induced chromosomal breakage in children with FA. Between January 2007 and June 2011, 248 children (results of the two methods and compared with each other. The receiver operating characteristic (ROC) curve was used to evaluate the parameters in SCGE. Seventeen patients were diagnosed as FA and 231 as non-FA. Chromosomal breakage was found to be significantly higher in FA patients [(32.2 ± 4.8)%] than non-FA [(19.9 ± 3.0)%] and controls[(21.6 ± 4.8)%] when induced by MMC 80 ng/ml. The parameters of SCGE were significantly different between FA patients and non-FA or controls. All the parameters were rectilinearly correlated with MMC (P = 0.000). The most closely correlated parameter was the rate of comet cell (r = 0.848, P = 0.000). The results of ROC curves suggested the comet cell rate (0.999) was more important. SCGE might be used to discriminate between FA and non-FA individuals. The relationship between SCGE and MMC-induced chromosomal breakage was significant. The rate of comet cell was the important parameter.

  8. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  9. Sensitivity to chromosomal breakage as risk factor in young adults with oral squamous cell carcinoma.

    Science.gov (United States)

    Braakhuis, Boudewijn J M; Nieuwint, Aggie W M; Oostra, Anneke B; Joenje, Hans; Flach, Géke B; Graveland, A Peggy; Brakenhoff, Ruud H; Leemans, C René

    2016-03-01

    Oral squamous cell carcinoma (OSCC) may develop in young adults. In contrast to older patients, the well-known etiological factors, exposure to tobacco and alcohol, play a minor role in the carcinogenesis in this patient group. It has been suggested that an intrinsic susceptibility to environmental genotoxic exposures plays a role in the development of OSCC in these patients. The hypothesis was tested whether young OSCC patients have an increased sensitivity to induced chromosomal damage. Fourteen OSCC patients with an average age of 32 years (range 20-42) were selected. Peripheral blood lymphocytes and skin fibroblasts of patients and 14 healthy controls were subjected to the chromosome breakage test with Mitomycin C. This test is routinely used to identify Fanconi anemia patients, who are well-known for their inherited high sensitivity to this type of DNA damage, but also for the high risk to develop OSCC. Human papilloma virus status of the carcinomas was also determined. None of the 14 young patients with OSCC had an increased response in the MMC-chromosomal breakage test. All tumors tested negative for human papilloma virus. No evidence was obtained for the existence of a constitutional hypersensitivity to DNA chromosomal damage as a potential risk factor for OSCC in young adults. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  11. Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage lambda DNA in Escherichia coli lysogenic for lambda

    International Nuclear Information System (INIS)

    Johansen, I.; Boye, E.; Brustad, T.

    1975-01-01

    The production of the first radiation induced break in covalent lambda DNA molecules in pol + and pol A 1 lysogenic host cells was measured after exposure to electrons from a linear accelerator and transfer to alkaline detergent within 100 ms from the onset of irradiation. The results revealed the presence of an oxygen effect in DNA strand breakage. In both pol + and pol A 1 host cells the rate of production in nitrogen was 1.2x10 -12 DNA single strand breaks per rad per dalton as compared to 5x10 -12 in oxygen. The yields of strand breaks in lambda DNA in pol + host cells under oxygenated or anoxic conditions are independent of whether the cells are irradiated in buffer at room temperature, in buffer at ice temperature, or in growth medium at 37 0 C. These results indicate that enzymic repair of DNA strand breaks before analysis is insignificant in these experiments. The presence of an oxygen effect in DNA strand breakage under these conditions suggest that an actual difference exists between initial number of breaks produced in nitrogen and in oxygen. The kinetics of rejoining of broken molecules under optimal growth conditions was measured by incubating the irradiated host cells prior to lysis. In pol + host cells 50% of the lambda DNA molecules broken in presence of oxygen are rejoined within 10 to 20 seconds of incubation. A significantly lower recovery is seen in pol + host cells after irradiation in nitrogen. The rejoining of broken lambda DNA strands in pol A 1 host cells is impaired after irradiation in presence of oxygen as well as under anoxia. These results show that DNA polymerase I is needed for the rapid rejoining of radiation induced strand breaks in the DNA, and that oxygen promoted strand breaks are more easily rejoined than are those produced in nitrogen. (author)

  12. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  13. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  14. Effect of sodium benzoate on DNA breakage, micronucleus formation and mitotic index in peripheral blood of pregnant rats and their newborns

    Directory of Open Access Journals (Sweden)

    Cetin Saatci

    2016-11-01

    Full Text Available Sodium benzoate (SB is one of the most widely used additives in food products in the world. The aim of this study was to assess the effect of three different concentrations of SB on the DNA breakage in liver cells and on the micronuclei formation and the mitotic index in lymphocytes of pregnant rats and their fetuses, as well as to evaluate the effects of SB on the fetus development. The results showed that general genomic injuries were present in almost all the liver cell samples obtained from the SB group compared with the control (non-treated group. This indicates that SB usage may cause DNA damage and increase micronuclei formation. We recommend that pregnant women should avoid consuming foodstuffs containing SB as an additive.

  15. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  16. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  17. Effects of hyperthermia on radiation-induced chromosome breakage and loss in excision repair deficient Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mittler, S.

    1986-01-01

    Hyperthermia increased radiosensitivity with respect to γ-ray induced chromosome loss and breakage in all stages of spermatogenesis in the wild type Oregon R strain of Drosophila melanogaster, whereas hyperthermia increased radiosensitivity to a lesser extent in cn mus(2) 201sup(D1), an excision repair mutant with 0 per cent excision capacity and in mus(3) 308sup(D1), a strain with 24 per cent excision capacity. The differences in hyperthermia-induced radiation sensitivity between the excision repair mutants and the wild strain may be due to the hyperthermia affecting the excision repair mechanism, suggesting that one of the possible mechanisms involved in hyperthermia-increased radiosensitivity is an effect on excision repair. (author)

  18. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  19. DNA damage induced in mouse peritoneal exudate cells after in vivo administration of chemical and physical agents as determined by alkaline elution

    International Nuclear Information System (INIS)

    Nishi, Yoshisuke; Miyanaga, Kumiko; Sato, Sei-ichi; Inui, Naomichi

    1990-01-01

    The alkaline elution technique for detecting DNA strand breaks has been applied to the study of DNA damage in mouse peritoneal exudate cells resulting from the in vivo administration of chemical and physical agents. The direct methylating agents methyl methanesulphonate and N-methyl-N-nitrosourea induced extensive breakage in samples taken 2 h after administration. The direct ethylating agents ethyl methanesulphonate and N-ethyl-N-nitrosourea also induced DNA strand breaks, but to a lesser extent than the methylating agents. The indirect methylating agent dimethylnitrosamine showed hardly any effect in this system. A weak but positive response was observed upon treatment with the anti-neoplastic alkylating agent procarbazine hydrochloride. The whole-body irradiation of mice with 60 Co γ-rays also induced DNA strand breaks. The elution profiles for γ-ray irradiation were different from those of alkylating agents, and indicate that alkylating agents produce many more secondary lesions leading to DNA strand breaks than γ-rays. N-methyl-N-nitrosourea produced slightly more DNA strand breaks in mutagen-sensitive mice, which are derived from the CD-1 strain, than in ICR mice. (Author)

  20. DNA damage induced in mouse peritoneal exudate cells after in vivo administration of chemical and physical agents as determined by alkaline elution

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Yoshisuke (Japan Tobacco Inc., Yokohama (Japan). Central Research Inst.); Miyanaga, Kumiko; Sato, Sei-ichi (Japan Tobacco Inc., Hatano, Kanagawa (Japan). Toxicology Research Lab.); Inui, Naomichi (Japan Tobacco Inc., Yokohama, Kanagawa (Japan). Pharmaceutical Research Labs.)

    1990-01-01

    The alkaline elution technique for detecting DNA strand breaks has been applied to the study of DNA damage in mouse peritoneal exudate cells resulting from the in vivo administration of chemical and physical agents. The direct methylating agents methyl methanesulphonate and N-methyl-N-nitrosourea induced extensive breakage in samples taken 2 h after administration. The direct ethylating agents ethyl methanesulphonate and N-ethyl-N-nitrosourea also induced DNA strand breaks, but to a lesser extent than the methylating agents. The indirect methylating agent dimethylnitrosamine showed hardly any effect in this system. A weak but positive response was observed upon treatment with the anti-neoplastic alkylating agent procarbazine hydrochloride. The whole-body irradiation of mice with {sup 60}Co {gamma}-rays also induced DNA strand breaks. The elution profiles for {gamma}-ray irradiation were different from those of alkylating agents, and indicate that alkylating agents produce many more secondary lesions leading to DNA strand breaks than {gamma}-rays. N-methyl-N-nitrosourea produced slightly more DNA strand breaks in mutagen-sensitive mice, which are derived from the CD-1 strain, than in ICR mice. (Author).

  1. Suppressing effect of antimutagenic flavorings on chromosome aberrations induced by UV-light or X-rays in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Sasaki, Yu.F.; Imanishi, Hisako; Watanabe, Mie; Ohta, Toshihiro; Shirasu

    1990-01-01

    Chromosome aberrations induces by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavouring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G 1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G 1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G 2 phase suppressed UV-and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. (author). 28 refs.; 5 figs.; 6 tabs

  2. Chromatid interchanges at intrachromosomal telomeric DNA sequences

    International Nuclear Information System (INIS)

    Fernandez, J.L.; Vazquez-Gundin, F.; Bilbao, A.; Gosalvez, J.; Goyanes, V.

    1997-01-01

    Chinese hamster Don cells were exposed to X-rays, mitomycin C and teniposide (VM-26) to induce chromatid exchanges (quadriradials and triradials). After fluorescence in situ hybridization (FISH) of telomere sequences it was found that interstitial telomere-like DNA sequence arrays presented around five times more breakage-rearrangements than the genome overall. This high recombinogenic capacity was independent of the clastogen, suggesting that this susceptibility is not related to the initial mechanisms of DNA damage. (author)

  3. DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Jr, R A; Sheridan, III, R B; Huang, P C [Johns Hopkins Univ., Baltimore, Md. (USA). Dept. of Environmental and Biophysical Sciences

    1975-12-01

    Human diploid fibroblast-like cells derived from four patients with the genetic disease ataxia telangiectasia and from two non-mutant donors were examined for the repair of x-ray induced strand breaks in DNA. The ataxia telangiectasia cultures showed no significant differences from the non-mutant cultures in the kinetics and extent of strand repair. This suggests that the increased spontaneous and x-ray induced chromatid aberrations observed in ataxia telangiectasia cells are not caused by a defect in the repair of single strand breaks as might be suspected from a general model of aberration production.

  4. Coke breakage behaviour in relation to its structure

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, T J; Horton, A E; Tucker, J

    1980-06-14

    The relationship between coke macrostructure and volumetric (coarse) breakage behaviour, and the manner in which both features are affected by the coal charge composition are discussed. Coke pieces which are extensively fissured fail spontaneously after only a few revolutions in the drum; coke pieces which are less fissured require an extended treatment in the drum and finally fail in a manner consistent with that of fatigue crack growth induced by repeated impact. This heterogeneity in breakage behaviour was demonstrated in terms of an abrupt change in gradient of the Weibull distribution function for the coke. Heterogeneity may be removed by fully stabilising the coke or by the use of a more energetic test method. The role of fatigue crack growth in coke breakage was studied by cutting fissures of defined depth in full stabilised coke and assessing the rate of crack growth as a function of fissure depth and fracture toughness. The form of the results was consistent with that given by the Paris-Erdogan law and the rate of crack growth (for a given stress intensity level) was shown to increase with reducing coke toughness. Explanations are suggested to account for the role of blend additives in modifying the fissured properties and fracture toughness of coke made from high-volatile coal.

  5. Genetics Home Reference: Warsaw breakage syndrome

    Science.gov (United States)

    ... Oostra AB, Stumm M, Zdzienicka MZ, Joenje H, de Winter JP. Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD ... Lelij P, Oostra AB, Rooimans MA, Joenje H, de Winter JP. Diagnostic Overlap ... Roberts Syndrome and Warsaw Breakage Syndrome. Anemia. 2010;2010:565268. ...

  6. Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells

    Science.gov (United States)

    Reelfs, Olivier; Macpherson, Peter; Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter; Young, Antony R.

    2011-01-01

    Photochemotherapy—in which a photosensitizing drug is combined with ultraviolet or visible radiation—has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S4TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S4TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S4TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S4TdR in dilute solution, more complex lesions are formed when S4TdR-containing oligonucleotides are irradiated. One of these, a thietane/S5-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S4TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S4TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S4TdR/UVA indicating that these lesions contribute significantly to S4TdR/UVA cytotoxicity. PMID:21890905

  7. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  8. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  9. Early models of DNA damage formation

    International Nuclear Information System (INIS)

    Śmiałek, Małgorzata A

    2012-01-01

    Quantification of DNA damage, induced by various types of incident radiation as well as chemical agents, has been the subject of many theoretical and experimental studies, supporting the development of modern cancer therapy. The primary observations showed that many factors can lead to damage of DNA molecules. It became clear that the development of experimental techniques for exploring this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the damage is distributed within the double helix of the DNA molecule and how the single strand break formation and accumulation can influence the lethal double strand break formation. In this work the most important probabilistic models for DNA strand breakage and damage propagation are summarized and compared.

  10. Investigation of factors influencing the attrition breakage of coal

    Energy Technology Data Exchange (ETDEWEB)

    Oberholzer, V.; van der Walt, J. [North West University, Mmabatho (South Africa). School of Chemical & Minerals Engineering

    2009-04-15

    The presence of fines (particles smaller than 6 mm in diameter) causes hydrodynamic problems in gasifiers and therefore it is of great importance to minimize the amount of fine coal in the feed. This serves as motivation for understanding coal's breakage mechanisms, which could lead to the ability to predict the generation of fines. The aim of this project was to simulate the pulsating effect of the conveyor belt in order to investigate factors influencing the breakage. Results indicated that an increased initial particle size had an increasing effect in the amount of fines generated. Weathering had an insignificant effect on the breakage of coal. To conclude, a breakage model was developed to describe the rate of breakage out of the top size when a combination of two breakage modes is present.

  11. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  12. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    Science.gov (United States)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  13. Diagnostic Overlap between Fanconi Anemia and the Cohesinopathies: Roberts Syndrome and Warsaw Breakage Syndrome

    Directory of Open Access Journals (Sweden)

    Petra van der Lelij

    2010-01-01

    Full Text Available Fanconi anemia (FA is a recessively inherited disease characterized by multiple symptoms including growth retardation, skeletal abnormalities, and bone marrow failure. The FA diagnosis is complicated due to the fact that the clinical manifestations are both diverse and variable. A chromosomal breakage test using a DNA cross-linking agent, in which cells from an FA patient typically exhibit an extraordinarily sensitive response, has been considered the gold standard for the ultimate diagnosis of FA. In the majority of FA patients the test results are unambiguous, although in some cases the presence of hematopoietic mosaicism may complicate interpretation of the data. However, some diagnostic overlap with other syndromes has previously been noted in cases with Nijmegen breakage syndrome. Here we present results showing that misdiagnosis may also occur with patients suffering from two of the three currently known cohesinopathies, that is, Roberts syndrome (RBS and Warsaw breakage syndrome (WABS. This complication may be avoided by scoring metaphase chromosomes—in addition to chromosomal breakage—for spontaneously occurring premature centromere division, which is characteristic for RBS and WABS, but not for FA.

  14. Vitamin C for DNA damage prevention

    International Nuclear Information System (INIS)

    Sram, Radim J.; Binkova, Blanka; Rossner, Pavel

    2012-01-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2′-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  15. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  16. Photosensitive interaction of RSU 1069 with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.I.; Knox, R.J.; Skolimowski, I.M.; Zahoor, A.; Knight, R.C.

    1984-08-01

    RSU 1069 is a 2-nitroimidazole radiosensitizer with an aziridine-containing side chain. In light (360 nm) the absorbance maximum of the nitro group at 325 nm disappears, which is accompanied by expulsion of the nitro group as the nitrite ion. This photosensitive effect was used to determine separately the damage of DNA induced by the reduced nitro group and the alkylating property of the aziridine. The aziridine-induced DNA damage is maximized in the dark when the nitro group is either absent (electrolytically reduced prior to the addition of DNA) or non functional (unreduced). In the light, damage is reduced. Typical DNA damage includes helix disruption leading to single strand breaks and the release of thymidine. Alkaline filter elution studies show evidence only for strand breakage and none for cross-linking indicating the drug is capable of mono-functional alkylation only.

  17. Photosensitive interaction of RSU 1069 with DNA

    International Nuclear Information System (INIS)

    Edwards, D.I.; Knox, R.J.; Skolimowski, I.M.; Zahoor, A.; Knight, R.C.

    1984-01-01

    RSU 1069 is a 2-nitroimidazole radiosensitizer with an aziridine-containing side chain. In light (360 nm) the absorbance maximum of the nitro group at 325 nm disappears, which is accompanied by expulsion of the nitro group as the nitrite ion. This photosensitive effect was used to determine separately the damage of DNA induced by the reduced nitro group and the alkylating property of the aziridine. The aziridine-induced DNA damage is maximized in the dark when the nitro group is either absent (electrolytically reduced prior to the addition of DNA) or non functional (unreduced). In the light, damage is reduced. Typical DNA damage includes helix disruption leading to single strand breaks and the release of thymidine. Alkaline filter elution studies show evidence only for strand breakage and none for cross-linking indicating the drug is capable of mono-functional alkylation only

  18. Nijmegen breakage syndrome (NBS

    Directory of Open Access Journals (Sweden)

    Chrzanowska Krystyna H

    2012-02-01

    Full Text Available Abstract Nijmegen breakage syndrome (NBS is a rare autosomal recessive syndrome of chromosomal instability mainly characterized by microcephaly at birth, combined immunodeficiency and predisposition to malignancies. Due to a founder mutation in the underlying NBN gene (c.657_661del5 the disease is encountered most frequently among Slavic populations. The principal clinical manifestations of the syndrome are: microcephaly, present at birth and progressive with age, dysmorphic facial features, mild growth retardation, mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. Combined cellular and humoral immunodeficiency with recurrent sinopulmonary infections, a strong predisposition to develop malignancies (predominantly of lymphoid origin and radiosensitivity are other integral manifestations of the syndrome. The NBN gene codes for nibrin which, as part of a DNA repair complex, plays a critical nuclear role wherever double-stranded DNA ends occur, either physiologically or as a result of mutagenic exposure. Laboratory findings include: (1 spontaneous chromosomal breakage in peripheral T lymphocytes with rearrangements preferentially involving chromosomes 7 and 14, (2 sensitivity to ionizing radiation or radiomimetics as demonstrated in vitro by cytogenetic methods or by colony survival assay, (3 radioresistant DNA synthesis, (4 biallelic hypomorphic mutations in the NBN gene, and (5 absence of full-length nibrin protein. Microcephaly and immunodeficiency are common to DNA ligase IV deficiency (LIG4 syndrome and severe combined immunodeficiency with microcephaly, growth retardation, and sensitivity to ionizing radiation due to NHEJ1 deficiency (NHEJ1 syndrome. In fact, NBS was most commonly confused with Fanconi anaemia and LIG4 syndrome. Genetic counselling should inform parents of an affected child of the 25% risk for further children to be affected. Prenatal molecular genetic diagnosis is possible if disease

  19. Pebble breakage in gravel

    International Nuclear Information System (INIS)

    Tuitz, C.

    2012-01-01

    The spatial clustering of broken pebbles in gravel layers of a Miocene sedimentary succession was investigated. Field observations suggested that the occurrence of broken pebbles could be related with gravel hosted shear deformation bands, which were the result of extensional regional deformation. Several different methods were used in this work to elucidate these observations. These methods include basic field work, measurements of physical pebble and gravel properties and, the application of different numerical modelling schemes. In particular, the finite element method in 2D and the discrete element method in 2D and 3D were used in order to quantify mechanisms of pebble deformation. The main objective of this work was to identify potential mechanisms that control particle breakage in fluvial gravel, which could explain the clustered spatial distribution of broken pebbles. The results of 2D finite element stress analysis indicated that the breakage load of differently located and oriented diametrical loading axes on a pebble varies and, that the weakest loading configuration coincides with the smallest principal axis of the pebble. The 3D discrete element method was applied to study the contact load distribution on pebbles in gravel deposits and the influence of different degrees of particle imbrication and orientation. The results showed that an increase of the number of imbricated particles leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles. The findings of these pebble-scale investigations provided the basis for outcropscale modelling, where simulated gravel layers were subjected to layer-parallel extension. These outcrop-scale models revealed the existence of a particle breakage enhancing mechanism that becomes active during early stages of shear band formation. The interaction of such shear bands with the less deformed host material results in particle stress concentrations and subsequently

  20. Plasmid marker rescue transformation proceeds by breakage-reunion in Bacillus subtilis

    International Nuclear Information System (INIS)

    Weinrauch, Y.; Dubnau, D.

    1987-01-01

    Bacillus subtilis carrying a plasmid which replicates with a copy number of about 1 was transformed with linearized homologous plasmid DNA labeled with the heavy isotopes 2 H and 15 N, in the presence of 32 Pi and 6-(p-hydroxyphenylazo)-uracil to inhibit DNA replication. Plasmid DNA was isolated from the transformed culture and fractionated in cesium chloride density gradients. The distribution of total and donor plasmid DNA was examined, using specific hybridization probes. The synthesis of new DNA, associated with the integration of donor moiety, was also monitored. Donor-specific sequences were present at a density intermediate between that of light and hybrid DNA. This recombinant DNA represented 1.4% of total plasmid DNA. The latter value corresponded well with the transforming activity (1.7%) obtained for the donor marker. Newly synthesized material associated with plasmid DNA at the recombinant density amounted to a minor portion of the recombinant plasmid DNA. These data suggest that, like chromosomal transformation, plasmid marker rescue transformation does not require replication for the integration of donor markers and, also like chromosomal transformation, proceeds by a breakage-reunion mechanism. The extent of donor DNA replacement of recipient DNA per plasmid molecule of 54 kilobases (27 kilobase pairs) was estimated as 16 kilobases

  1. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  2. Flavonoids with DNA strand-scission activity from Rhus javanica var. roxburghiana.

    Science.gov (United States)

    Lin, Chun-Nan; Chen, Hui-Ling; Yen, Ming-Hong

    2008-01-01

    The flavonoids isolated from the stems of Rhus javanica var. roxburghiana, taxifolin (1), fisetin (2), fustin (3), 3,7,4'-trihydroxyflavanone (4) and 3,7,4'-trihydroxyflavone (5) caused breakage of supercoiled plasmid pBR322 DNA in the presence of Cu(II). Cu(I) was shown to be an essential intermediate by using the Cu(I)-specific sequestering reagent neocuproine. The Cu(II)-mediated DNA scissions induced by 1, 2, 3 and 5 were inhibited by the addition of catalase and exhibited DNA strand break by the addition of KI and superoxide dimutase (SOD), while in the Cu(II)-mediated DNA scissions induced by 4 was inhibited by the addition of KI, SOD, and catalase. It is concluded that 1, 2, 3, and 5 can induce H2O2 and superoxide anion, while 4 can induce OH* and H2O2 and subsequent oxidative damage of DNA in the presence of Cu(II).

  3. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.

    Science.gov (United States)

    Jornot, L; Petersen, H; Junod, A F

    1998-01-01

    In cells undergoing oxidative stress, DNA damage may result from attack by .OH radicals produced by the Fenton reaction, and/or by nucleases activated by nuclear calcium. In the present study, the participation of these two mechanisms was investigated in HeLa cells. Nuclear-targeted aequorin was used for selectively monitoring Ca2+ concentrations within the nuclei ([Ca2+]n), in conjunction with the cell-permeant calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), the lipid-soluble broad-spectrum metal chelator with low affinity for Ca2+ and Mg2+ N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and the high-affinity iron/copper chelator 1, 10-phenanthroline (PHE). In Ca2+-containing medium, H2O2 induced extensive DNA strand breaks and an increase in [Ca2+]n that was almost identical to that observed in the cytosol ([Ca2+]c). In cells bathed in Ca2+-free/EGTA medium, in which the increases in [Ca2+]n and [Ca2+]c due to H2O2 were significantly reduced, similar levels of DNA fragmentation also occurred. In cells preloaded with BAPTA/AM or TPEN, the small increase of [Ca2+]n normally elicited by H2O2 in Ca2+-free medium was completely buffered, and DNA damage was largely prevented. On the other hand, pretreatment with PHE did not affect the calcium response in the nuclei, but completely prevented DNA strand breakage induced by H2O2. Re-addition of 100 microM CuSO4 and 100 microM FeSO4 to TPEN- and PHE-treated cells prior to H2O2 challenge reversed the effect of TPEN and PHE, whereas 1 mM was necessary to negate the effect of BAPTA/AM. The levels of DNA strand breakage observed, however, did not correlate with the amounts of 8-hydroxy 2'-deoxyguanosine (8-OHdG): H2O2 did not produce 8-OHdG, whereas PHE alone slightly increased 8-OHdG levels. CuSO4 and FeSO4 enhanced the effects of PHE, particularly in the presence of H2O2. Exposure of cells to a mixture of CuSO4/FeSO4 also resulted in a significant increase in

  4. Coke degradation by surface breakage in a modified tumble drum

    Energy Technology Data Exchange (ETDEWEB)

    Litster, J D

    1987-01-01

    The surface breakage rate constant for three Australian battery cokes was measured in a specially modified tumble drum using a previously developed technique. The effect of experimental test parameters - coke size, sample mass, drum speed, lifter height and lifter number - on the surface breakage rate constant was examined. The motion of coke particles within a tumble drum was filmed in a simulation experiment with a 0.31 m diameter drum. Particles were raised on the lifters, fell and collided with the bottom of the drum. These collisions were the main source of fines (minus 1 mm) production rather than true abrasion as depicted by a rubbing, rolling action. Hence the term 'surface breakage' is more appropriate than 'abrasion' to describe the breakage process. By measuring the volume of coke carried by each lifter and the height of fall of the coke, the effect of drum speed, sample mass, lifter height and number on the rate of surface breakage was successfully explained. The surface breakage rate constant was found to be proportional to particle size to the power 0.33 for the three cokes studied. A normalized surface breakage rate constant was derived which allowed comparison of cokes with different size distributions. This parameter characterises the coke surface breakage resistance.

  5. Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)

    International Nuclear Information System (INIS)

    Emmanouil, C.; Sheehan, T.M.T.; Chipman, J.K.

    2007-01-01

    The oxidation of DNA and lipid was analysed in the marine mussel (Mytilus edulis) in response to exposure (10 μg/l and 200 μg/l) to cadmium (Cd) and chromium [Cr(VI)]. Concentration dependent uptake of both metals into mussel tissues was established and levels of gill ATP were not depleted at these exposure levels. DNA strand breakage in gill cells (analysed by the comet assay) was elevated by both metals, however, DNA oxidation [measured by DNA strand breakage induced by the DNA repair enzyme formamidopyrimidine glycosylase (FPG)] was not elevated. This was despite a statistically significant increase in both malondialdehyde and 4-hydroxynonenal - indicative of lipid peroxidation - following treatment with Cd. In contrast, both frank DNA stand breaks and FPG-induced DNA strand breaks (indicative of DNA oxidation) were increased following injection of mussels with sodium dichromate (10.4 μg Cr(VI)/mussel). The metals also showed differential inhibitory potential towards DNA repair enzyme activity with Cd exhibiting inhibition of DNA cutting activity towards an oligonucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine and Cr(VI) showing inhibition of such activity towards an oligonucleotide containing ethenoadenosine, both at 200 μg/l. The metals thus show DNA damage activity in mussel gill with distinct mechanisms involving both direct and indirect (oxidative) DNA damage, as well as impairing different DNA repair capacities. A combination of these activities can contribute to adverse effects in these organisms

  6. Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae

    Science.gov (United States)

    Saini, Natalie; Zhang, Yu; Nishida, Yuri; Sheng, Ziwei; Choudhury, Shilpa; Mieczkowski, Piotr; Lobachev, Kirill S.

    2013-01-01

    DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes. PMID:23785298

  7. Localisation and quantification of alkali-labile sites in human spermatozoa by DNA breakage detection-fluorescence in situ hybridisation.

    Science.gov (United States)

    Cortés-Gutiérrez, E I; Dávila-Rodríguez, M I; Cerda-Flores, R M; Fernández, J L; López-Fernández, C; Aragón Tovar, A R; Gosálvez, J

    2015-03-01

    The localisation and quantification of constitutive alkali-labile sites (ALSs) were investigated using a protocol of DNA breakage detection plus fluorescence in situ hybridisation (DBD-FISH) and alkaline single-cell gel electrophoresis (SCGE or comet assay), in spermatozoa of infertile and fertile men. Semen samples from 10 normozoospermic patients undergoing infertility treatment and 10 fertile men were included in this study. ALSs were localised and quantified by DBD-FISH. The region most sensitive to alkali treatment in human spermatozoa was located in the basal region of the head. ALSs were more frequent in spermatozoa of infertile men than in those of fertile men. These results were confirmed by SCGE comet assays. In conclusion, the most intense localisation of hybridisation signals in human spermatozoa, representing the highest density of constitutive ALSs, was not randomly distributed and was predominantly located in the base of the head. Moreover, infertile men presented with an increase in ALS frequency. Further studies are necessary to determine the association between ALS, sperm chromatin organisation and infertility. © 2014 Blackwell Verlag GmbH.

  8. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  9. Persistence of Breakage in Specific Chromosome Bands 6 Years after Acute Exposure to Oil.

    Directory of Open Access Journals (Sweden)

    Alexandra Francés

    Full Text Available The identification of breakpoints involved in chromosomal damage could help to detect genes involved in genetic disorders, most notably cancer. Until now, only one published study, carried out by our group, has identified chromosome bands affected by exposure to oil from an oil spill. In that study, which was performed two years after the initial oil exposure in individuals who had participated in clean-up tasks following the wreck of the Prestige, three chromosomal bands (2q21, 3q27, 5q31 were found to be especially prone to breakage. A recent follow-up study, performed on the same individuals, revealed that the genotoxic damage had persisted six years after oil exposure.To determine whether there exist chromosome bands which are especially prone to breakages and to know if there is some correlation with those detected in the previous study. In addition, to investigate if the DNA repair problems detected previously persist in the present study.Follow-up study performed six years after the Prestige oil spill.Fishermen cooperatives in coastal villages.Fishermen highly exposed to oil spill who participated in previous genotoxic study six years after the oil.Chromosome damage in peripheral lymphocytes. For accurate identification of the breakpoints involved in chromosome damage of circulating lymphocytes, a sequential stain/G-banding technique was employed. To determine the most break-prone chromosome bands, two statistical methods, the Fragile Site Multinomial and the chi-square tests (where the bands were corrected by their length were used. To compare the chromosome lesions, structural chromosome alterations and gaps/breaks between two groups of individuals we used the GEE test which takes into account a possible within-individual correlation. Dysfunctions in DNA repair mechanisms, expressed as chromosome damage, were assessed in cultures with aphidicolin by the GEE test.Cytogenetic analyses were performed in 47 exposed individuals. A total of

  10. Iodine-125 induced DNA strand breakage: Contributions of different physical and chemical radiation action mechanisms

    International Nuclear Information System (INIS)

    Li, W.

    2002-01-01

    The decay of the radioisotope 125 I into 125 Te is typically followed by the emission of two groups of approximately 10 electrons each. In deoxyribonucleic acid (DNA) with 125 I incorporated, these electrons produce various types of damage to DNA, e.g. single and double strand breaks. They occur through direct actions of physical tracks, or indirect actions of radicals produced in water. Among the direct actions one should consider not only the excitation and ionization of DNA by electrons but also the neutralization of highly charged 125m Te ions with electrons from neighboring molecules. The present work begins with a detailed description of electron tracks with the use of the PARTRAC code, compares results with recent experiments, and concludes with a firm assessment of the contribution to the strand break yields from the neutralization effect. (orig.)

  11. Cytotoxicity of an 125I-labelled DNA ligand

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    The subcellular distribution and cytotoxicity of a DNA-binding ligand [ 125 I]-Hoechst 33258 following incubation of K562 cells with the drug was investigated. The ability of a radical scavenger, dimethyl sulphoxide, to protect cells from the 125 I-decay induced cell death was also studied. Three different concentrations and specific activities of the drug were used to provide different ligand : DNA binding ratios. The results demonstrated a trend toward improved delivery of the ligand to the nucleus and to chromatin at higher ligand concentrations, with concomitant increased sensitivity to 125 I-decay induced cytotoxicity and decreased protection by dimethyl sulphoxide. This correlation of radiobiological parameters with subcellular drug distribution is consistent with the classical dogma that attributes cytotoxicity to DNA double-stranded breakage in the vicinity of the site of decay, where the high LET nature of the damage confers minimal sensitivity to radical scavenging

  12. Division-induced DNA double strand breaks in the chromosome terminus region of Escherichia coli lacking RecBCD DNA repair enzyme.

    Directory of Open Access Journals (Sweden)

    Anurag Kumar Sinha

    2017-10-01

    Full Text Available Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant.

  13. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ali, Al-Yousef Sulaiman; Musarrat, Javed

    2012-01-01

    The nano-sized particles present in coal fly ash (CFA) were characterized through the X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM, SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analyses. The XRD data revealed the average crystallite size of the CFA nanoparticles (CFA-NPs) as 14 nm. TEM and SEM imaging demonstrated predominantly spherical and some polymorphic structures in the size range of 11 to 25 nm. The amount of heavy metal associated with CFA particles (μg/g) were determined as Fe (34160.0 ± 1.38), Ni (150.8 ± 0.78), Cu (99.3 ± 0.56) and Cr (64.0 ± 0.86). However, the bioavailability of heavy metals in terms of percent release was in the order as Cr > Ni > Cu > Fe in CFA-dimethyl sulfoxide (DMSO) extract. The comet and cytokinesis blocked micronucleus (CBMN) assays revealed substantial genomic DNA damage in peripheral blood mononuclear (PBMN) cells treated with CFA-NPs in Aq and DMSO extracts. About 1.8 and 3.6 strand breaks per unit of DNA were estimated through alkaline unwinding assay at 1:100 DNA nucleotide/CFA ppm ratios with the Aq and DMSO extracts, respectively. The DNA and mitochondrial damage was invariably greater with CFA-DMSO extract vis-à-vis -Aq extract. Generation of superoxide anions (O 2 • − ) and intracellular reactive oxygen species (ROS) through metal redox-cycling, alteration in mitochondrial potential and 8-oxodG production elucidated CFA-NPs induced oxidative stress as a plausible mechanism for CFA-induced genotoxicity. -- Highlights: ► CFA consists of spherical crystalline nanoparticles in size range of 11–25 nm. ► Alkaline unwinding assay revealed single-strandedness in CFA treated ctDNA. ► CFA nanoparticles exhibited the ability to induce ROS and oxidative DNA damage. ► Comet and CBMN assays revealed DNA and chromosomal breakage in PBMN cells. ► CFA-NPs resulted in mitochondrial membrane damage in PBMN cells.

  14. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ali, Al-Yousef Sulaiman [Department of Medical Laboratory Sciences, College of Applied Medical Science, University of Dammam, P.O. Box 1683, Hafr Al Batin-31991 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh202002 (India)

    2012-10-15

    The nano-sized particles present in coal fly ash (CFA) were characterized through the X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM, SEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analyses. The XRD data revealed the average crystallite size of the CFA nanoparticles (CFA-NPs) as 14 nm. TEM and SEM imaging demonstrated predominantly spherical and some polymorphic structures in the size range of 11 to 25 nm. The amount of heavy metal associated with CFA particles ({mu}g/g) were determined as Fe (34160.0 {+-} 1.38), Ni (150.8 {+-} 0.78), Cu (99.3 {+-} 0.56) and Cr (64.0 {+-} 0.86). However, the bioavailability of heavy metals in terms of percent release was in the order as Cr > Ni > Cu > Fe in CFA-dimethyl sulfoxide (DMSO) extract. The comet and cytokinesis blocked micronucleus (CBMN) assays revealed substantial genomic DNA damage in peripheral blood mononuclear (PBMN) cells treated with CFA-NPs in Aq and DMSO extracts. About 1.8 and 3.6 strand breaks per unit of DNA were estimated through alkaline unwinding assay at 1:100 DNA nucleotide/CFA ppm ratios with the Aq and DMSO extracts, respectively. The DNA and mitochondrial damage was invariably greater with CFA-DMSO extract vis-a-vis -Aq extract. Generation of superoxide anions (O{sub 2} Bullet {sup -}) and intracellular reactive oxygen species (ROS) through metal redox-cycling, alteration in mitochondrial potential and 8-oxodG production elucidated CFA-NPs induced oxidative stress as a plausible mechanism for CFA-induced genotoxicity. -- Highlights: Black-Right-Pointing-Pointer CFA consists of spherical crystalline nanoparticles in size range of 11-25 nm. Black-Right-Pointing-Pointer Alkaline unwinding assay revealed single-strandedness in CFA treated ctDNA. Black-Right-Pointing-Pointer CFA nanoparticles exhibited the ability to induce ROS and oxidative DNA damage. Black-Right-Pointing-Pointer Comet and CBMN assays revealed DNA and chromosomal

  15. DNA conformation of Chinese hamster V79 cells and sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Olive, P.L.; Hilton, J.; Durand, R.E.

    1986-01-01

    Chinese hamster V79 cells grown for 20 h in suspension culture form small clusters of cells (spheroids) which are more resistant to killing by ionizing radiation than V79 cells grown as monolayers. This resistance appears to be due to the greater capacity of cells grown in contact to repair radiation damage. Attempts to relate this ''contact effect'' to differences in DNA susceptibility or DNA repair capacity have provided conflicting results. Two techniques, alkaline sucrose gradient sedimentation and alkaline elution, show no difference in the amounts of radiation-induced DNA single-strand breakage or its repair between suspension or monolayer cells. However, using the alkali-unwinding assay, the rate of DNA unwinding is much slower for suspension cells than for monolayer cells. Interestingly, a decrease in salt concentration or in pH of the unwinding solution eliminates these differences in DNA unwinding kinetics. A fourth assay, sedimentation of nucleoids on neutral sucrose gradients, also shows a significant decrease in radiation damage produced in suspension compared to monolayer cultures. It is believed that this assay measures differences in DNA conformation (supercoiling) as well as differences in DNA strand breakage. We conclude from these four assays that the same number of DNA strand breaks/Gy is produced in monolayer and spheroid cells. However, changes in DNA conformation or packaging occur when cells are grown as spheroids, and these changes are responsible for reducing DNA damage by ionizing radiation

  16. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    Science.gov (United States)

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    International Nuclear Information System (INIS)

    Kleijer, W.J.; Kraan, M. van der; Los, F.J.; Jaspers, N.G.J.

    1994-01-01

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author)

  18. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Haines, Thomas R; Butcher, Darci T; Rodenhiser, David I

    2004-01-01

    Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

  19. Effect of particle breakage on cyclic densification of ballast: A DEM approach

    International Nuclear Information System (INIS)

    Thakur, P K; Vinod, J S; Indraratna, B

    2010-01-01

    In this paper, an attempt has been made to investigate the effect of particle breakage on densification behaviour of ballast under cyclic loading using Discrete Element Method (DEM). Numerical simulations using PFC 2D have been carried out on an assembly of angular particles with and without incorporation of particle breakage. Two-dimensional projection of angular ballast particles were simulated using clusters of bonded circular particles. Degradation of the bonds within a cluster was considered to represent particle breakage. Clump logic was used to make the cluster of particles unbreakable. DEM simulation results highlight that the particle breakage has a profound influence on the cyclic densification behaviour of ballast. The deformation behaviour exhibited by the assembly with breakage is in good agreement with the laboratory experiments. In addition, the evolution of particle displacement vectors clearly explains the breakage mechanism and associated deformations during cyclic loading.

  20. Analysis of DNA polymerase activity in Petunia protoplasts treated with clastogenic agents

    International Nuclear Information System (INIS)

    Benediktsson, I.; Spampinato, C.P.; Andreo, C.S.; Schieder, O.

    1994-01-01

    Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the role of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity. (author)

  1. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  2. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, Tarique [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India); Zafaryab, Md [Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi 110025 (India); Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India); Moshahid Alam Rizvi, M. [Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi 110025 (India); Tabish, Mohammad, E-mail: tabish.bcmlab@gmail.com [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India)

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.

  3. Radiation-induced DNA damage as a function of DNA hydration

    International Nuclear Information System (INIS)

    Swarts, S.G.; Miao, L.; Wheeler, K.T.; Sevilla, M.D.; Becker, D.

    1995-01-01

    Radiation-induced DNA damage is produced from the sum of the radicals generated by the direct ionization of the DNA (direct effect) and by the reactions of the DNA with free radicals formed in the surrounding environment (indirect effect). The indirect effect has been believed to be the predominant contributor to radiation-induced intracellular DNA damage, mainly as the result of reactions of bulk water radicals (e.g., OH·) with DNA. However, recent evidence suggests that DNA damage, derived from the irradiation of water molecules that are tightly bound in the hydration layer, may occur as the result of the transfer of electron-loss centers (e.g. holes) and electrons from these water molecules to the DNA. Since this mechanism for damaging DNA more closely parallels that of the direct effect, the irradiation of these tightly bound water molecules may contribute to a quasi-direct effect. These water molecules comprise a large fraction of the water surrounding intracellular DNA and could account for a significant proportion of intracellular radiation-induced DNA damage. Consequently, the authors have attempted to characterize this quasi-direct effect to determine: (1) the extent of the DNA hydration layer that is involved with this effect, and (2) what influence this effect has on the types and quantities of radiation-induced DNA damage

  4. Determinants of condom breakage among female sex workers in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Bradley Janet

    2011-12-01

    Full Text Available Abstract Background Condoms are effective in preventing the transmission of HIV and other sexually transmitted infections, when properly used. However, recent data from surveys of female sex workers (FSWs in Karnataka in south India, suggest that condom breakage rates may be quite high. It is important therefore to quantify condom breakage rates, and examine what factors might precipitate condom breakage, so that programmers can identify those at risk, and develop appropriate interventions. Methods We explored determinants of reported condom breakage in the previous month among 1,928 female sex workers in four districts of Karnataka using data from cross-sectional surveys undertaken from July 2008 to February 2009. Using stepwise multivariate logistic regression, we examined the possible determinants of condom breakage, controlling for several independent variables including the district and client load. Results Overall, 11.4% of FSWs reported at least one condom break in the previous month. FSWs were much more likely to report breakage if under 20 years of age (AOR 3.43, p = 0.005; if divorced/ separated/widowed (AOR 1.52, p = 0.012; if they were regular alcohol users (AOR 1.63, p = 0.005; if they mostly entertained clients in lodges/rented rooms (AOR 2.99, p = 0.029 or brothels (AOR 4.77, p = 0.003, compared to street based sex workers; if they had ever had anal sex (AOR 2.03, p = 0.006; if the sex worker herself (as opposed to the client applied the condom at last use (AOR 1.90, p Conclusions The reported incidence of condom breakage was high in this study, and this is a major concern for HIV/STI prevention programs, for which condom use is a key prevention tool. Younger and more marginalized female sex workers were most vulnerable to condom breakage. Special effort is therefore required to seek out such women and to provide information and skills on correct condom use. More research is also needed on what specific situational parameters

  5. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Campos-Nebel, Marcelo de; Larripa, Irene; Gonzalez-Cid, Marcela

    2008-01-01

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by γH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB

  6. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced

  7. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  8. Empirical Formulae for Breakage of Dolosse and Tetrapods

    OpenAIRE

    Burcharth, H. F.; d'Angremond, K.; Meer, W. van der; Liu, Z.

    2000-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse are widely used for rubble mound breakwaters. Many failures of such breakwaters were caused by unforeseen early breakage of the units, thus revealing an inbalance between the strength (structural integrity) of the units and the hydraulic stability (resistance to displacements) of the armour layers. Breakage occurs when the stresses from the static, pulsating and impact loads exceeds the tensile strength of the concrete....

  9. An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds.

    Science.gov (United States)

    Ren, C; Kermode, A R

    2000-09-01

    Pectin methyl esterase (PME) (EC 3.1.1.11) catalyzes the hydrolysis of methylester groups of cell wall pectins. We investigated the role of this enzyme in dormancy termination and germination of yellow cedar (Chamaecyparis nootkatensis [D. Don] Spach) seeds. PME activity was not detected in dormant seeds of yellow cedar but was induced and gradually increased during moist chilling; high activity coincided with dormancy breakage and germination. PME activity was positively correlated to the degree of dormancy breakage of yellow cedar seeds. The enzyme produced in different seed parts and in seeds at different times during moist chilling, germination, and early post-germinative growth consisted of two isoforms, both basic with isoelectric points of 8.7 and 8.9 and the same molecular mass of 62 kD. The pH optimum for the enzyme was between 7.4 and 8.4. In intact yellow cedar seeds, activities of the two basic isoforms of PME that were induced in embryos and in megagametophytes following dormancy breakage were significantly suppressed by abscisic acid. Gibberellic acid had a stimulatory effect on the activities of these isoforms in embryos and megagametophytes of intact seeds at the germinative stage. We hypothesize that PME plays a role in weakening of the megagametophyte, allowing radicle emergence and the completion of germination.

  10. Determinants of condom breakage among female sex workers in Karnataka, India.

    Science.gov (United States)

    Bradley, Janet; Rajaram, S; Alary, Michel; Isac, Shajy; Washington, Reynold; Moses, Stephen; Ramesh, B M

    2011-12-29

    Condoms are effective in preventing the transmission of HIV and other sexually transmitted infections, when properly used. However, recent data from surveys of female sex workers (FSWs) in Karnataka in south India, suggest that condom breakage rates may be quite high. It is important therefore to quantify condom breakage rates, and examine what factors might precipitate condom breakage, so that programmers can identify those at risk, and develop appropriate interventions. We explored determinants of reported condom breakage in the previous month among 1,928 female sex workers in four districts of Karnataka using data from cross-sectional surveys undertaken from July 2008 to February 2009. Using stepwise multivariate logistic regression, we examined the possible determinants of condom breakage, controlling for several independent variables including the district and client load. Overall, 11.4% of FSWs reported at least one condom break in the previous month. FSWs were much more likely to report breakage if under 20 years of age (AOR 3.43, p = 0.005); if divorced/ separated/widowed (AOR 1.52, p = 0.012); if they were regular alcohol users (AOR 1.63, p = 0.005); if they mostly entertained clients in lodges/rented rooms (AOR 2.99, p = 0.029) or brothels (AOR 4.77, p = 0.003), compared to street based sex workers; if they had ever had anal sex (AOR 2.03, p = 0.006); if the sex worker herself (as opposed to the client) applied the condom at last use (AOR 1.90, p < 0.001); if they were inconsistent condom users (AOR 2.77, p < 0.001); and if they had never seen a condom demonstration (AOR 2.37, p < 0.001). The reported incidence of condom breakage was high in this study, and this is a major concern for HIV/STI prevention programs, for which condom use is a key prevention tool. Younger and more marginalized female sex workers were most vulnerable to condom breakage. Special effort is therefore required to seek out such women and to provide information and skills on correct

  11. Characterization of TCHQ-induced genotoxicity and mutagenesis using the pSP189 shuttle vector in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing, E-mail: avaecn@gmail.com [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yu Shouyi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Jiao Shouhai [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Shandong Institute of Endocrine and Metabolic Diseases, Shandong Academy of Medical Sciences, Jinan 250062 (China); Lv Xiaowen [Feed Safety Reference Laboratory of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Ma Min [Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Benzhan; Du Yuguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2012-01-03

    Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.

  12. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2012-01-01

    cytometry analysis of annexin V − /7-AAD + stained cells demonstrated substantial reduction in live population due to complete loss of cell membrane integrity. Overall the data suggested the formation of butachlor–DNA complex, as an initiating event in butachlor-induced DNA damage. The results elucidated the oxidative role of butachlor in intracellular ROS production, and consequent mitochondrial dysfunction, oxidative DNA damage, and chromosomal breakage, which eventually triggers necrosis in human PBMN cells.

  13. Biomonitoring of genotoxic risk in radar facility workers: comparison of the comet assay with micronucleus assay and chromatid breakage assay

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    Genotoxic risks of occupational exposure in a radar facility were evaluated by using alkaline comet assay, micronucleus assay and chromatid breakage assay on peripheral blood leukocytes in exposed subjects and corresponding controls. Results show that occupational exposure to microwave radiation correlates with an increase of genome damage in somatic cells. The levels of DNA damage in exposed subjects determined by using alkaline comet assay were increased compared to control and showed interindividual variations. Incidence of micronuclei was also significantly increased compared to baseline control values. After short exposure of cultured lymphocytes to bleomycin, cells of occupationally exposed subjects responded with high numbers of chromatid breaks. Although the level of chromosome damage generated by bleomycin varied greatly between individuals, in exposed subjects a significantly elevated number of chromatid breaks was observed. Our results support data reported in literature indicating that microwave radiation represents a potential DNA-damaging hazard. Alkaline comet assay is confirmed as a sensitive and highly reproducible technique for detection of primary DNA damage inflicted in somatic cells. Micronucleus assay was confirmed as reliable bio-markers of effect and chromatid breakage assay as sensitive bio-marker of individual cancer susceptibility. The results obtained also confirm the necessity to improve measures and to perform accurate health surveillance of individuals occupationally exposed to microwave radiation

  14. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  15. Further delineation of the Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Taalman, R.D.; Hustinx, T.W.; Weemaes, C.M.; Seemanova, E.; Schmidt, A.; Passarge, E.; Scheres, J.M.

    1989-01-01

    We report on five independent families with a chromosome instability disorder that earlier had been called the Nijmegen breakage syndrome (NBS). These families, two from the Netherlands and three from Czechoslovakia, had a total of eight patients, five of whom are still alive. The main clinical manifestations were microcephaly, short stature, a ''bird-like'' face, immunological defects involving both the humoral and cellular system. In four of the five living patients it has been possible to study the chromosomes of cultured lymphocytes. The basic karyotype in these patients were normal, but in 17% to 35% of the metaphases rearrangements were found, preferentially involving chromosomes 7 and/or 14 at the sites 7p13, 7q34, and 14q11. The chromosomes of all five living patients were very sensitive to ionizing radiation. In addition, the DNA synthesis in their cultured lymphocytes and fibroblasts was more resistant to X-rays than in cells from controls. The NBS shares a number of important features with ataxia telangiectasia (AT). Both syndromes are characterized by the occurrence of typical rearrangements of chromosomes 7 and/or 14, cellular and chromosomal hypersensitivity to X-irradiation, radioresistance of DNA replication and immunodeficiency. However, there are also obvious differences: NBS patients have microcephaly but neither ataxia nor telangiectasia, and in contrast to the situation in AT the alpha-fetoprotein level in their serum is normal

  16. Interrelating the breakage and composition of mined and drill core coal

    Science.gov (United States)

    Wilson, Terril Edward

    Particle size distribution of coal is important if the coal is to be beneficiated, or if a coal sales contract includes particle size specifications. An exploration bore core sample of coal ought to be reduced from its original cylindrical form to a particle size distribution and particle composition that reflects, insofar as possible, a process stream of raw coal it represents. Often, coal cores are reduced with a laboratory crushing machine, the product of which does not match the raw coal size distribution. This study proceeds from work in coal bore core reduction by Australian investigators. In this study, as differentiated from the Australian work, drop-shatter impact breakage followed by dry batch tumbling in steel cylinder rotated about its transverse axis are employed to characterize the core material in terms of first-order and zeroth-order breakage rate constants, which are indices of the propensity of the coal to degrade during excavation and handling. Initial drop-shatter and dry tumbling calibrations were done with synthetic cores composed of controlled low-strength concrete incorporating fly ash (as a partial substitute for Portland cement) in order to reduce material variables and conserve difficult-to-obtain coal cores. Cores of three different coalbeds--Illinois No. 6, Upper Freeport, and Pocahontas No. 5 were subjected to drop-shatter and dry batch tumbling tests to determine breakage response. First-order breakage, characterized by a first-order breakage index for each coal, occurred in the drop-shatter tests. First- and zeroth-order breakage occurred in dry batch tumbling; disappearance of coarse particles and creation of fine particles occurred in a systematic way that could be represented mathematically. Certain of the coal cores available for testing were dry and friable. Comparison of coal preparation plant feed with a crushed bore core and a bore core prepared by drop-shatter and tumbling (all from the same Illinois No.6 coal mining

  17. Dependence of rates of breakage on fines content in wet ball mill grinding

    Science.gov (United States)

    Bhattacharyya, Anirban

    The following research fundamentally deals with the cause and implications of nonlinearities in breakage rates of materials in wet grinding systems. The innate dependence of such nonlinearities on fines content and the milling environment during wet grinding operations is also tested and observed. Preferential breakage of coarser size fractions as compared to the finer size fractions in a particle population were observed and discussed. The classification action of the pulp was deemed to be the probable cause for such a peculiarity. Ores with varying degrees of hardness and brittleness were used for wet grinding experiments, primarily to test the variations in specific breakage rates as a function of varying hardness. For this research, limestone, quartzite, and gold ore were used. The degree of hardness is of the order of: limestone, quartzite, gold ore. Selection and breakage function parameters were determined in the course of this research. Functional forms of these expressions were used to compare experimentally derived parameter estimates. Force-fitting of parameters was not done in order to examine the realtime behavior of particle populations in wet grinding systems. Breakage functions were established as being invariant with respect to such operating variables like ball load, mill speed, particle load, and particle size distribution of the mill. It was also determined that specific selection functions were inherently dependent on the particle size distribution in wet grinding systems. Also, they were consistent with inputs of specific energy, according to grind time. Nonlinearity trends were observed for 1st order specific selection functions which illustrated variations in breakage rates with incremental inputs of grind time and specific energy. A mean particle size called the fulcrum was noted below which the nonlinearities in the breakage trends were observed. This magnitude of the fulcrum value varied with percent solids and slurry filling, indicating

  18. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Braddock, M.

    1985-07-01

    The hydroxyl radical (OH radical) is the most damaging radical produced by the effect of ionizing radiation in water. The rate of reaction of the OH radical with purified, native and isodisperse DNA has been determined as compared with calf thymus DNA. This has been achieved by direct observation of the rate of formation of the DNA-OH radical adduct, and by competition with SCN - . Results obtained from direct observation are consistent with calculations which have been performed using the encounter frequency model of Braams and Ebert. However, results obtained for OH radical with DNA derived from competition plots suggest a rate constant somewhat lower than that obtained from direct observation. The relative merits of both techniques are discussed. In order to study the effect of energy deposited directly in the DNA, dry films of purified plasmid DNA have been irradiated in a system where the indirect effects of radical interaction have been minimized. The present results indicate that with different molecular lengths of plasmid DNA, non-random breakage may occur, and that additional damage may be brought about at sites of previously existing damage. Differences in the sensitivity of plasmid DNA molecules of varying lengths to radiation induced double strand breaks have been demonstrated. (author)

  19. EVALUATION OF CHROMOSOME BREAKAGE AND DNA INTEGRITY IN SPERM: AN INVESTIGATION OF REMOTE SEMEN COLLECTION CONDITIONS

    Science.gov (United States)

    Home collection of ejaculated semen would facilitate participation rates and geographic diversity in reproductive epidemiology studies. Our study addressed concerns that home collection and overnight mail return might induce chromosome/DNA damage. We collected semen from 10 hea...

  20. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo

    1997-01-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a 60 Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 μm) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 μm) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 μm). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs

  1. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  2. DNA damage-inducible transcripts in mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Alamo, I. Jr.; Hollander, M.C.

    1988-01-01

    Hybridization subtraction at low ratios of RNA to cDNA was used to enrich for the cDNA of transcripts increased in Chinese hamster cells after UV irradiation. Forty-nine different cDNA clones were isolated. Most coded for nonabundant transcripts rapidly induced 2- to 10-fold after UV irradiation. Only 2 of the 20 cDNA clones sequenced matched known sequences (metallothionein I and II). The predicted amino acid sequence of one cDNA had two localized areas of homology with the rat helix-destabilizing protein. These areas of homology were at the two DNA-binding sites of this nucleic acid single-strand-binding protein. The induced transcripts were separated into two general classes. Class I transcripts were induced by UV radiation and not by the alkylating agent methyl methanesulfonate. Class II transcripts were induced by UV radiation and by methyl methanesulfonate. Many class II transcripts were induced also by H2O2 and various alkylating agents but not by heat shock, phorbol 12-tetradecanoate 13-acetate, or DNA-damaging agents which do not produce high levels of base damage. Since many of the cDNA clones coded for transcripts which were induced rapidly and only by certain types of DNA-damaging agents, their induction is likely a specific response to such damage rather than a general response to cell injury

  3. Correlation between γ-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Murray, D.

    1994-01-01

    We examined the degree of correlation between γ-ray-induced lethality and DNA double-strand breaks (dsbs) after biologically relevant doses of radiation. Radiation lethality was modified by treating 14 C-labelled Chinese hamster ovary cells with either of two aminothiols (WR-1065 or WR-255591) and the associated effect on dsb induction was determined by pulsed-field gel electrophoresis (PFGE). The use of phosphorimaging to analyse the distribution of 14 C-activity in the gel greatly improved the low-dose resolution of the PFGE assay. Both WR-1065 and WR-255591 protected against dsb induction and lethality to a similar extent after low doses of radiation. although this correlation broke down when supralethal doses were used to induce dsbs. Thus, the level of dsbs induced in these cells as measured by PFGE after survival-curve doses of γ-radiation is consistently predictive of the degree of lethality obtained, implying a cause-effect relationship between these two parameters and confirming previous results obtained using the neutral filter elution assay for dsbs. (author)

  4. Hallermann-Streiff syndrome associated with small cerebellum, endocrinopathy and increased chromosomal breakage.

    Science.gov (United States)

    Hou, J W

    2003-07-01

    Hallermann-Streiff syndrome (HSS) is a rare clinic entity of unknown aetiology. Further clinical and metabolic-genetic evaluations are indicated. A 2-mo-old female baby presented with ocular abnormalities and severe failure to thrive since birth. The clinical features were compatible with the diagnosis of HSS. Further imaging, metabolic and cytogenetic examinations were performed. Features characteristic of HSS were dyscephaly with mandibular and nasal cartilage hypoplasia, microphthalmia, bilateral cataracts with congenital glaucoma, natal teeth and proportionate dwarfism. Rare anomalies such as choanal atresia and small cerebellum, very low insulin-like growth factor I level, hypothyroidism, generalized organic aciduria were also noticed. An increased chromosomal breakage rate is suggestive of the existence of some DNA repair defects in HSS patients. The associated anomalies in this patient may broaden the clinical spectrum of HSS. Underlying conditions of organic aciduria, growth factor deficiency and impaired DNA repair are likely to contribute to the progeria-like facies, congenital cataracts and growth failure.

  5. Repetitious nature of repaired DNA in mammalian cells

    International Nuclear Information System (INIS)

    1978-01-01

    The report consists of three appendices, as follows: summary of preliminary studies of the comparative DNA repair in normal lymphoblastoid and Burkitt's lymphoma cell lines; nonuniform reassociation of human lymphoblastoid cell DNA repair replicated following methyl methane sulfonate treatment; and preliminary DNA single-strand breakage studies in the L5178Y cell line

  6. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed...

  7. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.; Steiner, M.E.; Kalvonjian, S.L.

    1985-01-01

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  8. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  9. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  10. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  11. The shape, stability and breakage of pendant liquid bridges

    Science.gov (United States)

    Padday, J. F.; Pétré, G.; Rusu, C. G.; Gamero, J.; Wozniak, G.

    1997-12-01

    Pendant liquid bridges are defined as pendant drops supporting a solid axisymmetric endplate at their lower end. The stability and shape properties of such bridges are defined in terms of the capillary properties of the system and of the mass and radius of the lower free-floating endplate. The forces acting in the pendant liquid bridge are defined exactly and expressed in dimensionless form. Numerical analysis has been used to derive the properties of a given bridge and it is shown that as the bridge grows by adding more liquid to the system a maximum volume is reached. At this maximum volume, the pendant bridge becomes unstable with the length of the bridge increasing spontaneously and irreversibly at constant volume. Finally the bridge breaks with the formation of a satellite drop or an extended thread. The bifurcation and breakage processes have been recorded using a high-speed video camera with a digital recording rate of up to 6000 frames per second. The details of the shape of the bridge bifurcation and breakage for many pendant bridge systems have been recorded and it is shown that satellite drop formation after rupture is not always viscosity dependent. Bifurcation and breakage in simulated low gravity demonstrated that breakage was very nearly symmetrical about a plane through the middle of the pendant bridge.

  12. Breakage of cephalomedullary nailing in operative treatment of trochanteric and subtrochanteric femoral fractures.

    Science.gov (United States)

    von Rüden, Christian; Hungerer, Sven; Augat, Peter; Trapp, Oliver; Bühren, Volker; Hierholzer, Christian

    2015-02-01

    Mechanical breakage of cephalomedullary nail osteosynthesis is a rare complication attributed to delayed fracture union or nonunion. This study presents a series of cases of breakage and secondary lag screw dislocation after cephalomedullary nailing. The aim of this study was to identify factors that contribute to cephalomedullary nail breakage. In a retrospective case series review between 02/2005 and 12/2013, we analyzed 453 patients with trochanteric and subtrochanteric fracture who had been treated by cephalomedullary nailing. Fractures were classified according to AO/OTA classification. 13 patients with cephalomedullary nail breakage were included (failure rate 2.9 %). Seven patients were women, and six men with a mean age of 72 years (range 35-94). Implant breakage occurred 6 months postoperatively (range 1-19 months). In ten cases, breakage was secondary to delayed or nonunion, which was thought to be mainly due to insufficient reduction of the fracture, and in two cases due to loss of the lag screw because of missing set screw. In one case, breakage was apparent during elective metal removal following complete fracture healing. Short-term outcome was evaluated 6 months after operative revision using Harris hip score in 11 out of 13 patients showing a mean score of 84 %. Complete radiological fracture healing has been found in 11 patients available for follow-up within 6 months after revision surgery. Breakage of cephalomedullary nail osteosynthesis of trochanteric fractures is a severe complication. The results of our study demonstrate that revision surgery provides good clinical and radiological short-term results. Predominately, failures of trochanteric fractures are related to lack of surgeon performance. Therefore, application of the implant requires accurate preoperative planning, advanced surgical experience to evaluate the patient and the fracture classification, and precise surgical technique including attention to detail and anatomical

  13. Radioprotective action of WR-1065 on radiation-induced DNA strand breaks in cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Murray, D.; VanAnkeren, S.C.; Milas, L.; Meyn, R.E.

    1988-01-01

    We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was, therefore, probably a result of H 2 O 2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought

  14. DNA alterations photosensitized by tetracycline and some of its derivatives

    International Nuclear Information System (INIS)

    Piette, J.; Decuyper, J.; Van de Vorst, A.

    1986-01-01

    Bacteriophage M13 mp10 DNA were irradiated with near-UV light in the presence of tetracycline derivatives and primed with synthetic oligonucleotide to be used for DNA synthesis using Escherichia coli DNA polymerase. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis and mapped precisely. All the synthesis stops occurred before or at the level of guanine residues, showing that the photoreaction mediated by tetracycline derivatives led to a preferential alteration of guanine residues. These lesions were demonstrated to be induced in DNA through a pathway involving singlet oxygen. Tetracycline derivatives also photoinduced the breakage of the DNA sugar-phosphate backbone monitored by the conversion of supercoiled phi X174 DNA to a relaxed form. This lesion was shown to be initiated by hydroxyl radicals. The production of this free radical has been confirmed by electron paramagnetic resonance (EPR) spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. In addition to the EPR signal due to OH radicals trapping another unassigned signal has been detected

  15. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  16. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  17. Impact of polymeric membrane breakage on drinking water quality and an online detection method of the breakage.

    Science.gov (United States)

    Wu, Qilong; Zhang, Zhenghua; Cao, Guodong; Zhang, Xihui

    2017-10-15

    Polymeric membrane has been widely used for the treatment of drinking water in China, and the total treating capacity has reached up to 3.8 million m 3 /d. However, the membrane breakage found in the membrane modules in many water treatment plants resulted in an increase in turbidity and bacterial amount in the membrane permeate. In this study, a membrane module running for 3 years in a full-scale application was examined in terms of the breaking positions and the numbers of the broken fibers. It was found that most of the breaking positions were mainly on the outlet side of the module and that the distance from these points to the outlet was about 1/10-2/10 length of the membrane module. The lab-scale tests showed that the increase of the numbers of the breaking fibers in the membrane module (the breaking fibers were from 1 to 4 of 75 fibers) resulted in the increase in turbidity, particle count and the amount of total bacteria and coliform bacteria. Meanwhile, the water quality after the filtration with broken membrane fibers was similar to the quality of the raw water, which indicated that once the membrane fiber breakage occurred in the membrane module, the quality of drinking water after membrane filtration was significantly affected. Furthermore, the breaking position closer to the outlet side of the membrane module exposed much higher microbiological risk than those in the middle or near the bottom side. A pilot scale test was conducted by using a membrane module with 6600 fibers, and the effect of the membrane breakage (1-4 broken fibers) on water quality was also investigated. The results indicated that periodical backwashing caused drastic fluctuation of turbidity, particle count and the bacterial amount in the permeate water, which might be due to the washing force and self-blocking action inside the hollow fibers. Moreover, there is a good quantitative relationship (R 2 = 0.945) between particle count and the bacterial amount, which indicated that an

  18. The use of ultraviolet light in the fractionation of chromatin containing unsubstituted and bromodeoxyuridine-substituted DNA

    International Nuclear Information System (INIS)

    Taichman, L.B.

    1979-01-01

    Two procedures are described for the fractionation of chromatin containing unsubstituted (LL) DNA and DNA unifilarly substituted with bromodeoxyuridine (HL). The two procedures rely upon the sensitivity of bromodeoxyuridine-containing DNA to UV light to induce either strand breakage or protein crosslinking. When a mixture of LL and HL chromatin is irradiated with UV light, the HL DNA fragments into molecules of smaller molecular weight than the LL DNA and crosslinks more chromosomal protein than the LL DNA. LL and HL chromatin can be fractionated on the basis of size by centrifuging through a neutral sucrose gradient. The HL DNA-protein adducts that are generated by the UV light have a unique buoyant density and may be isolated by isopycnic centrifugation in Cs 2 S0 4 . The ability to fractionate LL and HL chromatin permits certain studies on the structure of replicating chromatin. (author)

  19. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  20. Photosensitization by iodinated DNA minor groove binding ligands: Evaluation of DNA double-strand break induction and repair.

    Science.gov (United States)

    Briggs, Benjamin; Ververis, Katherine; Rodd, Annabelle L; Foong, Laura J L; Silva, Fernando M Da; Karagiannis, Tom C

    2011-05-03

    Iodinated DNA minor groove binding bibenzimidazoles represent a unique class of UVA photosensitizer and their extreme photopotency has been previously characterized. Earlier studies have included a comparison of three isomers, referred to as ortho-, meta- and para-iodoHoechst, which differ only in the location of the iodine substituent in the phenyl ring of the bibenzimidazole. DNA breakage and clonogenic survival studies in human erythroleukemic K562 cells have highlighted the higher photo-efficiency of the ortho-isomer (subsequently designated UV(A)Sens) compared to the meta- and para-isomers. In this study, the aim was to compare the induction and repair of DNA double-strand breaks induced by the three isomers in K562 cells. Further, we examined the effects of the prototypical broad-spectrum histone deacetylase inhibitor, Trichostatin A, on ortho-iodoHoechst/UVA-induced double-strand breaks in K562 cells. Using γH2AX as a molecular marker of the DNA lesions, our findings indicate a disparity in the induction and particularly, in the repair kinetics of double-strand breaks for the three isomers. The accumulation of γH2AX foci induced by the meta- and para-isomers returned to background levels within 24 and 48 h, respectively; the number of γH2AX foci induced by ortho-iodoHoechst remained elevated even after incubation for 96 h post-irradiation. These findings provide further evidence that the extreme photopotency of ortho-iodoHoechst is due to not only to the high quantum yield of dehalogenation, but also to the severity of the DNA lesions which are not readily repaired. Finally, our findings which indicate that Trichostatin A has a remarkable potentiating effect on ortho-iodoHoechst/UVA-induced DNA lesions are encouraging, particularly in the context of cutaneous T-cell lymphoma, for which a histone deacetylase inhibitor is already approved for therapy. This finding prompts further evaluation of the potential of combination therapies. Copyright © 2011

  1. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  2. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  3. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient...... recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1...

  4. The risk of capsular breakage from phacoemulsification needle contact with the lens capsule: a laboratory study.

    Science.gov (United States)

    Meyer, Jay J; Kuo, Annie F; Olson, Randall J

    2010-06-01

    To determine capsular breakage risk from contact by phacoemulsification needles by machine and tip type. Experimental laboratory investigation. Infiniti (Alcon, Inc.) with Intrepid cartridges and Signature (Abbott Medical Optics, Inc.) phacoemulsification machines were tested using 19- and 20-gauge sharp and rounded tips. Actual and unoccluded flow vacuum were determined at 550 mm Hg, bottle height of 75 cm, and machine-indicated flow rate of 60 mL/minute. Breakage from brief tip contact with a capsular surrogate and human cadaveric lenses was calculated. Nineteen-gauge tips had more flow and less unoccluded flow vacuum than 20-gauge tips for both machines, with highest unoccluded flow vacuum in the Infiniti. The 19-gauge sharp tip was more likely than the 20-gauge sharp tip to cause surrogate breakage for Signature with micropulse and Ellips (Abbott Medical Optics, Inc.) ultrasound at 100% power. For Infiniti using OZil (Alcon, Inc.) ultrasound, 20-gauge sharp tips were more likely than 19-gauge sharp tips to break the membrane. For cadaveric lenses, using rounded 20-gauge tips at 100% power, breakage rates were micropulse (2.3%), Ellips (2.3%), OZil (5.3%). Breakage rates for sharp 20-gauge Ellips tips were higher than for rounded tips. Factors influencing capsular breakage may include active vacuum at the tip, flow rate, needle gauge, and sharpness. Nineteen-gauge sharp tips were more likely than 20-gauge tips to cause breakage in lower vacuum methods. For higher-vacuum methods, breakage is more likely with 20-gauge than with 19-gauge tips. Rounded-edge tips are less likely than sharp-edged tips to cause breakage. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  6. Cranial MRI in the Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, M.; Chrzanowska, K.H.; Krajewska-Walasek, M.; Sikorska, J.; Walecki, J.; Jozwiak, S.; Kleijer, W.J.

    2000-01-01

    We present the results of MRI examinations in ten patients with documented Nijmegen breakage syndrome (NBS), aged 1.75-19 years. T1-, Proton-Density- and T2-weighted spin-echo sequences were performed in three planes. All patients showed microcephaly with decreased size of the frontal lobes and narrow frontal horns. In four patients agenesis of the posterior part of the corpus callosum was found, with colpocephaly and temporal horns dilatation. In one patient callosal hypoplasia was accompanied by abnormal cerebrospinal fluid spaces and wide cerebral cortex, suspicious of pachygyria. Sinusitis was present in all ten patients, as a result of primary immunodeficiency. As in ataxia teleangiectasia and other breakage syndromes, patients with NBS show an inherited susceptibility to malignancy and hypersensitivity to X- and γ-radiation. CT is therefore contraindicated in these patients and MRI should be the method of choice for diagnostic imaging. (orig.)

  7. Parvovirus infection-induced DNA damage response

    Science.gov (United States)

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  8. DNA cleavage agents from Schisandra propinqua var. sinensis

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... 2Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of ... DNA strand breakage process is involved in various bio- ..... Bioactive prenylated flavonoids from the stem bark.

  9. UVA photoactivation of DNA containing halogenated thiopyrimidines induces cytotoxic DNA lesions

    Science.gov (United States)

    Brem, Reto; Zhang, Xiaohui; Xu, Yao-Zhong; Karran, Peter

    2015-01-01

    Photochemotherapy, the combination of a photosensitiser and ultraviolet (UV) or visible light, is an effective treatment for skin conditions including cancer. The high mutagenicity and non-selectivity of photochemotherapy regimes warrants the development of alternative approaches. We demonstrate that the thiopyrimidine nucleosides 5-bromo-4-thiodeoxyuridine (SBrdU) and 5-iodo-4-thiodeoxyuridine (SIdU) are incorporated into the DNA of cultured human and mouse cells where they synergistically sensitise killing by low doses of UVA radiation. The DNA halothiopyrimidine/UVA combinations induce DNA interstrand crosslinks, DNA-protein crosslinks, DNA strand breaks, nucleobase damage and lesions that resemble UV-induced pyrimidine(6-4)pyrimidone photoproducts. These are potentially lethal DNA lesions and cells defective in their repair are hypersensitive to killing by SBrdU/UVA and SIdU/UVA. DNA SIdU and SBrdU generate lethal DNA photodamage by partially distinct mechanisms that reflect the different photolabilities of their C–I and C–Br bonds. Although singlet oxygen is involved in photolesion formation, DNA SBrdU and SIdU photoactivation does not detectably increase DNA 8-oxoguanine levels. The absence of significant collateral damage to normal guanine suggests that UVA activation of DNA SIdU or SBrdU might offer a strategy to target hyperproliferative skin conditions that avoids the extensive formation of a known mutagenic DNA lesion. PMID:25747491

  10. Breakage of Agglomerates : Attrition, Abrasion and Compression

    NARCIS (Netherlands)

    Van Laarhoven, B.

    2010-01-01

    In many industries particulate solids are handled in different forms. When producing particles breakage is an important wanted, in the case of grinding, or unwanted phenomenon. Granules often consist of more than one component and multiple phases. This means that granules are strongly anisotropic

  11. Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by rose bengal and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Foote, C S; Krinsky, N I

    1984-01-01

    An oxygen enhancement ratio of 10 for the induction of backbone single-strand breaks (SSBs) in purified deoxyribonucleic acid (DNA) by monochromatic 365 nm UV radiation was obtained. Similarly, a dose reduction factor of 10 was observed when the DNA was irradiated in the presence of 0.1 M diazabicyclo(2.2.2)octane (DABCO). To determine whether this breakage of DNA was due to the action of a reactive oxygen species such as singlet oxygen, we used the photosensitizing dye Rose Bengal and visible light as a system for generating singlet oxygen. Treatment of the DNA with Rose Bengal and 545 nm monochromatic light enhanced the rate of induction of SSBs six times, compared with the rate we obtained when the light was used alone. Elimination of oxygen or addition of 0.1 M DABCO during the 545 nm irradiation in the presence of Rose Bengal did not alter the enhancement of SSBs in the DNA caused by Rose Bengal and 545 nm radiation. The induction of SSBs in the DNA caused by irradiation of the DNA by 545 nm light in the presence of Rose Bengal was not enhanced by the use of D/sub 2/O instead of H/sub 2/O as a solvent. The results indicate that Rose Bengal plus visible light can cause biological damage without the intermediacy of reactive oxygen species, i.e. Rose Bengal and visible light can react directly with biological material, in reactions that appear to be type I photosensitized processes, independent of singlet oxygen as an intermediate.

  12. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis; Avaliacao do dano radioinduzido no DNA e reparo em linfocitos humanos pelo metodo do cometa (single cell gel electrophoresis)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-12-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a {sup 60} Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 {mu}m) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 {mu}m) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 {mu}m). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs.

  13. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  14. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  15. Chemical determination of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, M

    1991-01-01

    Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.

  16. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  17. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  18. Grain breakage under uniaxial compression, through 3D DEM modelling

    Directory of Open Access Journals (Sweden)

    Nader François

    2017-01-01

    Full Text Available A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain’s strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  19. Development of yarn breakage detection software system based on machine vision

    Science.gov (United States)

    Wang, Wenyuan; Zhou, Ping; Lin, Xiangyu

    2017-10-01

    For questions spinning mills and yarn breakage cannot be detected in a timely manner, and save the cost of textile enterprises. This paper presents a software system based on computer vision for real-time detection of yarn breakage. The system and Windows8.1 system Tablet PC, cloud server to complete the yarn breakage detection and management. Running on the Tablet PC software system is designed to collect yarn and location information for analysis and processing. And will be processed after the information through the Wi-Fi and http protocol sent to the cloud server to store in the Microsoft SQL2008 database. In order to follow up on the yarn break information query and management. Finally sent to the local display on time display, and remind the operator to deal with broken yarn. The experimental results show that the system of missed test rate not more than 5%o, and no error detection.

  20. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  1. ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA

    DEFF Research Database (Denmark)

    Toledo Lazaro, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt

    2013-01-01

    origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing...... induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells...

  2. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  3. Perspectives on condom breakage: a qualitative study of female sex workers in Bangalore, India.

    Science.gov (United States)

    Gurav, Kaveri; Bradley, Janet; Chandrashekhar Gowda, G; Alary, Michel

    2014-01-01

    A qualitative study was conducted to obtain a detailed understanding of two key determinants of condom breakage - 'rough sex' and poor condom fit - identified in a recent telephone survey of female sex workers, in Bangalore, India. Transcripts from six focus-group discussions involving 35 female sex workers who reported condom breakage during the telephone survey were analysed. Rough sex in different forms, from over-exuberance to violence, was often described by sex workers as a result of clients' inebriation and use of sexual stimulants, which, they report, cause tumescence, excessive thrusting and sex that lasts longer than usual, thereby increasing the risk of condom breakage. Condom breakage in this setting is the result of a complex set of social situations involving client behaviours and power dynamics that has the potential to put the health and personal lives of sex workers at risk. These findings and their implications for programme development are discussed.

  4. Induction and removal of DNA interstrand cross-links in V-79 Chinese hamster cells measured by hydroxylapatite chromatography after treatments with bifunctional furocoumarins

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.

    1988-01-01

    DNA interstrand crosslinks (CL) photoinduced by bifunctional furocoumarins in V-79 Chinese hamster cells were measured by alkaline denaturation and hydroxylapatite chromatography. Treatments with 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (4,5',8-TMP) and 365 nm irradiation (UVA) confer a dose-dependent linear increase in the amount of double-stranded DNA indicating the induction of CL. Determination in alkaline sucrose gradients of the molecular weight of the DNA and estimation of drug-induced strand breakage allowed quantification of the CL induced. 5-MOP was found to be slightly more effective than 8-MOP whereas 4,5',8-TMP was 9 times more effective for the induction of CL. The fate of CL during post-treatment incubation was also followed. Cells in exponential growth phase were found to be efficient in the removal of CL. (Author)

  5. Force deficits and breakage rates after single lengthening contractions of single fast fibers from unconditioned and conditioned muscles of young and old rats.

    Science.gov (United States)

    Lynch, Gordon S; Faulkner, John A; Brooks, Susan V

    2008-07-01

    The deficit in force generation is a measure of the magnitude of damage to sarcomeres caused by lengthening contractions of either single fibers or whole muscles. In addition, permeabilized single fibers may suffer breakages. Our goal was to understand the interaction between breakages and force deficits in "young" and "old" permeabilized single fibers from control muscles of young and old rats and "conditioned" fibers from muscles that completed a 6-wk program of in vivo lengthening contractions. Following single lengthening contractions of old-control fibers compared with young-control fibers, the twofold greater force deficits at a 10% strain support the concept of an age-related increase in the susceptibility of fibers to mechanical damage. In addition, the much higher breakage rates for old fibers at all strains tested indicate an increase with aging in the number of fibers at risk of being severely injured during any given stretch. Following the 6-wk program of lengthening contractions, young-conditioned fibers and old-conditioned fibers were not different with respect to force deficit or the frequency of breakages. A potential mechanism for the increased resistance to stretch-induced damage of old-conditioned fibers is that, through intracellular damage and subsequent degeneration and regeneration, weaker sarcomeres were replaced by stronger sarcomeres. These data indicate that, despite the association of high fiber breakage rates and large force deficits with aging, the detrimental characteristics of old fibers were improved by a conditioning program that altered both sarcomeric characteristics as well as the overall structural integrity of the fibers.

  6. A Tool for Determining the Number of Contributors: Interpreting Complex, Compromised Low-Template Dna Samples

    Science.gov (United States)

    2017-09-28

    Ph.D. Catherine Grgicak Phone: (617) 638-1968 STEM Degrees: STEM Participants: RPPR Final Report as of 17-Oct-2017 Agreement Number: W911NF-14-C...to degrade into increasingly smaller fragments over time. The mechanism inducing DNA damage can include strand breakage, formation of pyrimidine...in this example ⌊(7.8⁡10−4)(48⁡103) 63⁄ ⌋ = ⌊5.94⌋ = 5. Note that 48 µL stems from the knowledge that typically 2 of 50 µL of the extract is

  7. Breakage of a Third Generation Gamma Nail: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Takashi Iwakura

    2013-01-01

    Full Text Available The use of intramedullary nails to treat trochanteric fractures of the femur has increased with the increasing size of the elderly population. The third generation Gamma nail is currently one of the most popular devices for the treatment of trochanteric fractures. Nail breakage is a rare complication, possibly resulting from fatigue fracture of the implant. We present the first reported case of breakage of a third generation Gamma nail that was not used to treat a pathological fracture. An 83-year-old woman with an unstable trochanteric fracture of the femur was treated using a third generation Gamma nail. She was referred to our hospital 14 months postoperatively with nail breakage at the opening for the lag screw. The breakage was secondary to nonunion, which was thought to be mainly due to insufficient reduction of the fracture. The broken nail was removed, and the patient underwent cemented bipolar hemiarthroplasty. At followup 18 months later, she was mobile with a walker and asymptomatic with no complications. This case shows that inadequate operation such as insufficient reduction of the trochanteric fracture may result in nonunion and implant breakage, even when using a high-strength, well-designed implant.

  8. Empirical Formulae for Breakage of Dolosse and Tetrapods

    DEFF Research Database (Denmark)

    Burcharth, H. F.; d'Angremond, K.; Meer, W. van der

    2000-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse are widely used for rubble mound breakwaters. Many failures of such breakwaters were caused by unforeseen early breakage of the units, thus revealing an inbalance between the strength (structural integrity) of the units...... and the hydraulic stability (resistance to displacements) of the armour layers. Breakage occurs when the stresses from the static, pulsating and impact loads exceeds the tensile strength of the concrete. While the hydraulic stability can be studied in Froude-scale hydraulic model tests, it is not possible to study...... armour unit stresses in small scale models. This is partly because the strain in model armour units are too small to be recorded, and partly because the scaling law for impact load generated stresses is nonlinear. The paper discusses the scaling laws related to type of stresses and presents a method...

  9. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    Science.gov (United States)

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  10. Radiation-induced electron migration along DNA

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-04-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to nonrandom types of damage along DNA manifested distal to the sites of the initial energy deposition. Electron migration along DNA is significantly influenced by the DNA base sequence and DNA conformation. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along DNA. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation

  11. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  12. Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?

    Science.gov (United States)

    Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio

    2010-02-01

    The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Visual Inspection for Breakage of Micro-milling Cutter

    Directory of Open Access Journals (Sweden)

    WANG Lei

    2014-11-01

    Full Text Available In order to realize visual inspection for breakage of micro-milling cutter, a developed image acquisition method of the surface of a micro-milling cutter was constructed and a classification method based on multilayer neural network was proposed in this article. While the milling cutter was rotating at a constant speed, a camera was triggered by a rotary encoder to capture a series of images. And the developed image of milling cutter was created by image mosaic algorithms. The moment of regional feature as well as the gray feature of the tooth edge was extracted as the input vector of neural network. The feature vector includes moment of inertia, geometric central moment, three-dimensional invariants moment and the gray value of the projection on two principal axis directions of the tooth region. By designing a proper neural network, breakage defects can be detected 100 %. And the false discovery rate is 0.5 %.

  14. Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay

    Directory of Open Access Journals (Sweden)

    Gosalvez Jaime

    2009-04-01

    Full Text Available Abstract Background Fluoroquinolones are extensively used antibiotics that induce DNA double-strand breaks (DSBs by trapping DNA gyrase and topoisomerase IV on DNA. This effect is usually evaluated using biochemical or molecular procedures, but these are not effective at the single-cell level. We assessed ciprofloxacin (CIP-induced chromosomal DNA breakage in single-cell Escherichia coli by direct visualization of the DNA fragments that diffused from the nucleoid obtained after bacterial lysis in an agarose microgel on a slide. Results Exposing the E. coli strain TG1 to CIP starting at a minimum inhibitory concentration (MIC of 0.012 μg/ml and at increasing doses for 40 min increased the DNA fragmentation progressively. DNA damage started to be detectable at the MIC dose. At a dose of 1 μg/ml of CIP, DNA damage was visualized clearly immediately after processing, and the DNA fragmentation increased progressively with the antibiotic incubation time. The level of DNA damage was much higher when the bacteria were taken from liquid LB broth than from solid LB agar. CIP treatment produced a progressively slower rate of DNA damage in bacteria in the stationary phase than in the exponentially growing phase. Removing the antibiotic after the 40 min incubation resulted in progressive DSB repair activity with time. The magnitude of DNA repair was inversely related to CIP dose and was noticeable after incubation with CIP at 0.1 μg/ml but scarce after 10 μg/ml. The repair activity was not strictly related to viability. Four E. coli strains with identified mechanisms of reduced sensitivity to CIP were assessed using this procedure and produced DNA fragmentation levels that were inversely related to MIC dose, except those with very high MIC dose. Conclusion This procedure for determining DNA fragmentation is a simple and rapid test for studying and evaluating the effect of quinolones.

  15. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays

    International Nuclear Information System (INIS)

    Cantoni, O.; Costa, M.

    1983-01-01

    Alkaline elution analysis demonstrates that both HgCl 2 and X-rays result in a rapid induction of DNA single-strand breaks at acutely cytotoxic doses (HgCl 2 , 25-100 microM for 60 min; X-rays, 150-600 rads) in cultured Chinese hamster ovary cells. Cytotoxicity, as measured by cell-plating efficiency, correlates linearly with the level of DNA breakage induced by both agents (HgCl 2 , r . 0.97; X-rays, r . 0.99), although a substantial difference in axis intercepts of the two linear regression lines indicates that a higher level of DNA damage was required by X-rays as compared with HgCl 2 to produce an equivalent level of cell killing. DNA damage induced by X-rays was rapidly repaired such that within 1 hr following treatment the elution rate of DNA from treated cells resembled that obtained in untreated cultures. In contrast, DNA damage after Hg 2+ insult was not repaired, and further damage was evident following a similar 1-hr recovery period. Addition of noncytotoxic, non-DNA-damaging concentrations of HgCl 2 (10 microM) to cells 15-45 min following treatment with X-rays greatly inhibited the repair of the DNA strand breaks. Thus, although both HgCl 2 and X-rays induce rapid and striking single-strand breaks in the DNA, persistence of Hg 2+ in the cell can inhibit the repair of these breaks. The inhibition of DNA repair by HgCl 2 may explain why this agent is not severely mutagenic or carcinogenic despite its ability to induce an X-ray-like DNA damage and why a lower level of mercury-induced DNA damage, compared with that induced by X-rays, was required to produce an equivalent level of cell death

  16. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Albanyan, Abdulmajeed; Beck, Frances W J; Bao, Bin; Wang, Zhiwei; Banerjee, Sanjeev; Sarkar, Fazlul H; Mohammad, Ramzi M; Hadi, Sheikh M; Azmi, Asfar S

    2012-04-01

    Many critical factors such as hypoxia, nutrient deficiency, activation of glycolytic pathway/Warburg effect contribute to the observed low pH in tumors compared to normal tissue. Studies suggest that such tumor specific acidic environment can be exploited for the development of therapeutic strategies against cancer. Independent observations show reduction in pH of mammalian cells undergoing internucleosomal DNA fragmentation and apoptosis. As such, our group has extensively demonstrated that anticancer mechanisms of different plant polyphenols involve mobilization of endogenous copper and consequent internucleosomal DNA breakage. Copper is redox active metal, an essential component of chromatin and is sensitive to subtle pH changes in its microenvironment. Here we explored whether, acidic pH promotes growth inhibition, apoptosis, and DNA damaging capacity of chemopreventive agent resveratrol. Our results reveal that growth inhibition and internucleosomal DNA fragmentation induced apoptosis in Capan-2 and Panc-28 pancreatic cancer cell lines (and not in normal HPDE cells) by resveratrol is enhanced at lower pH. Using comet assay, we further demonstrate that DNA breakage by resveratrol is enhanced with acidification. Membrane permeable copper specific chelator neocuproine (and not iron chelator orthophenanthroline) abrogated growth inhibition and apoptosis by resveratrol. Western blot results show enhanced activation of DNA laddering marker H2.aX by resveratrol at acidic pH that was reversed by neocuproine and not by orthophenanthroline. Our findings provide irrevocable proof that low pH environment can be turned into tumor weakness and assist in eradication of cancer cells by resveratrol. Copyright © 2011 Wiley Periodicals, Inc.

  17. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  18. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  19. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  20. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells.

    Science.gov (United States)

    Sadhu, Abhishek; Ghosh, Ilika; Moriyasu, Yuji; Mukherjee, Anita; Bandyopadhyay, Maumita

    2018-04-13

    The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and

  1. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  2. Experimental Research on the Specific Energy Consumption of Rock Breakage Using Different Waterjet-Assisted Cutting Heads

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2018-01-01

    Full Text Available To investigate the specific energy consumption (SE of rock breakage by cutting heads assisted by different types of waterjet and to identify optimal waterjet parameters and assistance types, rock cutting with and without waterjets was carried on a rock fragmentation test bed. SE is a comprehensive evaluation index and was developed according to the applied load on cutting head, and the SE under different cutting conditions was compared and analyzed. The results show that the SE of rock breakage without waterjet assistance increased with the increasing of rock compressive strength (RCS but that the limited drilling depth decreased. The effect of the waterjet pressure on the SE of rock breakage by the cutting head I was marked, and SE decreased by 30∼40% when the ratio between RCS and waterjet pressure was less than 1. However, the function of the waterjet assistance was poor; therefore, a ratio of 1 could be used to distinguish the rock breakage effect of cutting head I. For cutting head II, the rock damage from the waterjet impact was limited due to the large waterjet standoff distance; thus the rock breakage performance of cutting head II was also limited. The waterjet impacting at the tip of the conical pick using cutting head III could enter into the cracks caused by the mechanical pick and fracture the rock. Therefore, the rock breakage performance of cutting head III was better than that of cutting head II.

  3. Tool wear and breakage monitoring in machining

    International Nuclear Information System (INIS)

    Madl, J.

    1992-01-01

    Risk minimization of metal cutting operations is one of the main problems of metal cutting technology. This paper describes some aspects in monitoring and control of machining processes. Tool monitoring is the fokus of machining process monitoring. Tool breakage and tool life recognition are the main problems of tool monitoring. All problems of this type of monitoring have not yet been fully solved. (orig.)

  4. Breakage of internal maxillary distractor: considerable complication of maxillary distraction osteogenesis.

    Science.gov (United States)

    Aikawa, Tomonao; Iida, Seiji; Isomura, Emiko T; Namikawa, Mari; Matsuoka, Yudai; Yamada, Chiaki; Yamamoto, Taku; Takigawa, Yoko

    2008-07-01

    Maxillary distraction osteogenesis using intraoral distractors is now one of the standard treatments of maxillary retrusion. This report shows 2 cases of breakage of this internal maxillary distractor in patients with cleft lip and palate; one was observed during the distraction period and the other was during the retention period. The first case required a rotational movement of the distraction segment, and this movement caused the laterally dislocation of the posterior part of the distractor, where the distractor suffered some mechanical forces by mouth opening. In the latter case, breakage of distractor was observed on the radiographs taken 3 months after distraction and this complication may have been caused by mechanical force by occlusion and mastication. Both breakages were found at the joint of the anchorage plate and the extension rod, which has some flexibility for adjusting the plate to the bone surface. Therefore, surgeons should pay special attention for this mechanical weak area in this distractor not only during the advancement period, but also during the retention period and should avoid unnecessary frequent bending for adopting the bone surface, which directly weakens the joint.

  5. Binding of radiation-induced phenylalanine radicals to DNA

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  6. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    Science.gov (United States)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent

  7. Influence of the potential well on the breakage rate of colloidal aggregates in simple shear and uniaxial extensional flows.

    Science.gov (United States)

    Ren, Zhiqiang; Harshe, Yogesh M; Lattuada, Marco

    2015-06-02

    In this work we build on our previous paper (Harshe, Y. M.; Lattuada, M. Langmuir 2012, 28, 283-292) and compute the breakage rate of colloidal aggregates under the effect of shear forces by means of Stokesian dynamics simulations. A library of clusters made of identical spherical particles covering a broad range of masses and fractal dimension values (from 1.8 to 3.0) was generated by means of a combination of several Monte Carlo methods. DLVO theory has been used to describe the interparticle interactions, and contact forces have been introduced by means of the discrete element method. The aggregate breakage process was investigated by exposing them to well-defined shear forces, generated under both simple shear and uniaxial extensional flow conditions, and by recording the time required to reach the first breakage event. It has been found that the breakage rate of clusters was controlled by the potential well between particles as described by DLVO theory. A semiempirical Arrhenius-type exponential equation that relates the potential well to the breakage rate has been used to fit the simulation results. The dependence of the breakage process on the radius of gyration, on the external shear strength, and on the fractal dimension has been obtained, providing a very general relationship for the breakage rate of clusters. It was also found that the fragment mass distribution is insensitive to the presence of electrostatic repulsive interactions. We also clarify the physical reason for the large difference in the breakage rate of clusters between simple shear and the uniaxial extensional flow using a criterion based on the energy dissipation rate. Finally, in order to answer the question of the minimum cluster size that can break under simple shear conditions, a critical rotation number has been introduced, expressing the maximum number of rotations that a cluster exposed to simple shear could sustain before breakage.

  8. Carcinogen-induced damage to DNA

    International Nuclear Information System (INIS)

    Strauss, B.; Altamirano, M.; Bose, K.; Sklar, R.; Tatsumi, K.

    1979-01-01

    Human cells respond to carcinogen-induced damage in their DNA in at least two ways. The first response, excision repair, proceeds by at least three variations, depending on the nature of the damage. Nucleotide excision results in relatively large repair patches but few free DNA breaks, since the endonuclease step is limiting. Apurinic repair is characterized by the appearance of numerous breaks in the DNA and by short repair patches. The pathways behave as though they function independently. Lymphoic cells derived from a xeroderma pigmentosum complementation group C patient are deficient in their ability to perform nucleotide excision and also to excise 6 methoxyguanine adducts, but they are apurinic repair competent. Organisms may bypass damage in their DNA. Lymphoblastoid cells, including those derived from xeroderma pigmentosum treated with 3 H-anti-BPDE, can replicate their DNA at low doses of carcinogen. Unexcised 3 H is found in the light or parental strand of the resulting hybrid DNA when replication occurs in medium with BrdUrd. This observation indicates a bypass reaction occurring by a mechanism involving branch migration at DNA growing points. Branch migration in DNA preparations have been observed, but the evidence is that most occurs in BrdUrd-containing DNA during cell lysis. The measurement of the bifilarly substituted DNA resulting from branch migration is a convenient method of estimating the proportion of new synthesis remaining in the vicinity of the DNA growing point. Treatment with carcinogens or caffeine results in accumulation of DNA growing points accompanied by the synthesis of shortened pieces of daughter DNA

  9. Synchrotron radiation. 4. Analyses of biological samples using synchrotron radiation. 3. Research on radiation damage to DNA using synchrotron radiation

    International Nuclear Information System (INIS)

    Takakura, Kaoru

    1998-01-01

    This review described how the synchrotron radiation (SR) is used to solve problems unknown hitherto in radiation biology. Historically, the target substance of UV light in bacterial death was suggested to be nucleic acid in 1930. Researches on the radiation damage to DNA were begun at around 1960 and have mainly used UV light, X-ray and γray. Soft X-ray and vacuum UV whose energy covering from several eV to scores of keV have not been used since UV and X-ray lack the energy of this range. This is one of reasons why detailed process leading to radiation-induced death, carcinogenicity and mutation has not been known hitherto. RS possesses wide range of energy, i.e., from UV to hard X-ray, of high intensity, which is helpful for studying the unknown problems. The RS studies were begun in nineteen-seventies. Those include the action spectrum studies and atomic target studies. In the former, the course of the effect, e.g., the mechanism of DNA double strand breakage, can be elucidated. In the latter, photon of known energy can be irradiated to the specified atom like phosphorus in DNA which elucidating the precise physicochemical process of the breakage. Use of RS in these studies is thought still meaningful in future. (K.H.) 62 refs

  10. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    Science.gov (United States)

    1987-11-23

    unrepaired 3-methyladenine in DNA 29 2.4.1 Cytotoxic effects of persisting m3A in DNA 30 2.4.2 Mutagenic bypass synthesis of depurinat ,d DNA 30 3 CONCLUDING...induced by a single exposure to the ca’rcinogen N- methyl-N- nitrosourea (MNU) due to activation of the malignant Ha-ras-i locus. Analysis of the induced...ing CO:A uolymerase I for repair synthesis . Since DNA polymerase I would be required to complete repair after the in~uial activity of TagII, we tested

  11. DNA-Dependent Protein Kinase in Non-Homologous End-Joining: Guarding Strategic Positions

    OpenAIRE

    Weterings, Eric

    2005-01-01

    markdownabstract__Abstract__ Careful maintenance of genetic information throughout generations is of vital importance to all living creatures. A battery of both endogenous and exogenous factors continuously threatens genetic integrity by altering the DNA chemistry. As a consequence, DNA damage types are as diverse as their causes. DNA doublestrand breaks (DSBs) are among the most deleterious lesions, since they introduce chromosomal breakage or translocation and are able to trigger carcinogen...

  12. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  13. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  14. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Hydraulic breakage of tanks for the transport of uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Lee Gonzales, H.M.; Lopez Vietri, J.R.; Novo, R.G.

    1987-01-01

    To begin with, the tank models that are proposed by the international norms for the transport and storage of hexafluoride of uranium (UF 6 ) are briefly described. The operations related to the transport in its different forms are also described, particularly those that can produce the hydraulic breakage of tanks during its course or in later stages, when incorrectly performed. With reference to those operations, the most important physicochemical properties of UF 6 as for safety are analyzed. A quantitative evaluation of the deviations of parameters that are controlled during the heating of tanks, comparing them with the normative nominal values, is performed. Adopting some simplifying hypothesis, a general study, applicable to all tank models proposed by norms, is carried out to determine the temperature at which the hydraulic breakage takes place when they are heated in closed-valve conditions. A curve is obtained by plotting the hydraulic breakage temperature against the filling degree. To conclude, the values obtained are compared with the results of other theoretical studies on this subject. (Author)

  16. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  17. Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors

    International Nuclear Information System (INIS)

    Austen, Alfred R.

    2003-01-01

    Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors Phase 1 Summary Purpose of the research: The Phase 1 goal was to make a significant improvement in the wire drawing technology used for difficult to draw superconductor precursor composites. Many ductile Nb-Al and Nb-Sn precursor wire composites have experienced the onset of wire drawing breakage at about 1.5 mm diameter. Phase 1 focused on evaluating the role that precision rigid guidance of the wire into the drawing die and the hydrostatic stress state at the die entrance played in preventing wire breakage. Research carried out: The research performed depended upon the construction of both a mechanical wire guide and a hydrostatic pressure stiffened wire guidance system. Innovare constructed the two wire guidance systems and tested them for their ability to reduce wire drawing breakage. One set of hardware provided rigid alignment of the wires to their wire drawing die axes within 0.35 degrees using ''hydrostatic pressure stiffening'' to enable the precision guidance strategy to be implemented for these highly flexible small diameter wires. This apparatus was compared to a guide arrangement that used short span mechanical guide alignment with a misalignment limit of about 0.75 degrees. Four A-15 composite wires with breakage histories were drawn to evaluate the use of these wire guiding systems to reduce and/or eliminate wire breakage. Research findings and results: In Phase 1, a breakthrough in wire drawing technology for A-15 superconductor composites was achieved by dramatically limiting or eliminating breakage in four different A-15 composite precursor wire designs during the drawing of these very desirable composites that previously could not be drawn to near final size. Research results showed that the proposed Phase 1 mechanical wire guides were sufficiently effective and successful in eliminating breakage when used along with other advanced wire drawing technology to

  18. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  19. MDM2 Antagonists Counteract Drug-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Anna E. Vilgelm

    2017-10-01

    Full Text Available Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.

  20. Radiation-induced DNA damage in halogenated pyrimidine incorporated cells and its correlation with radiosensitivity

    International Nuclear Information System (INIS)

    Watanabe, R.; Nikjoo, H.

    2003-01-01

    Cells with DNA containing 5-halogenated pyrimidines in place of thymidine show significant reductions of slope (Do) and shoulder (Dq) of their radiation survival curves. Similar radiosensitization has also been observed in the yield of DNA strand breaks. The purpose of this study is to obtain an insight into the mechanism of cell lethality by examining the relationship between the spectrum of DNA damage and the cell survival. In this study we estimated the enhancement of strand breaks due to incorporation of halogenated pyrimidine, the complexity of DNA damage and the probability of the initial DNA damage leading to cell inactivation. Monte Carlo track structure methods were used to model and simulate the induction of strand breakage by X-rays. The increase of DNA strand break was estimated by assuming the excess strand break was caused by the highly reactive uracil radicals at the halouracil substituted sites. The assumption of the enhancement mechanism of strand breaks was examined and verified by comparison with experimental data for induction of SSB and DSB. The calculated DNA damage spectrum shows the increase in complexity of strand breaks is due to incorporation of halogenated pyrimidines. The increase in the yield of DSB and cell lethality show similar trend at various degrees of halogenated pyrimidine substitution. We asked the question whether this agreement supports the hypothesis that DSB is responsible for cell lethality? The estimated number of lethal damage from the cell survival using a linear-quadratic model is much less than the initial yield of DSB. This work examines the correlation of cell lethality as a function of frequencies of complex form of double strand breaks

  1. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  2. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  3. Formation of DNA single-strand breaks by near-ultraviolet and gamma-rays in normal and Bloom's syndrome skin fibroblasts

    International Nuclear Information System (INIS)

    Hirschi, M.; Netrawali, M.S.; Remsen, J.F.; Cerutti, P.A.

    1981-01-01

    The formation of single-strand breaks by near-ultraviolet light at 313 nm and by aerobic gamma-rays was compared for skin fibroblast monolayer cultures from 4 normal donors (NF) and 8 patients with Bloom's syndrome (BS) by the alkaline elution method. In 6 of 8 BS strains, the number of breaks induced by near-ultraviolet light, 2.25 kJ/sq m, at 0 degrees was comparable to NF, while elevated breakage was observed in BS strains HG 369 and HG 916. Breakage frequencies were increased substantially in 6 of 8 BS strains relative to NF when the near-ultraviolet light exposure was at 37 degrees. BS strain GM 2520 represents an exception since normal breakage frequencies were induced both at 0 degrees and 37 degrees. Aerobic gamma-rays (75 R) induced comparable numbers of single-strand breaks in BS and NF strains at 0 degrees. The breakage frequencies were reduced an average of 17% in NF when the same dose was given at 30 degrees followed by 6 min incubation. Under the same conditions, the breakage frequencies were on the average reduced by 42% relative to 0 degrees in the BS strains, indicating that they possess normal or possibly slightly increased capacities for the rejoining of gamma-ray-induced breaks

  4. Region-specific chromatin decondensation and micronucleus formation induced by 5-azacytidine in human TIG-7 cells.

    Science.gov (United States)

    Satoh, T; Yamamoto, K; Miura, K F; Sofuni, T

    2004-01-01

    A human diploid lung fibroblast cell strain, TIG-7, has a heteromorphic chromosome 15 with an extra short arm carrying a homogeneously staining region (15p+hsr). We demonstrated previously that the 15p+hsr consists of an inactive and G+C-rich rDNA cluster characterized by fluorescence in situ hybridization (FISH) and various chromosome banding techniques. Thus, it was suggested that the region could contain highly methylated DNA. To observe methylation status on the target region directly under the microscope, we used a demethylating agent, 5-azacytidine (5-azaC), to induce decondensation of the chromatin containing methylated DNA. At 24 h after treatment with 0.5 microM 5-azaC, marked decondensation of the 15p+hsr was observed in almost all of the metaphases. Furthermore, we observed micronuclei, which were equivalent to the rDNA of the 15p+hsr demonstrated by FISH in the same preparation. In contrast, the DNA cross-linking agent mitomycin C (MMC) preferentially induced 15p+hsr-negative micronuclei. These findings indicated that chromatin decondensation and subsequent DNA strand breakage induced by the demethylating effect of 5-azaC led specifically to 15p+hsr-positive micronuclei. Copyright 2003 S. Karger AG, Basel

  5. Parametric Study on Responses of a Self-Anchored Suspension Bridge to Sudden Breakage of a Hanger

    Directory of Open Access Journals (Sweden)

    Wenliang Qiu

    2014-01-01

    Full Text Available The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented.

  6. Parametric study on responses of a self-anchored suspension bridge to sudden breakage of a hanger.

    Science.gov (United States)

    Qiu, Wenliang; Jiang, Meng; Huang, Cailiang

    2014-01-01

    The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause the collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of an actual self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger causes violent vibration and large changes in internal forces of the bridge. In the process of the vibration, the maximum tension of hanger produced by breakage of a hanger exceeds 2.22 times its initial value, and the reaction forces of the bearings increase by more than 1.86 times the tension of the broken hanger. Based on the actual bridge, the influences of some factors including flexural stiffness of girder, torsion stiffness of girder, flexural stiffness of main cable, weight of girder, weight of main cable, span to sag ratio of main cable, distance of hangers, span length, and breakage time of hanger on the dynamic responses are studied in detail, and the influencing extent of the factors is presented.

  7. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  8. [DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].

    Science.gov (United States)

    D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V

    1980-11-01

    A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.

  9. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  10. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  11. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  12. Understanding DNA GyraseB ATPase inhibition in the light of structure and ligand-based modelling techniques.

    OpenAIRE

    Saiz Urra, Liane

    2012-01-01

    The alarming antibiotic resistance spread is the main reasonthat demands the continued investigation to search for new antimicrobialagents. DNA Gyrase is a validated antibacterial target that can be used forthis purpose. This essential prokaryotic type II topoisomerase enzyme isinvolved in DNA replication, transcription and recombination by introducingnegative supercoiling in DNA at the expenses of ATP hydrolysis. It consists of twosubunits Gyrase A (GyrA) which participate in DNA breakage an...

  13. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  14. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  15. The DNA topoisomerase II catalytic inhibitor merbarone is genotoxic and induces endoreduplication

    International Nuclear Information System (INIS)

    Pastor, Nuria; Domínguez, Inmaculada; Orta, Manuel Luís; Campanella, Claudia; Mateos, Santiago; Cortés, Felipe

    2012-01-01

    In the last years a number of reports have shown that the so-called topoisomerase II (topo II) catalytic inhibitors are able to induce DNA and chromosome damage, an unexpected result taking into account that they do not stabilize topo II-DNA cleavable complexes, a feature of topo II poisons such as etoposide and amsacrine. Merbarone inhibits the catalytic activity of topo II by blocking DNA cleavage by the enzyme. While it was first reported that merbarone does not induce genotoxic effects in mammalian cells, this has been challenged by reports showing that the topo II inhibitor induces efficiently chromosome and DNA damage, and the question as to a possible behavior as a topo II poison has been put forward. Given these contradictory results, and the as yet incomplete knowledge of the molecular mechanism of action of merbarone, in the present study we have tried to further characterize the mechanism of action of merbarone on cell proliferation, cell cycle, as well as chromosome and DNA damage in cultured CHO cells. Merbarone was cytotoxic as well as genotoxic, inhibited topo II catalytic activity, and induced endoreduplication. We have also shown that merbarone-induced DNA damage depends upon ongoing DNA synthesis. Supporting this, inhibition of DNA synthesis causes reduction of DNA damage and increased cell survival.

  16. Chromosome breakage in peripheral lymphocytes of thorium workers

    International Nuclear Information System (INIS)

    Hoegerman, S.F.; Cummins, H.T.

    1979-01-01

    Cytogenic analysis of 21 thorium workers and 3 controls has not shown a significant elevation in the level of chromosome breakage in the workers' peripheral lymphocytes. The observation of a single dicentric chromosome in 100-cell samples from each of two workers with relatively long periods of occupational exposure and relatively high body burdens suggests, however, that such exposure might result in increases in chromosome aberration frequency

  17. Review on Parameters Influencing the Rice Breakage and Rubber Roll Wear in Sheller

    Directory of Open Access Journals (Sweden)

    Prabhakaran P.

    2017-09-01

    Full Text Available The present review deals with parameters influencing the rice breakage during rice milling operations and the effect of rubber roll Sheller in rice husk removal process. The main objective of rice milling system is to remove the husk and bran layer to produce the white rice. In this process, rubber roll sheller is used to remove husk from the grains by friction process. If the rubber material is too soft, there may not be sufficient shear force to husk the paddy. Wear will be minimum for rubber material with high hardness but indeed it pronounce the breakage of rice. Hence, for efficient husking the rubber roll material should possess the balance of physico-mechanical properties. Rice breakage depends on several other parameters like the type of harvest, drying temperature, drying methods, physical characteristics of paddy, husking characteristics, paddy moisture content, rubber roller speed, rubber roll pressure, paddy feed rate and fissures. Rubber roll wear depends on the type of rubber material attached to the roller, feed rate, roller speed, pressure etc.

  18. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  19. Video-supported analysis of Beggiatoa filament growth, breakage, and movement

    DEFF Research Database (Denmark)

    Kamp, Anja; Røy, Hans; Schulz-Vogt, Heide N.

    2008-01-01

    A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time...

  20. DNA-protein complexes induced by chromate and other carcinogens

    International Nuclear Information System (INIS)

    Costa, M.

    1991-01-01

    DNA-protein complexes induced in intact Chinese hamster ovary cells by chromate have been isolated, analyzed, and compared with those induced by cis-platinum, ultraviolet light, and formaldehyde. Actin has been identified as one of the major proteins complexed to DNA by chromate based upon its molecular weight, isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric points, and these complexes can be disrupted by chelating agents and sulfhydryl reducing agents, suggesting that the metal itself is participating in binding rather than having a catalytic or indirect role (i.e., oxygen radicals). In contrast, formaldehyde complexed histones to the DNA, and these complexes were not disrupted by chelating or reducing agents. An antiserum raised to chromate-induced DNA-protein complexes reacted primarily with 97,000 kDa protein that did not silver stain. Slot blots, as well as Western blots, were used to detect formation of p97 DNA crosslinks. This protein was complexed to the DNA by all four agents studied

  1. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    Science.gov (United States)

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  2. Determination of critical breakage conditions for double glazing in fire

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Ke; Su, Yanfei; Lu, Wei; Wang, Qingsong; Sun, Jinhua; He, Linghui; Liew, K.M.

    2017-01-01

    Highlights: • Critical heat fluxes of exposed and ambient panes are 6 kW/m"2 and 25 kW/m"2. • Critical temperature difference of fire side pane is around 60 °C. • The ambient pane survives three times longer due to radiation filter and air gap. • Heat transfer in double glazing is revealed by a heat flux based theoretical model. - Abstract: Double glazing unit normally demonstrates better fire resistance than single glazing, but the knowledge on its thermal behavior and heat transfer mechanism during fire is limited. In this work, nine double glazing units were heated by a 500 × 500 mm"2 pool fire. The incident heat flux, temperature on four surfaces, breakage time and cracking behavior were obtained. The critical breakage conditions for interior and exterior panes were determined through gradually decreasing the glass-burner distance from 750 mm to 450 mm. It is established that in double glazing the pane at ambient side can withstand significantly more time than the pane exposed to fire. The critical temperature difference for interior pane is 60 °C; the critical temperature of exterior pane breakage is much higher due to no frame-covered area. In addition, the heat flux at the time of crack initiation is 6 kW/m"2 for the pane at fire side, while more than 25 kW/m"2 for ambient side pane. To reveal the heat transfer mechanism in glazing-air-glazing, theoretical and numerical investigations are also performed, which agrees well with the experimental results.

  3. Needle breakage during an inferior alveolar nerve block in a child with KBG syndrome: A case report.

    Science.gov (United States)

    Bagattoni, S; D'Alessandro, G; Marzo, G; Piana, G

    2018-04-01

    Needle breakage during the administration of dental analgesia is an extremely rare event. A case of needle breakage during the administration of an inferior alveolar nerve block occurred in a child with KBG syndrome. During the injection, a sudden movement of the child caused the breakage of the needle. The next day, the retrieval of the needle was performed surgically under general analgesia. Three months after the surgery the healing was good. Two years later the child underwent a dental extraction with the aid of nitrous oxide/oxygen analgesia/anxiolysis. Needle fracture is a possible event during the administration of dental analgesia in children.

  4. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  5. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  6. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  7. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage

    DEFF Research Database (Denmark)

    Syljuåsen, Randi G; Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg

    2005-01-01

    by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose...

  8. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  9. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  10. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    Science.gov (United States)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  11. Photosensitized inactivation of DNA by monochromatic 334-nm radiation in the presence of 2-thiouracil: genetic activity and backbone breaks

    International Nuclear Information System (INIS)

    Peak, M.J.; Ito, A.; Peak, J.G.; Foote, C.S.

    1988-01-01

    Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s 2 Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s 2 Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s 2 Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s 2 Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s 2 Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. (author)

  12. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  13. Protective role of OH scavengers and DNA/chromatin organization in the induction of DNA breaks: mechanistic models and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Ballarini, F.; Rossetti, M.; Scannicchio, D.; Jacob, P.; Molinelli, S.; Ottolenghi, A.; Volata, A.

    2003-01-01

    Radiation-induced DNA damage can be modulated by various factors, including the environment scavenging capacity (SC) and the DNA organization within the cell nucleus (chromatin compactness, DNA-binding proteins etc.). In this context the induction of ssb and dsb by photons and light ions of different energies impinging on different DNA structures (e.g. linear DNA, SV40 'minichromosomes' and cellular DNA) at different OH-radical SC values was modelled with the Monte Carlo PARTRAC code. Presently PARTRAC can transport electrons, photons, protons and alpha particles in liquid water with an 'event-by-event' approach, and can simulate the DNA content of mammalian cells with an 'atom-by-atom' description, from nucleotide pairs to chromatin fibre loops and chromosome territories. Energy depositions in the sugar-phosphate were considered as potential (direct) ssb. The production, diffusion and reaction of chemical species were explicitly simulated; reactions of OH radicals with the sugar-phosphate were assumed to lead to 'indirect' ssb with probability 65%. Two ssb on opposite strands within 10 bp were considered as a dsb. Yields of ssb and dsb/Gy/Dalton were calculated for different DNA structures as a function of the OH mean life time. By Zyuzikov, N.; Michael, B.D. (Gray Cancer Institute, (GB)); Wu, L. (Ch Zyuzdirect damage yields. In general, also depending on radiation quality, linear DNA was found to be more susceptible to strand breakage than SV40 minichromosomes, which in turn showed higher damage yields with respect to cellular DNA. The very good agreement found with available experimental data provided a validation of the model and allowed us to quantify separately the protective effect of OH scavengers and DNA/chromatin organization. Comparisons with data on nucleoids (DNA unfolded and depleted of histones) suggested that the experimental procedures used to obtain such targets might lower the environment SC, due to the loss of cellular scavenging compounds

  14. Protein Self-Assembly and Protein-Induced DNA Morphologies

    Science.gov (United States)

    Mawhinney, Matthew T.

    The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques

  15. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  16. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  17. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  18. Clinical heterogeneity and chromosome breakage in Iranian patients suspicious of Fanconi anemia

    Directory of Open Access Journals (Sweden)

    Ghasemi Firoozabadi S

    2007-10-01

    Full Text Available Background: Fanconi anemia (FA is a rare autosomal recessive disorder characterized by short stature, skeletal anomalies, increased incidence of solid tumors and leukemia, and bone marrow failure (aplastic anemia. FA has been reported in all races and ethnic groups and affects men and women in an equal proportion. The frequency of FA has been estimated at approximately 1 per 360,000 live births. In some populations, including Ashkenazi Jews, Turks, Saudi Arabians and Iranians, this frequency appears to be higher, probably as a result of the founder effect and consanguineous marriage. Because of extensive genetic and clinical heterogeneity (the age of onset, clinical manifestations and survival, diagnosis of FA on the basis of clinical data alone is unreliable and its molecular diagnosis is difficult. The diagnosis of FA exploits the hypersensitivity of FA lymphocytes and fibroblasts to bifunctional alkylating agents such as mitomycin C (MMC, diepoxybutane (DEB and nitrogen mustard and differentiates it from idiopathic aplastic anemia. In this study, in addition to the patients' clinical profiles, a cytogenetic test using MMC was implemented for an accurate diagnosis of Fanconi anemia.Methods: In this study, the lymphocytes of 20 patients referred for FA, and those of their normal sex-matched controls, were treated with three different concentrations of mitomycin C (20, 30, 40 ng/ml. Slides were prepared and solid stained. In order to determine the number and kind of chromosome abnormalities, 50 metaphase spreads from each culture were analyzed. Clinical information was obtained from patient files.Results: Five patients manifested increased chromosome breakage with MMC, confirming the FA diagnosis. Two different concentrations of MMC (30, 40 ng/ml were most effective.Conclusion: The chromosomal breakage test is important for the accurate diagnosis of Fanconi anemia. DNA crosslinking agents used to treat idiopathic aplastic anemia may be

  19. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2016-06-01

    Full Text Available Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or alluvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their characterization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  20. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  1. Replication of chromosomal and episomal DNA in X-ray-damaged human cells: A cis- or trans-acting mechanism

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Rose, R.; Mitchell, D.L.

    1990-01-01

    Episomal plasmids and viruses in mammalian cells present small targets for X-ray-induced DNA damage. At doses up to 100 Gy, DNA strand breaks or endonuclease III-sensitive sites were not discernible in 10.3-kb Epstein-Barr virus-based plasmid DNA or in 4.9-kb defective simian virus 40 DNA. DNA replication in these small molecules, however, was inhibited strongly by X-ray doses of greater than or equal to 20 Gy, decreasing to only 20 to 40% of control values. Inhibition was relieved slightly by growth in caffeine but was increased by growth in 3-aminobenzamide. Inhibition of DNA replication in episomal DNA molecules that are too small to sustain significant damage directly to their DNA may be due to either (a) a trans-acting diffusible factor that transfers the consequences of DNA breakage to episomes and to other replicating molecules, (b) a cis-acting mechanism in which episomes are structurally linked to genomic chromatin, and replication of both episomal and chromosomal replicons is under common control, or (c) radiation damage on other cellular structures unrelated to DNA. The resolution of these cellular mechanisms may shed light on the X-ray-resistant replication in ataxia-telangiectasia and may suggest strategies for molecular characterization of potential trans- or cis-acting factors

  2. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  3. Radiation induced DNA double-strand breaks in radiology; Strahleninduzierte DNA-Doppelstrangbrueche in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Kuefner, M.A. [Dornbirn Hospital (Austria). Dept. of Radiology; Brand, M.; Engert, C.; Uder, M. [Erlangen University Hospital (Germany). Dept. of Radiology; Schwab, S.A. [Radiologis, Oberasbach (Germany)

    2015-10-15

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the principle of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations.

  4. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    Science.gov (United States)

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Induction of DNA breakage in X-irradiated nucleoids selectively stripped of nuclear proteins in two mouse lymphoma cell lines differing in radiosensitivity

    International Nuclear Information System (INIS)

    Kruszewski, M.; Iwanenko, T.

    1998-01-01

    The role of nuclear proteins in protection of DNA against ionizing radiation and their contribution to the radiation sensitivity was examined by an alkaline version of comet assay in two L5178Y (LY) mouse lymphoma cell lines differing in sensitivity t o ionizing radiation. LY-S cells are twice more sensitive to ionizing radiation than LY-R cells (D 0 values of survival curves are 0.5 Gy and 1 Gy, respectively). Sequential removal of nuclear proteins by extraction with NaCl of different concentrations increased the X-ray induced DNA damage in LY-R nucleoids. In contrast, in the radiation sensitive LY-S cell line, depletion of nuclear proteins practically did not affect DNA damage. Although there is no doubt that the main cause of LY-S cells' sensitivity to ionizing radiation is a defect in the repair of double-strand breaks, our data support the concept that nuclear matrix organization may contribute to the cellular susceptibility to DNA damaging agents. (author)

  6. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2016-02-01

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.

  7. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  8. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    Science.gov (United States)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  9. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    Science.gov (United States)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  10. Current study on ionizing radiation-induced mitochondial DNA damage and mutations

    International Nuclear Information System (INIS)

    Zhou Xin; Wang Zhenhua; Zhang Hong

    2012-01-01

    Current advance in ionizing radiation-induced mitochondrial DNA damage and mutations is reviewed, in addition with the essential differences between mtDNA and nDNA damage and mutations. To extent the knowledge about radiation induced mitochondrial alterations, the researchers in Institute of Modern Physics, Chinese Academy of Sciences developed some technics such as real-time PCR, long-PCR for accurate quantification of radiation induced damage and mutations, and in-depth investigation about the functional changes of mitochondria based on mtDNA damage and mutations were also carried out. In conclusion, the important role of mitochondrial study in radiation biology is underlined, and further study on mitochondrial study associated with late effect and metabolism changes in radiation biology is pointed out. (authors)

  11. Radiation-induced luminescence from dry and hydrated DNA and related macromolecules

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Fielden, E.M.; Adams, G.E.

    1988-01-01

    The radiation-induced luminescence from three types of fibrous DNA and a series of polydeoxynucleotides was measured under vacuum or in the presence of oxygen at 77 and 293K. The in-pulse emission spectra, generated by electrons with energies 50% water by wt (1.2:1 w/w, H 2 O/DNA), the in-pulse luminescence spectrum is similar to that of dry DNA. These findings are discussed in terms of energy or charge migration induced in DNA upon irradiation and the possible effects of conformational changes, caused by hydration, on charge migration. (author)

  12. A proposal of a novel DNA modification mechanism induced by irradiation

    International Nuclear Information System (INIS)

    Oka, Toshitaka

    2016-01-01

    This article depicts a proposal of a novel DNA modification mechanism induced by irradiation, and is written as an award work from Japanese Society of Radiation Chemistry. The mechanism of DNA modification induced by K-shell photoabsorption of nitrogen and oxygen atoms was investigated by electron paramagnetic resonance and x-ray absorption near edge structure measurements of calf thymus DNA film. The EPR intensities for DNA film were twofold times larger than those estimated based on the photoabsorption cross section. This suggests that the DNA film itself forms unpaired electron species through the excitation of enhanced electron recapturing, known as the postcollision interaction process. (author)

  13. Chromosomes of older humans are more prone to aminopterine-induced breakage

    International Nuclear Information System (INIS)

    Esposito, D.; Fassina, G.; Szabo, P.; Weksler, M.; De Angelis, P.; Siniscalco, M.; Rodgers, L.

    1989-01-01

    The authors have adopted a simplified version of the cell hybrid cotransfer method to test the hypothesis that human lymphocytes derived from elderly individuals have a higher chromosome instability. Peripheral blood lymphocytes from old male individuals and young controls were fused with a Chinese hamster cell line (CHO-YH21), yielding 10 HAT-resistant rodent-human clones from the old propositi and 22 from the young controls. Both series of hybrid clones were analyzed with respect to the retention of the enzyme glucose-6-phosphate dehydrogenase and the surface antigen MIC2 identified by monoclonal antibody 12E7, two human X chromosome-linked markers located at opposite ends of the X chromosome. Cell hybrid clones with an X chromosome from a young control retained both markers in about 70% of the cells. In contrast, cell hybrid clones with an X chromosome from an old donor retained the MIC2 marker in only 30% of their cells. Slot-blot hybridization studies have established that the observed loss of the MIC2 marker is due to loss of the coding gene, not to suppression of its expression. T lymphocytes from old donors were also found to have an LD 50 for aminopterine significantly lower than the concentration of this drug in the HAT medium used to grow the hybrids. They speculate that the higher rate of chromosomal breakage and of marker loss observed along the old-age X chromosomes could be the result of molecular scars accumulated with aging at sites of constitutive chromosomal fragility

  14. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit.

    Directory of Open Access Journals (Sweden)

    Cheen Fei Chin

    2016-07-01

    Full Text Available Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS formation at the division site to drive acto-myosin ring (AMR constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit.

  15. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  16. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  17. A theoretical investigation of the feasibility of Tannor-Rice type control: Application to selective bond breakage in gas-phase dihalomethanes

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Rozgonyi, Tamas; Gonzalez, Leticia

    2012-01-01

    Within the math absorption band of CH2BrCl, we theoretically analyze the laser-induced control of the Br/Cl branching ratio, Br + CH2Cl ← CH2BrCl → CH2Br + Cl, with CH2BrCl initially in its vibrational ground state. For weak-field excitation, the Br/Cl branching ratio increases as a function of w......-Rice type laser control mechanism for selective bond breakage in CH2BrCl cannot take place without accompanying photoionization....

  18. Reversible DNA condensation induced by a tetranuclear nickel(II) complex.

    Science.gov (United States)

    Dong, Xindian; Wang, Xiaoyong; He, Yafeng; Yu, Zhen; Lin, Miaoxin; Zhang, Changli; Wang, Jing; Song, Yajie; Zhang, Yangmiao; Liu, Zhipeng; Li, Yizhi; Guo, Zijian

    2010-12-17

    DNA condensing agents play a critical role in gene therapy. A tetranuclear nickel(II) complex, [Ni(II)(4)(L-2H)(H(2)O)(6)(CH(3)CH(2)OH)(2)]·6NO(3) (L=3,3',5,5'-tetrakis{[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]methyl}biphenyl-4,4'-diol), has been synthesized as a nonviral vector to induce DNA condensation. X-ray crystallographic data indicate that the complex crystallizes in the monoclinic system with space group P2(1)/n, a=10.291(9), b=24.15(2), c=13.896(11) Å, and β=98.175(13)°. The DNA condensation induced by the complex has been investigated by means of UV/Vis spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy, gel electrophoresis assay, and zeta potential analysis. The complex interacts strongly with DNA through electrostatic attraction and induces its condensation into globular nanoparticles at low concentration. The release of DNA from its compact state has been achieved using the chelator ethylenediaminetetraacetic acid (EDTA) for the first time. Other essential properties, such as DNA cleavage inactivity and biocompatibility, have also been examined in vitro. In general, the complex satisfies the requirements of a gene vector in all of these respects.

  19. The radiation hypersensitivity of cells at mitosis.

    Science.gov (United States)

    Stobbe, C C; Park, S J; Chapman, J D

    2002-12-01

    Mitotic cells are hypersensitive to ionizing radiation, exhibiting single-hit inactivation coefficients near to those of repair deficient cell lines and lymphocytes. To elucidate possible mechanisms for this hypersensitivity, the kinetics of oxygen radiosensitization, the proportion of indirect effect by OH radicals and the kinetics of radiation-induced DNA strand breakage in the chromatin of mitotic cells were investigated. Synchronized populations of >90% mitotic HT-29 cells were obtained by the mitotic shake-off method. Cells were irradiated at indirect effect of OH radicals was investigated with the radical scavenger, DMSO. DNA strand breakage was measured by the comet assay. Mitotic HT-29 cell inactivation is well described by a single-hit inactivation coefficient (alpha) of 1.14 +/- 0.06 Gy(-1). The oxygen enhancement ratio of mitotic cells (at 10% survival) was found to be approximately 2.0, significantly lower than the value of 2.8 measured for interphase (asynchronous) cells. More than 60% of mitotic cell killing was eliminated when the media contained 2 M DMSO, indicating that indirect effect is as important in the killing of mitotic cells as it is for interphase cells. The chromatin in mitotic cells was found to be ~2.8 times more sensitive to radiation-induced DNA single-strand breakage than the chromatin of interphase cells. The alpha-inactivation coefficient of mitotic HT-29 cells was ~30 times larger than that of interphase cells. Mitotic cell chromatin appears to contain intrinsic DNA breaks that are not lethal. In addition, chromatin in mitotic cells was found to be more susceptible to radiation-induced DNA strand-breakage than the dispersed chromatin of interphase cells. How the enhanced production of these simple DNA lesions (that are usually reparable) translates into the lethal (non-reparable) events associated with alpha-inactivation is not known. The compaction/dispersion status of DNA throughout the cell cycle appears to be an important

  20. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    International Nuclear Information System (INIS)

    Ahnstroem, G.; George, A.M.; Cramp, W.A.

    1978-01-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate. (author)

  1. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahnstroem, G [Stockholm Univ. (Sweden); George, A M; Cramp, W A

    1978-10-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate.

  2. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  3. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  4. Tree species traits but not diversity mitigate stem breakage in a subtropical forest following a rare and extreme ice storm.

    Directory of Open Access Journals (Sweden)

    Karin Nadrowski

    Full Text Available Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.

  5. Mutagenic effect of radionuclides incorporated into DNA of Drosophila melanogaster. Progress report, 1978-1979

    International Nuclear Information System (INIS)

    Lee, W.R.

    1979-01-01

    Current progress in studies on the mutagenic effect of 3 H incorporated into the DNA of Drosophila melanogaster is reported. It was shown that selected 3 H precursors incorporated into DNA are metabolized. The forms (metabolites) of tritium found in the DNA molecules and the mutation frequencies resulting therefrom were identified. An alcohol dehydrogenase system was developed for recovering mutations that is capable of distinguishing between base changes and chain breakage events that may lead to the formation of deletions

  6. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  7. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  8. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  9. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    International Nuclear Information System (INIS)

    Chistiakov, Dimitry A.; Voronova, Natalia V.; Chistiakov, Pavel A.

    2008-01-01

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  10. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  11. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  12. Radiation-induced genomic instability driven by de novo chromosomal rearrangement hot spots

    International Nuclear Information System (INIS)

    Grosovsky, A.J.; Allen, R.N.; Moore, S.R.

    2003-01-01

    Genomic instability has become generally recognized as a critical contributor to tumor progression by generating the necessary number of genetic alterations required for expression of a clinically significant malignancy. Our study of chromosomal instability investigates the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in instability acting predominantly in cis. Here we present an analysis of the karyotypic distribution of instability associated chromosomal rearrangements in TK6 and derivative human lymphoblasts. Karyotypic analysis performed on a total of 455 independent clones included 183 rearrangements distributed among 100 separate unstable clones. The results demonstrate that the breakpoints of chromosomal rearrangements in unstable clones are non-randomly distributed throughout the genome. This pattern is statistically significant, and incompatible with expectations for random breakage associated with loss or alteration of a trans-acting factor. Furthermore, specific chromosomal breakage hot spots associated with instability have been identified; these occur in several independent unstable clones and are often repeatedly broken and rejoined during the outgrowth of an individual clone. In complimentary studies, genomic instability was generated without any exposure to a DNA-damaging agent, but rather by transfection with alpha heterochromatin DNA. In a prospective analysis, human-hamster hybrid AL cells containing a single human chromosome 11 were transfected with heterochromatic alpha DNA repeats and clones were analyzed by chromosome 11 painting. Transfection with alpha DNA was associated with karyotypic heterogeneity in 40% of clones examined; control transfections with plasmid alone did not lead to karyotypic heterogeneity

  13. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  15. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  16. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  17. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  18. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  19. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  20. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    International Nuclear Information System (INIS)

    Oikawa, Shinji; Kobayashi, Hatasu; Tada-Oikawa, Saeko; Isono, Yoshiaki; Kawanishi, Shosuke

    2009-01-01

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H 2 O 2 )-resistant clone HP100 cells, suggesting the involvement of H 2 O 2 . In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using 32 P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H 2 O 2 with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis

  1. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A microhomology-mediated break-induced replication model for the origin of human copy number variation.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2009-01-01

    Full Text Available Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV. A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp. Third, endpoints occur near pre-existing low copy repeats (LCRs. Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR. Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

  3. Investigation of DNA strand breaks induced by 7Li and 12C ions

    International Nuclear Information System (INIS)

    Sui Li; Zhao Kui; Ni Meinan; Guo Jiyu; Luo Hongbing; Mei Junping; Lu Xiuqin; Zhou Ping

    2004-01-01

    Deoxyribonucleic acid (DNA) is an important biomacromolecule. It is a carrier of genetic information and a critical target for radiobiological effects. Numerous lesions have been identified in irradiated DNA. DNA double strand breaks (DSBs) are considered as the most important initial damage of all biological effects induced by ionizing radiation. In this experiment, DNA DSBs induced by heavy ions in the early period were investigated with atomic force microscopy (AFM). Choosing 7 Li and 12 C heavy ions with different LET values delivered by HI-13 tandem accelerator respectively, purified plasmid DNA samples in aqueous solution were irradiated at different doses. AFM was used for nanometer-level-structure analysis of DNA damage induced by these two kinds of heavy ions. Measurement of the DNA fragment lengths was accomplished with the Scion Image analyzed soft-ware. Change laws of three forms of DNA, supercoils, open circular and linear form as dose increased were obtained. Distributed function of DNA fragment length was also obtained, and fitted with Tsallis entropy statistical theory. (author)

  4. Benzoyl peroxide-induced damage to DNA and its components

    DEFF Research Database (Denmark)

    Hazlewood, C; Davies, Michael Jonathan

    1996-01-01

    of base adducts, though the exact identity of the species detected in these cases could not be determined due to the complexity of the spectra. Hydrogen abstraction at the sugar-phosphate backbone is also believed to occur with these substrates as strand breakage is observed; the extent of the latter...

  5. Induction of DNA strand breaks by RSU-1069, a nitroimidazole-aziridine radiosensitizer

    International Nuclear Information System (INIS)

    Silver, A.R.J.; O'Neill, P.; Jenkins, T.C.

    1985-01-01

    [2- 14 C]-RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol], either as a parent or following radiation reduction, binds to calf thymus DNA in vitro. Radiation-reduced RSU-1069 binds to a greater extent and more rapidly than the parent compound. RSU-1137, a non-aziridino analogue of RSU-1069, binds following radiation reduction. Radiation-reduced misonidazole exhibits binding ratios a thousand-fold less than those of reduced RSU-1069. Both parent and reduced RSU-1069 cause single strand breaks (ssbs) in pSV2 gpt plasmid DNA with the reduced compound causing a greater number of breaks. Parent and reduced RSU-1137 and misonidazole do not cause ssbs. It is inferred that the aziridine moiety present in both parent and reduced RSU-1069 is required for ssb production. RSU-1069 reacts with inorganic phosphate probably via nucleophilic ring-opening of the aziridine fragment. Incubation of plasmid DNA with reduced RSU-1069 in the presence of either phosphate or deoxyribose-5-phosphate at concentrations greater than 0.35 mol dm -3 prevents strand breakage, whereas 1.2 mol dm -3 deoxyribose does not protect against strand breakage formation. It is proposed that the observed binding to DNA occurs via the aziridine and the reduced nitro group of RSU-1069 and that these two have different target sites. Binding to DNA via the reduced nitro group may serve to increase aziridine attack due to localization at or near its target. (author)

  6. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  7. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  8. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis

    International Nuclear Information System (INIS)

    Love, P.E.; Lyle, M.J.; Yasbin, R.E.

    1985-01-01

    DNA damage-inducible (din) operon fusions were generated in Bacillus subtilis by transpositional mutagenesis. These YB886(din::Tn917-lacZ) fusion isolates produced increased β-galactosidase when exposed to mitomycin C, UV radiation, or ethyl methanesulfonate, indicating that the lacZ structural gene had inserted into host transcriptional units that are induced by a variety of DNA-damaging agents. One of the fusion strains was DNA-repair deficient and phenotypically resembled a UV-sensitive mutant of B. subtilis. Induction of β-galactosidase also occurred in the competent subpopulation of each of the din fusion strains, independent of exposure to DNA-damaging agents. Both the DNA-damage-inducible and competence-inducible components of β-galactosidase expression were abolished by the recE4 mutation, which inhibits SOS-like (SOB) induction but does not interfere with the development of the component state. The results indicate that gene expression is stimulated at specific loci within the B. subtilis chromosome both by DNA-damaging agents and by the development of competence and that this response is under the control of the SOB regulatory system. Furthermore, they demonstrate that at the molecular level SOB induction and the development of competence are interrelated cellular events

  9. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  10. Induction of heat-labile sites in DNA of mammalian cells by the antitumor alkylating drug CC-1065

    International Nuclear Information System (INIS)

    Zsido, T.J.; Woynarowski, J.M.; Baker, R.M.; Gawron, L.S.; Beerman, T.A.

    1991-01-01

    CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand break. The authors have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, They observe thermally induced breakage of [ 14 C]thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing [ 3 H]thymidine-labeled untreated cells with the [ 14 C]thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10 6 base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The results of this study demonstrate that CC-1065 does generate heat-labile sites with the cellular DNA of intact cells and suggest that a mechanism of cytotoxic action of CC-1065 involves formation of covalent adducts to DNA

  11. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    International Nuclear Information System (INIS)

    Cole, G.M.; Mortimer, R.K.

    1989-01-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae

  12. Effect of pyrimido[1,6-a]benzimidazoles, quinolones, and Ca2+ on the DNA gyrase-mediated cleavage reaction.

    Science.gov (United States)

    Gmünder, H; Kuratli, K; Keck, W

    1995-01-01

    The quinolones inhibit the A subunit of DNA gyrase in the presence of Mg2+ by interrupting the DNA breakage and resealing steps, and the latter step is also retarded without quinolones if Mg2+ is replaced by Ca2+. Pyrimido[1,6-a]benzimidazoles have been found to represent a new class of potent DNA gyrase inhibitors which also act at the A subunit. To determine alterations in the DNA sequence specificity of DNA gyrase for cleavage sites in the presence of inhibitors of both classes or in the presence of Ca2+, we used DNA restriction fragments of 164, 85, and 71 bp from the pBR322 plasmid as model substrates. Each contained, at a different position, the 20-bp pBR322 sequence around position 990, where DNA gyrase preferentially cleaves in the presence of quinolones. Our results show that pyrimido[1,6-a]benzimidazoles have a mode of action similar to that of quinolones; they inhibit the resealing step and influence the DNA sequence specificity of DNA gyrase in the same way. Differences between inhibitors of both classes could be observed only in the preferences of DNA gyrase for these cleavage sites. The 20-bp sequence appeared to have some properties that induced DNA gyrase to cleave all three DNA fragments in the presence of inhibitors within this sequence, whereas cleavage in the presence of Ca2+ was in addition dependent on the length of the DNA fragments. PMID:7695300

  13. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  14. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  15. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  16. DNA damage induced by the direct effect of He ion particles

    International Nuclear Information System (INIS)

    Urushibara, A.; Shikazono, N.; Watanabe, R.; Fujii, K.; O'Neill, P.; Yokoya, A.

    2006-01-01

    We present here evidence showing that the yields of DNA lesions induced by He 2+ ions strongly depend on Linear energy transfer (LET). In this study, hydrated plasmid DNA was irradiated with He 2+ ions with LET values of 19, 63 and 95 keVμm -1 . The yields of prompt single-strand breaks (SSBs) are very similar at the varying LET values, whereas the yields of prompt double-strand breaks (DSBs) increase with increasing LET. Further, base lesions were revealed as additional strand breaks by post-irradiation treatment of the DNA with endonuclease III (Nth) and formamido-pyrimidine-DNA glycosylase (Fpg). The reduction in the yield of these enzymatically induced SSBs and DSBs becomes significant as the LET increases. These results suggest that the clustering of DNA lesions becomes more probable in regions of high LET. (authors)

  17. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  18. Damage to the DNA of microorganisms from decay of incorporated 125I and the relationship of DNA damage to lethal effects

    International Nuclear Information System (INIS)

    Krisch, R.E.; Krasin, F.; Sauri, C.J.

    1975-01-01

    Iodine-125 decays by electron capture and is known to cause severe molecular damage to small organic molecules via vacancy cascades. In an examination of the biological effects of this decay mode we have labelled coliphages T1 and T4, as well as E. coli, with 125 I-5-iododeoxyuridine, which is incorporated into DNA in place of thymidine. Labelled organisms are generally stored in liquid nitrogen at -196 0 C during decay and are periodically assayed for loss of viability and for breakage of DNA, using neutral and alkaline sucrose gradient sedimentation techniques. Briefly, our experiments have demonstrated drastic damage to DNA from the decay of incorporated 125 I, as would be predicted from the data for small molecules. (auth)

  19. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, Jeffrey W., E-mail: jeff.guthrie@emich.edu; Limmer, Robert T.; Brooks, Eric A.; Wisnewski, Chelsea C.; Loggins-Davis, Nnekia D.; Bouzid, Abderraouf

    2015-01-01

    Highlights: • CE–LIF was developed for simultaneous detection of UV-induced DNA photoproducts. • Fluorescent quantum dot reporters enabled detection of small amounts of photoproducts. • Photoproducts were detected after 65 J m{sup −2} of fluence from a UVB lamp in ∼6 ng of DNA. • Natural sunlight induced cyclobutane pyrimidine dimers after only 15 min of exposure. - Abstract: An immunoassay based on CE–LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL{sup −1}) of DNA under a low UVB fluence of 65 J m{sup −2} for CPDs or 195 J m{sup −2} for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight.

  20. Simultaneous detection of ultraviolet B-induced DNA damage using capillary electrophoresis with laser-induced fluorescence

    International Nuclear Information System (INIS)

    Guthrie, Jeffrey W.; Limmer, Robert T.; Brooks, Eric A.; Wisnewski, Chelsea C.; Loggins-Davis, Nnekia D.; Bouzid, Abderraouf

    2015-01-01

    Highlights: • CE–LIF was developed for simultaneous detection of UV-induced DNA photoproducts. • Fluorescent quantum dot reporters enabled detection of small amounts of photoproducts. • Photoproducts were detected after 65 J m −2 of fluence from a UVB lamp in ∼6 ng of DNA. • Natural sunlight induced cyclobutane pyrimidine dimers after only 15 min of exposure. - Abstract: An immunoassay based on CE–LIF was developed for the simultaneous detection of cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) in genomic DNA irradiated with UVB or natural sunlight. Human cells were first exposed to varying amounts of UVB or natural sunlight to induce DNA damage. Genomic DNA was extracted and incubated with anti-CPD and anti-6-4PP primary antibodies attached to secondary antibodies with a fluorescent quantum dot (QD) reporter that emitted either red or yellow fluorescence. CE was used to separate the unbound antibodies from those bound to the photoproducts, and LIF with appropriate optical filters was used to separate the fluorescence signals from each QD to individual photomultiplier tubes for simultaneous photoproduct detection. Using this strategy, photoproducts were detected from ∼6 ng (200 ng μL −1 ) of DNA under a low UVB fluence of 65 J m −2 for CPDs or 195 J m −2 for 6-4PPs. This assay was also the first to demonstrate the detection of CPDs in human cells after only 15 min of irradiation under natural sunlight

  1. Contribution of Indirect Effects to Clustered Damage in DNA Irradiated with Protons

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Štěpán, Václav; Karamitros, M.; Karabín, M.; Dostálek, P.; Incerti, S.; Davídková, Marie; Sihver, L.

    2015-01-01

    Roč. 166, 1-4 (2015), s. 44-48 ISSN 0144-8420 R&D Projects: GA MŠk LD12008; GA MŠk LM2011019 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : Geant4-DNA * radiolysis * breakage * lesions * cells Subject RIV: BO - Biophysics Impact factor: 0.894, year: 2015

  2. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  3. Radiation sensitivity of organisms of different organization level: an approach including DNA strand breakage

    International Nuclear Information System (INIS)

    Kampf, G.

    1983-01-01

    The mean numbers of DNA double-strand breaks (DSB) suggested to be necessary to lead to the loss of reproductive capacity are compared with bacteriophages, bacteria, and cells of the Chinese hamster after the influence of several radiation qualities. The results suggest that the critical target for the inactivating action of radiations may not be the entire DNA of all organisms but a structure unit of it designed as membrane-attached super structure unit. With organisms having only one of these structures (bacteria) the inactivation probability of one DSB will be near unity, with their multiplication in higher cells it will become lower. This means, eukaryotic cells are able to tolerate more DSB before being inactivated than organisms of a lower organization level, and consequently are more ''lesion resistant''. This behavior represents an evolutionary stabilization of higher cells towards the lethal action of severe DNA lesions such as DSB. (author)

  4. Resveratrol-3-O-glucuronide and resveratrol-4’-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin

    Science.gov (United States)

    Resveratrol has been reported to inhibit or induce DNA damage depending upon the type of cell and experimental conditions. Dietary resveratrol is present in the body mostly as metabolites and little is known about the activities of these metabolic products. We evaluated physiologically obtainable ...

  5. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae

    Directory of Open Access Journals (Sweden)

    Laura Carolina Valencia

    2011-01-01

    Full Text Available The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM and 4-nitroquinoline-1-oxide (4NQO was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 !g/mL yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV < 10%. The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.

  6. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Valencia, Laura Carolina; García, Adriana; Ramírez-Pinilla, Martha Patricia; Fuentes, Jorge Luis

    2011-10-01

    The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.

  7. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  8. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    Science.gov (United States)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  9. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  10. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  11. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    International Nuclear Information System (INIS)

    Ley, R.D.

    1997-01-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author)

  13. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R.D. [The Lovelace Institutes, Albuqeurque, NM (United States). Photomdecine Program; Fourtanier, A. [L`Oreal, Advanced Research, Clichy (France)

    1997-06-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author).

  14. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  15. Effect and adaptive response of lymphocytes DNA induced by low dose irradiation

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Tian Hailin

    1994-09-01

    Fluorometric analysis of DNA unwinding (FADU) was conducted and was proved to be an optimal method for studying DNA strand breaks induced by low dose irradiation. The linear dose response curve was obtained. The minimum detected dose was 0.3 Gy. There was no effect of low dose γ-rays (0.5∼8.0 cGy) on DNA strand breaks of quiescent and mitogen-induced lymphocytes. The 0.5∼4.0 cGy γ-rats could induce adaptive response of lymphocytes' DNA strand breaks, especially, at the doses of 2.0 and 4.0 cGy. The challenge doses of 5∼20 Gy could make the adaptive response appearance, and the 15 Gy was the best one. The 3-AB could powerfully inhibit the adaptive response. The repair of DNA strand breaks (37 degree C, 15∼60 min) caused by 15 Gy γ-rays could be promoted by the low dose γ-ray irradiation (2.0 cGy), but no difference was found at 37 degree C, 120 min

  16. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  17. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  18. Modification of radiation-induced DNA lesions by oxygen

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1984-01-01

    The efficiency of DNA strand break production by radiation under aerated and hypoxic conditions was determined in CHO cells using the technique of alkaline elution. The resulting oxygen enhancement ratio was surprisingly high, 7.8. When the pH of the elution was increased from 12.1, the normally used pH, to 12.8, a substantial increase in the strand breaks produced in the hypoxic cells was observed, resulting in an OER of 4.8. This difference in susceptibility of DNA strand break detection as a function of pH suggested a difference in the type of lesions produced in DNA when irradiated under aerated and hypoxic conditions. Further experiments to examine the DNA-protein crosslinks produced by radiation suggested that the apparent lower level of strand breaks in hypoxic cells may be due to a higher level of DNA-protein crosslinks produced under hypoxic conditions. Thus, oxygen may not only act by modifying the quantity of radiation-induced DNA lesions but may also cause qualitative changes. If the different types of DNA lesions have different contributions to lethality, the OER for cell survival may represent a complex composite of these changes at the molecular level

  19. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  20. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  1. Inducibility of error-prone DNA repair in yeast

    International Nuclear Information System (INIS)

    Siede, W.; Eckardt, F.

    1984-01-01

    Whereas some experimental evidence suggests that mutagenesis in yeast after treatment with DNA-damaging agents involves inducible functions, a general-acting error-prone repair activity analogous to the SOS system of Escherichia coli has not yet been demonstrated. The current literature on the problem of inducibility of mutagenic repair in yeast is reviewed with emphasis on the differences in the experimental procedures applied. (orig.)

  2. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  3. The Aurora-B-dependent NoCut checkpoint prevents damage of anaphase bridges after DNA replication stress.

    Science.gov (United States)

    Amaral, Nuno; Vendrell, Alexandre; Funaya, Charlotta; Idrissi, Fatima-Zahra; Maier, Michael; Kumar, Arun; Neurohr, Gabriel; Colomina, Neus; Torres-Rosell, Jordi; Geli, María-Isabel; Mendoza, Manuel

    2016-05-01

    Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.

  4. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    Science.gov (United States)

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  5. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  6. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  7. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  8. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  9. Repair of UVC induced DNA lesions in erythrocytes from Carassius auratus gibelio

    International Nuclear Information System (INIS)

    Bagdonas, E.; Zukas, K.

    2004-01-01

    The kinetics of UVC (254 nm) irradiation induced DNA single-strand breaks generated during the excision repair of UV induced DNA damage in erythrocytes from Carassius auratus gibelio were studied using alkaline comet assay. Nucleotide excision repair recognised DNA lesions such as UVC induced cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone photoproducts and produced DNA single-stranded breaks that were easily detected by comet assay. After irradiation of erythrocytes with 58 j/m 2 UVC dose, there was an increase in comet tail moment (CTM) at 2 hours post-radiation, whereas at 4 hours post-radiation CTM decreased and did not differ significantly from the control level (P=0,127). When erythrocytes were exposed to 173 J/m 2 UVC dose, the excision repair delayed in the beginning (0 hours), reached maximum level at 2 hours post-radiation (CTM-54,8) and showed slightly decreased level at 4 hours post-radiation (CTM=18,5). (author)

  10. DNA-methylation changes induced by salt stress in wheat Triticum ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... soil roots are the primary point of contact with ionic toxicity and osmotic stress. One of .... liquid nitrogen with mortar and pestle. Then 10 ml of ... room temperature and the crude DNA extract was mixed with 10 ml of chloroform: ..... induces DNA hypomethylation, as reviewed by Cerda and. Weitzman (1997).

  11. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Zengquan, Wei; Guangming, Zhou; Jufang, Wang; Jing, He; Qiang, Li; Wenjian, Li; Hongmei, Xie; Xichen, Cai; Huang, Tao; Bingrong, Dang; Guangwu, Han [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Qingxiang, Gao [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  12. Induced Polarization Influences the Fundamental Forces in DNA Base Flipping

    OpenAIRE

    Lemkul, Justin A.; Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Base flipping in DNA is an important process involved in genomic repair and epigenetic control of gene expression. The driving forces for these processes are not fully understood, especially in the context of the underlying dynamics of the DNA and solvent effects. We studied double-stranded DNA oligomers that have been previously characterized by imino proton exchange NMR using both additive and polarizable force fields. Our results highlight the importance of induced polarization on the base...

  13. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    Science.gov (United States)

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  15. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  16. Effects of hyperthermia on repair of radiation-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Mills, M.D.; Meyn, R.E.

    1981-01-01

    Previous reports have suggested a relationship between the heat-induced changes in nucleoprotein and the hyperthermic enhancement of radiation sensitivity. In an effort to further understand these relationships, we measured the level of initial DNA strand break damage and the DNA strand break rejoining kinetics in Chinese hamster ovary cells following combined hyperthermia and ionizing radiation treatments. The amount of protein associated with DNA measured as the ratio of [ 3 H)leucine to [ 14 C]thymidine was also compared in chromatin isolated from both heated and unheated cells. The results of these experiments show that the initial level of radiation-induced DNA strand breaks is significantly enhanced by a prior hyperthermia treatment of 43 0 C for 30 min. Treatments at higher temperatures and longer treatments at the same temperature magnified this effect. Hyperthermia was also shown to cause a substantial inhibition of the DNA strand break rejoining after irradiation. Both the initial level of DNA damage and the rejoining kinetics recovered to normal levels with incubation at 37 0 C between the hyperthermia and radiation treatments. Recovery of these parameters coincided with the return of the amount of protein associated with DNA to normal values, further suggesting a relationship between the changes in nucleoprotein and the hyperthermic enhancement of radiation sensivivity

  17. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Science.gov (United States)

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  18. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  19. The consequences of granulate heterogeneity towards breakage and attrition upon fluid-bed drying

    NARCIS (Netherlands)

    Nieuwmeyer, Florentine; Maarschalk, Kees van der Voort; Vromans, Herman

    High-shear granulated lactose granulates were dried in it fluid-bed dryer at various conditions. Granules were characterized by water content and size analysis. It is shown that the drying process is very dynamic in terms of growth and breakage phenomena. Granular size heterogeneity, composition and

  20. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  1. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  2. Cross-linking and relaxation of supercoiled DNA by psoralen and light

    International Nuclear Information System (INIS)

    Yoakum, G.H.; Cole, R.S.

    1978-01-01

    Photoreaction of 4,5',8-trimethylpsoralen with superhelical ColE1 and ColE1amp DNA was studied. Changes in mobilities in agarose gels, formation of interstrand cross-links, and DNA strand breaks were determined. Psoralen and light treatment removed negative superhelical turns, and extensive treatments failed to produce positive superhelical turns in covalently closed plasmid DNA. The rate of relaxation of superhelical turns by psoralen photobinding appeared to be directly proportional to the number of superhelical turns remaining. A unique reaction mechanism is presented to explain these results. By this interpretation the initial rate of psoralen photobinding to superhelical DNA was estimated to be 3 times that for linear DNA, and the ratio of cross-linking to monofunctional adducts appears to be dependent on the superhelical conformation of the DNA. The estimated ratio of psoralen molecules bound to DNA strand breaks was 1.7 . 10 4 :1, and 70% of this breakage is caused by the light alone. (Auth.)

  3. Force-Induced Unravelling of DNA Origami.

    Science.gov (United States)

    Engel, Megan C; Smith, David M; Jobst, Markus A; Sajfutdinow, Martin; Liedl, Tim; Romano, Flavio; Rovigatti, Lorenzo; Louis, Ard A; Doye, Jonathan P K

    2018-05-31

    The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently-proposed origami biosensor, whose function takes advantage of origami behaviour under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inwards for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces; and what design principles can be applied to enhance stability.

  4. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Progress report, September 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Brewer, E.N.; Nygaard, O.F.; Kuncio, G.

    1978-01-01

    Isolated nuclei and intact plasmodia of Physarum contain a heat-stable stimulator of nuclear DNA replication. This substance has been purified extensively and found to contain both protein and carbohydrate. The molecular weight, estimated by gel filtration, is ca. 30,000 d. The purified material does not exhibit DNA polymerase or DNase activity, and does not stimulate DNA polymerase activity per se. In the presence of the stimulatory factor, DNA chain elongation occurs at an elevated rate, and continues for a longer time than in its absence, but G 2 nuclei are not stimulated to initiate DNA synthesis. Double-strand breaks in nuclear DNA of irradiated plasmodia are repaired in vitro to a greater extent following nuclear isolation during G 2 , and the DNA of unirradiated plasmodia is less susceptible to double-strand breakage during cell-free nuclear incubation, than is the DNA of S-phase nuclei. This correlation suggests a common basis for both observations, for example an increase in deoxyribonuclease activity or a decrease in DNA ligase activity during the S period. This, in turn, may account for the cell cycle-dependent sensitivity of this organism, in terms of mitotic delay, to ionizing radiation

  5. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  6. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  7. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  8. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  9. Oral Gene Application Using Chitosan-DNA Nanoparticles Induces Transferable Tolerance

    Science.gov (United States)

    Ensminger, Stephan M.; Spriewald, Bernd M.

    2012-01-01

    Oral tolerance is a promising approach to induce unresponsiveness to various antigens. The development of tolerogenic vaccines could be exploited in modulating the immune response in autoimmune disease and allograft rejection. In this study, we investigated a nonviral gene transfer strategy for inducing oral tolerance via antigen-encoding chitosan-DNA nanoparticles (NP). Oral application of ovalbumin (OVA)-encoding chitosan-DNA NP (OVA-NP) suppressed the OVA-specific delayed-type hypersensitivity (DTH) response and anti-OVA antibody formation, as well as spleen cell proliferation following OVA stimulation. Cytokine expression patterns following OVA stimulation in vitro showed a shift from a Th1 toward a Th2/Th3 response. The OVA-NP-induced tolerance was transferable from donor to naïve recipient mice via adoptive spleen cell transfer and was mediated by CD4+CD25+ T cells. These findings indicate that nonviral oral gene transfer can induce regulatory T cells for antigen-specific immune modulation. PMID:22933401

  10. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    Science.gov (United States)

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  11. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells

  12. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  13. Simulation on breakage of heterogeneous materials caused by detonative loading; Bakugo shogeki ni yoru fukinshitsu zairyo no hakai gensho no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, K; Watanabe, T; Ashida, Y [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-05-01

    Investigations were conducted by simulation of breakage of inhomogeneous materials (rock) attributable to detonative loading, which simulation used the Days-2 Code. During the simulation, one-free-face blastings were used for testing a homogeneous structure, horizontal 2-layer structure, and horizontal 3-layer structure. Property values were assigned to the rocks on the assumption that they were sedimentary rocks such as sandstone or mudstone or hard rocks such as granite. As the result, it was found that a detonative loading resulted in shear failure in a sphere near the focus that was followed by radially developed cracks due to tension breakage, that more area is damaged in a soft rock than in a hard rock, that cracks due to breakage are produced by the overlapping of waves directly from the focus and those reflected from the free face in case of one-free-face blastings, that such cracks propagated along the soft rock layer in case there is a soft rock layer in a hard rock, but that breakage does not extend beyond the soft rock layer. 6 refs., 6 figs., 1 tab.

  14. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  15. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments

    International Nuclear Information System (INIS)

    Keszenman, D.J.; Sutherland, B.M.

    2010-01-01

    To determine the linear energy transfer (LET) dependence of the biological effects of densely ionizing radiation in relation to changes in the ionization density along the track, we measured the yields and spectrum of clustered DNA damages induced by charged particles of different atomic number but similar kinetic energy per nucleon in different DNA microenvironments. Yeast DNA embedded in agarose in solutions of different free radical scavenging capacity was irradiated with 1 GeV protons, 1 GeV/nucleon oxygen ions, 980 MeV/nucleon titanium ions or 968 MeV/nucleon iron ions. The frequencies of double-strand breaks (DSBs), abasic sites and oxypurine clusters were quantified. The total DNA damage yields per absorbed dose induced in non-radioquenching solution decreased with LET, with minor variations in radioquenching conditions being detected. However, the total damage yields per particle fluence increased with LET in both conditions, indicating a higher efficiency per particle to induce clustered DNA damages. The yields of DSBs and non-DSB clusters as well as the damage spectra varied with LET and DNA milieu, suggesting the involvement of more than one mechanism in the formation of the different types of clustered damages.

  16. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  17. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    Science.gov (United States)

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  18. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  19. Modulation of mutagen-induced biological effects by inhibitors of DNA repair

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Mullenders, L.F.H.; Zwanenburg, T.S.B.

    1986-01-01

    When lesions are induced in the DNA by mutagenic agents, they are subjected to cellular repair. Unrepaired and misrepaired lesions lead to biological effects, such as cell killing, point mutations and chromosomal alterations (aberrations and sister chromatid exchanges - SCEs). It is very difficult to directly correlate any particular type of lesion to a specific biological effect. However, in specific cases, this has been done. For example, short wave UV induced biological effects (cell killing, chromosomal alterations) result predominantly from induced cyclobutane dimers and by photoreactivation experiments, one can demonstrate that with the removal of dimers all types biological effects are diminished. In cases where many types of lesions are considered responsible for the observed biological effects other strategies have been employed to identify the possible lesion. The frequencies of induced chromosomal alterations and point mutations increase with the dose of the mutagen employed and an inhibition of DNA repair following treatment with the mutagen. Prevention of the cells from dividing following mutagen treatment allows them to repair premutational damage, thus reducing the biological effects induced. By comprehensive studies involving quantification of primary DNA lesions, their repair and biological effects will enable us to understand to some extent the complex processes involved in the manifestation of specific biological effects that follow the treatment of cells with mutagenic carcinogens

  20. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    International Nuclear Information System (INIS)

    Dittmann, Klaus; Mayer, Claus; Rodemann, Hans-Peter

    2005-01-01

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  1. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  2. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    DEFF Research Database (Denmark)

    Borisova, Marina E; Voigt, Andrea; Tollenaere, Maxim A X

    2018-01-01

    quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins......Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that globally affect transcription and splicing. However, the signaling pathways and mechanisms that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly understood. Here we employ...

  3. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity

  4. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  5. Radiation damage to DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim-Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 261, zima (2011), s. 1-10 ISSN 1742-6588. [COST Chemistry CM0603-MELUSYN Joint Meeting Damages Induced in Biomolecules by Low and High Energy Radiations. Paříž, 09.03.2010-12.03.2010] R&D Projects: GA AV ČR IAA1048103; GA AV ČR KJB4048401; GA MŠk 1P05OC085; GA MŠk OC09012; GA AV ČR IAB1048901 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiolysis * molecular-dynamics simulation * hydroxyl radical attack * induced strand breakage Subject RIV: BO - Biophysics

  6. Correspondence: chromosomal localization of uv-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Berliner, J.; Mello, R.S.; Norman, A.

    1976-01-01

    We have measured the grain density - the number of grains per unit length - over the centromere and noncentromere regions of metaphase chromosomes in autoradiographs of human lymphocytes. When the chromosomes were labeled in G 0 by uv-induced unscheduled DNA synthesis, the grain density was two to four times larger over the centromere than over the noncentromere regions. When the labeling was done by scheduled DNA synthesis in S or unscheduled synthesis in M, the grain densities were approximately equal over both regions

  7. Layered graphene-mica substrates induce melting of DNA origami

    Science.gov (United States)

    Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.

    2018-04-01

    Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.

  8. Lac repressor: Crystallization of intact tetramer and its complexes with inducer and operator DNA

    International Nuclear Information System (INIS)

    Pace, H.C.; Lu, P.; Lewis, M.

    1990-01-01

    The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 angstrom. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 angstrom, b = 75.6 angstrom, and c = 161.2 angstrom, with α = γ = 90 degree and β = 125.5 degree. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 angstrom. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl β-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex

  9. Repair of ultraviolet light-induced DNA damage in cholera bacteriophages

    International Nuclear Information System (INIS)

    Palit, B.N.; Das, G.; Das, J.

    1983-01-01

    DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated cholera bacteriophages. U.v. light-induced DNA damage in phages of different morphological and serological groups could be efficiently photoreactivated. Host cell reactivation of irradiated phages of different groups was different on the same indicator host. Phage phi149 was the most sensitive, and phi138 the most resistant to u.v. irradiation. While phi138 showed appreciable host cell reactivation, this was minimal for phi149. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages were not successful, although u.v.-induced filamentation of host cells was observed. (author)

  10. Wear and breakage monitoring of cutting tools by an optical method: theory

    Science.gov (United States)

    Li, Jianfeng; Zhang, Yongqing; Chen, Fangrong; Tian, Zhiren; Wang, Yao

    1996-10-01

    An essential part of a machining system in the unmanned flexible manufacturing system, is the ability to automatically change out tools that are worn or damaged. An optoelectronic method for in situ monitoring of the flank wear and breakage of cutting tools is presented. A flank wear estimation system is implemented in a laboratory environment, and its performance is evaluated through turning experiments. The flank wear model parameters that need to be known a priori are determined through several preliminary experiments, or from data available in the literature. The resulting cutting conditions are typical of those used in finishing cutting operations. Through time and amplitude domain analysis of the cutting tool wear states and breakage states, it is found that the original signal digital specificity (sigma) 2x and the self correlation coefficient (rho) (m) can reflect the change regularity of the cutting tool wear and break are determined, but which is not enough due to the complexity of the wear and break procedure of cutting tools. Time series analysis and frequency spectrum analysis will be carried out, which will be described in the later papers.

  11. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    International Nuclear Information System (INIS)

    Lopez-Larraza, Daniel M.; Padron, Juan; Ronci, Natalia E.; Vidal Rioja, Lidia A.

    2006-01-01

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 o C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells

  12. Chromatin condensation and differential sensitivity of mammalian and insect cells to DNA strand breaks induced by bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Larraza, Daniel M. [IMBICE, C.C. 403, 1900 La Plata (Argentina)]. E-mail: danielop@imbice.org.ar; Padron, Juan [IMBICE, C.C. 403, 1900 La Plata (Argentina); Ronci, Natalia E. [IMBICE, C.C. 403, 1900 La Plata (Argentina); Vidal Rioja, Lidia A. [IMBICE, C.C. 403, 1900 La Plata (Argentina)

    2006-08-30

    Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 {sup o}C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.

  13. Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism

    Science.gov (United States)

    Jiang, Wen-Yan; Ran, Shi-Yong

    2018-05-01

    The interaction between silver ions and DNA plays an important role in the therapeutic use of silver ions and in related technologies such as DNA sensors. However, the underlying mechanism has not been fully understood. In this study, the dynamics of Ag+-DNA interaction at a single-molecule level was studied using magnetic tweezers. AgNO3 solutions with concentrations ranging from 1 μM to 20 μM led to a 1.4-1.8 μm decrease in length of a single λ-DNA molecule, indicating that Ag+ has a strong binding with DNA, causing the DNA conformational change. The compaction process comprises one linear declining stage and another sigmoid-shaped stage, which can be attributed to the interaction mechanism. Considering the cooperative effect, the sigmoid trend was well explained using a phenomenological model. By contrast, addition of silver nanoparticle solution induced no detectable transition of DNA. The dependence of the interaction on ionic strength and DNA concentration was examined via morphology characterization and particle size distribution measurement. The size of the Ag+-DNA complex decreased with an increase in Ag+ ionic strength ranging from 1 μM to 1 mM. Morphology characterization confirmed that silver ions induced DNA to adopt a compacted globular conformation. At a fixed [AgNO3]:[DNA base pairs] ratio, increasing DNA concentration led to increased sizes of the complexes. Intermolecular interaction is believed to affect the Ag+-DNA complex formation to a large extent.

  14. DNA-incorporated 125I induces more than one double-strand break per decay in mammalian cells.

    Science.gov (United States)

    Elmroth, Kecke; Stenerlöw, Bo

    2005-04-01

    The Auger-electron emitter 125I releases cascades of 20 electrons per decay that deposit a great amount of local energy, and for DNA-incorporated 125I, approximately one DNA double-strand break (DSB) is produced close to the decay site. To investigate the potential of 125I to induce additional DSBs within adjacent chromatin structures in mammalian cells, we applied DNA fragment-size analysis based on pulsed-field gel electrophoresis (PFGE) of hamster V79-379A cells exposed to DNA-incorporated 125IdU. After accumulation of decays at -70 degrees C in the presence of 10% DMSO, there was a non-random distribution of DNA fragments with an excess of fragments even higher. In contrast, using a conventional low-resolution assay without measurement of smaller DNA fragments, the yield was close to one DSB/decay. We conclude that a large fraction of the DSBs induced by DNA-incorporated 125I are nonrandomly distributed and that significantly more than one DSB/decay is induced in an intact cell. Thus, in addition to DSBs produced close to the decay site, DSBs may also be induced within neighboring chromatin fibers, releasing smaller DNA fragments that are not detected by conventional DSB assays.

  15. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2012-01-01

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R 2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  16. DNA lability induced by nimustine and ramustine in rat glioma cells.

    Science.gov (United States)

    Mineura, K; Fushimi, S; Itoh, Y; Kowada, M

    1988-01-01

    The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017

  17. DNA Methylation program in normal and alcohol-induced thinning cortex.

    Science.gov (United States)

    Öztürk, Nail Can; Resendiz, Marisol; Öztürk, Hakan; Zhou, Feng C

    2017-05-01

    While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

    Science.gov (United States)

    Takahama, Michihiro; Fukuda, Mitsunori; Ohbayashi, Norihiko; Kozaki, Tatsuya; Misawa, Takuma; Okamoto, Toru; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-09-19

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  20. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  1. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells.

    LENUS (Irish Health Repository)

    Dodson, Helen

    2009-10-01

    The response to DNA damage in vertebrate cells involves successive recruitment of DNA signalling and repair factors. We used light microscopy to monitor the genetic dependencies of such localization to a single, induced DNA double strand break (DSB) in vertebrate cells. We used an inducible version of the rare-cutting I-SceI endonuclease to cut a chromosomally integrated I-SceI site beside a Tet operator array that was visualized by binding a Tet repressor-GFP fusion. Formation of gamma-H2AX foci at a single DSB was independent of ATM or Ku70. ATM-deficient cells showed normal kinetics of 53Bp1 recruitment to DSBs, but Rad51 localization was retarded. 53Bp1 and Rad51 foci formation at a single DSB was greatly reduced in H2AX-null DT40 cells. We also observed decreased inter-sister chromatid distances after DSB induction, suggesting that cohesin loading at DSBs causes elevated sister chromatid cohesion. Loss of ATM reduced DSB-induced cohesion, consistent with cohesin being an ATM target in the DSB response. These data show that the same genetic pathways control how cells respond to single DSBs and to multiple lesions induced by whole-cell DNA damage.

  2. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  3. Incorrect condom use and frequent breakage among female sex workers and their clients.

    Science.gov (United States)

    Mukenge-Tshibaka, Léonard; Alary, Michel; Geraldo, Nassirou; Lowndes, Catherine M

    2005-05-01

    Our objective was to assess if female sex workers (FSWs) and their potential male clients in Cotonou, Benin, know how to use male condoms correctly. From April to June 2000, 314 FSWs and 208 men were interviewed, and asked to demonstrate on a wooden penis how they usually use male condoms. In all, 27.6% of both women and men tore the condom envelope on the notch; 89.3% of the women versus 75.4% of the men easily found the correct side; 17.3% of the women versus 28.3% of the men held the top of the condom to avoid air entering; 91.4% of the women versus 75.6% of the men correctly unrolled the condom. Taking all the four criteria together, only approximately 11% of participants performed a correct condom use demonstration. FSWs frequently reported condom breakage, which was significantly associated with incorrect condom demonstration (P = 0.04). Correct condom use is suboptimal in these heavy consumers of male condoms in Benin. Condom breakage is frequent and is associated with incorrect use.

  4. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  5. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    International Nuclear Information System (INIS)

    Ward, E.J.; Stewart, B.W.

    1987-01-01

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with [ 3 H]thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s)

  7. The effect of 2-[(aminopropyl)amino] ethanethiol on fission-neutron-induced DNA damage and repair.

    Science.gov (United States)

    Grdina, D. J.; Sigdestad, C. P.; Dale, P. J.; Perrin, J. M.

    1989-01-01

    The effect(s) of the radioprotector 2-[(aminopropyl)amino] ethanethiol (WR 1065) on fission-neutron-induced DNA damage and repair in V79 Chinese hamster cells was determined by using a neutral filter elution procedure (pH 7.2). When required, WR1065, at a final working concentration of 4 mM, was added to the culture medium, either 30 min before and during irradiation with fission spectrum neutrons (beam energy of 0.85 MeV) from the JANUS research reactor, or for selected intervals of time following exposure. The frequency of neutron-induced DNA strand breaks as measured by neutral elution as a function of dose equalled that observed for 60Co gamma-ray-induced damage (relative biological effectiveness of one). In contrast to the protective effect exhibited by WR1065 in reducing 60Co-induced DNA damage, WR1065 was ineffective in reducing or protecting against induction of DNA strand breaks by JANUS neutrons. The kinetics of DNA double-strand rejoining were measured following neutron irradiation. In the absence of WR1065, considerable DNA degradation by cellular enzymes was observed. This process was inhibited when WR1065 was present. These results indicate that, under the conditions used, the quality (i.e. nature), rather than quantity, of DNA lesions (measured by neutral elution) formed by neutrons was significantly different from that formed by gamma-rays. PMID:2667608

  8. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  9. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    International Nuclear Information System (INIS)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H.

    1997-01-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  10. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, S; Shikazono, N; Tanaka, A; Yokota, Y; Watanabe, H [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center

    1997-09-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  11. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution

    International Nuclear Information System (INIS)

    Kinley, J.S.; Moan, J.; Brunborg, G.

    1995-01-01

    Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). (Author)

  12. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  13. Chromosomal Bands Affected by Acute Oil Exposure and DNA Repair Errors

    Science.gov (United States)

    Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P.; Antó, Josep M.; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    Background In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. Objectives We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Methods Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Results Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). Conclusion The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure. PMID:24303039

  14. Single Nucleotide Polymorphisms in Noncoding Regions of Rad51C Do Not Change the Risk of Unselected Breast Cancer but They Modulate the Level of Oxidative Stress and the DNA Damage Characteristics

    DEFF Research Database (Denmark)

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa

    2014-01-01

    affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p... decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand...

  15. Fibre Length Reduction in Natural Fibre-Reinforced Polymers during Compounding and Injection Moulding—Experiments Versus Numerical Prediction of Fibre Breakage

    Directory of Open Access Journals (Sweden)

    Katharina Albrecht

    2018-03-01

    Full Text Available To establish injection-moulded, natural fibre-reinforced polymers in the automotive industry, numerical simulations are important. To include the breakage behaviour of natural fibres in simulations, a profound understanding is necessary. In this study, the length and width reduction of flax and sisal fibre bundles were analysed experimentally during compounding and injection moulding. Further an optical analysis of the fibre breakage behaviour was performed via scanning electron microscopy and during fibre tensile testing with an ultra-high-speed camera. The fibre breakage of flax and sisal during injection moulding was modelled using a micromechanical model. The experimental and simulative results consistently show that during injection moulding the fibre length is not reduced further; the fibre length was already significantly reduced during compounding. For the mechanical properties of a fibre-reinforced composite it is important to overachieve the critical fibre length in the injection moulded component. The micromechanical model could be used to predict the necessary fibre length in the granules.

  16. Chemical and structural composition of Atlantic Canadian moose (Alces alces) incisors with patterns of high breakage

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Cynthia S. Kendall; Clough, Michael J. [Biology Department, Saint Mary' s University, Halifax, Nova Scotia, Canada B3H 3C3 (Canada); Broders, Hugh G., E-mail: hugh.broders@smu.ca [Biology Department, Saint Mary' s University, Halifax, Nova Scotia, Canada B3H 3C3 (Canada); Tubrett, Mike [Inco Innovation Centre, ICP-MS Facility, Memorial University of Newfoundland, P.O. Box 4200, St. John' s, Newfoundland, Canada A1C 5S7 (Canada)

    2011-11-15

    Analysis of mammalian teeth can provide information regarding local environmental conditions. For example, a high incidence of breakage and wear within a population may indicate poor food quality. Individuals consuming a diet causing high mechanical stress on their teeth, and/or lacking the appropriate minerals for proper development, could experience degradation of tooth condition. Previously, we documented a high rate of incisor tooth breakage, with age, in two genetically distinct moose populations in Atlantic Canada. In this study, multi-element ({sup 11}B, {sup 63}Cu, {sup 64}Zn, {sup 75}As, {sup 85}Rb, {sup 88}Sr, {sup 111}Cd, {sup 118}Sn, {sup 137}Ba, {sup 208}Pb, {sup 232}Th, and {sup 238}U) analyses using laser ablation ICP-MS were performed on moose incisors from multiple North American regions. The purpose was to determine whether the elemental composition of moose incisors varies among regions, and whether that variation is related to tooth degradation among Atlantic Canadian populations. A principal components analysis revealed that nearly 50% of the elemental variation in the inner enamel matrix of moose teeth was explained by three groupings of elements. The element groupings revealed differences among geographic regions, but did not explain the variation between incisors that were broken and those that were not. Regression models indicate that the elemental group which includes Cu, Pb, and Zn is related to decreases in incisal integrity. It is likely that other environmental factors contribute to the occurrence of increased incisor breakage in affected populations. The relationship between food resource quantity and quality, as a function of moose density, is hypothesized to explain loss of tooth integrity. - Highlights: {yields} Multi-element analysis of 1300 moose incisors using laser ablation ICP-MS. {yields} Three element groupings explain 50% of tooth composition variation among regions. {yields} Regional differences in tooth composition

  17. DNA damage and biological expression of adenovirus: A comparison of liquid versus frozen conditions of exposure to gamma rays

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1989-01-01

    Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation

  18. The protective effect of DNA on the rat cell membrane damage induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Ma Shouxiang; Zhong Jinyan

    1988-01-01

    The protective effect of DNA on the cell membrane damage induced by ultra-violet radiation was studied. Rat erythrocytes were used as experimental materials. Blood samples were taken from the rat, and centrifuged to separate the plasma. The cells were washed twice with isotonic saline, resuspended in normal saline solution and then irradiated by ultra-violet radiation. The DNA was added before or after irradiation. THe cell suspensions were kept at 5 deg C for 20 hours after irradiation, and then centrifuged. The supernatants were used for hemoglobin determination. The main results obtained may summarized as follows: the cell suspension of erythrocytes were irradiated for 5, 10 and 20 min. The amount of hemolysis induced by irradiation dosage revealed a direct proportional relationship. If DNA (20-40μg/ml) was applied before irradiation, the amount of hemolysis induced apparently decreased. The differences between the control and DNA treated were statistically significant, P<0.01, but insignificant for DNA added after irradiation

  19. Electron attachment to DNA single strands: gas phase and aqueous solution.

    Science.gov (United States)

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2007-01-01

    such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.

  20. Imitation of radiation-induced damages to DNA with a radionuclide incorporated into polynucleotides

    International Nuclear Information System (INIS)

    Korolev, V.G.

    1984-01-01

    Because of a great variety and different reparability of radiation-induced DNA lesions it is difficult to evaluate the radiobiologacal significance of certain individual alterations. It is suggested that the radionuclides incorporated anto DNA can be used to imitate different types of radiation damages to DNA. Both qualitative and quantitative aspects of the problem are discussed

  1. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  2. R&D on dental implants breakage

    Science.gov (United States)

    Croitoru, Sorin Mihai; Popovici, Ion Alexandru

    2017-09-01

    Most used dental implants for human dental prostheses are of two steps type: first step means implantation and, after several months healing and osseointegration, second step is prosthesis fixture. For sure, dental implants and prostheses are meant to last for a lifetime. Still, there are unfortunate cases when dental implants break. This paper studies two steps dental implants breakage and proposes a set of instruments for replacement and restoration of the broken implant. First part of the paper sets the input data of the study: structure of the studied two steps dental implants based on two Romanian patents and values of the loading forces found in practice and specialty papers. In the second part of the paper, using DEFORM 2D™ FEM simulation software, worst case scenarios of loading dental implants are studied in order to determine which zones and components of the dental implant set are affected (broken). Last part of the paper is dedicated to design and presentation of a set for extracting and cutting tools used to restore the broken implant set.

  3. Radiation-induced energy migration within solid DNA: The role of misonidazole as an electron trap

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Adams, G.E.; Fielden, E.M.

    1990-01-01

    The in-pulse luminescence emission from solid DNA produced upon irradiation with electron pulses of energy below 260 keV has been investigated in vacuo at 293 K to gain an insight into the existence of radiation-induced charge/energy migration within DNA. The DNA samples contained misonidazole in the range 3 to 330 base pairs per misonidazole molecule. Under these conditions greater than 90% of the total energy is deposited in the DNA. The in-pulse radiation-induced luminescence spectrum of DNA was found to be critically dependent upon the misonidazole content of DNA. The luminescence intensity from the mixtures decreases with increasing content of misonidazole, and at the highest concentration, the intensity at 550 nm is reduced to 50% of that from DNA only. In the presence of 1 atm of oxygen, the observed emission intensity from DNA in the wavelength region 350-575 was reduced by 35-40% compared to that from DNA in vacuo. It is concluded that electron migration can occur in solid mixtures of DNA over a distance of up to about 100 base pairs

  4. Radiation-induced DNA damage and cellular lethality

    International Nuclear Information System (INIS)

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  5. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  6. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  7. Mutation inactivation of Nijmegen breakage syndrome gene (NBS1 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Nijmegen breakage syndrome (NBS with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin, involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC. Eight missense NBS1 mutations were identified in six of 64 (9.4% HCCs and two of 18 (11.1% ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.

  8. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  9. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    International Nuclear Information System (INIS)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-01-01

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  10. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  11. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  12. Condom Use: Slippage, Breakage, and Steps for Proper Use among Adolescents in Alternative School Settings

    Science.gov (United States)

    Coyle, Karin K.; Franks, Heather M.; Glassman, Jill R.; Stanoff, Nicole M.

    2012-01-01

    Background: School-based human immunodeficiency virus (HIV)/sexually transmitted infection (STI), and pregnancy prevention programs often focus on consistent and correct condom use. Research on adolescents' experience using condoms, including condom slippage/breakage, is limited. This exploratory study examines proper condom use and the…

  13. Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1982-01-01

    The induction of single-strand breaks (alkali-labile bonds plus frank breaks) in the DNA of Bacillus subtilis irradiated in vivo by monochromatic UV light at wavelengths from 254 to 434nm was measured. The spectrum consists of a major far-UV (below 320nm) component and a minor near-UV shoulder. A mutant deficient in DNA polymerase I accumulates breaks caused by near-UV (above 320nm) wavelengths faster than the wild-type strain proficient in polymerase I. Measurable breaks in extracted DNA are induced at a higher frequency than those induced in vivo. Anoxia, glycerol, and diazobicyclo (2.2.2.) octane inhibit break formation in extracted DNA. Alkali-labile bonds induced by 365-nm UV radiation are largely (78%) covalent bond chain breaks, the remainder consists of true alkali-labile bonds, probably apurinic and apyrimidinic sites. (author)

  14. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.

    2006-01-01

    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  15. Protection of vanillin derivative VND3207 on plasmid DNA damage induced by different LET ionizing radiation

    International Nuclear Information System (INIS)

    Xu Huihui; Wang Li; Sui Li; Guan Hua; Wang Yu; Liu Xiaodan; Zhang Shimeng; Xu Qinzhi; Wang Xiao; Zhou Pingkun

    2011-01-01

    Objective: To evaluate the radioprotective effect of vanillin derivative VND3207 on DNA damage induced by different LET ionizing radiation. Methods: The plasmid DNA in liquid was irradiated by 60 Co γ-rays, proton or 7 Li heavy ion with or without VND3207. The conformation changes of plasmid DNA were assessed by agarose gel electrophoresis and the quantification was done using gel imaging system. Results: The DNA damage induced by proton and 7 Li heavy ion was much more serious as compared with that by 60 Co γ-rays, and the vanillin derivative VND3207 could efficiently decrease the DNA damage induced by all three types of irradiation sources, which was expressed as a significantly reduced ratio of open circular form (OC) of plasmid DNA. The radioprotective effect of VND3207 increased with the increasing of drug concentration. The protective efficiencies of 200 μmol/L VND3207 were 85.3% (t =3.70, P=0.033), 73.3% (t=10.58, P=0.017) and 80.4% (t=8.57, P=0.008) on DNA damage induction by 50 Gy of γ-rays, proton and 7 Li heavy ion, respectively. It seemed that the radioprotection of VND3207 was more effective on DNA damage induced by high LET heavy ion than that by proton. Conclusions: VND3207 has a protective effect against the genotoxicity of different LET ionizing radiation, especially for γ-rays and 7 Li heavy ion. (authors)

  16. The thyroid hormone receptor β induces DNA damage and premature senescence.

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  17. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    International Nuclear Information System (INIS)

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  18. Model studies of radiation induced oxidation and reduction processes in DNA

    International Nuclear Information System (INIS)

    Hole, E.O.

    1992-01-01

    The papers presented in this thesis represent the major part of a systematic study of primary and secondary radiation induced damages in DNA. The magnetic resonance techniques EPR, ENDOR and FSE have been the experimental methods used. The study of radical formation in isolated DNA components under different environmental conditions demonstrates certain characteristics of the DNA components which are important in the study of DNA. It has been clearly demonstrated that the electrostatic environment, in particular the hydrogen bond pattern, is a vital factor for the secondary reaction scheme. Even radicals which are found in all related systems seem to be formed by different reaction pathways, depending upon the specific matrix. 92 refs., 2 figs., 6 tabs

  19. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-08-26

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  20. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuya; Nakashima, Masaya; Suzuki, Yoshiharu

    2016-01-01

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE_2. In addition, inhibition of DNA damage repair by knockdown of XPA, which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.

  1. Increased chromosomal breakage in Tourette syndrome predicts the possibility of variable multiple gene involvement in spectrum phenotypes: Preliminary findings and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, G.S.; Simonic, I.; Cloete, E.; Buckle, C. [Univ. of Pretoria (South Africa)] [and others

    1995-10-09

    Increased chromosomal breakage was found in 12 patients with DSM-IV Tourette syndrome (TS) as compared with 10 non-TS control individuals with respect to untreated, modified RPM1-, and BrdU treated lymphocyte cultures (P < 0.001 in each category). A hypothesis is proposed that a major TS gene is probably connected to genetic instability, and associated chromosomal marker sites may be indicative of the localization of secondary genes whose altered expression could be responsible for associated comorbid conditions. This concept implies that genes influencing higher brain functions may be situated at or near highly recombigenic areas allowing enhanced amplification, duplication and recombination following chromosomal strand breakage. Further studies on a larger sample size are required to confirm the findings relating to chromosomal breakage and to analyze the possible implications for a paradigmatic shift in linkage strategy for complex disorders by focusing on areas at or near unstable chromosomal marker sites. 32 refs., 1 tab.

  2. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    Science.gov (United States)

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  3. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  4. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  5. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  6. Photoelectrochemical sensors for the rapid detection of DNA damage Induced by some nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Zhang, B.T.; Guo, L.H.

    2010-01-01

    Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2 (dppz)2+ [bpy=2, 2' -bipyridine, dppz=dipyrido (3, 2-a: 2' 3'-c) phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy)2 (dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time . dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polystyrene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals. (author)

  7. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Zhu, Hong; Jia, Zhenquan [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Li, Jianrong [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Misra, Hara P. [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States); Zhou, Kequan, E-mail: kzhou@wayne.edu [Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202 (United States); Li, Yunbo, E-mail: yli@vcom.vt.edu [Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, Blacksburg, VA 24060 (United States)

    2009-12-04

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  8. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    International Nuclear Information System (INIS)

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 μM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.

  9. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  10. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    Science.gov (United States)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  11. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. UV-induced influence of N-nitrosoamines on melting parameters of DNA in vitro

    International Nuclear Information System (INIS)

    Yamshanov, V.A.

    1979-01-01

    The results of studies have shown the UV-induced decrease of melting temperatures of the DNA of E. coli and chick erythrocytes under the influence of simple N-nitrosoamines (NDMA, NDEA, NDPA). Either UV or nitrosoamines separately failed to effect the DNA or their action was insignificant. It is suggested that this effect may be partly due to the action of UV on DNA

  13. UV-induced influence of N-nitrosoamines on melting parameters of DNA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yamshanov, V A [Nauchno-Issledovatel' skij Inst. Onkologii, Leningrad (USSR)

    1979-07-01

    The results of studies have shown the UV-induced decrease of melting temperatures of the DNA of E. coli and chick erythrocytes under the influence of simple N-nitrosoamines (NDMA, NDEA, NDPA). Either UV or nitrosoamines separately failed to effect the DNA or their action was insignificant. It is suggested that this effect may be partly due to the action of UV on DNA.

  14. Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting.

    Science.gov (United States)

    Kwun, H J; Wendzicki, J A; Shuda, Y; Moore, P S; Chang, Y

    2017-12-07

    The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.

  15. A novel cis-acting element required for DNA damage-inducible expression of yeast DIN7

    International Nuclear Information System (INIS)

    Yoshitani, Ayako; Yoshida, Minoru; Ling Feng

    2008-01-01

    Din7 is a DNA damage-inducible mitochondrial nuclease that modulates the stability of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. How DIN7 gene expression is regulated, however, has remained largely unclear. Using promoter sequence alignment, we found a highly conserved 19-bp sequence in the promoter regions of DIN7 and NTG1, which encodes an oxidative stress-inducible base-excision-repair enzyme. Deletion of the 19-bp sequence markedly reduced the hydroxyurea (HU)-enhanced DIN7 promoter activity. In addition, nuclear fractions prepared from HU-treated cells were used in in vitro band shift assays to reveal the presence of currently unidentified trans-acting factor(s) that preferentially bound to the 19-bp region. These results suggest that the 19-bp sequence is a novel cis-acting element that is required for the regulation of DIN7 expression in response to HU-induced DNA damage

  16. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  17. Hair breakage as a presenting sign of early or occult central centrifugal cicatricial alopecia: clinicopathologic findings in 9 patients.

    Science.gov (United States)

    Callender, Valerie D; Wright, Dakara Rucker; Davis, Erica C; Sperling, Leonard C

    2012-09-01

    Central centrifugal cicatricial alopecia is the most common form of cicatricial alopecia in African American women. Treatment options are limited and mostly aimed at halting further hair loss but rarely result in hair regrowth. Therefore, it is important to recognize early clinical signs, perform a confirmatory biopsy, and begin treatment promptly. We have observed that hair breakage may be a key sign of early central centrifugal cicatricial alopecia, and this association is not clearly described in the literature. Nine patients with hair breakage on the vertex with or without scalp symptoms underwent scalp biopsies as part of their evaluation. Of these, 8 had histologic samples adequate for complete interpretation: 5 specimens (63%) showed histologic changes typical of central centrifugal cicatricial alopecia, with 1 of these showing advanced end-stage changes of cicatricial alopecia. Two (25%) revealed premature desquamation of the inner root sheath as the sole finding suggestive of early central centrifugal cicatricial alopecia and 1 (13%) was normal. Although hair breakage can have multiple causes, early central centrifugal cicatricial alopecia must be considered in the differential diagnosis, particularly in women of African ancestry. Histologic evaluation may reveal early or late findings that can help establish the diagnosis.

  18. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  19. Kinetics and mechanism of DNA repair; Evaluation of caged compounds for use in studies of u. v. -induced DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry); Shall, S. (Sussex Univ., Brighton (UK). School of Biological Sciences)

    1990-03-15

    Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the {gamma}-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside trisphosphate is isotopically labelled in the {alpha}-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair. (author).

  20. A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli.

    Science.gov (United States)

    Grove, Jane I; Wood, Stuart R; Briggs, Geoffrey S; Oldham, Neil J; Lloyd, Robert G

    2009-12-03

    RecN is a highly conserved, SMC-like protein in bacteria. It plays an important role in the repair of DNA double-strand breaks and is therefore a key factor in maintaining genome integrity. The insolubility of Escherichia coli RecN has limited efforts to unravel its function. We overcame this limitation by replacing the resident coding sequence with that of Haemophilus influenzae RecN. The heterologous construct expresses Haemophilus RecN from the SOS-inducible E. coli promoter. The hybrid gene is fully functional, promoting survival after I-SceI induced DNA breakage, gamma irradiation or exposure to mitomycin C as effectively as the native gene, indicating that the repair activity is conserved between these two species. H. influenzae RecN is quite soluble, even when expressed at high levels, and is readily purified. Its analysis by ionisation-mass spectrometry, gel filtration and glutaraldehyde crosslinking indicates that it is probably a dimer under physiological conditions, although a higher multimer cannot be excluded. The purified protein displays a weak ATPase activity that is essential for its DNA repair function in vivo. However, no DNA-binding activity was detected, which contrasts with RecN from Bacillus subtilis. RecN proteins from Aquifex aeolicus and Bacteriodes fragilis also proved soluble. Neither binds DNA, but the Aquifex RecN has weak ATPase activity. Our findings support studies indicating that RecN, and the SOS response in general, behave differently in E. coli and B. subtilis. The hybrid recN reported provides new opportunities to study the genetics and biochemistry of how RecN operates in E. coli.

  1. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Kwiatkowska, Marta; Reszka, Edyta; Woźniak, Katarzyna; Jabłońska, Ewa; Michałowicz, Jaromir; Bukowska, Bożena

    2017-07-01

    Glyphosate is a very important herbicide that is widely used in the agriculture, and thus the exposure of humans to this substance and its metabolites has been noted. The purpose of this study was to assess DNA damage (determination of single and double strand-breaks by the comet assay) as well as to evaluate DNA methylation (global DNA methylation and methylation of p16 (CDKN2A) and p53 (TP53) promoter regions) in human peripheral blood mononuclear cells (PBMCs) exposed to glyphosate. PBMCs were incubated with the compound studied at concentrations ranging from 0.1 to 10 mM for 24 h. The study has shown that glyphosate induced DNA lesions, which were effectively repaired. However, PBMCs were unable to repair completely DNA damage induced by glyphosate. We also observed a decrease in global DNA methylation level at 0.25 mM of glyphosate. Glyphosate at 0.25 mM and 0.5 mM increased p53 promoter methylation, while it did not induce statistically significant changes in methylation of p16 promoter. To sum up, we have shown for the first time that glyphosate (at high concentrations from 0.5 to 10 mM) may induce DNA damage in leucocytes such as PBMCs and cause DNA methylation in human cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    International Nuclear Information System (INIS)

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy

  3. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.G.; Peliciari-Garcia, R.A. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Takahashi-Hyodo, S.A. [Área de Ciências da Saúde, Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Rodrigues, A.C. [Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Amaral, F.G. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Berra, C.M. [Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Bordin, S.; Curi, R.; Cipolla-Neto, J. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-03-08

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  4. Chromatin structure influence the sensitivity of DNA to ionizing radiation induced DNA damage

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2016-01-01

    Chromatin acts as a natural hindrance in DNA-damage recognition, repair and recovery. Histone and their variants undergo differential post-translational modification(s) and regulate chromatin structure to facilitate DNA damage response (DDR). During the presentation we will discuss the importance of chromatin organization and histone modification(s) during IR-induced DNA damage response in human liver cells. Our data shows G1-phase specific decrease of H3 serine10 phosphorylation in response to DNA damage is coupled with chromatin compaction in repair phase of DDR. The loss of H3Ser10P during DNA damage shows an inverse correlation with gain of γH2AX from a same mono-nucleosome in a dose-dependent manner. The loss of H3Ser10P is a universal phenomenon as it is independent of origin of cell lines and nature of genotoxic agents in G1 phase cells. The reversible reduction of H3Ser10P is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. The present study suggests distinct reversible histone marks are associated with G1-phase of cell cycle and plays a critical role in chromatin organization which may facilitate differential sensitivity against radiation. Thus, the study raises the possibility of combinatorial modulation of H3Ser10P and histone acetylation with specific inhibitors to target the radio-resistant cancer cells in G1-phase and thus may serve as promising targets for cancer therapy. (author)

  5. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Study on the DNA-protein crosslinks induced by chromium (VI) in SPC-A1

    Science.gov (United States)

    Liu, Yanqun; Ding, Jianjun; Lu, Xiongbing; You, Hao

    2018-01-01

    Objective: This study was designed to investigate the effect of chromium (VI) on DNA-protein crosslinks (DPC) of SPC-A1 cells. Methods: We exposed SPC-A1 cells were cultured in 1640 medium and treated with the SPC-A1 cells in vitro to different concentrations of Hexavalent chromium Cr(VI) for 2h, the KC1-SDS precipitation assay were used to measure the DNA-protein cross-linking effect. Results: All the different concentrations of Cr(VI) could cause the increase of DPC coefficient in SPC-A1 cells. But this effect was not significant (P>0.05) at low concentrations; while in high concentration Cr(VI) induced SPC-A1 cells could produce DNA-protein cross-linking effect significantly (P<0.05). Conclusions: chromium (VI) could induce DNA-protein crosslink.

  7. Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability

    International Nuclear Information System (INIS)

    Tao Weitao; Budd, Martin; Campbell, Judith L.

    2003-01-01

    We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1Δ double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1Δ alone. However, surprisingly, the dna2-2 sgs1Δ lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1Δ lethality is only partially suppressed by deletion of rad51Δ. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones

  8. Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability

    Energy Technology Data Exchange (ETDEWEB)

    Tao Weitao; Budd, Martin; Campbell, Judith L

    2003-11-27

    We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1{delta} double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1{delta} alone. However, surprisingly, the dna2-2 sgs1{delta} lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1{delta} lethality is only partially suppressed by deletion of rad51{delta}. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.

  9. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  10. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  11. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  12. Proliferating cell nuclear antigen binds DNA polymerase-β and mediates 1-methyl-4-phenylpyridinium-induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    Full Text Available The mechanisms leading to dopaminergic neuronal loss in the substantia nigra of patients with Parkinson disease (PD remain poorly understood. We recently reported that aberrant DNA replication mediated by DNA polymerase-β (DNA pol-β plays a causal role in the death of postmitotic neurons in an in vitro model of PD. In the present study, we show that both proliferating cell nuclear antigen (PCNA and DNA pol-β are required for MPP(+-induced neuronal death. PCNA binds to the catalytic domain of DNA pol-β in MPP(+-treated neurons and in post-mortem brain tissues of PD patients. The PCNA-DNA pol-β complex is loaded into DNA replication forks and mediates DNA replication in postmitotic neurons. The aberrant DNA replication mediated by the PCNA-DNA pol-β complex induces p53-dependent neuronal cell death. Our results indicate that the interaction of PCNA and DNA pol-β contributes to neuronal death in PD.

  13. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    International Nuclear Information System (INIS)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A.

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3',4,4'-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4'-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4'-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers

  14. Pretreatment with mixed-function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

    Energy Technology Data Exchange (ETDEWEB)

    Shaddock, J.G.; Heflich, R.H.; McMillan, D.C.; Hinson, J.A.; Casciano, D.A. (National Center for Toxicological Research, Jefferson, AK (USA) Univ. of Arkansas for Medical Sciences, Little Rock (USA))

    1989-01-01

    A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, the authors examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3{prime},4,4{prime}-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measured of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4{prime}-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4{prime}-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers.

  15. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells

    International Nuclear Information System (INIS)

    Seki, Shuji; Hosogi, Nobuo; Oda, Takuzo

    1984-01-01

    In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97 % by aphidicolin at 10 μg/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30 % and 90 % depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS) in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90 % at 100 μg/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 μg/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase α and a non-α DNA polymerase (possibly DNA polymerase β), are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase α in UDS favored DNA synthesis in the intranucleosomal region. (author)

  16. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Kakadiya, Rajesh B.; Su, Tsann-Long [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Yih, Ling-Huei, E-mail: lhyih@gate.sinica.edu.tw [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China)

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  18. Detection of irradiation induced modifications in foodstuff DNA using 32p post-labelling

    International Nuclear Information System (INIS)

    Hoey, B.M.; Swallow, A.J.; Margison, G.P.

    1991-01-01

    DNA post-labelling has been used successfully to detect damage to DNA caused by a range of damaging agents. The assay results in a fingerprint of changes induced in DNA which might, in principle, be useful as a test for the detection of the irradiation of foods. The authors present their DNA extraction and 32 p post-labelling methods from chicken or cooked prawn samples and their analysis method (High Performance liquid chromatography). It's hoped that these results could form the basis of a test to detect if foods have been irradiated

  19. DNA-binding activity of TNF-α inducing protein from Helicobacter pylori

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Suganuma, M.; Oka, K.; Fujiki, H.

    2007-01-01

    Tumor necrosis factor-α (TNF-α) inducing protein (Tipα) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-α and chemokine genes and activation of nuclear factor-κB. Since Tipα enters gastric cancer cells, the Tipα binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipα was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipα and DNA, revealed that the affinity of Tipα for (dGdC)10 is 2400 times stronger than that of del-Tipα, an inactive Tipα. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipα. And the DNA-binding activity of Tipα was first demonstrated with a molecule secreted from H. pylori

  20. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  1. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  2. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization.

    Science.gov (United States)

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T; Shelton, Catherine L; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B; Li, Pingwei

    2013-12-12

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide, 2',5' cGAMP, that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and that site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2',5' cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Photochemistry of DNA containing iodinated cytosine

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, R O; Stafford, R S [Oak Ridge National Lab., TN (USA)

    1979-10-01

    Irradiation at 313 nm of compounds containing iodinated cytosine moieties results in the photolysis of iodine. Photolysis occurs with a quantum yield of 0.022-0.024 for 5-iododeoxycytidine and 5-iododeoxycytidine monophosphate, and 0.004-0.008 for iodinated DNA as well as for iodinated polycytidylate. Photodegradation of the cytosine moiety occurs when air is present during irradiation, presumably due to the reaction of oxygen with the cytosyl radical formed when iodine is lost. This oxygen promoted photodegradation destroys the cytosine chromophore and is complete in the monomers but occurs to only a limited extent in the polymers. In the absence of oxygen or in the presence of ethanol, photodegradation is prevented and the loss of iodine leads exclusively to the formation of the cytosine chromophore. In DNA, the loss of iodine is accompanied by the formation of sugar damage and/or chain breaks. As measured by sedimentation in alkaline sucrose gradients, approximately one break is made for every six iodines lost in denatured DNA. The frequency of chain breakage per iodine photolyzed is reduced 2-fold in renatured DNA. Analysis in neutral gradients suggests that half of the breaks observed in alkali are alkali-labile bonds. Both ethanol and cysteamine reduce the number of chain breaks in alkali by approximately 3-fold.

  4. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.

    Science.gov (United States)

    Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S

    2015-10-01

    The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.

  5. Typical xeroderma pigmentosum complementation group A fibroblasts have detectable ultraviolet light-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Petinga, R.A.; Andrews, A.D.; Robbins, J.H.; Tarone, R.E.

    1977-01-01

    Ultraviolet-induced nuclear uptake of tritiated thymidine [ 3 H]dThd demonstrable by autoradiography in non-synthesis phases of the cell cycle is known as unscheduled DNA synthesis and reflects repair replication of ultraviolet-damaged DNA. We have reported that the rate of any such unscheduled DNA synthesis in typical group A xeroderma pigmentosum fibroblasts, if present, is less than 2% of the normal rate. We have now performed experiments to determine whether these fibroblasts have any unscheduled DNA synthesis. Fibroblast coverslip cultures of four xeroderma pigmentosum group A strains were prepared. Irradiated (254 nm ultraviolet light) and unirradiated cultures from each strain were incubated with [ 3 H]dThd at 37degC, and autoradiograms were prepared using NTB-3 emulsion. A nuclear grain count was made of 100 consecutive nuclei of non-S-phase irradiated and unirradiated cells. A slide background grain count was simultaneously made from an acellular area adjacent to each cell analyzed. When a strain's irradiated and unirradiated autoradiograms having similar slide background grain count averages were compared, the nuclear grain count average of the irradiated cells was always higher than that of the unirradiated cells. This ultraviolet-induced increase in the mean nuclear grain count ranged from 0.4 to 1.3% of that given by normal non-xeroderma pigmentosum fibroblasts and was not reduced by 10 -2 M hydroxyurea. Planimetric studies showed that the ultraviolet-induced increase in nuclear grain count is not due to an increased nuclear area in irradiated cells. We conclude that these typical group A xeroderma pigmentosum strains perform very low, but detectable, ultraviolet-induced unscheduled DNA synthesis which probably reflects repair replication. We cannot, however, determine if there are significantly different rates of ultraviolet-induced unscheduled DNA synthesis among these ultraviolet strains

  6. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    Science.gov (United States)

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (pspices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  8. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    Science.gov (United States)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  10. Stage-specific damage to synaptonemal complexes and metaphase chromosomes induced by X rays in male mouse germ cells

    International Nuclear Information System (INIS)

    Backer, L.C.; Sontag, M.R.; Allen, J.W.

    1991-01-01

    Synaptonemal complexes (SCs) reveal mutagen-induced effects in germ cell meiotic chromosomes. The study was aimed at characterizing relationships between SC and metaphase I chromosome damage following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in SCs as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in SC breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of SC and metaphase damage were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase SCs. Thus, irradiation of premeiotic and meiotic cells results in variable relationships between SC and metaphase chromosome damage

  11. Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films

    International Nuclear Information System (INIS)

    Lukomska, Joanna; Gryczynski, Ignacy; Malicka, Joanna; Makowiec, Slawomir; Lakowicz, Joseph R.; Gryczynski, Zygmunt

    2005-01-01

    We report the observation of a strong two-photon induced fluorescence emission of Cy5-DNA within the tunable range of a Ti:Sapphire laser. The estimated two-photon cross-section for Cy5-DNA of 400 GM is about 3.5-fold higher than it was reported for rhodamine B. The fundamental anisotropies of Cy5-DNA are close to the theoretical limits of 2/5 and 4/7 for one- and two-photon excitation, respectively. We also observed an enhanced two-photon induced fluorescence (TPIF) of Cy5-DNA deposited on silver island films (SIFs). In the presence of SIFs, the TPIF is about 100-fold brighter. The brightness increase of Cy5-DNA TPIF near SIFs is mostly due to enhanced local field

  12. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens.

    Science.gov (United States)

    Fahrer, Jörg; Kaina, Bernd

    2017-08-01

    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O 6 -methylguanine (O 6 -MeG), which are removed by base excision repair (BER) and O 6 -methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O 6 -MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The influence of DNA sequence on epigenome-induced pathologies

    Directory of Open Access Journals (Sweden)

    Meagher Richard B

    2012-07-01

    Full Text Available Abstract Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, “genotype predisposes epitype”, and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly

  14. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2018-04-01

    Full Text Available Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX. However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine, a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p. significantly inhibited the generation of reactive oxygen species (ROS and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG, and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h. Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Keywords: Carnosine, Cyclophosphamide, Oxidative DNA damage, Sister chromatid exchange, Apoptosis, Cell cycle arrest

  15. Gymnemagenin-a triterpene saponin prevents γ-radiation induced cellular DNA damage

    International Nuclear Information System (INIS)

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2014-01-01

    Gymnema sylvestre an ethno-medicinally important plant was investigated for its protecting activity against radiation induced DNA damage. The major bioactive component present in Gymnema sylvestre such as gymnemic acid and gymnemagenin a triterpene saponin, were tested for its radioprotective effects against 60 Co irradiation induced DNA damage in fish model using fresh water fish Pangasius sutchi. Fishes subjected to a dose of 133 Gy of gamma radiation and observed for eight days. The genotoxic assessment by micronucleus assay showed us that that the plant extract helped in reducing the frequency of micronucleated and binucleated erythrocytes compared to the irradiated control group. The genotoxic assessment by alkaline comet assay by single gel electrophoresis shows that pretreatment with the plant extract appreciably decreased the percentage of tail DNA towards the levels close to those of normal control group. The gradual increase in the level of the antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) during the course of the experiment indicates that the antioxidant enzyme activities play an important role in protecting organisms against gamma radiation-induced cellular oxidative stress. In conclusion the leaf extracts of Gymnema sylvstre exerts its radio protective potential by suppressing the toxic assault of ROS generated by the ionizing radiation through its ability to boost the levels of antioxidant enzymes (CAT and SOD) due to the presence of its phytochemicals like gymnemgenenin- a Triterpene Saponin. (author)

  16. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  17. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  18. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Choi, Ji Ye [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Yi, Joo Mi [Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan (Korea, Republic of); Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Kang, Tae-Hong, E-mail: thkang@dau.ac.kr [Department of Biological Science, Dong-A University, Busan (Korea, Republic of)

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  19. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    Directory of Open Access Journals (Sweden)

    Kin Chan

    Full Text Available Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA is more prone to damage than double-strand DNA (dsDNA, due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions

  20. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals

    International Nuclear Information System (INIS)

    Peak, J.G.; Ito, T.; Peak, M.J.; Robb, F.T.

    1994-01-01

    A supercoiled plasmid of 7300 base pairs was isolated and exposed in an aqueous environment to 60 Co γ rays and JANUS 0.85 MeV fission-spectrum neutrons. Dose responses for the production of single-strand breaks (SSBs), double-strand breaks (DSBs) and alkali-labile sites (ALSs) were compared with computations made from the conversion of the supercoil to its relaxed and linear forms. The relative biological effectiveness (RBE) for production of SSBs and DSBs was similar to that previously measured in the cellular environment. The RBE for destruction of genetic transforming activity of M13 viral DNA followed that for DNA damage. This is in contrast to the situation for biological effects such as lethality, mutagenesis, and cellular transformation measured in mammalian cells, where the RBE values are reversed. The role of hydroxyl (OH) radical in DNA damage induction by neutrons was investigated by exposure of plasmid in the presence of known quenchers of this species. Of four quenchers tested, all were able to reduce the yields of both SSBs and DSBs. These findings are consistent with a model for SSB and DSB induction by high linear energy transfer that involves OH radical mediation