WorldWideScience

Sample records for dna biotechnology iii

  1. DNA polymerases and biotechnological applications.

    Science.gov (United States)

    Aschenbrenner, Joos; Marx, Andreas

    2017-12-01

    A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biotechnology

    International Nuclear Information System (INIS)

    Lewanika, Mbikusita Mwananyanda

    2005-01-01

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  3. Biotechnological mass production of DNA origami

    Science.gov (United States)

    Praetorius, Florian; Kick, Benjamin; Behler, Karl L.; Honemann, Maximilian N.; Weuster-Botz, Dirk; Dietz, Hendrik

    2017-12-01

    DNA nanotechnology, in particular DNA origami, enables the bottom-up self-assembly of micrometre-scale, three-dimensional structures with nanometre-precise features. These structures are customizable in that they can be site-specifically functionalized or constructed to exhibit machine-like or logic-gating behaviour. Their use has been limited to applications that require only small amounts of material (of the order of micrograms), owing to the limitations of current production methods. But many proposed applications, for example as therapeutic agents or in complex materials, could be realized if more material could be used. In DNA origami, a nanostructure is assembled from a very long single-stranded scaffold molecule held in place by many short single-stranded staple oligonucleotides. Only the bacteriophage-derived scaffold molecules are amenable to scalable and efficient mass production; the shorter staple strands are obtained through costly solid-phase synthesis or enzymatic processes. Here we show that single strands of DNA of virtually arbitrary length and with virtually arbitrary sequences can be produced in a scalable and cost-efficient manner by using bacteriophages to generate single-stranded precursor DNA that contains target strand sequences interleaved with self-excising ‘cassettes’, with each cassette comprising two Zn2+-dependent DNA-cleaving DNA enzymes. We produce all of the necessary single strands of DNA for several DNA origami using shaker-flask cultures, and demonstrate end-to-end production of macroscopic amounts of a DNA origami nanorod in a litre-scale stirred-tank bioreactor. Our method is compatible with existing DNA origami design frameworks and retains the modularity and addressability of DNA origami objects that are necessary for implementing custom modifications using functional groups. With all of the production and purification steps amenable to scaling, we expect that our method will expand the scope of DNA nanotechnology in

  4. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Science.gov (United States)

    2010-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  5. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  6. Biotechnology

    International Nuclear Information System (INIS)

    2014-01-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131 I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  7. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  8. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  9. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  10. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching Between Two DNA Bound States†

    OpenAIRE

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom

    2010-01-01

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases DNA nick-joining and intermolecular DNA ligation. Yet, the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small angle x-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD)...

  11. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    Energy Technology Data Exchange (ETDEWEB)

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom (Scripps); (Maryland-MED); (WU-MED); (LBNL)

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  12. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  13. Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Corinne Cassier-Chauvat

    2016-11-01

    Full Text Available Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb and uvrABCD, even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination, umuCD (mutational DNA replication, as well as the key SOS genes lexA (regulation of the SOS system and sulA (postponing of cell division until completion of DNA reparation. Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively

  14. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  15. Plant molecular biology and biotechnology research in the post-recombinant DNA era.

    Science.gov (United States)

    Tyagi, Akhilesh K; Khurana, Jitendra P

    2003-01-01

    After the beginning of the recombinant DNA era in the mid-1970s, researchers in India started to make use of the new technology to understand the structure of plant genes and regulation of their expression. The outcome started to appear in print in early the 1980s and genes for histones, tubulin, photosynthetic membrane proteins, phototransduction components, organelles and those regulated differentially by developmental and extrinsic signals were sequenced and characterized. Some genes of biotechnological importance like those encoding an interesting seed protein and the enzyme glyoxalase were also isolated. While work on the characterization of genome structure and organization was started quite early, it remained largely focused on the identification of DNA markers and genetic variability. In this context, the work on mustard, rice and wheat is worth mentioning. In the year 2000, India became a member of the international consortium to sequence entire rice genome. Several laboratories have also given attention to regulated expression of plastid and nuclear genes as well as to isolate target-specific promoters or design promoters with improved potential. Simultaneously, transgenic systems for crops like mustard, rice, wheat, cotton, legumes and several vegetables have been established. More recently, genes of agronomic importance like those for insect resistance, abiotic stress tolerance, nutritional improvement and male sterility, isolated in India or abroad, have been utilized for raising transgenics for crop improvement. Some of these transgenics have already shown their potential in containment facility or limited field trials conducted under the stipulated guidelines. Plant molecular biology and biotechnology are thus clearly poised to make an impact on research in basic biology and agriculture in the near future.

  16. 76 FR 27653 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Science.gov (United States)

    2011-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Biotechnology Activities is updating Appendix D of the NIH Guidelines to include additional lines of... obtained from the Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive...

  17. 75 FR 42114 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Action Under the NIH...

    Science.gov (United States)

    2010-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... the breeding of a transgenic rodent and a non-transgenic rodent). The NIH Office of Biotechnology... Office of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, MSC...

  18. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... to the NIH Office of Biotechnology Activities (OBA). The data to be considered for certifying a new... same e-mail address or by fax at 301-496-9839 or sent by U.S. mail to the Office of Biotechnology...

  19. 78 FR 12074 - Office of Biotechnology Activities; Recombinant DNA Research: Actions Under the NIH Guidelines...

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... recommendations of the RAC, the NIH Office of Biotechnology Activities (OBA) concluded that more specific guidance... address or by fax at 301-496-9839 or by mail to the Office of Biotechnology Activities, National...

  20. DNA ligase III is involved in a DNA-PK independent pathway of NHEJ in human cells

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Qin, W.; Wang, H.; Iliakis, G.

    2003-01-01

    Full text: Double strand breaks (DSB) induced by ionizing radiation (IR) and other cytotoxic agents in the genome of higher eukaryotes are thought to be repaired either by homologous recombination repair (HRR), or non-homologous endjoining (NHEJ). We previously reported the operation of two components of NHEJ in vivo: a DNA-PK dependent component that operates with fast kinetics (D-NHEJ), and a DNA-PK independent component that acts as a backup (basic or B-NHEJ) and operates with kinetics an order of magnitude slower. To gain further insight into the mechanisms of B-NHEJ, we investigated DNA endjoining in extracts 180BR, a human cell line deficient in DNA ligase IV, using an in vitro plasmid-based DNA endjoining assay. An anti DNA ligase III antibody inhibited almost completely DNA endjoining activity in these extracts. On the other hand, an anti DNA ligase I antibody had no measurable effect in DNA endjoining activity. Immunodepletion of DNA ligase III from 180BR cell extracts abolished the DNA endjoining activity, which could be restored by addition of purified human DNA ligase IIIb. Full-length DNA ligase III bound to double stranded DNA and stimulated DNA endjoining in both intermolecular and intramolecular ligation. Furthermore, fractionation of HeLa cell extracts demonstrated the presence of an activity stimulating the function of DNA ligase III. Based on these observations we propose that DNA ligase III is the ligase operating in B-NHEJ

  1. An efficient and economical method for extraction of DNA amenable to biotechnological manipulations, from diverse soils and sediments.

    Science.gov (United States)

    Sharma, S; Sharma, K K; Kuhad, R C

    2014-04-01

    An attempt was made to optimize a new protocol for isolation of pure metagenomic DNA from soil samples. Various chemicals (FeCl3 , MgCl2 , CaCl2 and activated charcoal) were tested for their efficacy in isolation of metagenomic DNA from different soil and compost samples. Among these trials, charcoal and MgCl2 when used in combination yielded highly pure DNA free from humic acids and other contaminants. The DNA extracted with the optimized protocol was readily digested, amplified and cloned. Moreover, compared with a well-established commercial DNA isolation kit (UltraClean™ Soil DNA Isolation Kit), our method for DNA isolation was found to be economical. This demonstrated that the method developed can be applied to a wide variety of soil samples and allows handling of multiple samples at a given time. The optimized protocol developed has successfully yielded pure metagenomic DNA amenable to biotechnological manipulations. A user-friendly and economical protocol for isolation of DNA from soil and compost samples has been developed. © 2013 The Society for Applied Microbiology.

  2. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  3. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2010-05-24

    ... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... while working with an attenuated strain of Yersinia pestis highlights that attenuated strains may be.../oba/index.html . SUPPLEMENTARY INFORMATION: Yersinia pestis is the causative organism for plague and...

  4. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology Activities (NIH OBA) proposes to revise the NIH Guidelines for Research Involving Recombinant or Synthetic... smallpox and reports of skin pustules developing in some research participants receiving intravenous...

  5. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L [MSKCC; (UMASS, Amherst); (UW-MED)

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  6. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  7. Autonomous parvovirus LuIII encapsidates equal amounts of plus and minus DNA strands

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R.C.; Snyder, C.E.; Banerjee, P.T.; Mitra, S.

    1984-02-01

    Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. The uniqueness of minus strand encapsidation is reexamined for the autonomous parvoviruses. Although it was found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.

  8. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  9. Synthesis and DNA interaction of a Sm(III) complex of a Schiff base ...

    African Journals Online (AJOL)

    The interaction between the Sm(III) complex of an ionic Schiff base [HL]-, derived from vanillin and L-tryptophan, and herring sperm DNA at physiological pH (7.40) has been studied by UV-Vis absorption, fluorescence and viscosity methods. The binding ratios nSm(III) : nK[HL] = 1:1 and nSm(III)L: nDNA =5:1 were confirmed ...

  10. Threading DNA Through a Nanometer-Scale Pore: Biophysical and Biotechnological Applications

    Science.gov (United States)

    Kasianowicz, John; Henrickson, Sarah; Misakian, Martin; Wang, Qian; Weetall, Howard; Roberston, Baldwin

    2001-03-01

    With the goal of developing technologies for biomedical applications (e.g. antiviral treatments, targeted genetic therapies, analyte sensing, and ultra-rapid DNA sequencing), we are studying the mechanism by which DNA is transported through a nanometer-scale pore. Individual molecules of single-stranded DNA (ssDNA) can be detected and characterized as they are driven electrophoretically through a single Staphylococcus aureus alpha-hemolysin (alpha-HL) ion channel. We recently demonstrated that the ability of ssDNA to partition into the pore depends on the side to which the polymer is added and on the magnitude of the applied potential. These results are consistent with the alpha-HL channel’s crystal structure and are providing insight into the physics of DNA transport through a nanopore. We are also researching methods for using ion channels as components of analyte sensors. Using the alpha-HL channel and ssDNA as a model system, we demonstrated an analyte sensing technology based on a single nanopore and pore-permeant polymers. Instead of affixing an analyte binding site to the channel, it is covalently attached to a polymer that is initially free in solution. The binding of analyte to the polymer alters the ability of the polymer to thread into or through the pore. This system can simultaneously quantitate multiple analytes in real-time. Finally, we demonstrate that the signal produced by the transport of individual ssDNA molecules through the alpha-HL channel depends on which end of the channel the polymer enters.

  11. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... may in time accumulate differences in the mitochondrial. DNA but show little difference in the nuclear DNA and finally, maternal inheritance: A further reason for the use of mitochondrial DNA in species testing, and in forensic science, is its mode of inheritance. Mitochondria exist within the cytoplasm of cells, ...

  12. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hagensee, M.E.; Timme, T.L.; Bryan, S.K.; Moses, R.E.

    1987-06-01

    Strains of Escherichia coli possessing the pcbA1 mutation, a functional DNA polymerase I, and a temperature-sensitive mutation in DNA polymerase III can survive at the restrictive temperature (43 degrees C) for DNA polymerase III. The mutation rate of the bacterial genome of such strains after exposure to either UV light or ethyl methanesulfonate was measured by its rifampicin resistance or amino acid requirements. In addition, Weigle mutagenesis of preirradiated lambda phage was also measured. In all cases, no increase in mutagenesis was noted at the restrictive temperature for DNA polymerase III. Introduction of a cloned DNA polymerase III gene returned the mutation rate of the bacterial genome as well as the Weigle mutagenesis to normal at 43 degrees C. Using a recA-lacZ fusion, the SOS response after UV irradiation was measured and found to be normal at the restrictive and permissive temperature for DNA polymerase III, as was induction of lambda prophage. Recombination was also normal at either temperature. Our studies demonstrate that a functional DNA polymerase III is strictly required for mutagenesis at a step other than SOS induction.

  13. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  14. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    OpenAIRE

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cy...

  15. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial...... slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...... by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional...

  16. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2010-05-01

    Full Text Available Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at approximately 200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB approximately 10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s, tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also

  17. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression.

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  19. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms

    Directory of Open Access Journals (Sweden)

    Olga A. Kladova

    2018-03-01

    Full Text Available Endonuclease III (Endo III or Nth is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO, a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5–37 °C. Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van’t Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU recognition and desolvation-accompanied entropy-driven adjustment of the enzyme–substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme–DNA complex formation.

  1. Application of chemically modified oligonucleotides in nanopore sensing and DNA nano – biotechnology

    OpenAIRE

    Mitchell, N. J.

    2010-01-01

    This thesis describes how targeted chemical modification can enhance the properties of nucleic acids for use in (i) nanopore analytics and (ii) nanobiotechnology. In nanopore analytics, individual molecules are detected as they pass a nanoscale pore to give rise to detectable blockades in ionic current. Despite progress in the sensing of a multitude of molecular species, the analytical resolution in the sensing of DNA is poor as individual bases in passing strands cannot be res...

  2. Combining polyethylenimine and Fe(III) for mediating pDNA transfection.

    Science.gov (United States)

    Jorge, Andreia F; Röder, Ruth; Kos, Petra; Dias, Rita S; Wagner, Ernst; Pais, Alberto A C C

    2015-06-01

    The potential use of Fe(III) ions in biomedical applications may predict the interest of its combination with pDNA-PEI polyplexes. The present work aims at assessing the impact of this metal on pDNA complex properties. Variations in the formation of complexes were imposed by using two types of biological buffers at different salt conditions. The incorporation of pDNA in complexes was characterised by gel electrophoresis and dynamic light scattering. Transfection efficiency and cytotoxicity were evaluated in HeLa and HUH-7 cell lines, supported by flow cytometry assays. Fe(III) enhances pDNA incorporation in the complex, irrespective of the buffer used. Transfection studies reveal that the addition of Fe(III) to complexes at low ionic strength reduces gene transfection, while those prepared under high salt content do not affect or, in a specific case, increase gene transfection up to 5 times. This increase may be a consequence of a favoured interaction of polyplexes with cell membrane and uptake. At low salt conditions, results attained with chloroquine indicate that the metal may inhibit polyplex endosomal escape. A reduction on the amount of PEI (N/P 5) formed at intermediary ionic strength, complemented by Fe(III), reduces the size of complexes while maintaining a transfection efficiency similar to that obtained to N/P 6. Fe(III) emerges as a good supporting condensing agent to modulate pDNA-PEI properties, including condensation, size and cytotoxicity, without a large penalty on gene transfection. This study highlights important aspects that govern pDNA transfection and elucidates the benefits of incorporating the versatile Fe(III) in a gene delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spectroscopic studies on the interaction between tryptophan-erbium(III) complex and herring sperm DNA

    Science.gov (United States)

    Zhao, Na; Wang, Xingming; Pan, Haizhuan; Hu, Yamin; Ding, Lisheng

    2010-05-01

    By means of UV and fluorescence spectra, the binding ratios between Er(III)-Trp and DNA in physiological pH environment (pH 7.40) were determined as nTrp: nEr(III) = 3:1 and n:n=2:1, and the apparent molar absorptivity of ɛEr(III)-Trp-DNA is 4.33 × 10 5 L mol -1 cm -1 which was confirmed by molar ratio method. The binding constants at different temperatures KB25°Cθ=1.93×10 L mol and KB37°Cθ=5.28×10 L mol were obtained by double reciprocal method. Thermodynamic function computation demonstrates that ΔHmθ is the primary driving power of the interaction between Er(III)(Trp) 3 and DNA. By combination analysis of the Scatchard method and CD spectrometry, we suggested that the interaction mode between Er(III)(Trp) 3 complex and herring sperm DNA is groove and intercalation bindings.

  4. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    Science.gov (United States)

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  5. The dnaE173 mutator mutation confers on the alpha subunit of Escherichia coli DNA polymerase III a capacity for highly processive DNA synthesis and stable binding to primer/template DNA.

    Science.gov (United States)

    Yanagihara, Fusamitsu; Yoshida, Shohei; Sugaya, Yutaka; Maki, Hisaji

    2007-08-01

    The strong mutator mutation dnaE173 which causes an amino-acid substitution in the alpha subunit of DNA polymerase III is unique in its ability to induce sequence-substitution mutations. We showed previously that multiple biochemical properties of DNA polymerase III holoenzyme of Escherichia coli are simultaneously affected by the dnaE173 mutation. These effects include a severely reduced proofreading capacity, an increased resistance to replication-pausing on the template DNA, a capability to readily promote strand-displacement DNA synthesis, a reduced rate of DNA chain elongation, and an ability to catalyze highly processive DNA synthesis in the absence of the beta-clamp subunit. Here we show that, in contrast to distributive DNA synthesis exhibited by wild-type alpha subunit, the dnaE173 mutant form of alpha subunit catalyzes highly processive DNA chain elongation without the aid of the beta-clamp. More surprisingly, the dnaE173 alpha subunit appeared to form a stable complex with primer/template DNA, while no such affinity was detected with wild-type alpha subunit. We consider that the highly increased affinity of alpha subunit for primer/template DNA is the basis for the pleiotropic effects of the dnaE173 mutation on DNA polymerase III, and provides a clue to the molecular mechanisms underlying sequence substitution mutagenesis.

  6. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.

    Science.gov (United States)

    Han, Wenyuan; Li, Yingjun; Deng, Ling; Feng, Mingxia; Peng, Wenfang; Hallstrøm, Søren; Zhang, Jing; Peng, Nan; Liang, Yun Xiang; White, Malcolm F; She, Qunxin

    2017-02-28

    The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the involved mechanism, we purified a native effector complex of III-B Cmr-α from S. islandicus and characterized it in vitro. Cmr-α cleaved RNAs complementary to crRNA present in the complex and its ssDNA destruction activity was activated by target RNA. The ssDNA cleavage required mismatches between the 5΄-tag of crRNA and the 3΄-flanking region of target RNA. An invader plasmid assay showed that mutation either in the histidine-aspartate acid (HD) domain (a quadruple mutation) or in the GGDD motif of the Cmr-2α protein resulted in attenuation of the DNA interference in vivo. However, double mutation of the HD motif only abolished the DNase activity in vitro. Furthermore, the activated Cmr-α binary complex functioned as a highly active DNase to destroy a large excess DNA substrate, which could provide a powerful means to rapidly degrade replicating viral DNA. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Biotechnology Outlines for Classroom Use.

    Science.gov (United States)

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  8. Biotechnology: interferon patent contested.

    Science.gov (United States)

    Earl, C; Beardsley, T

    Biogen, a biotechnology company based in Cambridge, Mass., and Geneva, Switzerland, has been notified by the European Patent Office that it will receive a product patent for its alpha interferon synthesized by recombinant DNA technology. Genentech, a San Francisco company which claims priority for producing mature interferon, is planning a vigorous appeal of the decision.

  9. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  10. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  11. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  12. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  13. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shwartz, H.; Livneh, Z.

    1987-01-01

    During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini

  14. Synthesis, characterization and DNA-binding studies on La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide.

    Science.gov (United States)

    He, Xin-Qian; Lin, Qiu-Yue; Hu, Rui-Ding; Lu, Xiao-Hong

    2007-09-01

    La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide (HL) were synthesized and characterized by elemental analyses, conductivity measurement, IR spectra and thermal analysis. The general formulas of the complexes were [Ln(HL)(3)(H(2)O)(2)](NO(3))(3).2H(2)O [Ln=La(III), Ce(III)]. The results indicated that the oxygen of carbonyl and the nitrogen of pyridyl coordinated to Ln(III), and there were also two water molecules taking part in coordination. Ln(III) and HL formed 1:3 chelate complexes and the coordination number was eight. The interaction between the complexes and DNA was studied by means of UV-vis spectra, fluorescence spectra, SERS spectra and agarose gel electrophoresis. The results showed that complexes can bind to DNA. The binding ability decreased in following order: La(III) complex, Ce(III) complex, and HL. The interaction modes between DNA and the three compounds were found to be mainly intercalative.

  15. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  16. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Synthesis of novel fluorescent probe Tb(III)-7-carboxymethoxy-4-methylcoumarin complex for sensing of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Belal H.M., E-mail: belalhussein102@yahoo.com [Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Azab, Hassan A. [Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Fathalla, Walid [Department of Mathematical and Physical Sciences, Faculty of Engineering, Port-Said University, Port-Said (Egypt); Ali, Sherin A.M. [Department of Mathematical and Physical Sciences, Faculty of Engineering, Suez Canal University, Ismailia (Egypt)

    2013-02-15

    New fluorescent probe Tb(III) (7-carboxymethoxy-4-methylcoumarin)2(SCN) (C2H5OH)(H2O) was synthesized and characterized by spectroscopy and thermal analysis. The absorption and fluorescence spectra of 7-carboxymethoxy-4-methylcoumarin (CMMC) and Tb(III)-CMMC complex have been measured in different solvents. The interactions of Tb(III)-CMMC complex with calf thymus nucleic acid (CT-DNA) have been investigated using steady state fluorescence measurements. The changes in the fluorescence intensity have been used for the quantitative determination of DNA with LOD of 3.45 ng in methanol-water (9:1, v/v). The association constants of DNA with Tb(III)-CMMC complex was found to be 2.62 Multiplication-Sign 1010 M{sup -1}. - Highlights: Black-Right-Pointing-Pointer New fluorescent probe Terbium (III)-7-carboxy methoxy-4-methylcoumarin complex has been synthesized and characterized. Black-Right-Pointing-Pointer FTIR spectrum of Tb(III)-complex shows a characteristic band for thiocyanate group. Black-Right-Pointing-Pointer DNA interaction with Terbium (III)-7-carboxy methoxy-4-methylcoumarin has been studied by fluorescence techniques. Black-Right-Pointing-Pointer The change in the fluorescence intensity has been used for the quantitative determination of DNA. Black-Right-Pointing-Pointer The result was better than most of the well-known methods including the ethidium bromide method.

  18. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  19. The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators.

    Directory of Open Access Journals (Sweden)

    James F Theis

    2010-12-01

    Full Text Available In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage

  20. Characterization of the χψ subcomplex of Pseudomonas aeruginosa DNA polymerase III

    Directory of Open Access Journals (Sweden)

    Witte Gregor

    2011-09-01

    Full Text Available Abstract Background DNA polymerase III, the main enzyme responsible for bacterial DNA replication, is composed of three sub-assemblies: the polymerase core, the β-sliding clamp, and the clamp loader. During replication, single-stranded DNA-binding protein (SSB coats and protects single-stranded DNA (ssDNA and also interacts with the χψ heterodimer, a sub-complex of the clamp loader. Whereas the χ subunits of Escherichia coli and Pseudomonas aeruginosa are about 40% homologous, P. aeruginosa ψ is twice as large as its E. coli counterpart, and contains additional sequences. It was shown that P. aeruginosa χψ together with SSB increases the activity of its cognate clamp loader 25-fold at low salt. The E. coli clamp loader, however, is insensitive to the addition of its cognate χψ under similar conditions. In order to find out distinguishing properties within P. aeruginosa χψ which account for this higher stimulatory effect, we characterized P. aeruginosa χψ by a detailed structural and functional comparison with its E. coli counterpart. Results Using small-angle X-ray scattering, analytical ultracentrifugation, and homology-based modeling, we found the N-terminus of P. aeruginosa ψ to be unstructured. Under high salt conditions, the affinity of the χψ complexes from both organisms to their cognate SSB was similar. Under low salt conditions, P. aeruginosa χψ, contrary to E. coli χψ, binds to ssDNA via the N-terminus of ψ. Whereas it is also able to bind to double-stranded DNA, the affinity is somewhat reduced. Conclusions The binding to DNA, otherwise never reported for any other ψ protein, enhances the affinity of P. aeruginosa χψ towards the SSB/ssDNA complex and very likely contributes to the higher stimulatory effect of P. aeruginosa χψ on the clamp loader. We also observed DNA-binding activity for P. putida χψ, making this activity most probably a characteristic of the ψ proteins from the Pseudomonadaceae.

  1. Escherichia coli processivity clamp β from DNA polymerase III is dynamic in solution†

    Science.gov (United States)

    Fang, Jing; Engen, John R.; Beuning, Penny J.

    2011-01-01

    Escherichia coli DNA polymerase III is a highly processive replicase due to the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with diminished ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains showed different dynamics though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from Domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of Domain III also underwent partial unfolding with a half-life ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a “ring holder” to stabilize the transient opening of the β clamp, rather than as a “ring opener”. PMID:21657794

  2. Intercalating polycyclic aromatic hydrocarbon-DNA adducts poison DNA religation by Vaccinia topoisomerase and act as roadblocks to digestion by exonuclease III.

    Science.gov (United States)

    Yakovleva, Lyudmila; Handy, Christopher J; Yagi, Haruhiko; Sayer, Jane M; Jerina, Donald M; Shuman, Stewart

    2006-06-20

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts pervert the execution or fidelity of enzymatic DNA transactions and cause mutations and cancer. Here, we examine the effects of intercalating PAH-DNA adducts on the religation reaction of vaccinia DNA topoisomerase, a prototypal type IB topoisomerase (TopIB), and the 3' end-resection reaction of Escherichia coli exonuclease III (ExoIII), a DNA repair enzyme. Vaccinia TopIB forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p / N(-1) in duplex DNA. The rate of the forward cleavage reaction is suppressed to varying degrees by benzo[a]pyrene (BP) or benzo[c]phenanthrene (BPh) adducts at purine bases within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile strand. We report that BP adducts at the +1 and -2 N6-deoxyadenosine (dA) positions flanking the scissile phosphodiester slow the rate of DNA religation to a greater degree than they do the cleavage rate. By increasing the cleavage equilibrium constant > or = 10-fold, the BPdA adducts, which are intercalated via the major groove, act as TopIB poisons. With respect to ExoIII, we find that (i) single BPdA adducts act as durable roadblocks to ExoIII digestion, which is halted at sites 1 and 2 nucleotides prior to the modified base; (ii) single BPhdA adducts, which also intercalate via the major groove, elicit a transient pause prior to the lesion, which is eventually resected; and (iii) BPh adducts at N2-deoxyguanosine, which intercalate via the minor groove, are durable impediments to ExoIII digestion. These results highlight the sensitivity of repair outcomes to the structure of the PAH ring system and whether intercalation occurs via the major or minor groove.

  3. Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine.

    Science.gov (United States)

    Wang, Qin; Huang, Yu; Zhang, Jin-Sheng; Yang, Xin-Bin

    2014-01-01

    A novel La (III) complex, [LaL(H2O)3]NO3 ·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, (1)H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (K b ) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 10(5) L mol(-1) and 1.71 to 17.3 × 10(5) L mol(-1) for the ligand L and La (III) complex, respectively, in the temperature range of 298-310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex.

  4. The present status and perspectives of Biotechnology in Cameroon ...

    African Journals Online (AJOL)

    ... for the rapid exploitation of biotechnology for the socioeconomic development of Cameroon, subject to the mobilization of the necessary venture capital. Keywords: Cameroon, Biotechnology, GMO, Biodiversity, Economic Development, Recombinant DNA JOURNAL OF THE CAMEROON ACADEMY OF SCIENCES Vol.

  5. Biotechnology bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette, L.A.; McCready, R.G.L.

    1986-01-01

    This bibliography consists of articles and scientific papers on biotechnology in areas in which BIOMINET is currently involved. The reports are categorized in four areas: 1) acid mine drainage (coals and metals) and bioadsorption of metals; 2) solution mining; 3) metabolism and physiology of Thiobacillus and other microorganisms; and 4) bacterial leaching of metals.

  6. Dissociation from DNA of Type III Restriction–Modification enzymes during helicase-dependent motion and following endonuclease activity

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D.

    2012-01-01

    DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’). PMID:22523084

  7. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity.

    Science.gov (United States)

    Tóth, Júlia; van Aelst, Kara; Salmons, Hannah; Szczelkun, Mark D

    2012-08-01

    DNA cleavage by the Type III Restriction-Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼ 200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can 'turnover', albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. 'DNA sliding').

  8. State responses to biotechnology.

    Science.gov (United States)

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  9. Programmable type III-A CRISPR-Cas DNA targeting modules.

    Directory of Open Access Journals (Sweden)

    H Travis Ichikawa

    Full Text Available The CRISPR-Cas systems provide invader defense in a wide variety of prokaryotes, as well as technologies for many powerful applications. The Type III-A or Csm CRISPR-Cas system is one of the most widely distributed across prokaryotic phyla, and cleaves targeted DNA and RNA molecules. In this work, we have constructed modules of Csm systems from 3 bacterial species and heterologously expressed the functional modules in E. coli. The modules include a Cas6 protein and a CRISPR locus for crRNA production, and Csm effector complex proteins. The expressed modules from L. lactis, S. epidermidis and S. thermophilus specifically eliminate invading plasmids recognized by the crRNAs of the systems. Characteristically, activation of plasmid targeting activity depends on transcription of the plasmid sequence recognized by the crRNA. Activity was not observed when transcription of the crRNA target sequence was blocked, or when the opposite strand or a non-target sequence was transcribed. Moreover, the Csm module can be programmed to recognize plasmids with novel target sequences by addition of appropriate crRNA coding sequences to the module. These systems provide a platform for investigation of Type III-A CRISPR-Cas systems in E. coli, and for introduction of programmable transcription-activated DNA targeting into novel organisms.

  10. Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems.

    Science.gov (United States)

    Musumeci, Domenica; Rozza, Lucia; Merlino, Antonello; Paduano, Luigi; Marzo, Tiziano; Massai, Lara; Messori, Luigi; Montesarchio, Daniela

    2015-08-21

    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  11. Bis(maltolato)vanadium(III)-polypyridyl complexes: synthesis, characterization, DNA cleavage, and insulin mimetic activity.

    Science.gov (United States)

    Islam, Md Nazrul; Kumbhar, Anupa A; Kumbhar, Avinash S; Zeller, Matthias; Butcher, Raymond J; Dusane, Menakshi Bhat; Joshi, Bimba N

    2010-09-20

    Four vanadium(III) complexes of the general formula [V(maltol)(2)(N-N)]ClO(4), where N-N is 2,2'-bipyridine (bpy) (1); 1,10-phenanthroline (phen) (2); dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), have been synthesized and characterized by IR, UV-visible, NMR spectroscopies, and electrospray ionization mass spectra (ESI-MS). The complexes exhibit the typical (1)H NMR spectra for paramagnetic V(III) species. The structures of complexes 1, 2, and 3 were characterized by single crystal X-ray diffraction. All complexes are monomeric and cationic containing V(III) species ligated to one neutral polypyridyl ligand and two monoanionic bidentate maltolate ligands with a distorted octahedral geometry. The complexes show an irreversible redox peak around +0.80 V versus Ag/AgCl corresponding to one-electron oxidation of V(III) to V(IV). The time-resolved UV-visible spectral changes for the complexes during the electrolysis in acetonitrile solution at +1.0 V are consistent with one-electron oxidation of the complexes to yield the stable V(IV) species. All complexes cleave plasmid pBR322 DNA without the addition of any external agents. In vitro insulin mimetic activity against insulin responsive RIN 5f cells indicates that complex 1 has similar activity to insulin while the others have moderate insulin mimetic activity.

  12. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will be presented. Clinical and postdoctoral fellows who want to learn about new biotechnology advances are encouraged to attend this course.

  13. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.

    Science.gov (United States)

    Yuan, Quan; Dohrmann, Paul R; Sutton, Mark D; McHenry, Charles S

    2016-05-27

    Examples of dynamic polymerase exchange have been previously characterized in model systems provided by coliphages T4 and T7. Using a dominant negative D403E polymerase (Pol) III α that can form initiation complexes and sequester primer termini but not elongate, we investigated the possibility of exchange at the Escherichia coli replication fork on a rolling circle template. Unlike other systems, addition of polymerase alone did not lead to exchange. Only when D403E Pol III was bound to a τ-containing DnaX complex did exchange occur. In contrast, addition of Pol IV led to rapid exchange in the absence of bound DnaX complex. Examination of Pol III* with varying composition of τ or the alternative shorter dnaX translation product γ showed that τ-, τ2-, or τ3-DnaX complexes supported equivalent levels of synthesis, identical Okazaki fragment size, and gaps between fragments, possessed the ability to challenge pre-established replication forks, and displayed equivalent susceptibility to challenge by exogenous D403E Pol III*. These findings reveal that redundant interactions at the replication fork must stabilize complexes containing only one τ. Previously, it was thought that at least two τs in the trimeric DnaX complex were required to couple the leading and lagging strand polymerases at the replication fork. Possible mechanisms of exchange are discussed. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Avian Biotechnology.

    Science.gov (United States)

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  15. The influence of β-cyclodextrin on the interaction of hesperetin and its bismuth (III) complex with calf thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sameena, Y. [Department of Chemistry, Karunya University, Coimbatore 641 114 (India); Enoch, Israel V.M.V., E-mail: israelenoch@karunya.edu [Department of Chemistry, Karunya University, Coimbatore 641 114 (India)

    2013-06-15

    The interaction between hesperetin (Hes)/hesperetin–Bi (III) complex (Bhes) and β-cyclodextrin (β-CD) was analyzed in the solid and the solution phase. The interaction of hesperetin [5,7,3′-trihydroxyl-4′-methoxyl-flavanone] and its bismuth complex with calf thymus DNA (ctDNA) in the absence and the presence of β-CD was studied by absorption and fluorescence techniques. Docking of Hes with β-CD/DNA was carried out to study the binding theoretically. Hyperchromic and fluorescence enhancement was observed for the interaction between Hes/Bhes and β-CD. Hes interact with β-CD to form 1:2 complexes whereas Bhes shows 1:1 complexation. The effect of β-CD on the binding strength of Hes/Bhes with ctDNA was observed. Hyperchromic effect and fluorescence quenching were observed for the binding of Hes/Bhes and ctDNA in the absence and the presence of β-CD. Significant enhancement in the fluorescence intensity of Hes–ctDNA and Bhes–ctDNA was noticed in the β-CD solution. The fluorescence study showed that the quenching of Hes–ctDNA interaction was of static type, whereas Bhes–ctDNA is of dynamic type. Low Stern–Volmer quenching constant of β-CD-bound-Hes, in comparison with Hes was observed which might be due to cleavage of Hes from DNA by inclusion complexation between Hes and β-CD. The similar order of magnitude of Stern–Volmer quenching of Bhes in the aqueous and the β-CD solutions might be due to electrostatic interaction between the Bi and DNA predominantly. The study on the interaction of Hes/Bhes with ctDNA in competition with methylene blue (MB) supported the existence of electrostatic interaction. -- Highlights: ► Hesperetin forms a 1:2 complex and hesperetin–Bi (III) forms a 1:1 with β-CD. ► The effect of β-CD on ctDNA interacted hesperetin/hesperetin–Bi (III) is reported. ► Hesperetin and its β-CD complex bind more strongly with ctDNA than Hes–Bi (III) complex. ► 1:1 stoichiometry is observed for Hes/Bhes with ctDNA in

  16. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  17. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes.

    Science.gov (United States)

    Maciejewska, Barbara; Roszniowski, Bartosz; Espaillat, Akbar; Kęsik-Szeloch, Agata; Majkowska-Skrobek, Grazyna; Kropinski, Andrew M; Briers, Yves; Cava, Felipe; Lavigne, Rob; Drulis-Kawa, Zuzanna

    2017-01-01

    Lytic bacteriophages and phage-encoded endolysins (peptidoglycan hydrolases) provide a source for the development of novel antimicrobial strategies. In the present study, we focus on the closely related (96 % DNA sequence identity) environmental myoviruses vB_KpnM_KP15 (KP15) and vB_KpnM_KP27 (KP27) infecting multidrug-resistant Klebsiella pneumoniae and Klebsiella oxytoca strains. Their genome organisation and evolutionary relationship are compared to Enterobacter phage phiEap-3 and Klebsiella phages Matisse and Miro. Due to the shared and distinct evolutionary history of these phages, we propose to create a new phage genus "Kp15virus" within the Tevenvirinae subfamily. In silico genome analysis reveals two unique putative homing endonucleases of KP27 phage, probably involved in unrevealed mechanism of DNA modification and resistance to restriction digestion, resulting in a broader host spectrum. Additionally, we identified in KP15 and KP27 a complete set of lysis genes, containing holin, antiholin, spanin and endolysin. By turbidimetric assays on permeabilized Gram-negative strains, we verified the ability of the KP27 endolysin to destroy the bacterial peptidoglycan. We confirmed high stability, absence of toxicity on a human epithelial cell line and the enzymatic specificity of endolysin, which was found to possess endopeptidase activity, cleaving the peptide stem between L-alanine and D-glutamic acid.

  18. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Biotechnology's foreign policy.

    Science.gov (United States)

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  20. The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'?

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2007-01-01

    RecQ helicases, together with topoisomerase III and Rmi1 family proteins, form an evolutionarily conserved complex that is essential for the maintenance of genome integrity. This complex, which we term RTR, is capable of, or has been implicated in, the processing of a diverse array of DNA...

  1. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Sitaxsentan (ICOS-Texas Biotechnology).

    Science.gov (United States)

    Wu-Wong, J R

    2001-04-01

    ICOS-Texas Biotechnology is developing the endothelin A (ETA) receptor antagonist, sitaxsentan, for the potential treatment of pulmonary hypertension, congestive heart failure (CHF), chronic obstructive pulmonary disease and subarachnoid hemorrhage [205713], [302200]. The compound is in phase IIa trials as an iv formulation for CHF and has completed phase I safety trials as an oral formulation [272071]. Phase II/III trials for pulmonary hypertension are planned for the first quarter of 2001 [3945711]. In June 2000, ICOS and Texas Biotechnology established a joint venture to develop and commercialize endothelin antagonists [370007]. US-05591761 was issued to Texas in January 1997, covering TBC-11251 and several related isomers [2309301.

  3. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  4. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  5. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cobalt(III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions.

    Science.gov (United States)

    Thamilarasan, V; Sengottuvelan, N; Sudha, A; Srinivasan, P; Chakkaravarthi, G

    2016-09-01

    Cobalt(III) complexes (1-3) such as [Co(acac)(bpy)(N3)2·H2O] 1, [Co(acac)(en)(N3)2] 2, and [Co(acac)(2-pic)(N3)2] 3 (where, acac=acetylacetone, bpy=2.2'-bipyridine, en=ethylenediamine, 2-pic=2-picolylamine and NaN3=sodium azide) were synthesized and characterized. The structure of complexes (1-3) has been determined by single crystal X-ray diffraction studies and the configuration around cobalt(III) ion was distorted octahedral coordination geometry. Density functional theory calculations were performed to examine the molecular geometry and frontier molecular orbital properties of complexes (1-3). DNA binding properties of the cobalt(III) complexes with calf thymus DNA (CT-DNA) were investigated by UV-visible absorption, fluorescence, circular dichroism spectroscopy and viscosity measurements. The docking studies showed the preferred orientation of sterically acceptable Co(III) complexes (1, 2) inside the DNA through the mode of intercalation, whereas complex 3 exhibited minor groove binding modes. The intrinsic binding constants Kb of complexes (1-3) with CT-DNA were in the following order 1>3>2. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) and gel electrophoresis assay demonstrated that the complexes (1-3) promote the cleavage of the pBR322 DNA in the presence of 3-mercaptopropionic acid (MPA) and cleavage process was found to proceed by singlet oxygen cleavage mechanism. Further, the in vitro cytotoxicity studies of complexes (1-3) were tested on human breast cancer cell line (MCF-7). Copyright © 2016. Published by Elsevier B.V.

  7. Editorial: Biotechnology Journal's diverse coverage of biotechnology.

    Science.gov (United States)

    Wink, Michael

    2014-03-01

    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fluorescent and ultraviolet-visible spectroscopy studies on the antioxidation and DNA binding properties of binuclear Tb(III) complexes.

    Science.gov (United States)

    Liu, Yongchun; Jiang, Xinhui; Yang, Zhengyin; Zheng, Xudong; Liu, Jianning; Zhou, Tianlin

    2010-09-01

    Tb(III) complexes were prepared from Tb(NO(3))(3)·6H(2)O and four Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde with aroylhydrazines. X-ray crystal and other structural analyses indicate that Tb(III) and every ligand can form a binuclear Tb(III) complex with 1:1 metal-to-ligand stoichiometry and nine-coordination at the Tb(III) center. Viscosity titration experiments and fluorescent and ultraviolet-visible (UV-Vis) spectroscopy results indicate that all the Tb(III) complexes can bind to Calf thymus DNA through intercalation with the binding constants at the order of magnitude of 10(6)-10(7) M(-1), and they may be used as potential anticancer drugs, but complexes containing active phenolic hydroxy groups may have stronger antitumor activities. Antioxidation results indicate that all the Tb(III) complexes have strong abilities of scavenging hydroxyl radicals and superoxide radicals, but complexes containing active phenolic hydroxy groups show stronger scavenging effects on hydroxyl radicals and complexes containing N-heteroaromatic substituent show stronger scavenging effects on superoxide radicals. However, Tb(III) emission with these systems is not observed, for these ligands rather are quenchers and unable to sensitize this metal ion.

  9. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  10. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  11. Forest biotechnology and environment

    Energy Technology Data Exchange (ETDEWEB)

    Kopriva, S.; Rennenberg, H. [Freiburg Univ. (Germany). Inst. fuer Forstbotanik und Baumphysiologie

    2000-02-01

    Forest biotechnology is a relatively young area of applied plant molecular biology that presently concentrates on (i) manipulation of lignin content and composition, (ii) pathogen-, pesticide-, and stress resistance, and (iii) improvement of growth. Transgenic trees have a great potential also in other areas of applied and environmental research, e.g. in the production of phytochemicals and in phytoremediation of polluted soils. To implement the use of biotechnology for these and other purposes improvement of the acceptance in public of genetic engineering general, and the application of transgenic technologies to trees species in particular, is essential. (orig.) [German] Bei der forstlichen Biotechnologie handelt es sich um ein vergleichsweise junges Gebiet der angewandten pflanzlichen Molekularbiologie, das sich derzeit auf folgende Fragestellungen konzentriert: (a) Manipulation des Ligningehalts und der Lignin-Zusammensetzung; (b) Verbesserung der Resistenz gegenueber Pathogenen, Pestiziden und verschiedenen Formen von Stress; (c) Verbesserung des Wachstums. Transgene Baeume haben darueber hinaus ein grosses Potential fuer andere Gebiete der angewandten Forschung und der Umweltforschung, so z.B. fuer die Produktion pflanzlicher Naturstoffe und die Phytosanierung belasteter Boeden. Um die Verwendung biotechnologischer Verfahren fuer diese und andere Zwecke zu implementieren, ist es dringend erforderlich, die Akzeptanz von 'genetic engineering' im allgemeinen und den Einsatz von Technologien zur Herstellung transgener Baeume im besonderen in der Oeffentlichkeit zu verbessern. (orig.)

  12. G-quadruplex and calf thymus DNA interaction of quaternized tetra and octa pyridyloxy substituted indium (III) phthalocyanines.

    Science.gov (United States)

    Bağda, Efkan; Bağda, Esra; Durmuş, Mahmut

    2017-10-01

    The interactions of small molecules with G-quadruplex and double stranded DNA are important due to their potential biological and medical usages. In the present paper, the interactions of indium (III) phthalocyanines (quaternized 2,3,9,10,16,17,23,24-octakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): OInPc and quaternized 2(3),9(10),16(17),23(24)-tetrakis-[(3-pyridyloxy) phthalocyaninato] chloroindium(III): TInPc) with hybrid G-quadruplex (Tel 21) and parallel G-quadruplexes (nucleolin, KRAS, c-MYC, vegf) were studied. The interactions of these phthalocyanines with ctDNA were also investigated. These interactions were measured by different spectroscopic techniques such as UV-Vis, fluorescence and circular dichroism. The UV-Vis spectroscopic data treated with Benesi-Hildebrand equation and Benesi-Hildebrand constants (K BH ) were calculated. These constants were found higher for octa peripheral pyridyloxy substituted phthalocyanine, OInPc. Besides, UV-Vis analysis showed that the interaction of G-quadruplexes with tetra peripheral pyridyloxy substituted phthalocyanine derivative (TInPc) resulted in removal of central indium (III) atom from the cavity of phthalocyanine macrocycle. The UV-Vis melting studies as well as fluorescence replacement techniques were also employed for clarification of mechanism. The binding mode of molecules with ct DNA was also supported with viscosity measurements. From the results, the stabilization and destabilization of G-quadruplex depending on the concentration of the OInPc and TInPc showed that these two indium (III) phthalocyanines have the potential of both the elucidation role of G-quadruplexes in gene expression and the usage in cancer therapy. Copyright © 2017. Published by Elsevier B.V.

  13. Escherichia coli DNA polymerase III is responsible for the high level of spontaneous mutations in mutT strains.

    Science.gov (United States)

    Yamada, Masami; Shimizu, Masatomi; Katafuchi, Atsushi; Grúz, Petr; Fujii, Shingo; Usui, Yukio; Fuchs, Robert P; Nohmi, Takehiko

    2012-12-01

    Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), display more than a 100-fold higher spontaneous mutation frequency over the wild-type strain. 8-oxo-dGTP induces A to C transversions when misincorporated opposite template A. Here, we report that DNA pol III incorporates 8-oxo-dGTP ≈ 20 times more efficiently opposite template A compared with template C. Single, double or triple deletions of pol I, pol II, pol IV or pol V had modest effects on the mutT mutator phenotype. Only the deletion of all four polymerases led to a 70% reduction of the mutator phenotype. While pol III may account for nearly all 8-oxo-dGTP incorporation opposite template A, it only extends ≈ 30% of them, the remaining 70% being extended by the combined action of pol I, pol II, pol IV or pol V. The unique property of pol III, a C-family DNA polymerase present only in eubacteria, to preferentially incorporate 8-oxo-dGTP opposite template A during replication might explain the high spontaneous mutation frequency in E. coli mutT compared with the mammalian counterparts lacking the 8-oxo-dGTP hydrolysing activities. © 2012 Blackwell Publishing Ltd.

  14. Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans.

    Science.gov (United States)

    Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin

    2015-02-27

    Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.

  15. Modern trends in biochemistry and biotechnology

    International Nuclear Information System (INIS)

    1996-01-01

    On the conference 'Modern trends in biochemistry and biotechnology' several lectures concerned influence of ionizing radiation on the animal cells. Changes in the cell division caused by radiation induced DNA damage were discussed. Application of single cell gel electrophoresis assay (comet assay) in assessment of DNA damages was the subject of dedicated session

  16. Biotechnological advances in Lilium.

    Science.gov (United States)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.

  17. Reduction of postreplication DNA repair in two Escherichia coli mutants with temperature-sensitive polymerase III activity: implications for the postreplication repair pathway

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1978-01-01

    Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of uv-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 0 C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps

  18. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  19. Binding of the Bi (III Complex of Naringin with β-Cyclodextrin/Calf Thymus DNA: Absorption and Fluorescence Characteristics

    Directory of Open Access Journals (Sweden)

    Sameena Yousuf

    2014-01-01

    Full Text Available Naringin-Bi (III complex (Narb was prepared and analysed by UV-Visible absorption and fluorescence measurements. The inclusion complex of Narb with β-Cyclodextrin (β-CD was characterized by the UV-Visible absorption, Infrared, scanning dlectron microscopic, and X-ray diffractometric techniques. The stoichiometry of the inclusion complex of Narb with β-CD was 1 : 1 with a binding constant of 5.18 × 102 mol−1 dm3. The interaction of Narb with Calf Thymus DNA (ctDNA was investigated in the presence and the absence of β-CD. The binding constants for the interaction of Narb with ctDNA in the absence and the presence of β-CD were 1.29 × 105 mol−1 dm3 and 6.89 × 104 mol−1 dm3, respectively. The Stern-Volmer constants for the interaction of Narb with ctDNA in the absence and the presence of β-CD were 1.25 × 104 mol−1 dm3 and 5.10 × 103 mol−1 dm3, respectively. The lowering of the binding affinity and the Ksv were observed for the interaction of Narb with ctDNA in the presence of β-CD.

  20. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    International Nuclear Information System (INIS)

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J.

    1988-01-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 x 10 6 recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria

  1. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  2. [The mutations of the D-loop hypervariable region II and hypervariable region III of mitochondrial DNA in oral squamous cell carcinoma].

    Science.gov (United States)

    Wang, Yao-Zhong; Jia, Mu-Yun; Yuan, Rong-Tao; Han, Guo-Dong; Bu, Ling-Xue

    2010-06-01

    To investigate the frequency of mitochondrial DNA (mtDNA) D-loop hypervariable region II (HVR II) and hypervariable region III (HVR III) mutations in oral squamous cell carcinoma (OSCC) and their correlation to provide the new targets for the prevention and treatment of OSCC. The D-loop HVR II and HVR III regions of mtDNA in seven cases with OSCC tissues, matched with paracancerous tissues and normal mucosa tissues from the same case, were amplified by polymerase chain raction (PCR), then were detected by direct sequencing to find the mutantsites after the comparison of all sequencing results with the mtDNA Cambridge sequence in the GenBank database. 82 (56 species) nucleotide changes, with 51(26 species) nucleotide polymorphism, were found after the comparison of all sequencing results with the mtDNA Cambridge sequence in the GenBank database. 31(30 species) mutations, with 21 located within the HVR II and HVR III regions, were found in 3 tumor tissue samples, their paracancerous and normal mucosa tissue were found more polymorphic changes but no mutation. The mtDNA D-loop HVR II and HVR III regions mutation rate was 42.9% (3/7) in OSCC. The mtDNA D-loop HVR II and HVR III regions were highly polymorphic and mutable regions in OSCC. It suggested that the D-loop HVR II and HVR III regions of mtDNA might play a significant role in the tumorigenesis of OSCC. It may become new targets for the gene therapy of OSCC by regulating the above indexes.

  3. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

    DEFF Research Database (Denmark)

    Peng, Wenfang; Feng, Mingxia; Feng, Xu

    2015-01-01

    CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids...... carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis....... islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA....

  4. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer.

    Science.gov (United States)

    Tripathy, Suryasnata; Krishna Vanjari, Siva Rama; Singh, Vikrant; Swaminathan, S; Singh, Shiv Govind

    2017-04-15

    Nanoscale biosensors, owing to their high-sensitivity and extremely low limits-of-detection, have enabled the realization of highly complex and sophisticated miniaturized platforms for several important healthcare applications, the most predominant one being disease diagnosis. In particular, nanomaterial facilitated electrochemical detection of DNA hybridization has had an exceptional impact on fields such as genetics and cancerous mutation detection Here we report an ultrasensitive electrochemical platform using electrospun semi-conducting Manganese (III) Oxide (Mn 2 O 3 ) nanofibers for DNA Hybridization detection. The proposed platform coalesces the inherent advantages of metal-oxide nanofibers and electrochemical transduction techniques, resulting in label-free zeptomolar detection of DNA hybridization. As proof of concept, we demonstrate zeptomolar detection of Dengue consensus primer (limit of detection: 120×10 -21 M) both in control as well as spiked serum samples. Our reported detection limit is superior in comparison with previously reported electrochemical DNA hybridization sensors for Dengue virus detection, spanning both labeled and label-free transductions. This ultra-sensitivity, we believe, is a result of synthesizing a low bandgap electrospun metal-oxide nanomaterial corresponding to a specific oxidation state of Manganese. This methodology can be extended for detection of any hybridization of interest by simply adapting an appropriate functionalization protocol and thus is very generic in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The inactivation of rfaP, rarA or sspA gene improves the viability of the Escherichia coli DNA polymerase III holD mutant.

    Science.gov (United States)

    Michel, Bénédicte; Sinha, Anurag Kumar

    2017-06-01

    The Escherichia coli holD mutant is poorly viable because the stability of holoenzyme polymerase III (Pol III HE) on DNA is compromised. Consequently, the SOS response is induced and the SOS polymerases DinB and Pol II further hinder replication. Mutations that restore the holD mutant viability belong to two classes, those that stabilize Pol III on DNA and those that prevent the deleterious effects of DinB over-production. We identified a dnaX mutation and the inactivation of rfaP and sspA genes as belonging to the first class of holD mutant suppressors. dnaX encodes a Pol III clamp loader subunit that interacts with HolD. rfaP encodes a lipopolysaccharide kinase that acts in outer membrane biogenesis. Its inactivation improves the holD mutant growth in part by affecting potassium import, previously proposed to stabilize Pol III HE on DNA by increasing electrostatic interactions. sspA encodes a global transcriptional regulator and growth of the holD mutant in its absence suggests that SspA controls genes that affect protein-DNA interactions. The inactivation of rarA belongs to the second class of suppressor mutations. rarA inactivation has a weak effect but is additive with other suppressor mutations. Our results suggest that RarA facilitates DinB binding to abandoned forks. © 2017 John Wiley & Sons Ltd.

  6. Agriculture and bio-technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hikoyuki

    1987-09-01

    The Japanese agriculture is going to be influenced by bio-technology. New style of production will be introduced through the entrance of other type of enterprises causing considerable change in agricultural fields. Bio-technology is a technology which utmost utilizes the functions of the living organism. Its practical target is to manifestate a new function by deliberately endowing it to an organism. Major technique is gene manipulation, tissue culture and utilization of microorganism and cells as well as the utilization of the biomass resources and a production means in the vegetable plant using nutricious solution. This report especially describes the following matters. Recombinant DNA (Super mouse, etc). Cell fusion (Monoclonal antigen, etc). Nucleus transplantation. Chromosome manipulation (Creation of tripoloid, etc). tissue culture (Growing of virus-free seedling, etc). Production of useful substances. Biomass (Forestry, Ocean, Livestock). (2 figs, 3 tabs, 12 refs)

  7. Association of thymine glycol lesioned DNA with repair enzyme endonuclease III-molecular dynamics study

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2001-07-01

    The 2 nanoseconds molecular dynamics (MD) simulation has been performed for the system consisting of repair enzyme and DNA 30-mer with native thymine at position 16 replaced by thymine glycol (TG) solvated in water environment. After 950 picoseconds of MD the enzyme and DNA associated together to form complex that lasted stable up to 2 ns when simulation was terminated. At the contact area of enzyme and DNA there is glutamic acid located as close as 1.6 A to the C3' atom of phosphodiester bond of TG. Initial B-DNA molecule was bent and kinked at the TG during MD. This distortion caused that phosphodiester bond was easier accessible by amino acids of enzyme. The negative value of electrostatic energy (-26 kcal/mol) discriminates TG from nearly neutral native thymine and contributes to the specific recognition of this lesion. Higher number of close water molecules at TG site before formation of complex (compared with other nucleotides) indicates that glycosyl bond of the lesion is easily approached by repair enzyme during scanning of DNA surface and suggests the importance of specific hydration at the lesion during recognition process. (author)

  8. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    Admin

    technologies. The use of biotechnological tools and “bioprospecting” will open new vistas in medicine, agriculture, silviculture, horticulture, environment and other important issues. This paper reviews ... E-mail: rankangani@yahoo.com. human needs ..... (iii) Particle mediated gene transfer, using gene gun. REFERENCES.

  9. Application of biotechnology for the domestication of Dacryodes edulis

    African Journals Online (AJOL)

    Biotechnology applications give a scope for rapid improvement and also facilitate the breeding program. Advantages of biotechnology application using molecular markers in breeding programs includes: study of genetic diversity, DNA fingerprinting of individuals, easy identification of specific traits or genes of interest, rapid ...

  10. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in

  11. Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity.

    Science.gov (United States)

    Wyszomirski, Karol H; Curth, Ute; Alves, Jürgen; Mackeldanz, Petra; Möncke-Buchner, Elisabeth; Schutkowski, Mike; Krüger, Detlev H; Reuter, Monika

    2012-04-01

    For efficient DNA cleavage, the Type III restriction endonuclease EcoP15I communicates with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of methylation (Mod) and restriction (Res) subunits forming a multifunctional enzyme complex able to methylate or to cleave DNA. In this study, we determined by different analytical methods that EcoP15I contains a single Res subunit in a Mod(2)Res stoichiometry. The Res subunit comprises a translocase (Tr) domain carrying functional motifs of superfamily 2 helicases and an endonuclease domain with a PD..D/EXK motif. We show that the isolated Tr domain retains ATP-hydrolyzing activity and binds single- and double-stranded DNA in a sequence-independent manner. To localize the regions of DNA binding, we screened peptide arrays representing the entire Res sequence for their ability to interact with DNA. We discovered four DNA-binding regions in the Tr domain and two DNA-binding regions in the endonuclease domain. Modelling of the Tr domain shows that these multiple DNA-binding regions are located on the surface, free to interact with DNA. Interestingly, the positions of the DNA-binding regions are conserved among other Type III restriction endonucleases.

  12. Surfactant-cobalt(III) complexes: The impact of hydrophobicity on interaction with HSA and DNA - insights from experimental and theoretical approach.

    Science.gov (United States)

    Veeralakshmi, Selvakumar; Sabapathi, Gopal; Nehru, Selvan; Venuvanalingam, Ponnambalam; Arunachalam, Sankaralingam

    2017-05-01

    To develop surfactant-based metallodrugs, it is very important to know about their hydrophobicity, micelle forming capacity, their interaction with biomacromolecules such as proteins and nucleic acids, and biological activities. Here, diethylenetriamine (dien) and tetradecylamine ligand (TA) based surfactant-cobalt(III) complexes with single chain domain, [Co(dien)(TA)Cl 2 ]ClO 4 (1) and double chain domain [Co(dien)(TA) 2 Cl](ClO 4 ) 2 (2) were chosen to study the effect of hydrophobicity on the interaction with human serum albumin and calf thymus DNA. The obtained results showed that (i) single chain surfactant-cobalt(III) complex (1) interact with HSA and DNA via electrostatic interaction and groove binding, respectively; (ii) double chain surfactant-cobalt(III) complex (2) interact with HSA and DNA via hydrophobic interaction and partial intercalation, respectively, due to the play of hydrophobicity by single and double chain domains. Further it is noted that, double chain surfactant-cobalt(III) complex interact strongly with HSA and DNA, compared single chain surfactant-cobalt(III) complex due to their more hydrophobicity nature. DFT and molecular docking studies offer insights into the mechanism and mode of binding towards the molecular target CT-DNA and HSA. Hence, the present findings will create new avenue towards the use of hydrophobic metallodrugs for various therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.

    Science.gov (United States)

    Szczelkun, Mark D

    2011-04-01

    To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

  14. 2001 Industry Studies: Biotechnology

    National Research Council Canada - National Science Library

    2001-01-01

    .... The applications of biotechnology, such as medicine, agribusiness, forensics, informatics and the defense sector, offer many benefits, but also bring some risk, requiring public policy decisions...

  15. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Zhang, Lianfang; Li, Feng

    2015-08-21

    Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.

  16. Biotechnology essay competition: biotechnology and sustainable food practices.

    Science.gov (United States)

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SYNTHESIS AND DNA INTERACTION OF A Sm(III) COMPLEX OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    volume of brownish red solution was reduced in vacuo using rotary evaporator to about 5 mL. Then absolute ethanol was ... The titration was done manually by use of a micro-injector and incremental addition injection of 10 μL .... The plots of 1/(A0 - A) versus 1/cDNA were linear at 25 and 37 °C and the binding constants ...

  18. [Biotechnological aspects in "loco" larvae].

    Science.gov (United States)

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  19. On the distinction of the mechanisms of DNA cleavage by restriction enzymes—The I-, II-, and III-type molecular motors

    Science.gov (United States)

    Pikin, S. A.

    2008-09-01

    A comparative physical description is given for the functioning of various restriction enzymes and for their processes of DNA cleavage. The previously proposed model system of kinetic equations is applied to the I-and III-type enzymes, which use ATP molecules as an energy source, while the II-type enzymes work thanks to catalytic reactions with participation of an electric field. All the enzymes achieved bending and twisting DNA, providing for either the linear motion of the II-type enzyme along the DNA chain or the DNA translocation by the I-and III-type enzymes due to moving chiral kinks. A comparative estimation of the considered linear and angular velocities is performed. The role of stalling forces for enzyme-DNA complexes, which induce the observed cutting of the DNA either inside the enzyme (II) or in some “weak” places outside enzymes I and III, which results in the supercoiling of the DNA, is shown. The role of ionic screening for the described processes is discussed.

  20. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    May 2013. This Course is aimed at giving the participants a hands-on training on some modern biotechnological techniques including DNA/RNA isolation from various sources, molecular cloning, PCR and RT-PCR. A variety of teaching methods like lectures by eminent scientists, discussion and laboratory work focussing ...

  1. The Brave New World of Biotechnology

    Science.gov (United States)

    Reese, Susan

    2004-01-01

    Is it the science that will save the world from starvation, or will it mean the end of the world as it is known? While some people fear genetically altered "Frankenfoods" and DNA experiments with pathogenic microorganisms that could result in worldwide epidemics, others view biotechnology as using biological organisms to make products that benefit…

  2. Mitochondrial DNA pattern of the fine shrimp Metapenaeus elegans (De Man, 1907) in the lagoon of Segara Anakan, Central Java, using Hind III

    Science.gov (United States)

    Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia

    2017-05-01

    Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.

  3. Replication Fidelity of Escherichia Coli DNA Polymerase III Holoenzyme in Vitro and Repair of Heteroduplex DNA with Multibase Loops in Vivo.

    Science.gov (United States)

    Carraway, Margaretha Bernardina Maria

    The genetic integrity of an organism is maintained by accurate replication and correction of asymmetry in the DNA. To study replication fidelity, single-stranded plasmid DNA containing the mnt gene, was replicated in vitro with DNA polymerase III holoenzyme by extension of a complimentary annealed primer. On this plasmid the mnt region is fused to a promoterless tet gene. Accurate replication of mnt generates a tetracycline sensitive phenotype, errors in replication are identified by mutation to tetracycline resistance. Mismatch repair deficient mutH cells were transformed to ampicillin-resistance by replicated circles. The mutations in mnt were identified by replica plating and selecting for tetracycline resistant cells. The mutation rate was 1 in 100,000. DNA sequence analysis of 65 isolates identified 33 single base changes, 20 deletions and 12 concurrent deletions and insertions. Except for the deletions and substitutions, identical mutations were isolated in vivo in mismatch repair deficient cells. Therefore, in vitro replication errors resemble those isolated in vivo. Heteroduplexes with loops occur as a result of replication or recombination. To examine if E. coli converts these molecules to a homoduplex via DNA repair, plasmid heteroduplexes with loops of 5, 7, 9, 192, 410 or 514 bases in mnt were constructed. Conversion was examined by tranforming the plasmid heteroduplexes into E. coli lysogens which had a non-functional mnt gene fused to a promoterless lac gene. Repair of the heteroduplex to wild type yields white/tetracycline sensitive colonies; repair to the mutant yields red/tetracycline resistant colonies and no repair results in red-white (mixed)/tetracycline resistant colonies. No significant change in colony color distribution was observed when the heteroduplexes were transformed into wild type and the following mutant strains: pcnB, mutS, recA, recD, recBC sbcBC, recF, recJ, recR, recN, recO, recG ruvC, ruvB, lexA3, lexA51, uvrA, recBC sbcBC rec

  4. Nigerian Journal of Biotechnology

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology is a publisher of multidisciplinary peer-reviews original research works and critical reviews on interdisciplinary studies in Biotechnology, Agriculture, Food and Environment interface; and is published twice a year. It serves scientists in the field of Agriculture, Food science and Technology; ...

  5. Biotechnology in China

    National Research Council Canada - National Science Library

    Hamer, Dean H; Kung, Shain-dow

    1989-01-01

    ... and Shain-dow Kung Center for Agricultural Biotechnology Maryland Biotechnology Institute Department of Botany University of Maryland College Park, Maryland Committee on Scholarly Communication with the People's Republic of China National Academy of Sciences National Academy Press Washington, DC 1989 i Copyrightthe cannot be not from bo...

  6. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon

    2015-09-25

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  8. Synthesis, characterization and interaction of N,N'-dipyridoxyl (1,4-butanediamine) Co(III) salen complex with DNA and HSA

    Science.gov (United States)

    Janati Fard, F.; Mashhadi Khoshkhoo, Z.; Mirtabatabaei, H.; Housaindokht, M. R.; Jalal, R.; Eshtiagh Hosseini, H.; Bozorgmehr, M. R.; Esmaeili, A. A.; Javan Khoshkholgh, M.

    2012-11-01

    Co(III) salen complex with N,N'-dipyridoxyl (1,4-butanediamine) Schiff-base ligand as tetradentate ligand was synthesized and characterized by the elemental and spectroscopic analysis. The interaction of this complex with calf thymus DNA (ct DNA) has been investigated in vitro using UV absorption, fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The binding constant has been estimated to be 1 × 104 M-1 using UV absorption. The addition of ct DNA to Co(III) salen solution resulted in a fluorescence quenching. The binding constant and site size binding have been calculated in connection with other experimental observations show that the interactive model between Co(III) salen and ct DNA is an intercalative one. The interaction between plasmid DNA (pTZ57R DNA) and this complex is confirmed by gel electrophoresis studies. Furthermore, the interaction between HSA and Co(III) salen complex was investigated by UV absorption, fluorescence spectroscopy and molecular modeling. The binding constant for the interaction of this complex with HSA were found to be 3.854 × 104 M-1 using UV absorption, which was in good agreement with the binding constant obtained from fluorescence method (3.866 × 104 M-1). The binding distance between HSA and this complex was estimated to be 2.48 nm according to Förster theory of non-radioactive energy transfer. Molecular modeling studies suggested that hydrophobic interaction was the predominant intermolecular forces stabilizing Co(III) complex-HSA system.

  9. Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?

    Science.gov (United States)

    Hirasawa, Takashi; Furusawa, Chikara; Shimizu, Hiroshi

    2010-06-01

    Saccharomyces cerevisiae has been widely used in industrial fields such as in the production of alcoholic beverages and useful chemicals and in bakery. Since S. cerevisiae was the first organism whose genome sequence was determined in eukaryotes, genome-wide analysis systems such as DNA microarrays also developed early for this organism. Many researches related to the analysis of transcriptional profiles during the processes and transcriptional responses to the environmental stresses that are encountered during production processes using DNA microarray were reported in the literature. In addition, DNA microarrays can be used in detecting transcription factor binding sites and single nucleotide polymorphisms. In this paper, we review transcriptome analysis toward industrial production processes involving yeast, as in the case of wine, beer, and sake. Moreover, identification of the target genes for genetic manipulation to confer useful phenotypes, such as stress tolerance and high fermentation activity, and to improve production of target product in useful chemicals production using DNA microarray analysis is described. Finally, recent advances of DNA microarray analysis are briefly discussed.

  10. Modern Biotechnology in China

    Science.gov (United States)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  11. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jingjin; Ma, Yefei [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Kong, Rongmei [The Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Zhang, Liangliang, E-mail: liangzhang319@163.com [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China); Yang, Wen; Zhao, Shulin [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry, Guangxi Normal University, Guilin, 541004 (China)

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS{sub 2}) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3′-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS{sub 2} nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS{sub 2} nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics. - Highlights: • A fluorescence polarization strategy for DNA glycosylase activity detection was developed. • The present method was based on WS{sub 2} nanosheet and exonuclease III co-assisted signal amplification. • A high sensitivity and desirable selectivity were achieved. • This method provides a promising universal platform for DNA

  12. Mechanism of loading the Escherichia coli DNA polymerase III beta sliding clamp on DNA. Bona fide primer/templates preferentially trigger the gamma complex to hydrolyze ATP and load the clamp.

    Science.gov (United States)

    Ason, Brandon; Handayani, Renita; Williams, Christopher R; Bertram, Jeffrey G; Hingorani, Manju M; O'Donnell, Mike; Goodman, Myron F; Bloom, Linda B

    2003-03-21

    The Escherichia coli DNA polymerase III gamma complex clamp loader assembles the ring-shaped beta sliding clamp onto DNA. The core polymerase is tethered to the template by beta, enabling processive replication of the genome. Here we investigate the DNA substrate specificity of the clamp-loading reaction by measuring the pre-steady-state kinetics of DNA binding and ATP hydrolysis using elongation-proficient and deficient primer/template DNA. The ATP-bound clamp loader binds both elongation-proficient and deficient DNA substrates either in the presence or absence of beta. However, elongation-proficient DNA preferentially triggers gamma complex to release beta onto DNA with concomitant hydrolysis of ATP. Binding to elongation-proficient DNA converts the gamma complex from a high affinity ATP-bound state to an ADP-bound state having a 10(5)-fold lower affinity for DNA. Steady-state binding assays are misleading, suggesting that gamma complex binds much more avidly to non-extendable primer/template DNA because recycling to the high affinity binding state is rate-limiting. Pre-steady-state rotational anisotropy data reveal a dynamic association-dissociation of gamma complex with extendable primer/templates leading to the diametrically opposite conclusion. The strongly favored dynamic recognition of extendable DNA does not require the presence of beta. Thus, the gamma complex uses ATP binding and hydrolysis as a mechanism for modulating its interaction with DNA in which the ATP-bound form binds with high affinity to DNA but elongation-proficient DNA substrates preferentially trigger hydrolysis of ATP and conversion to a low affinity state.

  13. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  14. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  15. Relaxed specificity of prokaryotic DNA methyltransferases results in DNA site-specific modification of RNA/DNA heteroduplexes.

    Science.gov (United States)

    Wons, Ewa; Mruk, Iwona; Kaczorowski, Tadeusz

    2015-11-01

    RNA/DNA hybrid duplexes regularly occur in nature, for example in transcriptional R loops. Their susceptibility to modification by DNA-specific or RNA-specific enzymes is, thus, a biologically relevant question, which, in addition, has possible biotechnological implications. In this study, we investigated the activity of four isospecific DNA methyltransferases (M.EcoVIII, M.LlaCI, M.HindIII, M.BstZ1II) toward an RNA/DNA duplex carrying one 5'-AAGCUU-3'/3'-TTCGAA-5' target sequence. The analyzed enzymes belong to the β-group of adenine N6-methyltransferases and recognize the palindromic DNA sequence 5'-AAGCTT-3'/3'-TTCGAA-5'. Under standard conditions, none of these isospecific enzymes could detectibly methylate the RNA/DNA duplex. However, the addition of agents that generally relax specificity, such as dimethyl sulfoxide (DMSO) and glycerol, resulted in substantial methylation of the RNA/DNA duplex by M.EcoVIII and M.LlaCI. Only the DNA strand of the RNA/DNA duplex was methylated. The same was not observed for M.HindIII or M.BstZ1II. This is, to our knowledge, the first report that demonstrates such activity by prokaryotic DNA methyltransferases. Possible applications of these findings in a laboratory practice are also discussed.

  16. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes.

    Directory of Open Access Journals (Sweden)

    Monica Poggianella

    Full Text Available Dengue virus (DENV infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.

  17. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  18. Experimental and theoretical studies on the DNA-binding of cationic yttrium(III) complex containing 2,2‧-bipyridine

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Akbari, Alireza; Mirkazehi-Rigi, Sohaila

    2015-03-01

    The interaction of DNA with [Y(bpy)(OH2)6]+3, where bpy is 2,2‧-bipyridine has been studied at physiological pH in Tris-HCl buffer. Fluorescence and absorption spectroscopy, agarose gel electrophoresis as well as EB quenching experiments are used to study DNA binding of the complex. The results reveal that DNA have the strong ability to bind with Y(III) complex. The binding constant, Kb and the Stern-Volmer quenching constant, KSV are determined. For characterization of the binding mode between the Y(III) complex and DNA various procedures such as: iodide quenching assay, salt effect and thermodynamical investigation are used. The results suggest that minor groove binding should be the interaction mode of complex to DNA. A gel electrophoresis assay demonstrates the ability of the complex to cleave the DNA via oxidative pathway. Electronic structure of [Y(bpy)(OH2)6]+3 was also carried out applying the density functional theory (DFT) method and applied to explain some obtained experimental observations.

  19. Advances in genetic analysis and biotechnology of the cultivated button mushroom, Agaricus bisporus

    NARCIS (Netherlands)

    Stoop, J.M.H.; Mooibroek, H.

    1999-01-01

    During the last decade several major breakthroughs have been achieved in mushroom biotechnology, which greatly enhanced classical mushroom breeding. DNA-based technologies such as restriction fragment length polymorphisms and randomly amplified polydisperse DNA sequences have allowed for a measure

  20. The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    The cycling time of DNA polymerase III holoenzyme during replication of UV-irradiated single-stranded (ss) DNA was longer than with unirradiated DNA (8 versus 3 min, respectively), most likely due to slow dissociation from lesion-terminated nascent DNA strands. Initiation of elongation on primed ssDNA was not significantly inhibited by the presence of UV lesions as indicated by the identical distribution of replication products synthesized at early and late reaction times and by the identical duration of the initial synthesis bursts on both unirradiated and UV-irradiated DNA templates. When replication was performed with DNA polymerase III* supplemented with increasing quantities of purified beta 2 subunit, the cycling time on UV-irradiated DNA decreased from 14.8 min at 1.7 nM beta 2 down to 6 min at 170 nM beta 2, a concentration in which beta 2 was in large excess over the polymerase. In parallel to the reduction in cycling time, also the bypass frequency of cyclobutane-photodimers decreased with increasing beta 2 concentration, and at 170 nM beta 2, bypass of photodimers was essentially eliminated. It has been shown that polymerase complexes with more than one beta 2 per polymerase molecule were formed at high beta 2 concentrations. It is plausible that polymerase complexes obtained under high beta 2 concentration dissociate from lesion-terminated primers faster than polymerase complexes formed at a low beta 2 concentration. This is expected to favor termination over bypass at pyrimidine photodimers and thus decrease their bypass frequency. These results suggest that the beta 2 subunit might act as a sensor for obstacles to replication caused by DNA damage, and that it terminates elongation at these sites by promoting dissociation. The intracellular concentration of beta 2 was estimated to be 250 nM

  1. Biotechnology for Solar System Exploration

    Science.gov (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  2. Commercialization of animal biotechnology.

    Science.gov (United States)

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B

    2003-01-01

    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. Copyright 2002 Elsevier Science Inc.

  3. Networks for learning and knowledge creation in biotechnology

    National Research Council Canada - National Science Library

    Oliver, Amalya Lumerman

    2009-01-01

    ... structure of the industry parallels one of its most important innovations - recombinant DNA (rDNA). She shows how the concept of recombination may be used to explain a number of organizational features, including new biotechnology firms, the formation of universitybased spin-offs, scientific entrepreneurship, and trust and cont...

  4. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  5. Drugs obtained by biotechnology processing

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2011-06-01

    Full Text Available In recent years, the number of drugs of biotechnological origin available for many different diseases has increased exponentially, including different types of cancer, diabetes mellitus, infectious diseases (e.g. AIDS Virus / HIV as well as cardiovascular, neurological, respiratory, and autoimmune diseases, among others. The pharmaceutical industry has used different technologies to obtain new and promising active ingredients, as exemplified by the fermentation technique, recombinant DNA technique and the hybridoma technique. The expiry of the patents of the first drugs of biotechnological origin and the consequent emergence of biosimilar products, have posed various questions to health authorities worldwide regarding the definition, framework, and requirements for authorization to market such products.Nos últimos anos, tem aumentado exponencialmente o número de fármacos de origem biotecnológica ao dispor das mais diversas patologias, entre elas destacam-se, os diferentes tipos de cancêr, as doenças infecciosas (ex. vírus AIDS/HIV, as doenças autoimunes, as doenças cardiovasculares, a Diabetes Mellitus, as doenças neurológicas, as doenças respiratórias, entre outras. A indústria farmacêutica tem recorrido a diferentes tecnologias para a obtenção de novos e promissores princípios ativos, como são exemplo a fermentação, a técnica de DNA Recombinante, a técnica de hidridoma, entre outras. A queda das patentes dos primeiros fármacos de origem biotecnológica e o consequente aparecimento dos produtos biossimilares têm colocado diferentes questões às autoridades de saúde mundiais, sobre a definição, enquadramento e exigências para a autorização de entrada no mercado deste tipo de produtos.

  6. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed.

  7. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  8. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  9. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  10. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study ... Author Affiliations. Narayan S Punekar1. Molecular Enzymology Group, Biotechnology Centre, Indian Institute of Technology, Mumbai 400 076, India.

  11. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  12. Biotechnological advances in Lilium

    NARCIS (Netherlands)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; Tuyl, van Jaap M.

    2016-01-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to

  13. TSCA Biotechnology Notifications Status

    Science.gov (United States)

    This Notifications Table lists only those submissions received under the Biotechnology Regulation, beginning in 1998. From the Table, you can link to a brief summary of select submission and, in many cases, to a fact sheet on the decision reached by OPPT.

  14. Biotechnology of trees: Chestnut

    Science.gov (United States)

    C.D. Nelson; W.A. Powell; S.A. Merkle; J.E. Carlson; F.V. Hebard; N Islam-Faridi; M.E. Staton; L. Georgi

    2014-01-01

    Biotechnology has been practiced on chestnuts (Castanea spp.) for many decades, including vegetative propagation, controlled crossing followed by testing and selection, genetic and cytogenetic mapping, genetic modifi cation, and gene and genome sequencing. Vegetative propagation methods have ranged from grafting and rooting to somatic embryogenesis, often in...

  15. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  16. African Journal of Biotechnology

    African Journals Online (AJOL)

    The African Journal of Biotechnology (AJB), a new broad-based journal, was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly ...

  17. Biotechnology and Innovation Systems

    International Development Research Centre (IDRC) Digital Library (Canada)

    His main research activities are connected to science and technology policies and national and local systems of innovation in less developed countries. ...... of the Brazilian productive structure in energy-related areas – bio-fuels, oil, and so on – biotechnology research has started to target energy-related activities. However ...

  18. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  19. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  20. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  1. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion

    Science.gov (United States)

    Schwarz, Friedrich W.; van Aelst, Kara; Tóth, Júlia; Seidel, Ralf; Szczelkun, Mark D.

    2011-01-01

    DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision. PMID:21724613

  2. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR–Cas system by binding to target RNA and crRNA

    Science.gov (United States)

    Li, Yingjun; Zhang, Yan; Lin, Jinzhong; Pan, Saifu; Han, Wenyuan; Peng, Nan; Liang, Yun Xiang

    2017-01-01

    Abstract CRISPR–Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems provide adaptive immunity against invasive nucleic acids guided by CRISPR RNAs (crRNAs) in archaea and bacteria. Type III CRISPR–Cas effector complexes show RNA cleavage and RNA-activated DNA cleavage activity, representing the only known system of dual nucleic acid interference. Here, we investigated the function of Cmr1 by genetic assays of DNA and RNA interference activity in the mutants and biochemical characterization of their mutated Cmr complexes. Three cmr1α mutants were constructed including ΔβΔ1α, Δβ1α-M1 and Δβ1α-M2 among which the last two mutants carried a double and a quadruple mutation in the first α-helix region of Cmr1α. Whereas the double mutation of Cmr1α (W58A and F59A) greatly influenced target RNA capture, the quadruple mutation almost abolished crRNA binding to Cmr1α. We found that Cmr2α-6α formed a stable core complex that is active in both RNA and DNA cleavage and that Cmr1α strongly enhances the basal activity of the core complex upon incorporation into the ribonucleoprotein complex. Therefore, Cmr1 functions as an integral activation module in III-B systems, and the unique occurrence of Cmr1 in III-B systems may reflect the adaptive evolution of type III CRISPR–Cas systems in thermophiles. PMID:28977458

  3. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA.

    Science.gov (United States)

    Li, Yingjun; Zhang, Yan; Lin, Jinzhong; Pan, Saifu; Han, Wenyuan; Peng, Nan; Liang, Yun Xiang; She, Qunxin

    2017-11-02

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems provide adaptive immunity against invasive nucleic acids guided by CRISPR RNAs (crRNAs) in archaea and bacteria. Type III CRISPR-Cas effector complexes show RNA cleavage and RNA-activated DNA cleavage activity, representing the only known system of dual nucleic acid interference. Here, we investigated the function of Cmr1 by genetic assays of DNA and RNA interference activity in the mutants and biochemical characterization of their mutated Cmr complexes. Three cmr1α mutants were constructed including ΔβΔ1α, Δβ1α-M1 and Δβ1α-M2 among which the last two mutants carried a double and a quadruple mutation in the first α-helix region of Cmr1α. Whereas the double mutation of Cmr1α (W58A and F59A) greatly influenced target RNA capture, the quadruple mutation almost abolished crRNA binding to Cmr1α. We found that Cmr2α-6α formed a stable core complex that is active in both RNA and DNA cleavage and that Cmr1α strongly enhances the basal activity of the core complex upon incorporation into the ribonucleoprotein complex. Therefore, Cmr1 functions as an integral activation module in III-B systems, and the unique occurrence of Cmr1 in III-B systems may reflect the adaptive evolution of type III CRISPR-Cas systems in thermophiles. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Environmental Biotechnology in China

    Science.gov (United States)

    Liu, Shuang Jiang; Liu, Lei; Chaudhry, Muhammad Tausif; Wang, Lei; Chen, Ying Guang; Zhou, Qi; Liu, He; Chen, Jian

    Environmental biotechnology has emerged as an important measure to tackle the environmental pollution as China experiences great economic success. Over the past decade, much emphasis has been paid to the following fields in environmental biotechnology: microbial degradation of toxic and organic chemicals, bio-treatment of wastewater, waste recycling. The Chinese researchers have done a lot of work to understand the natural degradation processes for organic and toxic compounds and finally to clean these compounds from polluted environments. For the treatment of wastewater, many new processes were proposed and optimized to meet the more strict effluent standards in China. Finally, more and more attention has been paid to the reuse of discharged wastes. In this chapter we review the development in the above fields.

  5. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...... for the production of non-native 3-hydroxypropionic acid (3HP).3HP can be chemically dehydrated into acrylic acid and thus can serve as a biosustainable building block for acrylate-based products (diapers, acrylic paints, acrylic polymers, etc.)...

  6. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    Directory of Open Access Journals (Sweden)

    S. I. Artiukhova

    2014-01-01

    Full Text Available Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechnological properties of native cultures created a new consortium of microorganisms containing lactic acid streptococci and bacilli, allowing the maximum extent possible to implement the physiological, biochemical and technological potential of microorganisms. Scientifically substantiated and experimentally developed a new biotechnology production of bioproducts «Healing-1», obtained on the basis of microbial consortium with broad spectrum antimicrobial activity. Experimentally investigated quality parameters of organic food «Healing-1» using a new microbial consortium as freshly prepared and during storage. Found that antagonistic activity of microflora bio «Healing-1» with respect to pathogenic and conditionally pathogenic bacteria, as well as its resistance to substances in the gastrointestinal tract of man is more pronounced compared to bioproducts obtained using a separate starter, members of the microbial consortium. It should be noted a more pronounced synthesis of exopolysaccharides in bioproduct «Healing-1», which leads to increased viscosity of the system and improves the consistency of bio. New bioproducts have good organoleptic characteristics and contain a high number of viable cells of lactic acid bacteria. High stability and survival of lactic acid bacteria during storage. In the study of attacked proteins bioproducts digestive proteinases «in vitro» found that the fermentation of milk microbial consortium increases the digestibility

  7. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wideranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an interdisciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  8. Biotechnology in soybean breeding

    Directory of Open Access Journals (Sweden)

    Sudarić Aleksandra

    2010-01-01

    Full Text Available Biotechnology can be defined broadly as a set of tools that allows scientists to genetically characterize or improve living organisms. Several emerging technologies, such as molecular characterization and genetic transformation, are already being used extensively for the purpose of plant improvement. Other emerging sciences, including genomics and proteomics, are also starting to impact plant improvement. Tools provided by biotechnology will not replace classical breeding methods, but rather will help provide new discoveries and contribute to improved nutritional value and yield enhancement through greater resistance to disease, herbicides and abiotic factors. In soybeans, biotechnology has and will continue to play a valuable role in public and private soybean breeding programs. Based on the availability and combination of conventional and molecular technologies, a substantial increase in the rate of genetic gain for economically important soybean traits can be predicted in the next decade. In this paper, a short review of technologies for molecular markers analysis in soybean is given as well as achievements in the area of genetic transformation in soybean.

  9. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    1994-01-01

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  10. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  11. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  13. Knowledge and Attitudes Towards Biotechnology of Elementary Education Preservice Teachers: The first Spanish experience

    Science.gov (United States)

    Casanoves, Marina; González, Ángel; Salvadó, Zoel; Haro, Juan; Novo, Maite

    2015-11-01

    Due to the important impact that biotechnology has on current Western societies, well-informed critical citizens are needed. People prepared to make conscious decisions about aspects of biotechnology that relate to their own lives. Teachers play a central role in all education systems. Thus, the biotechnological literacy of preservice teachers is an important consideration as they will become an influential collective as future teachers of the next generation of children. The attitudes toward science (and biotechnology) that teachers have affect their behavior and influence the way they implement their daily practice of science teaching in school. This study analyzes the attitudes and knowledge of Spanish preservice teachers toward biotechnology. We designed a new survey instrument that was completed by 407 university students who were taking official degree programs in preschool and primary education. Our results point out that although they are aware of biotechnology applications, topics concerning the structure of DNA, management of genetic information inside the cell, genetically modified organism technology and the use of microorganisms as biotechnological tools were not correctly answered. According to our attitude analysis, Spanish preservice teachers could be defined as opponents of genetically modified product acquisition, supporters of biotechnology for medical purposes and highly interested in increasing their knowledge about biotechnology and other scientific advances. Our results show a positive correlation between better knowledge and more positive attitudes toward biotechnology. A Spanish preservice teacher with positive attitudes toward biotechnology tends to be a student with a strong biology background who scored good marks in our knowledge test.

  14. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...

  15. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp.

    Science.gov (United States)

    Khanam, Taran; Rai, Niyati; Ramachandran, Ravishankar

    2015-10-01

    The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence. © 2015 John Wiley & Sons Ltd.

  16. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    Science.gov (United States)

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Synthesis and DNA-interactions of new Co(III), Fe(II), Ni(II), Ru(II ...

    Indian Academy of Sciences (India)

    Administrator

    phen) or a modified phen, are particularly attractive species for developing new diagnostic and therapeutic agents that can recognise and cleave DNA. The ligands or the metal in these complexes can be varied in an easily controlled manner ...

  18. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection.

    Science.gov (United States)

    Slon Campos, Jose L; Poggianella, Monica; Marchese, Sara; Mossenta, Monica; Rana, Jyoti; Arnoldi, Francesca; Bestagno, Marco; Burrone, Oscar R

    2017-01-01

    Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.

  19. Human circulating ribosomal DNA content significantly increases while circulating satellite III (1q12) content decreases under chronic occupational exposure to low-dose gamma- neutron and tritium beta-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Elizaveta S; Skorodumova, Elena N; Zhuravleva, Veronika F; Pankratova, Galina V; Volkova, Irina V; Stepanova, Elena V; Porokhovnik, Lev N; Veiko, Natalia N

    A single exposure to ionizing radiation (IR) results in an elevated cell-free DNA (cfDNA) content in the blood plasma. In this case, the cfDNA concentration can be a marker of the cell death in the organism. However, a chronic exposure to a low-dose IR enhances both the endonuclease activity and titer of antibodies to DNA in blood plasma, resulting in a decrease of the total concentration of circulating cfDNA in exposed people. In this case, the total cfDNA concentration should not be considered as a marker of the cell death in an exposed body. We assumed that a pool of the cfDNA circulating in the exposed people contains DNA fragments, which are resistant to a double-strand break formation in the environment of the elevated plasma endonuclease activity, and can be accumulated in the blood plasma. In order to test this hypothesis, we studied the content of GC-rich sequences (69%GC) of the transcribed region of human ribosomal repeat (rDNA), as well as the content of AT-rich repeat (63%AT) of satellite III (1q12) in the cfDNA samples obtained from 285 individuals. We have found that a chronic exposure to gamma-neutron radiation (N=88) and tritium β-radiation (N=88) evokes an increase of the rDNA content (RrDNA index) and a decrease of the satellite III content (RsatIII index) in the circulating cfDNA as compared with the cfDNA of non-exposed people (N=109). Such index that simultaneously displays both the increase of rDNA content and decrease of satellite III content in the cfDNA (RrDNA/RsatIII) can be recommended as a marker of chronic processes in the body that involve the elevated cell death rate and/or increased blood plasma endonuclease activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. BIOTECHNOLOGY IN FRUIT GROWING

    Directory of Open Access Journals (Sweden)

    Z. Jurković

    2008-09-01

    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  1. Key points in biotechnological patents to be exploited.

    Science.gov (United States)

    García, Alfredo Mateos; López-Moya, José Rafael; Ramos, Patricia

    2013-08-01

    Patents in some biotechnological fields are controversial. Despite this fact, the number of patent applications increases every year. Total revenues in the global biotechnology market are expected to increase in the middle term. Nowadays, the bioeconomy is an important socio-economic area, which is reflected in the number of firms dedicated to or using biotechnology. The exploitation of biotechnological patents is an essential task in the management of intellectual capital. This paper explains the multiplicity of factors that influence the exploitation of biotechnological patents; specifically, the internal and external key points of patents exploitation. The external determining factors for patents are: (i) the market need for biotechnological products and services, (ii) the importance of the freedom to operate analysis before entering the market, and (iii) efficiency in prosecution by Patent Offices. This paper primarily focuses on the internal determining factors, more particularly, the characteristics that the patent's owner must take into consideration in order to have a strong, broad subject-matter in the granted patent. The experimentation needed to obtain an adequate scope of the subject- matter in the claims is a critical issue in the exploitation of a patent or patent application.

  2. Concepts in Biotechnology An Affordable Overview of Biotechnology ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Concepts in Biotechnology An Affordable Overview of Biotechnology Through Self Study and Open Learning Graduates. Narayan S Punekar. Book Review Volume 2 Issue 9 September 1997 pp 77-78 ...

  3. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Nasrollahi, N.; Karbalaei-Heidari, H.; Eigner, Václav; Dušek, Michal; Mobaraki, N.; Pournejati, R.

    2017-01-01

    Roč. 178, May (2017), s. 125-135 ISSN 1386-1425 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : lanthanum(III) * binding constant * molecular docking * DNA cleavage * cytotoxicity * chitosan Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.536, year: 2016

  4. Attitudes of Secondary School Students towards Modern Biotechnology

    NARCIS (Netherlands)

    T. Klop (Tanja)

    2008-01-01

    textabstractI interviewed a group of four sixteen-year old secondary school students about their attitudes towards modern biotechnology. When I asked them what they knew about this subject, one girl responded: “Well, I know it’s about genes, they are located in your DNA, and within your genes is all

  5. Forest and fibre genomics: biotechnology tools for applied tree ...

    African Journals Online (AJOL)

    A milestone for eucalypt research, the project will facilitate the development of new biotechnology tools that will accelerate the domestication, improvement and ... The application of DNA fingerprinting in eucalypt breeding programmes represented an early technology delivery to industry with practical, short-term benefi ts, ...

  6. Development of biotechnology in India.

    Science.gov (United States)

    Ghose, T K; Bisaria, V S

    2000-01-01

    India has embarked upon a very ambitious program in biotechnology with a view to harnessing its available human and unlimited biodiversity resources. It has mainly been a government sponsored effort with very little private industry participation in investment. The Department of Biotechnology (DBT) established under the Ministry of Science and Technology in 1986 was the major instrument of action to bring together most talents, material resources, and budgetary provisions. It began sponsoring research in molecular biology, agricultural and medical sciences, plant and animal tissue culture, biofertilizers and biopesticides, environment, human genetics, microbial technology, and bioprocess engineering, etc. The establishment of a number of world class bioscience research institutes and provision of large research grants to some existing universities helped in developing specialized centres of biotechnology. Besides DBT, the Department of Science & Technology (DST), also under the Ministry of S&T, sponsors research at universities working in the basic areas of life sciences. Ministry of Education's most pioneering effort was instrumental in the creation of Biochemical Engineering Research Centre at IIT Delhi with substantial assistance from the Swiss Federal Institute of Technology, Zurich, Switzerland to make available state-of-the-art infrastructure for education, training, and research in biochemical engineering and biotechnology in 1974. This initiative catalysed biotechnology training and research at many institutions a few years later. With a brief introduction, the major thrust areas of biotechnology development in India have been reviewed in this India Paper which include education and training, agricultural biotechnology, biofertilizers and biopesticides, tissue culture for tree and woody species, medicinal and aromatic plants, biodiversity conservation and environment, vaccine development, animal, aquaculture, seri and food biotechnology, microbial

  7. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  8. Biotechnology, genetic conservation and sustainable use of ...

    African Journals Online (AJOL)

    ... agriculture, silviculture, horticulture, environment and other important issues. This paper reviews some biotechnological tools that could be harnessed in promoting conservation and sustainable use of bioresources. Key words: Bioresources, genetic conservation, biotechnology. African Journal of Biotechnology Vol. 2 (12) ...

  9. Fostering biotechnology entrepreneurship in developing countries

    African Journals Online (AJOL)

    Fred

    the growing science base, biotechnology companies can successfully be located and thrive in these countries. The rewards which can flow from the successful exploitation of research should encourage investment in biotechnological activities. Key words: Entrepreneur, biotechnology, investment. INTRODUCTION.

  10. Department of Biotechnology | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Department of Biotechnology. Department of Biotechnology Awards; National Woman Bioscientist Awards; Biotech Product & Process Development & Commercialization Awards; Awardees of National Bioscience Awards for Career Development. Department of Biotechnology Awardees. Year: 2012 Innovative Young ...

  11. Environmental biotechnology: concepts and applications

    National Research Council Canada - National Science Library

    Winter, Josef; Jördening, Hans-Joachim

    2005-01-01

    ... for the - development of new and environmentally improved production technologies with less purified substrates and generation of fewer by-products - bioproducts as non-toxic matters, mostly recyclable. Some impressive studies on industrial applications of biotechnology are published in two OECD reports, which summarized, that biotechnology has the potential o...

  12. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  13. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  14. Preface: Biocatalysis and Agricultural Biotechnology

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  15. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA

    DEFF Research Database (Denmark)

    Grubb, Mikala; Wackerbarth, Hainer; Wengel, J.

    2007-01-01

    We describe adsorption and identification of the binding sites of [Ru(NH3)(6)](3+) (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ...

  16. Egyptian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Egyptian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Egyptian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  17. Nigerian Journal of Biotechnology: Journal Sponsorship

    African Journals Online (AJOL)

    Nigerian Journal of Biotechnology: Journal Sponsorship. Journal Home > About the Journal > Nigerian Journal of Biotechnology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  18. Essentials of Conservation Biotechnology: A mini review

    Science.gov (United States)

    Merlyn Keziah, S.; Subathra Devi, C.

    2017-11-01

    Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.

  19. Formation of lanthanide(III) texaphyrin complexes with DNA controlled by the size of the central metal cation

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2005-01-01

    Roč. 99, č. 8 (2005), s. 1670-1675 ISSN 0162-0134 R&D Projects: GA ČR(CZ) GA203/04/0426; GA ČR(CZ) GA203/02/0420 Institutional research plan: CEZ:AV0Z40400503 Keywords : Lanthanide ion * Texaphyrin * Singlet oxygen * DNA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.423, year: 2005

  20. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  1. FOOD BIOTECHNOLOGY - SUSTAINABLE DEVELOPMENT STRATEGY

    Directory of Open Access Journals (Sweden)

    Irina Ramona PECINGINĂ

    2017-05-01

    Full Text Available Biotechnology is the integral application of biological and engineering sciences for the technological use of living organisms, biologically active acellular structures and molecular analogues for the production of goods and services.The role of biotechnology is very important in the food industry; this is a biotechnology because agro-food raw materials are biological products and therefore their conservation until consumption, fresh or industrialization involves the control of the enzymatic activity of the vegetal and animal tissues or of the microflora contamination.

  2. Public attitude towards modern biotechnology | Amin | African ...

    African Journals Online (AJOL)

    This article reviews the literature related to the main idea of the study, rooting from the definition of biotechnology, global status of commercialized biotechnology products, and global and local public attitudes towards modern biotechnology and past models for attitude towards modern biotechnology. The first section of the ...

  3. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    2008-01-01

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  4. Environmental biotechnology for sustainability.

    Science.gov (United States)

    Verstraete, W

    2002-03-14

    In the post-industrial society, waste management is integrated in the concepts of responsibility, reliability and continuity. Therefore industry and public office are obliged to implement the concepts of structured environmental management systems more and more strictly. The endpoints are dependent on the type of wastes and on the priorities set by society. They will with time evolve towards more restriction of all kinds of emissions. This will require increasing inputs of labour, information technology and energy into waste treatment and overall waste management. Particularly for aqueous and gaseous wastes that are not contained, continuously improving treatment with maximum re-use and minimum dissipation in the ecosphere will be the trend of the future. Moreover, the public in general and the individual citizen in particular will request to have (bio)assays to monitor regularly and autonomously the quality of his environment. Such advanced waste management requires considerable energy input. It thus may come in conflict with current concerns about CO2-emissions and the Kyoto agreements. Innovative approaches to combine waste management and the International Climate Change Partnership (ICCP) directives, for instance by implementing biological carbon sequestration, are therefore warranted. Biotechnology has a major role to play particularly in terms of advanced treatment down to ng/l-levels and in terms of validating the quality of the environment by means of powerful and intelligent bio-monitoring devices.

  5. SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol

    Science.gov (United States)

    Shivakumar, L.; Shivaprasad, K.; Revanasiddappa, Hosakere D.

    2013-04-01

    Newly synthesized ligand [2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol] (Bpmp) react with manganese(II) to form mononuclear complexes [Mn(phen)(Bpmp)(CH3COO)(H2O)]·4H2O (1), (phen = 1,10-phenanthroline) and [Mn(Bpmp)2(CH3COO)(H2O)]·5H2O (2). These complexes were characterized by elemental analysis, IR, 1H NMR, Mass, UV-vis spectral studies. Molar conductance and thermogravimetric analysis of these complexes were also recorded. The in vitro SOD mimic activity of Mn(III) complexes were carried out and obtained with good result. The DNA-binding properties of the complexes 1 and 2 were investigated by UV-spectroscopy, fluorescence spectroscopy and viscosity measurements. The spectral results suggest that the complexes 1 and 2 can bind to Calf thymus DNA by intercalation mode. The cleavage properties of these complexes with super coiled pUC19 have been studied using the gel electrophoresis method, wherein both complexes 1 and 2 displayed chemical nuclease activity in the absence and presence of H2O2via an oxidative mechanism. All the complexes inhibit the growth of both Gram positive and Gram negative bacteria to competent level. The MIC was determined by microtiter method.

  6. Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates.

    Science.gov (United States)

    McBurney, Sean P; Sunshine, Justine E; Gabriel, Sarah; Huynh, Jeremy P; Sutton, William F; Fuller, Deborah H; Haigwood, Nancy L; Messer, William B

    2016-06-24

    We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further

  7. Progress and biotechnological prospects in fish transgenesis.

    Science.gov (United States)

    Tonelli, Fernanda M P; Lacerda, Samyra M S N; Tonelli, Flávia C P; Costa, Guilherme M J; de França, Luiz Renato; Resende, Rodrigo R

    2017-11-01

    The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements. Copyright © 2017. Published by Elsevier Inc.

  8. Evaluation of Brazilian biotechnology patent activity from 1975 to 2010.

    Science.gov (United States)

    Dias, F; Delfim, F; Drummond, I; Carmo, A O; Barroca, T M; Horta, C C; Kalapothakis, E

    2012-08-01

    The analysis of patent activity is one methodology used for technological monitoring. In this paper, the activity of biotechnology-related patents in Brazil were analyzed through 30 International Patent Classification (IPC) codes published by the Organization for Economic Cooperation and Development (OECD). We developed a program to analyse the dynamics of the major patent applicants, countries and IPC codes extracted from the Brazilian Patent Office (INPI) database. We also identified Brazilian patent applicants who tried to expand protection abroad via the Patent Cooperation Treaty (PCT). We had access to all patents published online at the INPI from 1975 to July 2010, including 9,791 biotechnology patent applications in Brazil, and 163 PCTs published online at World Intellectual Property Organization (WIPO) from 1997 to December 2010. To our knowledge, there are no other online reports of biotechnology patents previous to the years analyzed here. Most of the biotechnology patents filed in the INPI (10.9%) concerned measuring or testing processes involving nucleic acids. The second and third places belonged to patents involving agro-technologies (recombinant DNA technology for plant cells and new flowering plants, i.e. angiosperms, or processes for obtaining them, and reproduction of flowering plants by tissue culture techniques). The majority of patents (87.2%) were filed by nonresidents, with USA being responsible for 51.7% of all biotechnology patents deposited in Brazil. Analyzing the resident applicants per region, we found a hub in the southeast region of Brazil. Among the resident applicants for biotechnology patents filed in the INPI, 43.5% were from São Paulo, 18.3% were from Rio de Janeiro, and 9.7% were from Minas Gerais. Pfizer, Novartis, and Sanofi were the largest applicants in Brazil, with 339, 288, and 245 biotechnology patents filed, respectively. For residents, the largest applicant was the governmental institution FIOCRUZ (Oswaldo Cruz

  9. Strategic management of biotechnology agents.

    Science.gov (United States)

    Huber, S L

    1993-07-01

    The use of biologic response modifiers to demonstrate a value-driven approach to strategic management by pharmacists is described. To participate in decisions on the use of technology in their institutions, pharmacists must practice strategic management. This process includes environmental scanning, analysis of clinical and pharmacoeconomic data, and development of clinical management approaches. It is ideal for analyzing biologic response modifiers such as filgrastim and sargramostim. Emphasis must be placed on maximizing the fit among the products, the institution, and the health care environment. Pharmacists will find plentiful opportunities for clinical management with biotechnology agents. Practitioners who specialize in determining the total cost of care by using pharmacoeconomic methods are needed, as are practitioners trained to monitor the complicated biotechnology agents. Also, the institution needs to forecast accurately the impact of emerging biotechnology agents. If pharmacists can develop and control clinical, pharmacoeconomic, and reimbursement information databases for biotechnology agents, the pharmacy profession will be in a strong position to meet the challenges of biotechnology and realize the inherent opportunities.

  10. Advanced genetic tools for plant biotechnology.

    Science.gov (United States)

    Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal

    2013-11-01

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  11. Restriction Enzymes in Microbiology, Biotechnology and Biochemistry

    Directory of Open Access Journals (Sweden)

    Geoffrey G. Wilson

    2012-12-01

    Full Text Available Since their discovery in the nineteen-seventies, a collection of simple enzymes termed Type II restriction endonucleases, made by microbes to ward off viral infections, have transformed molecular biology, spawned the multi-billion dollar Biotechnology industry, and yielded fundamental insights into the biochemistry of life, health and disease. In this article we describe how these enzymes were discovered, and we review their properties, organizations and genetics. We summarize current ideas about the mechanism underlying their remarkable ability to recognize and bind to specific base pair sequences in DNA, and we discuss why these ideas might not be correct. We conclude by proposing an alternative explanation for sequence-recognition that resolves certain inconsistencies and provides, in our view, a more satisfactory account of the mechanism.

  12. Advanced genetic tools for plant biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  13. DNA copy number analysis of Grade II-III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status.

    Science.gov (United States)

    Cohen, Adam; Sato, Mariko; Aldape, Kenneth; Mason, Clinton C; Alfaro-Munoz, Kristin; Heathcock, Lindsey; South, Sarah T; Abegglen, Lisa M; Schiffman, Joshua D; Colman, Howard

    2015-06-20

    Isocitrate dehydrogenase (IDH) mutation status and grade define subgroups of diffuse gliomas differing based on age, tumor location, presentation, and prognosis. While some biologic differences between IDH mutated (IDH (mut)) and wild-type (IDH (wt)) gliomas are clear, the distinct alterations associated with progression of the two subtypes to glioblastoma (GBM, Grade IV) have not been well described. We analyzed copy number alterations (CNAs) across grades (Grade II-III and GBM) in both IDH (mut) and IDH (wt) infiltrating gliomas using molecular inversion probe arrays. Ninety four patient samples were divided into four groups: Grade II-III IDH (wt) (n = 17), Grade II-III IDH (mut) (n = 28), GBM IDH (wt) (n = 25), and GBM IDH (mut) (n = 24). We validated prior observations that IDH (wt) GBM have a high frequency of chromosome 7 gain (including EGFR) and chromosome 10 loss (including PTEN) compared with IDH (mut) GBM. Hierarchical clustering of IDH (mut) gliomas demonstrated distinct CNA patterns distinguishing lower grade gliomas versus GBM. However, similar hierarchical clustering of IDH (wt) gliomas demonstrated no CNA distinction between lower grade glioma and GBM. Functional analyses showed that IDH (wt) gliomas had more chromosome gains in regions containing receptor tyrosine kinase pathways. In contrast, IDH (mut) gliomas more commonly demonstrated amplification of cyclins and cyclin dependent kinase genes. One of the most common alterations associated with transformation of lower grade to GBM IDH (mut) gliomas was the loss of chromosomal regions surrounding PTEN. IDH (mut) GBM tumors demonstrated significantly higher levels of overall CNAs compared to lower grade IDH (mut) tumors and all grades of IDH (wt) tumors, and IDH (mut) GBMs also demonstrated significant increase in incidence of chromothripsis. Taken together, these analyses demonstrate distinct molecular ontogeny between IDH (wt) and IDH (mut) gliomas. Our data also support the novel

  14. The impact of industrial biotechnology.

    Science.gov (United States)

    Soetaert, Wim; Vandamme, Erick

    2006-01-01

    In this review, the impact of industrial (or "white") biotechnology can have on our society and economy is discussed. An overview is given of industrial biotechnology and its applications in a number of product categories ranging from food ingredients, vitamins, bio-colorants, solvents, plastics and biofuels. The use of fossil resources is compared with renewable resources as the preferred feedstock for industrial biotechnology. A brief discussion is also given of the expected changes in society and technology, ranging from the shift in the supply of resources, the growing need for efficiency and sustainability of the production systems, changing consumer perception and behaviour and changing agricultural systems and practices. Many of these changes are expected to speed up the transition from a fossil-based to a bio-based economy and society.

  15. Is biotechnology the new alchemy?

    Science.gov (United States)

    Kirkham, Georgiana

    2009-03-01

    In this article I examine similarities between the science and ethics of biotechnology on the one hand, and those of alchemy on the other, and show that the understanding of nature and naturalness upon which many contemporary ethical responses to biotechnology are predicated is, in fact, significantly similar to the understanding of nature that was the foundation of the practice of alchemy. In doing so I demonstrate that the ethical issues and social responses that are currently arising from advances in the field of biotechnology are interestingly similar to those that arose in reaction to the practice and prevalence of alchemy from its inception in Europe in the mid-twelfth century until at least the early modern period. I argue that a proper conception of the ethical issues and a sensible interpretation of the power and the promise of the science of biotechnology are most likely if we understand such attitudes to nature, and to the ethical issues surrounding technological and scientific developments, in terms of an historical and cultural continuum. That is, we should regard biotechnology as merely the latest in a string of technological and scientific developments rather than, as is often alleged, as something entirely new, requiring its own special ethical response. Finally, I suggest that examining the parallels between the ethical issues generated by alchemy and by biotechnology show us that such issues are best situated and discussed within a framework of virtue ethics, as it allows us to think seriously about the relationship between art and nature and the proper role of humans in relation to their technology.

  16. Patenting Biotechnological Inventions in Europe

    Directory of Open Access Journals (Sweden)

    Peter Raspor

    2002-01-01

    Full Text Available The patent system has been able to provide the protection for the achievements of different technologies and in that way it has supported further development and growth of the industry where those achievements were implemented. Modern technologies like information technology and biotechnology with genetic engineering that appeared in the 70s have overgrown the frames of the existing patent system because of their exponential development during the last thirty years. Industry that invests a huge amount of money in these technologies, especially in the field of biotechnology, where the results are very uncertain, has started to claim changes in the patent system.

  17. Archaeal ribonuclease P proteins have potential for biotechnological applications where precise hybridization of nucleic acids is needed.

    Science.gov (United States)

    Miyanoshita, Mitsuru; Nakashima, Takashi; Kakuta, Yoshimitsu; Kimura, Makoto

    2015-01-01

    Fluorescence resonance energy transfer-based assay showed that archaeal ribonuclease P (RNase P) proteins significantly promoted DNA annealing and strand displacement. Moreover, we found that archaeal RNase P proteins could discriminate nucleotide exchanges in DNA chains via their activity accelerating DNA strand displacement, suggesting that they have potential for biotechnological application to genetic diagnosis.

  18. Biotechnology developments in Uganda and associated challenges ...

    African Journals Online (AJOL)

    ... biotechnology programmes and strengthening interactions among the actors both locally and internationally; integrating biotechnology into institutional programmes and regulatory instruments; putting in place technology management policies and developing capacities for their implementation; encouraging private sector ...

  19. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  20. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  1. The Development of Plant Biotechnology.

    Science.gov (United States)

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  2. The Future of Plant Biotechnology

    Science.gov (United States)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  3. Acinetobacter: environmental and biotechnological applications ...

    African Journals Online (AJOL)

    Among microbial communities involved in different ecosystems such as soil, freshwater, wastewater and solid wastes, several strains belonging to the genus of Acinetobacter have been attracting growing interest from medical, environmental and a biotechnological point of view. Bacteria of this genus are known to be ...

  4. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  5. Biological Constraints in Algal Biotechnology

    Czech Academy of Sciences Publication Activity Database

    Torzillo, G.; Pushparaj, B.; Masojídek, Jiří; Vonshak, A.

    2003-01-01

    Roč. 8, - (2003), s. 338-348 ISSN 0006-3592 R&D Projects: GA MŠk LN00A141 Institutional research plan: CEZ:MSM 123100001 Keywords : outdoor cultures * photobioreactors * oxygen stress Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.173, year: 2003

  6. Re-Framing Biotechnology Regulation.

    Science.gov (United States)

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  7. Ethical perception of modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... ensure food security and to boost the country's economy. (Latifah et al., 2007). Successful development and commercialisation of modern biotechnology products in. *Corresponding author. E-mail: nilam@ukm.my, Tel: + 603-. 89216907. Fax: +603-89252976. Abbreviations: GMOs, Genetically modified ...

  8. Seminar on Nano-biotechnology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 12. Seminar on Nano-biotechnology. Information and Announcements Volume 13 Issue 12 December 2008 pp 1191-1191. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/12/1191-1191 ...

  9. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  10. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  11. Prognostic Impact of Deficient DNA Mismatch Repair in Patients With Stage III Colon Cancer From a Randomized Trial of FOLFOX-Based Adjuvant Chemotherapy

    Science.gov (United States)

    Sinicrope, Frank A.; Mahoney, Michelle R.; Smyrk, Thomas C.; Thibodeau, Stephen N.; Warren, Robert S.; Bertagnolli, Monica M.; Nelson, Garth D.; Goldberg, Richard M.; Sargent, Daniel J.; Alberts, Steven R.

    2013-01-01

    Purpose The association of deficient DNA mismatch repair (dMMR) with prognosis in patients with colon cancer treated with adjuvant fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy remains unknown. Patients and Methods Resected, stage III colon carcinomas from patients (N = 2,686) randomly assigned to FOLFOX ± cetuximab (North Central Cancer Treatment Group N0147 trial) were analyzed for mismatch repair (MMR) protein expression and mutations in BRAFV600E (exon 15) and KRAS (codons 12 and 13). Association of biomarkers with disease-free survival (DFS) was determined using Cox models. A validation cohort (Cancer and Leukemia Group B 88903 trial) was used. Results dMMR was detected in 314 (12%) of 2,580 tumors, of which 49.3% and 10.6% had BRAFV600E or KRAS mutations, respectively. MMR status was not prognostic overall (adjusted hazard ratio [HR], 0.82; 95% CI, 0.64 to 1.07; P = .14), yet significant interactions were found between MMR and primary tumor site (Pinteraction = .009) and lymph node category (N1 v N2; Pinteraction = .014). Favorable DFS was observed for dMMR versus proficient MMR proximal tumors (HR, 0.71; 95% CI, 0.53 to 0.94; P = .018) but not dMMR distal tumors (HR, 1.71; 95% CI, 0.99 to 2.95; P = .056), adjusting for mutations and covariates. Any survival benefit of dMMR was lost in N2 tumors. Mutations in BRAFV600E (HR, 1.37; 95% CI, 1.08 to 1.70; P = .009) or KRAS (HR, 1.44; 95% CI, 1.21 to 1.70; P < .001) were independently associated with worse DFS. The observed MMR by tumor site interaction was validated in an independent cohort of stage III colon cancers (Pinteraction = .037). Conclusion The prognostic impact of MMR depended on tumor site, and this interaction was validated in an independent cohort. Among dMMR cancers, proximal tumors had favorable outcome, whereas distal or N2 tumors had poor outcome. BRAF or KRAS mutations were independently associated with adverse outcome. PMID:24019539

  12. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance.

    Science.gov (United States)

    Liu, Jian-Zhong; Whitham, Steven A

    2013-04-01

    Heat-shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co-chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full-length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type-III DnaJ domain-containing HSP40 (GmHSP40.1), a co-chaperone of HSP70, caused hypersensitive response (HR)-like cell death. The HR-like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP-GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR-inducing ability. GmHSP40.1 co-localized with HcRed-SE, a protein involved in pri-miRNA processing, which has been shown to be co-localized with SR33-YFP, a protein involved in pre-mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear-localized DnaJ domain-containing GmHSP40.1 in cell death and disease resistance in soybean. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  13. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of FeIII(μ-OH)ZnIIcomplexes: effects of a second coordination sphere and increase in the chelate ring size on the hydrolysis of a phosphate diester and DNA.

    Science.gov (United States)

    Silva, Graciela Aparecida Dos Santos; Amorim, André Luiz; Souza, Bernardo de; Gabriel, Philipe; Terenzi, Hernán; Nordlander, Ebbe; Neves, Ademir; Peralta, Rosely A

    2017-08-29

    The synthesis and characterization of three ligands and their respective heterobinuclear Fe III Zn II complexes were carried out, with the goal of mimicking the active site of purple acid phosphatases (PAPs). The ligand 2-hydroxy-3-(((2-hydroxy-5-methyl-3-(((2-(pyridin-2-yl)ethyl)(pyridin-2-ylmethyl)amino)methyl)benzyl)(pyridin-2ylmethyl)amino)methyl)-5-methylbenzaldehyde (H 2 L 2 ) was synthesized and its complex (Fe III Zn II L 2 ) was used as a basis for comparison with similar complexes previously published in the literature. Subsequent modifications were conducted in the aldehyde group, where 1,2-ethanediamine and 1,4-diaminobutane were used as side chain derivatives. The compounds Fe III Zn II L 2 (1), Fe III Zn II L 2 -et (2) and Fe III Zn II L 2 -but (3) were characterized by spectroscopic methods (infrared and UV-Vis) and ESI-MS spectrometry. Theoretical calculations were performed to provide insights into the complex structures with Fe III Zn II structures. The hydrolytic activity was analyzed both with the model substrate 2,4-BDNPP and with DNA catalyzed by complexes 1, 2 and 3.

  15. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. New challenges in microalgae biotechnology.

    Science.gov (United States)

    Valverde, Federico; Romero-Campero, Francisco J; León, Rosa; Guerrero, Miguel G; Serrano, Aurelio

    2016-08-01

    Photosynthetic protists, also called microalgae, have been systematically studied for more than a century. However, only recently broad biotechnological applications have fostered a novel wave of research on their potentialities as sustainable resources of renewable energy as well as valuable industrial and agro-food products. At the recent VII European Congress of Protistology held in Seville, three outstanding examples of different research strategies on microalgae with biotechnological implications were presented, which suggested that integrative approaches will produce very significant advances in this field in the next future. In any case, intense research and the application of systems biology and genetic engineering techniques are absolutely essential to reach the full potential of microalgae as cell-factories of bio-based products and, therefore, could contribute significantly to solve the problems of biosustainability and energy shortage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Synthetic biology: regulating industry uses of new biotechnologies.

    Science.gov (United States)

    Erickson, Brent; Singh, Rina; Winters, Paul

    2011-09-02

    In our view, synthetic biology is an extension of the continuum of genetic science that has been used safely for more than 40 years by the biotechnology industry in the development of commercial products. Examples of synthetic biology use by biotechnology companies illustrate the potential to substantially reduce research and development time and to increase speed to market. Improvements in the speed and cost of DNA synthesis are enabling scientists to design modified bacterial chromosomes that can be used in the production of renewable chemicals, biofuels, bioproducts, renewable specialty chemicals, pharmaceutical intermediates, fine chemicals, food ingredients, and health care products. Regulatory options should support innovation and commercial development of new products while protecting the public from potential harms.

  18. Insect gut microbiome - An unexploited reserve for biotechnological application.

    Science.gov (United States)

    Krishnan, Muthukalingan; Bharathiraja, Chinnapandi; Pandiarajan, Jeyaraj; Prasanna, Vimalanathan Arun; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2014-05-01

    Metagenomics research has been developed over the past decade to elucidate the genomes of the uncultured microorganisms with an aim of understanding microbial ecology. On the other hand, it has also been provoked by the increasing biotechnological demands for novel enzymes, antibiotic and signal mimics. The gut microbiota of insects plays crucial roles in the growth, development and environmental adaptation to the host insects. Very recently, the insect microbiota and their genomes (microbiome), isolated from insects were recognized as a major genetic resources for bio-processing industry. Consequently, the exploitation of insect gut microbiome using metagenomic approaches will enable us to find novel biocatalysts and to develop innovative strategies for identifying smart molecules for biotechnological applications. In this review, we discuss the critical footstep in extraction and purification of metagenomic DNA from insect gut, construction of metagenomic libraries and screening procedure for novel gene identification. Recent innovations and potential applications in bioprocess industries are highlighted.

  19. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.

    2005-01-01

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  20. Review: Biotechnological strategies for conservation of rare and endangered medicinal plants

    Directory of Open Access Journals (Sweden)

    MAHENDRA KUMAR RAI

    2010-07-01

    Full Text Available Rai MK (2010 Review: Biotechnological strategies for conservation of rare and endangered medicinal plants. Biodiversitas 11: 157-166. The use of medicinal plants is as old as human civilization. The biotechnological tools play a crucial role in conservation of rare and endangered medicinal plants. The rapid depletion of plant genetic diversity has made essential to develop new in situ and ex situ conservation methods. Advances in biotechnology offer new methods for conservation of rare and endangered medicinal plants. The present review is focused on biotechnological tools like in vitro culture, micropropagation, mycorrhization, genetic transformation and development of DNA banks. These are imperative and important alternatives for the conservation of rare and endangered medicinal plants.

  1. SOME RECENT FINDINGS IN THE BIOTECHNOLOGY OF BIOLOGICALLY IMPORTANT NUCLEOSIDES

    Directory of Open Access Journals (Sweden)

    A. Mikhailopulo

    2013-08-01

    Full Text Available Some recent findings in the biotechnology of biologically important nucleosides will be discussed, viz., (i a new strategy of the cascade one-pot transformation of D-pentoses into nucleosides based on the extension and deepening of the knowledge of the mechanism of functioning of the ribokinase, phosphopentomutase, and uridine, thymidine and purine nucleoside (PNP phosphorylases, and the role of different factors (structural, electronic, stereochemical in the glycoside bond formation, (ii the modern chemistries of the chemo-enzymatic syntheses of nucleosides, (iii the transglycosylation reaction using natural and sugar modified nucleosides as donors of carbohydrate residues and heterocyclic bases as acceptors catalyzed by nucleoside phosphorylases (NP.

  2. Future societal issues in industrial biotechnology.

    Science.gov (United States)

    Schuurbiers, Daan; Osseweijer, Patricia; Kinderlerer, Julian

    2007-09-01

    Three international stakeholder meetings were organized by The Netherlands-based "Kluyver Center for Genomics of Industrial Fermentation" with the objective to identify the future societal issues in the field of industrial biotechnology and to develop a coordinated strategy for public dialogue. The meetings resulted in five unanimous recommendations: (i) that science, industry and the European Commission in conjunction with other stakeholders create a comprehensive roadmap towards a bio-based economy; (ii) that the European Commission initiate a series of round-table meetings to further articulate the views, interests and responsibilities of the relevant stakeholders and to define policy; (iii) that the development of new innovative communication activities is stimulated to increase public engagement and to discuss the ways that we do or do not want technologies to shape our common future; (iv) that further social studies are undertaken on public attitudes and behaviors to the bio-based economy and that novel methods are developed to assess public views of future technological developments; and (v) that the concept of sustainability is further operationalized and taken as a core value driving research and development and policy making.

  3. Biotechnology information service of the GDR

    International Nuclear Information System (INIS)

    Poetzsch, E.

    1990-05-01

    The paper gives a survey of the biotechnology information in the GDR and describes the establishment of the Biotechnology Information Service of the GDR (BioInfo GDR). BioInfo GDR is a referral database and is to provide information on information sources available in the GDR, and on institutions working in the various fields of biotechnology in the GDR. In addition, some general problems of the building and use of databases are discussed. (author). 8 refs

  4. Editorial: Latest methods and advances in biotechnology.

    Science.gov (United States)

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biotechnology: Challenge for the food industry

    OpenAIRE

    Popov Stevan

    2007-01-01

    According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be fore...

  6. Spring 2008 Industry Study: Biotechnology Industry

    National Research Council Canada - National Science Library

    Anttonen, John; Darnauer, Trish; Douglas, Tim; Ferrari, John; Zimdahl, Jennifer; Hall, Ian M; King, William; Klotzsche, Carl; Miller, Doug; Packard, Doug; Renegar, Mike; Rimback, Ed; Rogers, Gordon; Schnedar, Chris; Sekulovski, Zoran

    2008-01-01

    Defined broadly as the manipulation of genetic material in living organisms or the derivatives thereof, biotechnology represents a veritable gold mine of possibilities for improving the human condition...

  7. Biotechnological uses of archaeal extremozymes.

    Science.gov (United States)

    Eichler, J

    2001-07-01

    Archaea have developed a variety of molecular strategies to survive the often harsh environments in which they exist. Although the rules that allow archaeal enzymes to fulfill their catalytic functions under extremes of salinity, temperature or pressure are not completely understood, the stability of these extremophilic enzymes, or extremozymes, in the face of adverse conditions has led to their use in a variety of biotechnological applications in which such tolerances are advantageous. In the following, examples of commercially important archaeal extremozymes are presented, potentially useful archaeal extremozyme sources are identified and solutions to obstacles currently hindering wider use of archaeal extremozymes are discussed.

  8. Biotechnology, Industry Study, Spring 2009

    Science.gov (United States)

    2009-01-01

    www.cdc.gov/niosh/nas/RDRP/ch6.2.htm. 12 In 2007, the US share of world production was 42.6% for corn, 32.0% for soybeans , 9.3% for wheat, and 1.5...for rice. Of global exports, the US accounted for 64.5% for corn, 39.4% for soybeans , 32.1% for wheat, and 9.7% for rice. Jim Monke, CRS Report...papers.cfm?abstract_id=1321054 28 Monsanto Company, "Conversations About Plant Biotechnology," April 25, 2009, http://www.monsanto.com/biotech- gmo /asp

  9. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  10. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Studio of Computational Biology & Bioinformatics, Biotechnology Division, ... In this study, it was found that de novo DNA methylation might be regulated by miRNAs through systematic targeting ... Altogether, DNA methylation appears to be a finely tuned process of opposite control systems of DNA-.

  11. PREFACE: Symposium 13: Ceramics for Medicine, Biotechnology and Biomimetics

    Science.gov (United States)

    Ohtsuki, Chikara

    2011-10-01

    Preface to Symposium 13 (Ceramics for Medicine, Biotechnology and Biomimetics) of the International Congress on Ceramics III, 14-18 November 2010, Osaka, Japan Ceramic materials are now widely used in biomedical fields, such as applications of artificial bones, joints and teeth. The high potential of ceramics to exhibit biological functionality is expected to produce novel materials supporting biotechnology. These applications are governed by the interactions of materials and biological molecules. So far, 'bioceramics' is a type of biomaterial used for repairing damaged tissues. The orthopaedic application of bioceramics has advanced rapidly since the invention of Bioglass® that was found to encourage direct bonding with living bone. Hydroxyapatite and calcium phosphate ceramics are now popular bioceramics for use in artificial bones. While the bone-bonding behavior of materials was understood phenomenologically, very little has been known about the mechanism of either hard or soft tissue attachment or tissue growth on ceramic-based materials, such as glasses, glass-ceramics, ceramic composites and organic-inorganic hybrids. This symposium discussed the scientific understanding of the interface between biomedical materials and soft/hard tissues, and the design and construction of nanoscopic interfaces. It also involved establishment of biomimetic structures, characterization of natural life-related hard and soft tissues, and their formation mechanisms for a wide range of applications in biotechnology through 45 oral presentations including 5 invited lectures and 45 posters. I wish to express my sincere appreciation to the organizers of this symposium in the ICC3 conference. I am also grateful to the invited speakers, all the participants and organizing committee of the ICC3. It is my great pleasure that this proceedings could be published as the fruit of this symposium's achievement, which includes the contributions in all aspect of scientific understanding and

  12. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  13. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  14. Improving microalgae for biotechnology--From genetics to synthetic biology.

    Science.gov (United States)

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Data on haplotype diversity in the hypervariable region I, II and III of mtDNA amongst the Brahmin population of Haryana

    Directory of Open Access Journals (Sweden)

    Kapil Verma

    2018-04-01

    Full Text Available Human mitochondrial DNA (mtDNA is routinely analysed for pathogenic mutations, evolutionary studies, estimation of time of divergence within or between species, phylogenetic studies and identification of degraded remains. The data on various regions of human mtDNA has added enormously to the knowledge pool of population genetics as well as forensic genetics. The displacement-loop (D-loop in the control region of mtDNA is rated as the most rapidly evolving part, due to the presence of variations in this region. The control region consists of three hypervariable regions. These hypervariable regions (HVI, HVII and HVIII tend to mutate 5–10 times faster than nuclear DNA. The high mutation rate of these hypervariable regions is used in population genetic studies and human identity testing. In the present data, potentially informative hypervariable regions of mitochondrial DNA (mtDNA i.e. HVI (np 16024–16365, HVII (np 73–340 and HVIII (np 438–576 were estimated to understand the genetic diversity amongst Brahmin population of Haryana. Blood samples had been collected from maternally unrelated individuals from the different districts of Haryana. An array of parameters comprising of polymorphic sites, transitions, transversions, deletions, gene diversity, nucleotide diversity, pairwise differences, Tajima's D test, Fu's Fs test, mismatch observed variance and expected heterozygosity were estimated. The observed polymorphisms with their respective haplogroups in comparison to rCRS were assigned. Keywords: Mitochondrial DNA, D-loop, Hypervariable regions, Forensic genetics

  16. Potential role of biotechnology tools for genetic improvement of “lost ...

    African Journals Online (AJOL)

    The paper considers the potential role of biotechnology applications like DNA markers in understanding the evolution, origin, distribution and diversity of fonio in Africa; somaclonal variation in generating genetic variability in fonio; and genetic transformation in circumventing fonio breeding barriers to introduce alien genes ...

  17. The application of plant biotechnology for non-food uses: The case ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Biomass energy, biocontrol agents, environmental pollution, phytoremediation, plant biotechnology, traditional Chinese ..... treated by Wusan. Granule by cDNA microarray. PHYTOREMEDIATION OF AIR, SOIL AND WATER. POLLUTION. China's industrialization and urbanization has led to ...

  18. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  19. Chronological development avenues in biotechnology across the world

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2011-01-01

    Full Text Available Biotechnology is expected to be a great technological revolution followed by information technology. It is an application of scientific and engineering principles to the processing of material by biological agents to provide better goods and services to mankind. Commercially its techniques are applied long back in 6 th century in the art of brewing, wine making and baking. It has progressed there after crossing different land marks. Modern biotechnology has developed significantly in the late 19 th century with groundbreaking discoveries applicable in medicine, food, agriculture, chemistry, environmental protection and many more industries. It is widely used in the development of high-yielding, disease-resistant, better quality varieties by applying tissue culture and recombinant DNA techniques. It has wide application in animal breeding using techniques such as artificial insemination, in vitro fertilization and embryo transfer. Specific enzymes used in laundry, fuel and leather industries for better quality, economically feasible and environmental friendly production. Biotechnology in healthcare system uses body′s own tools and weapons to fight against diseases, manufacturing of targeted therapeutic proteins, gene therapy and so on. Novel approaches such as proteomics and structural biology are contributing to understanding the chemistry of life and diseases. Malfunctioning gene replaced with correctly functioning gene by using gene therapy. Tissue engineering has opened up the use of in vitro developed tissue or organ in repairing wounded tissue and system biology which is a computer-based approach to understand cell functions. Although every new discovery related to biology and its implications is significant and has taken the technology ahead. This includes applications, commercialization, controversies, media exposure and so on. Hence, we have enlisted some of the chronological development avenues in biotechnology across the world.

  20. Spatial Diversity of Biotechnology Centres in Germany

    Directory of Open Access Journals (Sweden)

    Dorocki Sławomir

    2014-06-01

    Full Text Available Biotechnology is considered one of the key advanced technology sectors of the future. Its development is conditional on basic research in technologically advanced research institutes and appropriately qualified human resources. The optimum environment stimulating the development of biotechnology is that of production centres having joint industrial and R&D operations.

  1. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  2. South-South Collaboration in Health Biotechnology

    International Development Research Centre (IDRC) Digital Library (Canada)

    To map entrepreneurial collaboration we conducted a brief survey on collaborations of health biotechnology/pharmaceutical firms in developing nations. The survey was sent to firms in five developing countries that have been identified as having relatively strong health biotechnology sectors, Brazil, China, Cuba, India and ...

  3. Biotechnology - The role of perceptions of consumers

    Directory of Open Access Journals (Sweden)

    P. Van Heerden

    2002-12-01

    Full Text Available The development of Biotechnology is aimed at creating improved products. Without the acceptance of biotechnology enhancements by consumers, the development of new products will be hampered. Consumers in different countries perceive genetic engineering differently. In this article the views of foreign and local consumers are investigated.

  4. Biotechnology issues in four Malaysian mainstream newspapers ...

    African Journals Online (AJOL)

    Biotechnology has been identified as the new engine of growth for the transformation of Malaysia into a developed nation by 2020. The objective of this paper is to analyze the impact of National Policy on biotechnology on media reporting in four Malaysian newspapers. Towards this end, a content analysis of four Malaysian ...

  5. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    Assessment of technology generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... Results of the study revealed that some of the institutions have been involved in biotechnology research for the past two decades but have only significantly invested on bio-processing (58.8%) and cell and ...

  6. Some limitations of the biotechnological revolution | Onyia ...

    African Journals Online (AJOL)

    The objective of this paper is to challenge and possibly change the notion that biotechnology alone is the magic wand that brings solution to all of agriculture's pitfalls, by clarifying misconceptions concerning these underlying assumptions. The article reviews some of the highlights of modern plant biotechnology and ...

  7. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  8. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... farmers on the potentials of biotechnology for food security is expedient. Key words: Biotechnology, innovation system, ... security, increases in agricultural productivity is required. Furthermore, Bunders et al. (1996) had earlier ..... This may be as a result of “publish or perish” syndrome in the universities.

  9. Biotechnology and species development in aquaculture | Ayoola ...

    African Journals Online (AJOL)

    The use of biotechnology in various aspects of human endeavour have obviously created a great impact but not without some risks. Not withstanding, there is still the need for its adoption as more of the already adopted biotechnologies are being improved upon with lesser demerits. Aquaculture is not also left out in the ...

  10. Biotechnology in plant nutrient management for agricultural ...

    African Journals Online (AJOL)

    The potential benefits of biotechnology are extraordinary and traverse sectors like agriculture, environment, health, industry, bio-informatics, and human resource development. In agriculture, biotechnology research has helped to improve the understanding of diseases, to improve the diagnosis and treatment of diseases, ...

  11. Agricultural biotechnology research and development in Ethiopia ...

    African Journals Online (AJOL)

    Ethiopia is an agrarian country that can have enormous benefit from the applications of biotechnology for increasing its agricultural productivity. The country is at initial stages of research and development in agricultural biotechnology with scattered efforts underway in various public institutions. Research efforts and ...

  12. Comparative genomics of biotechnologically important yeasts

    NARCIS (Netherlands)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the

  13. Biotechnology in Aquaculture: Prospects and Challenges | Edun ...

    African Journals Online (AJOL)

    Increased public demands for fish and dwindling natural marine habitats have encouraged scientists to study ways that biotechnology can increase the production of fish and shellfish. Biotechnology allows scientists to identify and combine traits in fish and shellfish to increase productivity and improve quality. This article ...

  14. Biotechnology Education and the Internet. ERIC Digest.

    Science.gov (United States)

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  15. The Future of Bio-technology

    Science.gov (United States)

    Trent, Jonathan

    2005-01-01

    Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum

  16. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  17. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  18. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  19. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  20. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biotechnology and bioeconomy in China.

    Science.gov (United States)

    Li, Qing; Zhao, Qinghua; Hu, Yihong; Wang, Hongguang

    2006-11-01

    From the review of the achievements and advantages in the development of biotechnology (BT) and bioindustry in China, it is clear that the bioeconomy would provide a tremendous opportunity for China to develop sustainably or even surpass a few developed countries. A long-term vision has been made to guide the research and development and industrialization of BT in China. This review detailed the strategies, targets, priorities, and key technologies in each stage. Furthermore, the reviewers expatiated on the establishment of the favorable policies, the foundation of the professional groups, the establishment of the advanced laboratories or centers, the investment mechanisms, the development and evaluation of biosafety, the encouragement and support for the international collaborations and exchanges, and the establishment of the general organizational structure.

  2. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  3. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    Science.gov (United States)

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  5. Sequence-specific recognition of DNA by phenanthrenequinone diimine complexes of rhodium(III): importance of steric and van der Waals interactions.

    Science.gov (United States)

    Sitlani, A; Barton, J K

    1994-10-11

    The importance of steric and van der Waals interactions in the sequence-specific recognition of DNA by [Rh(phi)]3+ complexes has been explored through the synthesis and application of a series of Rh(phi)3+ (phi: 9,10-phenanthrenequinone diimine) derivatives. [Rh(phi)]3+ complexes intercalate in the major groove of DNA via the phi ligand and promote strand scission in the presence of UV light. The complexes reported here are derivatives of the parent molecules [Rh(phi)2bpy]3+ and [Rh(bpy)2phi]3+ (bpy: 2,2'-bipyridyl). The [Rh(phi)]3+ complexes have comparable photoefficiencies; therefore, their different photocleavage patterns on 32P-end-labeled DNA fragments reflect their unique sequence-specific recognition characteristics. The shapes of the [Rh(phi)]3+ complexes are found to govern DNA recognition and reaction. Importantly and generally, the more sterically bulky complexes, containing methyl or phenyl groups on the ancillary ligands, cleave DNA at a subset of sequences recognized by their parent molecules. [Rh-(diphenylbpy)2phi]3+ specifically targets the site 5'-CTCTAGAG-3'. Furthermore, chiral discrimination in site selectivity is observed; the different isomers target different sites. delta- and lambda-[Rh(5,5'-dimethylbpy)2phi]3+ cleave specifically at sites that are defined by the consensus sequences 5'-C-T-N-G-3' and 5'-A-C/G-T-C/G-3', respectively. The sequence selectivities may be understood on the basis of both negative steric clashes and positive van der Waals interactions between methyl groups on the metal complex and thymine methyl groups in the DNA major groove.

  6. Fiscal 1998 'Plant Biotechnology in the 21st Century' workshop report; '21 seiki no shokubutsu biotechnology' workshop 1998 nendo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The workshop was opened with the opening remarks by Yamada (President of Nara Institute of Science and Technology (NIST)), the overview of plant biotechnology in the 21st century from academia by Shinmyo (Professor of NIST), and the overview of such technology from Ministry of International Trade and Industry by Katao (Chief of Chemical Industry Division). Lectures and discussions of various topics were conducted for 2 days as follows. The effectiveness of a genomic DNA array method for obtaining the genes for switching genes according to daytime, nighttime, drying, salt, high temperature and low temperature for every plant. Current transfer technology of large DNA fragments into plant cell nuclei and chloroplast. Biological evaluation of the physiological functions and complex stress tolerance capacity transformed by transferring complex stress tolerance genes and useful genes for productivity improvement and value addition. Discussion was also held on the importance of a basic research for biotechnology in the 21st century. (NEDO)

  7. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  8. [The past 30 years of Chinese Journal of Biotechnology].

    Science.gov (United States)

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  9. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    Science.gov (United States)

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  10. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base

    Science.gov (United States)

    Venkateswarlu, Kadtala; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Daravath, Sreenu; Rangan, Krishnan; Shivaraj

    2018-05-01

    Three novel binary metal complexes; 1 [Cu(L)2], 2 [Ni(L)2] and 3 [Co(L)3] where, L (2-(((furan-2-yl) methylimino)methyl)-6-ethoxyphenol, C14H15NO3), were synthesized and characterized by various spectral techniques. Based on spectral studies square planar geometry is assigned for Cu(II) and Ni(II) complexes, whereas Co(III) owned octahedral geometry. Ligand, [Cu(L)2] and [Ni(L)2] are crystallized and found to be monoclinic crystal systems. CT-DNA absorption binding studies revealed that the complexes show good binding propensity (Kb = 5.02 × 103 M-1, 2.77 × 103 M-1, 1.63 × 104 M-1 for 1, 2 and 3 respectively). The role of these complexes in the oxidative and photolytic cleavage of supercoiled pBR322 DNA was studied and found that the complexes cleave the pBR322 DNA effectively. The catalytic ability of 1, 2 and 3 follows the order: 3 > 1 >2. Antioxidant studies of the new complexes revealed that they exhibit significant antioxidant activity against DPPH radical. The Schiff base and its metal complexes have been screened for antibacterial studies by Minimum Inhibitory Concentration method. It is observed that all metal complexes showed more activity than free ligand.

  11. Biotechnology Education: A Multiple Instructional Strategies Approach.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Provides a rationale for inclusion of biotechnology in technology education. Describes an instructional strategy that uses behaviorist, cognitive, and constructivist learning theories in two activities involving photobioreactors and bovine somatotropin (growth hormone). (Contains 39 references.) (SK)

  12. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  13. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Key words: Biotechnology, innovation system, research institutions, universities and agricultural development programme. INTRODUCTION ... technology is the application of indigenous and / or scientific knowledge to the .... professionals, public attitude to genetic engineering organisms and products, and ...

  15. Immunoassays in monitoring biotechnological drugs.

    Science.gov (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials.

  16. Biotechnological improvement of ornamental plants

    Directory of Open Access Journals (Sweden)

    Flavia Soledad Darqui

    2017-10-01

    Full Text Available The discovery of commercial transgenic varieties of orange petunias sold in Europe and the United States although they had never reached the approved status, and the consequent recommendation to destroy them, was the trigger to discuss about biotechnological improvement of ornamental plants. Inside the restricted world of 26 vegetal transgenic species, according to the ISAAA’s reports (http://www.isaaa.org, there are three ornamental species: carnation, rose and the Beijing University developed petunia; all of them with the same trait, a change in their colour. On the other hand, in 2014, the whole-genome sequence of carnation appeared which was the first and until now the only one among ornamental species. In this context, we review the publications from the last five years in petunia, rose, chrysanthemum and carnation. In these papers there are detailed descriptions of modification of the cascade of genes and transcription factors involved in stress situations, in different developmental stages and their regulation through different plant hormones. This knowledge will allow breeding for better and new varieties with changes in their abiotic or biotic stress tolerance, altered growth or yield and modified product quality as colour or fragrance.

  17. Yeasts: From genetics to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, S.; Poli, G. [Univ. of Milan (Italy); Siman-Tov, R.B. [Univ. of Jerusalem, Rehovot (Israel)

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  18. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  19. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    OpenAIRE

    Garda S. A.; S. G. Danilenko; G. S. Litvinov

    2014-01-01

    Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bir...

  20. Outer Limits of Biotechnologies: A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    John D. Loike

    2018-01-01

    Full Text Available A great deal of biomedical research focuses on new biotechnologies such as gene editing, stem cell biology, and reproductive medicine, which have created a scientific revolution. While the potential medical benefits of this research may be far-reaching, ethical issues related to non-medical applications of these technologies are demanding. We analyze, from a Jewish legal perspective, some of the ethical conundrums that society faces in pushing the outer limits in researching these new biotechnologies.

  1. Proteomics: a biotechnology tool for crop improvement

    OpenAIRE

    Eldakak, Moustafa; Milad, Sanaa I. M.; Nawar, Ali I.; Rohila, Jai S.

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improve...

  2. Medical Biotechnology Trends and Achievements in Iran

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  3. The role of biotechnology in art preservation.

    Science.gov (United States)

    Ramírez, José Luis; Santana, María A; Galindo-Castro, Iván; Gonzalez, Alvaro

    2005-12-01

    Biotechnology has played a key role in medicine, agriculture and industry for over 30 years and has advanced our understanding of the biological sciences. Furthermore, the tools of biotechnology have a great and largely untapped potential for the preservation and restoration of our cultural heritage. It is possible that these tools are not often applied in this context because of the inherent separation of the worlds of art and science; however, it is encouraging to see that during the past six years important biotechnological applications to artwork preservation have emerged and advances in biotechnology predict further innovation. In this article we describe and reflect upon a unique example of a group of scientists and art restoration technicians working together to study and treat of a piece of colonial art, and review some of the new applications in biotechnology for the preservation of mankind's cultural heritage. We predict an expansion in this field and the further development of biotechnological techniques, which will open up new opportunities to both biologists and artwork preservers.

  4. African Journal of Biotechnology Vol

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-02-02

    Feb 2, 2012 ... The present study investigated the occurrence of autosomal recessive genetic disease, citrullinaemia, in Khuzestan native cows and Iranian Holstein cattle. Genomic DNA was isolated from the blood of the cows (n = 330). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).

  5. African Journal of Biotechnology Vol

    African Journals Online (AJOL)

    Gaga E Tonukari

    Palaeontology in a molecular world: the search for authentic ancient DNA. Trends Ecol. Evol. 12: 303-306. Baradakci F, Skibinski DOF (1994). Application of the RAPD technique in tilapia fish: species and subspecies identification. Heredity 73: 117-. 123. Dinesh KR, Lim TM, Chan WK, Phang VPE (1993). Zool. Sci. 10: 849-.

  6. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence.

    Science.gov (United States)

    Tan, Aimee; Hill, Dorothea M C; Harrison, Odile B; Srikhanta, Yogitha N; Jennings, Michael P; Maiden, Martin C J; Seib, Kate L

    2016-02-12

    Neisseria meningitidis is a human-specific bacterium that varies in invasive potential. All meningococci are carried in the nasopharynx, and most genotypes are very infrequently associated with invasive meningococcal disease; however, those belonging to the 'hyperinvasive lineages' are more frequently associated with sepsis or meningitis. Genome content is highly conserved between carriage and disease isolates, and differential gene expression has been proposed as a major determinant of the hyperinvasive phenotype. Three phase variable DNA methyltransferases (ModA, ModB and ModD), which mediate epigenetic regulation of distinct phase variable regulons (phasevarions), have been identified in N. meningitidis. Each mod gene has distinct alleles, defined by their Mod DNA recognition domain, and these target and methylate different DNA sequences, thereby regulating distinct gene sets. Here 211 meningococcal carriage and >1,400 disease isolates were surveyed for the distribution of meningococcal mod alleles. While modA11-12 and modB1-2 were found in most isolates, rarer alleles (e.g., modA15, modB4, modD1-6) were specific to particular genotypes as defined by clonal complex. This suggests that phase variable Mod proteins may be associated with distinct phenotypes and hence invasive potential of N. meningitidis strains.

  7. Standing on shaky ground- US patent-eligibility of isolated DNA and genetic diagnostics after AMP v. USPTO - Part III (unsolved questions & subsequent case law)

    DEFF Research Database (Denmark)

    Minssen, Timo; Nilsson, David

    2012-01-01

    review (5). Why a potential Supreme Court review of AMP v. USPTO would indeed be a much welcomed and necessary development is now analyzed in Part III. This part will elaborate on the myriad of unsolved questions raised by both AMP v. USPTO and a bulk of subsequent case law addressing the patent...... decision in Prometheus v. Mayo. Part IV, which is to be published in issue 4, will finally offer a broader discussion of the recent US patent-eligibility developments from an innovation policy perspective including brief references to recent European developments (7). This will provide the basis...

  8. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Teng, P.S.

    2002-01-01

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  9. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. Defective DNA repair mechanisms in prostate cancer: impact of olaparib

    Directory of Open Access Journals (Sweden)

    De Felice F

    2017-03-01

    Full Text Available Francesca De Felice,1 Vincenzo Tombolini,1 Francesco Marampon,2 Angela Musella,3 Claudia Marchetti3 1Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, Rome, 2Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, 3Department of Gynecological and Obstetrical Sciences and Urological Sciences, “Sapienza” University of Rome, Rome, Italy Abstract: The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1 and breast cancer 2 gene (BRCA2 mutations are implicated in the highest risk of prostate cancer (PC predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC. Keywords: prostate cancer, metastatic disease, castration resistant, BRCA, DNA-repair, PARP, olaparib

  11. Chromosome painting for plant biotechnology.

    Science.gov (United States)

    Kato, Akio; Lamb, Jonathan C; Albert, Patrice S; Danilova, Tatiana; Han, Fangpu; Gao, Zhi; Findley, Seth; Birchler, James A

    2011-01-01

    Fluorescence in situ hybridization (FISH) is an invaluable tool for chromosome analysis and engineering. The ability to visually localize endogenous genes, transposable elements, transgenes, naturally occurring organellar DNA insertions - essentially any unique sequence larger than 2 kb - greatly facilitates progress. This chapter details the labeling procedures and chromosome preparation techniques used to produce high-quality FISH signals on somatic metaphase and meiotic pachytene spreads.

  12. Monitor III

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1986-01-01

    Monitor III is a totally portable version of the Monitor I and II systems in use at the Clinton P. Anderson Meson Physics Facility (LAMPF) since 1976. The Monitor III system differs from the other systems in that it is capable of operating in any location accessible by truck. Although Monitor III was designed primarily for the handling and disposal of radioactive materials, it is also capable of performing the more sophisticated operations normally performed by the other Monitor systems. The development and operational capabilities of the Monitor remote handling system have been thoroughly reported since 1978. This paper reports on the commissioning of a new system with unique capabilities

  13. Quality Control of Biotechnological Inputs DetectingMycoplasma

    Directory of Open Access Journals (Sweden)

    Cristiane Netto

    2015-04-01

    Full Text Available The aim of this work was to study the Polymerase Chain Reaction (PCR as a tool of quality control of bovine sera and cellular cultures used in the biotechnological industry. A total of 46 samples of bovine sera derived from two slaughterhouses and 33 samples of BHK21 cells derived from two biotechnological industries were evaluated using the primers GPO-3 (sense and MGSO (antisense. The PCR technique sensibility analysis showed that 280 bp were amplified for the quantities of 50 ng to 0.006 ng of Micoplasma DNA. The primers specificity was confirmed in the test using Staphylococcus aureus, Escherichia coli, Bacillus subtilisand Candida albicans; except by the positive control, none of the samples showed amplification. The presence of Mycoplasma in bovine sera and in the cultures of BHK21 cells showed that 56.5 and 15.2%, respectively, were contaminated. Thus, it was possible to conclude that PCR was a fast and confident technique to detect mycoplasma and that it could be used to control the quality of immunobiological products and inputs, such as sera and cultures of BHK21 cells.

  14. Unveiling DNA structural properties of promoter regions of ...

    Indian Academy of Sciences (India)

    Aditya Kumar

    Unveiling DNA structural properties of promoter regions of prokaryotic transcriptome and their role in gene expression. Aditya Kumar. Assistant Professor. Molecular Biology & Biotechnology. Tezpur University. Tezpur – 784028, Assam ...

  15. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2015-01-01

    Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  16. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries

    Directory of Open Access Journals (Sweden)

    Laura M Coughlan

    2015-06-01

    Full Text Available Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i the identification of enzymes with desirable technological properties, capable of catalysing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.

  17. Experiences of social harm and changes in sexual practices among volunteers who had completed a phase I/II HIV vaccine trial employing HIV-1 DNA priming and HIV-1 MVA boosting in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Tarimo, Edith A M; Munseri, Patricia; Aboud, Said; Bakari, Muhammad; Mhalu, Fred; Sandstrom, Eric

    2014-01-01

    Volunteers in phase I/II HIV vaccine trials are assumed to be at low risk of acquiring HIV infection and are expected to have normal lives in the community. However, during participation in the trials, volunteers may encounter social harm and changes in their sexual behaviours. The current study aimed to study persistence of social harm and changes in sexual practices over time among phase I/II HIV vaccine immunogenicity (HIVIS03) trial volunteers in Dar es Salaam, Tanzania. A descriptive prospective cohort study was conducted among 33 out of 60 volunteers of HIVIS03 trial in Dar es Salaam, Tanzania, who had received three HIV-1 DNA injections boosted with two HIV-1 MVA doses. A structured interview was administered to collect data. Analysis was carried out using SPSS and McNemars' chi-square (χ2) was used to test the association within-subjects. Participants reported experiencing negative comments from their colleagues about the trial; but such comments were less severe during the second follow up visits (χ2 = 8.72; Pstigma (χ2 = 6.06; Ptowards the HIV vaccine trial (χ2 = 4.9; Pcounselling and support appears important to minimize risky sexual behaviour among volunteers after participation in HIV Vaccine trials.

  18. Forest biotechnology advances to support global bioeconomy

    Directory of Open Access Journals (Sweden)

    Antoine Harfouche

    2015-01-01

    Full Text Available The world is shifting to an innovation economy and forest biotechnology can play a major role in the bio-economy by providing farmers, producers, and consumers with tools that can better advance this transition. First-generation or conventional biofuels are primarily produced from food crops and are therefore limited in their ability to meet challenges for petroleum-product substitution and climate change mitigation, and to overcome the food-versus-fuel dilemma. In the longer term, forest lignocellulosic biomass will provide a unique renewable resource for large-scale production of bioenergy, biofuels and bio-products. These second-generation or advanced biofuels and bio-products have also the potential to avoid many of the issues facing the first-generation biofuels, particularly the competition concerning land and water used for food production. To expand the range of natural biological resources the rapidly evolving tools of biotechnology can ameliorate the conversion process, lower the conversion costs and also enhance target yield of forest biomass feedstock and the product of interest. Therefore, linking forest biotechnology with industrial biotechnology presents a promising approach to convert woody lignocellulosic biomass into biofuels and bio-products. Major advances and applications of forest biotechnology that are being achieved to competitively position forest biomass feedstocks with corn and other food crops are outlined. Finally, recommendations for future work are discussed.

  19. The Biotechnology Facility for International Space Station

    Science.gov (United States)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  20. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  1. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    International Nuclear Information System (INIS)

    Morpurgo, R.; Afza, R.; Brunner, H.; Roux, N.; Grasso, G.; Lee, K.S.; Duren, M. Van; Zapata-Arias, F.J.

    1997-01-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author)

  2. Applications of Protein Hydrolysates in Biotechnology

    Science.gov (United States)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  3. Perspectives on biotechnological applications of archaea

    Science.gov (United States)

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  4. Plant biotechnology for food security and bioeconomy.

    Science.gov (United States)

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  5. Biotechnological uses of enzymes from psychrophiles

    Science.gov (United States)

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  6. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic......, translation, transformation and transmission of information. The idea is also to investigate how this debate may influence the “integrative agenda” in biology, especially at a time in which biotechnology is considered to be the industrial use of “biological information”. I introduce concepts....... Finally I make a connection between a sign-theoretic approach to biotechnology and sustainability, with a glimpse into the future....

  7. Biotechnology: Health care, agriculture, industry, environment

    Energy Technology Data Exchange (ETDEWEB)

    Sikyta, B.; Pavlasova, E.; Stejskalova, E.

    1986-01-01

    New developments in different branches of biotechnology are discussed. The production of peptide hormones, new interferons and other lymphokines by the microbial and cell cultures, and new enzyme inhibitors of microbial origin are the most important for health care and pharmacy. The main direction in research in the agriculture represents the development of the new, very effective methods of nitrogen fixation and the production of animal growth hormones by gene manipulated microorganisms. One of the most important field of application of biotechnology is the chemical industry, c.f. microbial production of polymers and biotransformation of compounds previously produced by chemical methods (acrylamide, adipic acid, naphthalene conversion, etc.). Several novel methods of degradation of the cellulosic materials are mentioned and exploitation of biotechnology in environmental protection is also discussed.

  8. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Biotechnological applications of extremophiles, extremozymes and extremolytes.

    Science.gov (United States)

    Raddadi, Noura; Cherif, Ameur; Daffonchio, Daniele; Neifar, Mohamed; Fava, Fabio

    2015-10-01

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  10. Wood production, wood technology, and biotechnological impacts.

    OpenAIRE

    2007-01-01

    In the year 2001, Prof. Dr. Ursula Kües was appointed at the Faculty of Forest Sciences and Forest Ecology of the Georg-August-University Göttingen to the chair Molecular Wood Biotechnology endowed by the Deutsche Bundesstiftung Umwelt (DBU). Her group studies higher fungi in basic and applied research. Research foci are on mushroom development and on fungal enzymes degrading wood and their applications in wood biotechnology. This book has been edited to thank the DBU for all support given to...

  11. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  12. DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer

    DEFF Research Database (Denmark)

    Nygård, Sune Boris; Vainer, Ben; Nielsen, Signe L

    2016-01-01

    FISH and follow-up data were obtained from 534 patients. TOP1 gain was identified in 27 % using a single-probe enumeration strategy (≥ 4 TOP1 signals per cell), and in 31 % when defined by a TOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent on TOP1 FISH status. TOP1 m......PURPOSE: Prospective-retrospective assessment of the TOP1 gene copy number and TOP1 mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer (CC). EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant CC trial...... (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan. TOP1 copy number status was analyzed by fluorescence in situ hybridization (FISH) using a TOP1/CEN20 dual-probe combination. TOP1 mRNA data were available from previous analyses. RESULTS: TOP1...

  13. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Lorenzo, Y.; Karlsen, A.; Carlsen, M. H.; Novosadová, Vendula; Blomhoff, R.; Vodička, Pavel; Collins, A. R.

    2014-01-01

    Roč. 16, APR 2014 (2014), s. 66-73 ISSN 1568-7864 R&D Projects: GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA damage * DNA repair capacity * diet Subject RIV: EB - Genetics ; Molecular Biology; EI - Biotechnology ; Bionics (BTO-N) Impact factor: 3.111, year: 2014

  14. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  15. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  16. White House Announcement on the Regulation of Biotechnology

    Science.gov (United States)

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  17. Biotechnology Commercialization Strategies: Risk and Return in interfirm cooperation.

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, e; Claassen, E.

    2014-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  18. Biotechnology Commercialization Strategies: Risk and Return in Interfirm Cooperation

    NARCIS (Netherlands)

    Fernald, K.D.S.; Pennings, H.P.G.; Claassen, E.

    2015-01-01

    The management and exploitation of biotechnological product innovation have proven to be more difficult than initially expected because the number of currently marketed biotechnological products is far from sufficient to counter deficits in pharmaceutical innovation. This study provides insight into

  19. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O.

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  20. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  1. STATE OF THE ART BIOTECHNOLOGY AND BIOSAFETY IN KENYA

    African Journals Online (AJOL)

    considering national priorities for application of biotechnology for more than a decade ... while safeguarding human health and environmental integrity. .... NACBAA, 1991. National Advisory Committee on Biotechnology Advances and Their. Applications. Ministry of Research, Technical. Training & Technology, Nairobi, Kenya.

  2. Richard III

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...

  3. Agricultural Biotechnology: Opportunities and Challenges for the Philippines

    OpenAIRE

    Padolina, William G.

    2001-01-01

    Developing countries, still heavily dependent on agriculture, must now harness biotechnology to modernize agricultural production and diversify product outputs. The Philippines was one of the first Asian countries to establish a biotechnology research and development program. However, not much progress in harnessing the tools of biotechnology has been achieved, especially in the area of varietal improvement. Although there was an early realization of the importance of biotechnology in nationa...

  4. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  5. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    komla

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of ... security and provide the genetic material needed for industry, agriculture and biotechnology. In agriculture .... benefit assessment in different fields is of fundamental importance in moulding any policy. Even.

  6. Opportunities for energy conservation through biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  7. The Current Developments of Agricultural Biotechnologies Market

    Directory of Open Access Journals (Sweden)

    Anna M. Shkolyarenko

    2016-01-01

    Full Text Available Population growth in the context of limited land resources makes the global scientific society research new ways to increase the agricultural yields. Over the past 20 years, biotechnology and GM crops have become widely spread and now are cultivated in 28 countries. The total area of crops has tripled, and it suggests the further vertical and horizontal integration in short term. In 2015, the US Department of Agriculture authorized the commercial use of GM farm animals. The development of agricultural biotechnology market is constrained by opponents of GM crops in more than 160 countries, which include Russia and the European Union, where the production of GM crops is banned due to economic, ethical, ideological and biological reasons. Currently, the EU is seeking to reduce the imports of GM crops and products; Russia's GM imports and exports are prohibited, and the deadline of designing a consolidated position on agricultural biotechnology has been moved to 2017. The author seeks to analyze the volume of production and international trade of agricultural products based on biotechnologies and to describe the main trends in the global market, which could be integrated into the food value chain in Russia. In the context of the worsening economic indicators, the article proposes the possibility of extending the use of GM crops in Russia non-food sector.

  8. Democratization of Science and Biotechnological Development ...

    African Journals Online (AJOL)

    The Mandela government that came into power in 1994 made the democratization of science and technology a priority in post-apartheid South Africa. Attendant ideas of Science Communication and Public Understanding of Biotechnology have hitherto become currency in South Africa's public sector drive towards the ...

  9. PUTTING PLANT BIOTECHNOLOGY TO WORK FOR FOOD ...

    African Journals Online (AJOL)

    Plant biotechnology is safely bringing valuable new benefits to farmers around the world, including those in developing countries where the needs for food, nutrition and overall development may be greatest. >From the current base of experience, it is reasonable to expect even greater benefits in the future, provided that ...

  10. Magnetic nano- and microparticles in biotechnology

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2009-01-01

    Roč. 63, - (2009), s. 497-505 ISSN 0366-6352 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic particles * smart material Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.791, year: 2009

  11. Linking Biotechnology and Agricultural Biodiversity Resources in ...

    African Journals Online (AJOL)

    Modern economic activities are heavily dependent on using diversity of biological resources. Africa has a wealth of biodiversity resources which, with the appropriate application of biotechnological tools for conservation and use, can serve as sources of wealth creation. Proper harnessing of the linkages between ...

  12. Biotechnology System Facility: Risk Mitigation on Mir

    Science.gov (United States)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  13. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  14. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  15. African Journal of Biotechnology: Editorial Policies

    African Journals Online (AJOL)

    The African Journal of Biotechnology (AJB), a new broad-based journal, was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly ...

  16. Biotechnology and Consumer Decision-Making.

    Science.gov (United States)

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  17. Optimizing the acceleration of biotechnology innovation in ...

    African Journals Online (AJOL)

    Science biotechnology has been attributed a superior platform in Malaysian government plan for wealth creation in the 9th Malaysian plan and policy of Malaysia's science and technology in 21st century; it has been accepted and categorized as a complicated emerging issue to illustrate high prominence combined with ...

  18. The dynamic and ubiquitous nature of biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... plant breeding, and tissue culture and the medical sciences in the area of gene therapy, production of bioactive products for the quick diagnosis and treatment of diseases, this paper discusses the use of biotechnology in other areas of human endeavours like computer science, physics, mathematics,.

  19. Dendritic platforms for biomimicry and biotechnological applications.

    Science.gov (United States)

    Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep

    2018-02-15

    Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.

  20. How Japanese students reason about agricultural biotechnology.

    Science.gov (United States)

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  1. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  2. Biotechnology and species development in aquaculture

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... potential to improve the quality and quantity of fish reared in aquaculture, although, not without significant contro ... benefits both producers and consumers of aquacultural products. Areas of biotechnology in .... become easier with the development of artificial breeding techniques, such as the use of pituitary ...

  3. Biotechnological production of limonene in microorganisms

    NARCIS (Netherlands)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently

  4. Biotechnology issues in four Malaysian mainstream newspapers

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... Data analysis found that tones in this study are more positive, (which is used by journalist to report issue concerning biotechnology) compared with negative tones. (Table 6). Analysis using the chi-square method revealed a chi-square value of 8.245 which was significant at the. 0.05 level (P = 0.004).

  5. Biotechnology from Microbiology Perspective | Mendie | Nigerian ...

    African Journals Online (AJOL)

    Biotechnology has scaled many hurdles of advancement into a science that now covers all realms of human endeavours. It has been elevated into a pedestal of solving many of man's intractable problems of survival in this planet. Researches in biotech has now been intensified in medical, pharmaceutical, agricultural, ...

  6. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have

  7. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  8. Developing legal regulatory frameworks for modern biotechnology ...

    African Journals Online (AJOL)

    This paper looks at attempts that have been made to develop legal regulatory frameworks for modern biotechnology. The discussion is limited to the regulation of Genetically Modified Organisms (GMO) technology by the two leading producers and exporters of GMOs in Africa: South Africa and Kenya. The international and ...

  9. The biotechnology and bioeconomy landscape in Malaysia.

    Science.gov (United States)

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  11. Assessing the Impacts of Agricultural Biotechnologies: Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The workshop on which this volume is based represents one of the first formal activities of the "Canada–Latin America Initiative on Biotechnology, the Environment and Sustainable Development" (CamBioTec). The decision by IDRC to host this workshop reflects a recognition of the need for careful, rigorous analysis of the ...

  12. Industrial use of Biotechnology in Agriculture

    International Nuclear Information System (INIS)

    But, S.J.

    2006-01-01

    In the past the biological research was restricted within the boundary of laboratories and the subsequent results were often employed merely to strengthen the research knowledge and information. In life sciences, the traditional methods took years in proving the biological facts. At the leg of last century, the practical application of biotechnology provided a powerful tool to mankind that has led to a revolutionary change in modern agriculture. In the present era, the economy of agro-based countries all over the world is dependent on the adaptation of the pattern of crop-production and their improvement through modern biotechnological means. Biotechnology is in fact the name of a combination of techniques involved to make the full use of living organisms, either in total or in part, for the benefit of plants, animals or human beings. Progressive and dynamic investors, associated with researches/scientists, should be encouraged to step forward for the mobilization of emerging trend of biotechnological industry in agriculture. Researcher/Scientists of biological programmes in Pakistan should be encouraged at Government level to come forward in contributing their tremendous role to boost Agr- industry in the country. (author)

  13. Regulation of Biotechnology in Cameroon W

    African Journals Online (AJOL)

    Nations Environment Programme (UNEP), Nairobi, enabled Cameroon to be among the pioneers in the African Region in enacting a national legislation on Biosafety. Law No. 2003/ O06 of 21*'. April 2003 regulating Safety in Modern Biotechnology in Cameroon, translates the Cartagena. Protocol into national realities.

  14. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this Course will help them effectively fulfill their role as better researchers and teachers. The Course will consist of 2–3 lectures everyday followed by equal duration of ...

  15. Supporting Biotechnology Regulatory Policy Processes in Southeast ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Biotechnology innovations or bio-innovations can provide solutions to problems associated with food security, poverty and environmental degradation. Innovations such as genetically engineered (GE) crops can increase food production and minimize (or totally obviate) the need for chemical fertilizers and pesticides.

  16. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    1999-10-01

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia [es

  17. Awareness and knowledge on modern biotechnology

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... modern biotechnology among the Malaysian public in the. Klang Valley region and to compare their awareness and knowledge level across several demographic variables. MATERIALS AND METHODS. The research data was collected by means of a face to face survey of adult (age 18 years old and ...

  18. Biotechnology: Advances and Prospects for Sustainability, in Nigeria ...

    African Journals Online (AJOL)

    Biotechnology is a multi-disciplinary branch of science whose applications are diverse and because science is dynamic, there is tremendous development in the use of biotechnology in the world. Advances of biotechnology are prominent in Nigeria, where government initiative, the private sector as well as that of NGOs are ...

  19. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  20. From the tumor-inducing principle to plant biotechnology and its importance for society.

    Science.gov (United States)

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  1. Experiences of social harm and changes in sexual practices among volunteers who had completed a phase I/II HIV vaccine trial employing HIV-1 DNA priming and HIV-1 MVA boosting in Dar es Salaam, Tanzania.

    Directory of Open Access Journals (Sweden)

    Edith A M Tarimo

    Full Text Available BACKGROUND: Volunteers in phase I/II HIV vaccine trials are assumed to be at low risk of acquiring HIV infection and are expected to have normal lives in the community. However, during participation in the trials, volunteers may encounter social harm and changes in their sexual behaviours. The current study aimed to study persistence of social harm and changes in sexual practices over time among phase I/II HIV vaccine immunogenicity (HIVIS03 trial volunteers in Dar es Salaam, Tanzania. METHODS AND RESULTS: A descriptive prospective cohort study was conducted among 33 out of 60 volunteers of HIVIS03 trial in Dar es Salaam, Tanzania, who had received three HIV-1 DNA injections boosted with two HIV-1 MVA doses. A structured interview was administered to collect data. Analysis was carried out using SPSS and McNemars' chi-square (χ2 was used to test the association within-subjects. Participants reported experiencing negative comments from their colleagues about the trial; but such comments were less severe during the second follow up visits (χ2 = 8.72; P<0.001. Most of the comments were associated with discrimination (χ2 = 26.72; P<0.001, stigma (χ2 = 6.06; P<0.05, and mistrust towards the HIV vaccine trial (χ2 = 4.9; P<0.05. Having a regular sexual partner other than spouse or cohabitant declined over the two follow-up periods (χ2 = 4.45; P<0.05. CONCLUSION: Participants in the phase I/II HIV vaccine trial were likely to face negative comments from relatives and colleagues after the end of the trial, but those comments decreased over time. In this study, the inherent sexual practice of having extra sexual partners other than spouse declined over time. Therefore, prolonged counselling and support appears important to minimize risky sexual behaviour among volunteers after participation in HIV Vaccine trials.

  2. Agricultural biotechnology: Status and prospective

    Directory of Open Access Journals (Sweden)

    Drinić Goran

    2003-01-01

    Full Text Available The development of the DNA recombinant technology has provided the transfer of a single or several genes within or among species whereby organisms with new traits were developed. Such organisms have been called genetically modified organisms. The first genetically modified varieties of cultivated plants entered the market in 1996 and since then areas sown with such crops has been increasing, amounting to 60 M ha in 2002. During the stated period, genetically modified varieties and hybrids of cultivated plants were developed with a gene introduced for tolerance to herbicides, resistance to insects, prolonged maturity period and improved quality. However, heavy disputes have arisen all over the world relating the possible gain and potential risks from the growth and utilization of modified crops. First of all, there are ethical issues related directly to gene transfer from a species to a species, then effects of the introduced gene on the environment and human health, economical justification of cultivating genetically modified crops, consumers confidence in the legislation, labeling the products encompassing a genetic modification, effects on the global market and ever increasing food requirements. The effect of products derived from genetically modified plants on human health depends on a specific content of a product itself and can potentially be useful if a product contains an increased content of vitamins, with an allergen removed, or potentially harmful, if a new allergen or a toxin were introduced by genetic modifications. Each genetically modified product is subjected to a rigorous testing of its safety prior to its introduction into a food chain. It encompasses molecular, biochemical, toxicological, nutritional and allergenic tests. Many countries apply legislation that stipulates labeling of genetically modified products, whereby the fact that the commodity encompasses products of genetic modification is clearly pointed out. .

  3. White biotechnology: ready to partner and invest in.

    Science.gov (United States)

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  4. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  6. Safety aspects in biotechnology. Classifications and safety precautions for handling of biological agents.

    Science.gov (United States)

    Frommer, W; Krämer, P

    1990-07-01

    The term "biotechnology" is today used much more widely than 10 years ago. According to the modern definition, biotechnology represents the "conveyor belt" which brings advances in the fields of molecular biology, cell biology, molecular genetics, microbiology, biochemistry and process engineering, etc., into the areas of application. It is attempted to indicate the development of safety standards concerning biotechnology. This development is in a state of flux, and the finding that the risks in handling r-DNA organisms are not larger than those arising when handling the known pathogens is becoming more accepted. Accordingly, these r-DNA organisms can also be classified into the known risk groups I-IV and handled under the corresponding safety conditions according to this classification: In the laboratory under the laboratory safety measures L1-L4 described in the BMFT-Guidelines or guidelines for occupational health and hygiene (UVV Biotechnologie) and on a process scale under the process safety measures described in the OECD report. The discussion of aspects on waste disposal, education/training and public perception in the field of biological safety completes the report.

  7. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    International Nuclear Information System (INIS)

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes

  8. [Application of molecular biotechnology in Pharmacognosy].

    Science.gov (United States)

    Tong, Yuan-Yuan; Liu, Yang; Wang, Jun-Wen; Yang, Ce; Huang, Man-Ting; Li, Hai-Yan

    2016-02-01

    Using the methods of informetrics analysis, articles retrieved from the database of CNKI were statistically analyzed on development course and knowledge system, so as to reflect the overall situation of pharmacognostical studies by molecular biotechnology. The result shows that the research on pharmacognosy by molecular biotechnology is an inter-disciplinary research area, the major research fields can be divided into 7 categories, including molecular identification of Chinese medicinal materials, molecular systematics and genetic diversity analysis of Chinese medicinal materials, biosynthesis and bioregulation of secondary metabolites in medicinal plants, molecular mechanism and genetic basis of Dao-di Herbs, and tissue culture and molecular breeding in medicinal plants. The research on pharmacognosy by molecular have achieved remarkable progress in recent 20 years, and have broad development prospects. Copyright© by the Chinese Pharmaceutical Association.

  9. Ergonomics problems and solutions in biotechnology laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.

    1995-03-01

    The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.

  10. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  11. Forest biotechnology advances to support global bioeconomy

    OpenAIRE

    Antoine Harfouche; Sacha Khoury; Francesco Fabbrini; Giuseppe Scarascia Mugnozza

    2015-01-01

    The world is shifting to an innovation economy and forest biotechnology can play a major role in the bio-economy by providing farmers, producers, and consumers with tools that can better advance this transition. First-generation or conventional biofuels are primarily produced from food crops and are therefore limited in their ability to meet challenges for petroleum-product substitution and climate change mitigation, and to overcome the food-versus-fuel dilemma. In the longer term, forest lig...

  12. Biotechnological potential of marine natural products

    OpenAIRE

    Fusetani, Nobuhiro

    2010-01-01

    The number of marine natural products (MNPs) that have been applied to biotechnological industry is very limited, although nearly 20000 new compounds were discovered from marine organisms since the birth of MNPs in the early 1970s. However, it is apparent that they have a significant potential as pharmaceuticals, cosmetics, nutraceuticals, research tools, and others. This article focuses on selective antitumor metabolites isolated from marine sponges and tunicates, and their modes of action, ...

  13. UK: disputing boundaries of biotechnology regulation

    OpenAIRE

    Les Levidow; Susan Carr

    1996-01-01

    UK biotechnology regulation has developed ‘precautionary controls’ for GMO releases. Stringent legislation was drafted and eventually implemented by the Department of Environment (DoE). In parallel, the DoE established a broadly-based advisory committee, which included ecologists and an implicit public-interest representation. The committee was assigned the task to advise on the release of all “novel organisms” — a term which implies an analogy between GMOs and non-indigenous organisms. Copyr...

  14. Biotechnological production of limonene in microorganisms

    OpenAIRE

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-01-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial producti...

  15. Challenges and opportunities for improving food quality and nutrition through plant biotechnology.

    Science.gov (United States)

    Francis, David; Finer, John J; Grotewold, Erich

    2017-04-01

    Plant biotechnology has been around since the advent of humankind, resulting in tremendous improvements in plant cultivation through crop domestication, breeding and selection. The emergence of transgenic approaches involving the introduction of defined DNA sequences into plants by humans has rapidly changed the surface of our planet by further expanding the gene pool used by plant breeders for plant improvement. Transgenic approaches in food plants have raised concerns on the merits, social implications, ecological risks and true benefits of plant biotechnology. The recently acquired ability to precisely edit plant genomes by modifying native genes without introducing new genetic material offers new opportunities to rapidly exploit natural variation, create new variation and incorporate changes with the goal to generate more productive and nutritious plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  17. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  18. Cacao biotechnology: current status and future prospects.

    Science.gov (United States)

    Wickramasuriya, Anushka M; Dunwell, Jim M

    2018-01-01

    Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. New biotechnological procedures in swine reproduction

    Directory of Open Access Journals (Sweden)

    Petrujkić Tihomir

    2002-01-01

    Full Text Available New biotechnological procedures and the use of hormones in swine breeding are aimed at increasing the number of piglets in the litter. In small herds and groups, selected sows with 16 mammary complexes (tits can yield up to 32 piglets, or porkers, per year per sow. In order to achieve such reproduction results, special, individual stalls for sow deliveries are used, in addition to biotechnological methods, with a warm core and floor heating, phased diet and clean facilities. The ovulation value in swine is determined by their genetic and paragenetic effects, and it is often provoked and increased with injections and preparations for superovulation. However, the results vary, since any administration of hormone injecions can reduce the reproductive cycle, shorten the duration of estrus, or disrupt the work of ovaries and create cystic follicles. The use of follicle-stimulating hormones in quantities up to 1000 IU per animal for the induction and synchronization of estrus has become customary for sows and gilts, as well as the use of prostaglandins, the use of GnRH for increasing ovulation in swine and increasing the number of follicles >4 mm in diameter in the implementation of new biotechnologies in swine breeding, increases the number of ovulations and fertility in swine. In this way, reproduction is raised to the highest possible level, and artificial insemination of sows has 12 separate rules which enable better and more successful artificial insemination of sows.

  20. Independent Biotechnology: The Innovation-Regulation Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prosnitz, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Velsko, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-03

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, or social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.

  1. Biodiversity, biotechnologies and the philosophy of biology.

    Science.gov (United States)

    Galleni, Lodovico

    2004-01-01

    The thesis of this paper is that in front of the development of biotechnology and of the capacity of techniques of altering the living, there is still a very old philosophy of biology. A rapid historical view is given where the rise and diffusion of the reductionistic paradigm is presented and the connections between this paradigm and biotechnologies are traced. Curiously biotechnologies are still based on the philosophy of F. Bacon. Then the necessity of a new paradigm in biology based on the recent discoveries of complexity is underlined. It is reminded that the main discovery of science of the XX century is that we are living in a small planet of limited resources and frail equilibriums. This discovery asks for a different view of the scientific progress, more linked to the conservation of the Biosphere than to its alteration. Stability is the task for the future interactions of human-kind with nature. For this reason the relationships between stability and diversity are summarised. Finally, as the species is the main step of Biodiversity, a brief discussion of the problems posed by the altering of species barriers is presented.

  2. DNA barcodes for marine fungal identification and discovery

    Digital Repository Service at National Institute of Oceanography (India)

    Velmurugan, S.; Prasannakumar, C.; Manokaran, S.; AjithKumar, T.; Samkamaleson, A.; Palavesam, A.

    , monsoon, postmonsoon). DNA sequencing was performed in ABI high throughput DNA sequencer at Bioserve Biotechnologies Pvt Ltd (commercial company, India) and at Macrogen (commercial company, North Korea). DNA sequences, produced as chromatograms, were read.... The Fungi, 2nd edn. A Harcourt Science and Technology Company, p. 603. Dentinger BTM, Didukh MY, Moncalvo J, 2011. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 9: e25081. Domsch KH, Gams W, Anderson TH...

  3. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  4. Interaction mode between methylene blue-Sm(III) complex and ...

    African Journals Online (AJOL)

    Spectroscopic and viscosity methods were applied to investigate the interaction between methylene blue (MB)-Sm(III) complex and herring sperm DNA by using acridine orange as a spectral probe in Tris-HCl buffer (pH 7.40). By means of molar ratio method, the binding ratios between MB-Sm(III)and DNA were determined ...

  5. The role of biotechnology in combating climate change

    DEFF Research Database (Denmark)

    Aerni, Philipp; Gagalac, Florabelle; Scholderer, Joachim

    2016-01-01

    Biotechnology is a platform technology that may significantly contribute to climate change mitigation and adaptation. Yet, biotechnology is hardly ever referred to as “clean technology”. This paper investigates why biotechnology tends to be ignored in this context. A global stakeholder survey...... on biotechnology and climate change was conducted with 55 representatives of 44 institutions. The results of a perception pattern analysis show that the majority of stakeholder representatives had a neutral or positive attitude towards the use of biotechnology and regarded its potential to address climate change...... problems as significant. The survey results further reveal a significant relationship between a representative’s institutional and disciplinary background and his or her attitude. The respective background appears to determine to a considerable extent whether biotechnology is framed as a risk...

  6. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  7. Project report to STB/UO, Northern New Mexico Community College two- year college initiative: Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report summarizes the experiences gained in a project involving faculty direct undergraduate research focused on biotechnology and its applications. The biology program at Northern New Mexico Community College has been involved in screening for mutations in human DNA and has developed the ability to perform many standard and advanced molecular biology techniques. Most of these are based around the polymerase chain reaction (PCR) and include the use of single strand conformation polymorphism analysis (SSCP), denaturing gradient gel electrophoresis (DGGE) in the screening for mutant DNA molecules, and the capability to sequence PCR generated fragments of DNA using non-isotopic imaging. At Northern, these activities have a two-fold objective: (1) to bring current molecular biology techniques to the teaching laboratory, and (2) to support the training of minority undergraduates in research areas that stimulate them to pursue advanced degrees in the sciences.

  8. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  9. Carotenoids from Haloarchaea and Their Potential in Biotechnology.

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-08-25

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

  10. The potential of using biotechnology to improve cassava: a review

    OpenAIRE

    Chavarriaga-Aguirre, Paul; Brand, Alejandro; Medina, Adriana; Pr?as, M?nica; Escobar, Roosevelt; Martinez, Juan; D?az, Paula; L?pez, Camilo; Roca, Willy M; Tohme, Joe

    2016-01-01

    The importance of cassava as the fourth largest source of calories in the world requires that contributions of biotechnology to improving this crop, advances and current challenges, be periodically reviewed. Plant biotechnology offers a wide range of opportunities that can help cassava become a better crop for a constantly changing world. We therefore review the state of knowledge on the current use of biotechnology applied to cassava cultivars and its implications for breeding the crop into ...

  11. Production and employment impacts of new technologies: analysis for biotechnology

    OpenAIRE

    Wydra, Sven

    2009-01-01

    Biotechnology is often regarded as a key technology with high potential for far-reaching social, environmental and economic impacts. Among others, the development and diffusion of biotechnology may have considerable economic effects on production and employment. This paper analyzes the economic impacts of different diffusion paths of biotechnology in some major application fields. Bottom-up technology information from literature, expert judgements and explicit scenario assumptions for variou...

  12. The role of plant biotechnology methods in sustainable agriculture

    OpenAIRE

    Koleva Gudeva, Liljana; Trajkova, Fidanka

    2016-01-01

    Plant biotechnology is set of different scientific approaches and methods that are utilized to improve and modify plants for human and environmental benefit. Plant biotechnology can be used to meet the increasing need for food by improving yields, improving the nutritional quality of crops and recuing the impact on the environment. Plant biotechnology can assist to creation of varieties resistant to frost, droughts and floods, pests and disease, and other abiotic and biotic stresses. Similarl...

  13. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  14. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  15. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  16. Culture collections and the biotechnology deal.

    Science.gov (United States)

    Sievers, Martin; Dasen, Gottfried; Wermelinger, Tobias; Landert, Silvano; Frasson, David

    2010-01-01

    Culture collections provide starting material for life science research, development and production. Especially in biotechnology, well characterised and pure microbial strains are essential for reproducible and safe bioprocesses. Culture collections also play a role as repositories of biological material for future applications and help to preserve biological diversity. In addition, they also maintain the know-how needed for more complex identification methods and help to develop new techniques. To enable culture collections to achieve higher quality standards, new certification guidelines for biological resource centres are currently being developed.

  17. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  18. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  19. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Daugsch, Andreas; Pastores, Glaucia . E-daugsch@fea.unicamp.br

    2005-01-01

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  20. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Blanco Picado, Patricia; Valdez Melara, Marta

    2015-01-01

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee [es

  1. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  2. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  3. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  4. Biotechnology of nutrient uptake and assimilation in plants.

    Science.gov (United States)

    López-Arredondo, Damar L; Leyva-González, Marco A; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-01-01

    Plants require a complex balance of mineral nutrients to reproduce successfully. Because the availability of many of these nutrients in the soil is compromised by several factors, such as soil pH, cation presence, and microbial activity, crop plants depend directly on nutrients applied as fertilizers to achieve high yields. However, the excessive use of fertilizers is a major environmental concern due to nutrient leaching that causes water eutrophication and promotes toxic algae blooms. This situation generates the urgent need for crop plants with increased nutrient use efficiency and better-designed fertilization schemes. The plant biology revolution triggered by the development of efficient gene transfer systems for plant cells together with the more recent development of next-generation DNA and RNA sequencing and other omics platforms have advanced considerably our understanding on the molecular basis of plant nutrition and how plants respond to nutritional stress. To date, genes encoding sensors, transcription factors, transporters, and metabolic enzymes have been identified as potential candidates to improve nutrient use efficiency. In addition, the study of other genetic resources, such as bacteria and fungi, allows the identification of alternative mechanisms of nutrient assimilation, which are potentially applicable in plants. Although significant progress in this respect has been achieved by conventional breeding, in this review we focus on the biotechnological approaches reported to date aimed at boosting the use of the three most limiting nutrients in the majority of arable lands: nitrogen, phosphorus, and iron.

  5. Biotechnology and genetic optimization of fast-growing hardwoods

    Energy Technology Data Exchange (ETDEWEB)

    Garton, S.; Syrkin-Wurtele, E.; Griffiths, H.; Schell, J.; Van Camp, L.; Bulka, K. (NPI, Salt Lake City, UT (United States))

    1991-02-01

    A biotechnology research program was initiated to develop new clones of fast-growing Populus clones resistant to the herbicide glyphosate and resistant to the leaf-spot and canker disease caused by the fungus Septoria musiva. Glyphosate-resistant callus was selected from stem segments cultured in vitro on media supplemented with the herbicide. Plants were regenerated from the glyphosate-resistant callus tissue. A portion of plants reverted to a glyphosate susceptible phenotype during organogenesis. A biologically active filtrate was prepared from S. musiva and influenced fresh weight of Populus callus tissue. Disease-resistant plants were produced through somaclonal variation when shoots developed on stem internodes cultured in vitro. Plantlets were screened for disease symptoms after spraying with a suspension of fungal spores. A frequency of 0.83 percent variant production was observed. Genetically engineered plants were produced after treatment of plant tissue with Agrobacterium tumefasciens strains carrying plasmid genes for antibiotic resistance. Transformers were selected on media enriched with the antibiotic, kanamycin. Presence of foreign DNA was confirmed by Southern blot analysis. Protoplasts of popular were produced but did not regenerate into plant organs. 145 refs., 12 figs., 36 tabs.

  6. Biotechnological approach in crop improvement by mutation breeding in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soeranto, H.; Sobrizal; Sutarto, Ismiyati; Manurung, Simon; Mastrizal [National Nuclear Energy Agency, Center for Research and Development of Isotope and Radiation Technology, Jakarta (Indonesia)

    2002-02-01

    Mutation breeding has become a proven method of improving crop varieties. Most research on plant mutation breeding in Indonesia is carried out at the Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Nowadays, a biotechnological approach has been incorporated in some mutation breeding researches in order to improve crop cultivars. This approach is simply based on cellular totipotency, or the ability to regenerate whole, flowering plants from isolated organs, pieces of tissue, individual cells, and protoplasts. Tissue culture technique has bee extensively used for micro propagation of disease-free plants. Other usage of this technique involves in various steps of the breeding process such as germplasm preservation, clonal propagation, and distant hybridization. Mutation breeding combined with tissue culture technique has made a significant contribution in inducing plant genetic variation, by improving selection technology, and by accelerating breeding time as for that by using anther or pollen culture. In Indonesia, research on mutation breeding combined with tissue culture techniques has been practiced in different crop species including rice, ginger, banana, sorghum etc. Specially in rice, a research on identification of DNA markers linked to blast disease resistance is now still progressing. A compiled report from some research activities is presented in this paper. (author)

  7. National patent applications in biotechnology, subclass C12N, in Brazil from 1998 to 2000

    Directory of Open Access Journals (Sweden)

    Celso Luiz Salgueiro Lage

    2006-03-01

    Full Text Available Only 11% of the activities of research and development in Brazil are carried out in private institutions. In the biotechnological field, an area of knowledge significantly closer to the basic sciences, there is a higher participation of public sectors, as might be expected. Among the public institutions, the universities were responsible for the highest number of applications in the evaluated time period, 56%. The national participation in the number of biotechnological patent applications in Brazil was 2.6% from 1998 to 2000. Among the countries with the highest number of biotechnological patent applications in Brazil, there is an obvious domination of the United States of America, representing 51.5% of all countries in 1999 and 42.3% of the 1057 C12N patent applications. Applications in the C12N 15 classification with 31.5% were the most frequent in comparison with the other C12N applications. This fact shows the fast increase of the number of applications in genetic engineering and fields of recombinant DNA technology. This result is a possible consequence of the genome race that is occurring at world level.

  8. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    Science.gov (United States)

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  9. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  11. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  12. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Scientific underpinnings of biotechnology regulatory frameworks.

    Science.gov (United States)

    Gleim, Savannah; Smyth, Stuart J

    2018-05-25

    Part of what is presently missing at domestic regulatory levels (and that is important at the international level as well) is a detailed understanding of what the rules of, and for, regulation should be, who the actors, stakeholders and major decision makers are and finally, how to get agreement about the rules. Greater insights into the system of rules that underpin regulatory frameworks for agri-food and biotechnology products in genetically modified (GM) crop- adopting nations will provide value by clarifying the evidence used to commercialize these technologies. This article examines the public documents available from Canada, the United States, the European Union and the Organisation for Economic Cooperation and Development regarding the development of regulatory risk assessment frameworks for products of biotechnology to determine what science grounds these frameworks. The documentation used to provide the initial structure to the existing regulatory frameworks identifies the linkages, connections and relationships that exist between science, risk assessment and regulatory policy. The relationship between risk and regulation has never been more critical to the commercialization of innovative agricultural products. Documenting the role of science-based risk assessment in regulations and how this has changed over the 20 years of experience in regulating GM crops will identify changes in the risk/regulation relationship. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. Biotechnological potential of sponge-associated bacteria.

    Science.gov (United States)

    Santos-Gandelman, Juliana F; Giambiagi-deMarval, Marcia; Oelemann, Walter M R; Laport, Marinella S

    2014-01-01

    As sessile and filter-feeding metazoans, marine sponges represent an ecologically important and highly diverse component of marine benthic communities throughout the world. It has been suggested that marine sponges are hosts to many microorganisms which can constitute up to 40-60% of its biomass. Recently, sponges have attracted a high interest from scientific community because two important factors. First there is the fact that sponges have a wide range of associated bacteria; and, second, they are a rich source of bioactive substances. Since 1950, a number of bioactive substances with various pharmacological functions have been isolated from marine sponges. However, many of these substances were subsequently shown to be actually synthesized by sponge-associated bacteria. Bacteria associated with marine sponges constitute an interesting source of novel bioactive compounds with biotechnological potential such as antimicrobial substances, enzymes and surfactants. In addition, these bacteria may be biofilm forming and can act as bioindicators in bioremediation processes of environmental pollution caused by oil and heavy metals. This review focuses on the biotechnological applications of these microorganisms.

  15. The Catharanthus alkaloids: pharmacognosy and biotechnology.

    Science.gov (United States)

    van Der Heijden, Robert; Jacobs, Denise I; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert

    2004-03-01

    The Catharanthus (or Vinca) alkaloids comprise a group of about 130 terpenoid indole alkaloids. Vinblastine is now marketed for more than 40 years as an anticancer drug and became a true lead compound for drug development. Due to the pharmaceutical importance and the low content in the plant of vinblastine and the related alkaloid vincristine, Catharanthus roseus became one of the best-studied medicinal plants. Consequently it developed as a model system for biotechnological studies on plant secondary metabolism. The aim of this review is to acquaint a broader audience with the recent progress in this research and with its exciting perspectives. The pharmacognostical aspects of the Catharanthus alkaloids cover botanical (including some historical), phytochemical and analytical data. An up-to-date view on the biosynthesis of the alkaloids is given. The pharmacological aspects of these alkaloids and their semi-synthetic derivatives are only discussed briefly. The biotechnological part focuses on alternative production systems for these alkaloids, for example by in vitro culture of C. roseus cells. Subsequently it will be discussed to what extent the alkaloid biosynthetic pathway can be manipulated genetically ("metabolic engineering"), aiming at higher production levels of the alkaloids. Another approach is to produce the alkaloids (or their precursors) in other organisms such as yeast. Despite the availability of only a limited number of biosynthetic genes, the research on C. roseus has already led to a broad scientific spin-off. It is clear that many interesting results can be expected when more genes become available.

  16. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    Directory of Open Access Journals (Sweden)

    DARNE GERMANO DE ALMEIDA

    2016-10-01

    Full Text Available The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulphate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernise petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  17. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    Science.gov (United States)

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  18. Effective Active Ingredients Obtained through Biotechnology

    Directory of Open Access Journals (Sweden)

    Claudia Zappelli

    2016-11-01

    Full Text Available The history of cosmetics develops in parallel to the history of man, associated with fishing, hunting, and superstition in the beginning, and later with medicine and pharmacy. Over the ages, together with human progress, cosmetics have changed continuously and nowadays the cosmetic market is global and highly competitive, where terms such as quality, efficacy and safety are essential. Consumers’ demands are extremely sophisticated, and thus scientific research and product development have become vital to meet them. Moreover, consumers are aware about environmental and sustainability issues, and thus not harming the environment represents a key consideration when developing a new cosmetic ingredient. The latest tendencies of cosmetics are based on advanced research into how to interfere with skin cell aging: research includes the use of biotechnology-derived ingredients and the analysis of their effects on the biology of the cells, in terms of gene regulation, protein expression and enzymatic activity measures. In this review, we will provide some examples of cosmetic active ingredients developed through biotechnological systems, whose activity on the skin has been scientifically proved through in vitro and clinical studies.

  19. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  20. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  1. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  2. The emergence of commercial genomics: analysis of the rise of a biotechnology subsector during the Human Genome Project, 1990 to 2004.

    Science.gov (United States)

    Wiechers, Ilse R; Perin, Noah C; Cook-Deegan, Robert

    2013-01-01

    Development of the commercial genomics sector within the biotechnology industry relied heavily on the scientific commons, public funding, and technology transfer between academic and industrial research. This study tracks financial and intellectual property data on genomics firms from 1990 through 2004, thus following these firms as they emerged in the era of the Human Genome Project and through the 2000 to 2001 market bubble. A database was created based on an early survey of genomics firms, which was expanded using three web-based biotechnology services, scientific journals, and biotechnology trade and technical publications. Financial data for publicly traded firms was collected through the use of four databases specializing in firm financials. Patent searches were conducted using firm names in the US Patent and Trademark Office website search engine and the DNA Patent Database. A biotechnology subsector of genomics firms emerged in parallel to the publicly funded Human Genome Project. Trends among top firms show that hiring, capital improvement, and research and development expenditures continued to grow after a 2000 to 2001 bubble. The majority of firms are small businesses with great diversity in type of research and development, products, and services provided. Over half the public firms holding patents have the majority of their intellectual property portfolio in DNA-based patents. These data allow estimates of investment, research and development expenditures, and jobs that paralleled the rise of genomics as a sector within biotechnology between 1990 and 2004.

  3. The emergence of commercial genomics: analysis of the rise of a biotechnology subsector during the Human Genome Project, 1990 to 2004

    Science.gov (United States)

    2013-01-01

    Background Development of the commercial genomics sector within the biotechnology industry relied heavily on the scientific commons, public funding, and technology transfer between academic and industrial research. This study tracks financial and intellectual property data on genomics firms from 1990 through 2004, thus following these firms as they emerged in the era of the Human Genome Project and through the 2000 to 2001 market bubble. Methods A database was created based on an early survey of genomics firms, which was expanded using three web-based biotechnology services, scientific journals, and biotechnology trade and technical publications. Financial data for publicly traded firms was collected through the use of four databases specializing in firm financials. Patent searches were conducted using firm names in the US Patent and Trademark Office website search engine and the DNA Patent Database. Results A biotechnology subsector of genomics firms emerged in parallel to the publicly funded Human Genome Project. Trends among top firms show that hiring, capital improvement, and research and development expenditures continued to grow after a 2000 to 2001 bubble. The majority of firms are small businesses with great diversity in type of research and development, products, and services provided. Over half the public firms holding patents have the majority of their intellectual property portfolio in DNA-based patents. Conclusions These data allow estimates of investment, research and development expenditures, and jobs that paralleled the rise of genomics as a sector within biotechnology between 1990 and 2004. PMID:24050173

  4. Biotechnology policies and performance in central and eastern Europe

    NARCIS (Netherlands)

    Senker, J.; Enzing, C.; Reiss, T.

    2008-01-01

    This paper assesses how far ten Central and Eastern European (CEE) countries have 'caught up' in biotechnology on the basis of information about the policies and funding for biotechnology research and commercialisation from 2002-2005 and on the research and commercialisation performance of these

  5. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    Science.gov (United States)

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  6. Climate Change and Food Security: the role of Biotechnology

    African Journals Online (AJOL)

    Robert M. Yawson

    2012-08-05

    Aug 5, 2012 ... significance of plant biotechnology in reversing the disturbing food insecurity trends on the continent. To move ... commit resources to capacity building and provision of infrastructure for biotechnology ... need for researchers to engage in effective education and communication with the general public so as ...

  7. Role of public sector in developing agricultural biotechnology in Iran ...

    African Journals Online (AJOL)

    Agricultural experts in the field of biotechnology in Iran were surveyed in order to explore their perception about factors influencing the participation of public sector in developing agricultural biotechnology in Iran. Based on the results of the study, policy making, marketing, infrastructural, educational and research factors ...

  8. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  9. Climate change and food security: The role of biotechnology | Quaye ...

    African Journals Online (AJOL)

    The task of eradicating extreme poverty and hunger by 2015, as per Millennium Development Goals, will require both regional and global research efforts and concrete actions among which biotechnology adoption plays a key role. Advances in biotechnology can lead to cutting-edge technologies in agriculture. However ...

  10. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  11. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  12. The relevance of biotechnology in the development of functional ...

    African Journals Online (AJOL)

    The application of biotechnology techniques for the development of functional food plants with higher levels of bioactive components or increased availability of nutrients would greatly benefit most populations in developing countries and improve the health and nutritional status overall. Key words: Biotechnology, functional ...

  13. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  14. Biotechnology and Innovation Systems: The Role of Public Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-02-29

    Feb 29, 2012 ... This book explores how policies targeting public research institutions, such as universities, contribute to the appropriation of biotechnology through national innovation systems. Around the world, biotechnology has become a driving force for dramatic change in systems and policies intended to spur ...

  15. A systems engineering perspective on process integration in industrial biotechnology

    NARCIS (Netherlands)

    Kiss, Anton A.; Grievink, Johan; Rito-Palomares, Marco

    2015-01-01

    Biotechnology has many applications in health care, agriculture, industry and the environment. By using renewable raw materials, biotechnology contributes to lowering greenhouse gas emissions and moving away from a petro-based towards a circular sustainable economy. However, major developments are

  16. Challenges in commercialization of nano and biotechnologies in ...

    African Journals Online (AJOL)

    The major purpose of this study was to determine challenges in commercialization of nano and biotechnologies in agicultural sector of Iran. The total population for this study was 50 participants who attended a workshop on commercialization of nano and biotechnologies in agriculture at biotech 2010 exhibition in Tehran.

  17. Policy Implication of the Awareness and Use of Biotechnology ...

    African Journals Online (AJOL)

    The study revealed that majority (88.3 percent) of the respondents are aware of the existence of biotechnology products and majority (76.7 percent) of the respondents use biotechnology products. It was observed that genetically modified cassava variety is the most used biotech product in the study area as it scored a mean ...

  18. (Review paper) The role of biotechnology in crop improvement ...

    African Journals Online (AJOL)

    Biotechnology is currently playing a vital role in the improvement of crop plants generally. This is because of its abil ity to overcome the shortcomings of other conventional practices of crop improvement. This paper therefore considered the two broad aspects of Biotechnology in crop improvement name I); Genetic ...

  19. Acceptance of biotechnology and social-cultural implications in Ghana

    African Journals Online (AJOL)

    Abstract. Despite major scientific progress in the application of biotechnology in agriculture, public attitudes towards biotechnology in general and genetically modified food (GM food) products in particular remain mixed in Africa. Examining responses on acceptance of GM food through a stakeholder survey in Ghana, it was ...

  20. The plant biotechnology flight: Is Africa on board? | Obembe | African ...

    African Journals Online (AJOL)

    The development of plant biotechnologies has been very rapid in recent times, especially in the developed countries. The technologies have created a new branch of biotechnology known as molecular farming, where plants are engineered to produce pharmaceutical and technical proteins in large quantities. An evaluation ...

  1. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  2. Recent biotechnology developments and trends in the Russian Federation.

    Science.gov (United States)

    Osmakova, Alina; Kirpichnikov, Michael; Popov, Vladimir

    2018-01-25

    This paper addresses recent government initiatives in biotechnology and various federal and regional initiatives. It presents an overview of the most visible industrial biotechnology projects under implementation and highlights changes in legislation affecting development of the bioeconomy in the Russian Federation. Copyright © 2017. Published by Elsevier B.V.

  3. Biotechnology Patenting in the BRICS Countries: Strategies and Dynamics.

    Science.gov (United States)

    Streltsova, Ekaterina; Linton, Jonathan D

    2018-01-05

    The BRICS countries (Brazil, Russia, India, China, South Africa) account for 25% of global biotechnology patents. To understand the current and future landscape of the domain, it is important to better understand the capacity of these contributors. Here, we consider the thematic priorities, strategies, and key players of the BRICS countries in biotechnology patenting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Review Article: Biotechnology in aquaculture | OGARA | Journal of ...

    African Journals Online (AJOL)

    In order to optimize results in new breeding programmes, genetic engineering and genetically modified organisms (GMOs) offer new possibilities. Biotechnology allows ... Whatever the pros and cons of biotechnological development, institutions of developing nations must grow abreast with the rest of the world. Key words: ...

  5. Role of biotechnology in sustainable development of cotton

    Science.gov (United States)

    The prospect of biotechnology to provide cost-efficient sustainable cotton production under a safe environment for the 21st century is enormous. The role of plant biotechnology in the improvement of cotton is a rapidly evolving area and very broad. The specific objective of this paper is to provide...

  6. Nigerian Journal of Biotechnology (Vol. 33)

    African Journals Online (AJOL)

    Ladaf 2

    2010; Okpodu and Abdullah-Israel, 2011). During the. DNA isolation protocols, higher quality and yield are. Method 1: DNA isolation procedures followed ..... Plant, 6: 65-73. http://www.academicjournals.org/AJB, DOI: 10.5897/AJB11.2366. Turaki, A. A., Ahmad B., Magaji, U. F., Abdulrazak U. K.,. Yusuf B. A. and Hamza A. B. ...

  7. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  8. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  9. AND Dy(III)

    African Journals Online (AJOL)

    userpc

    ACTIVITIES OF Sm(III) AND Dy(III) COMPLEXES WITH SCHIFF BASE DERIVED FROM ... and spectral analysis show that ligand coordinate to the central lanthanide(III)ion by its imine nitrogen, phenolic oxygen and carboxylic oxygen in 1:1 stoichemetry. The complexes were ... instance iron (III) and cobalt (III) complexes.

  10. Global Positioning System III (GPS III)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-292 Global Positioning System III ( GPS III) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:15:29 UNCLASSIFIED GPS III December 2015 SAR March 23, 2016 16:15:29 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost GPS III December 2015 SAR March 23

  11. BIOTECHNOLOGY OF UTILIZATION OF MUNICIPAL WASTEWATER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    G. N. Nikovskaya

    2014-06-01

    Full Text Available Analysis of information on air-conditioning contaminated with heavy metals sludge municipal wastewater points to the actual ecological and chemical problem and its solution could be implemented within the framework of the biological process involving heterotrophic microorganisms. Information on the spread, toxicity, biochemistry, microbiology, colloidal and chemical properties of sludge sediments of municipal wastewater biological treatment is given in the review. These sediments contain vitamins, amino acids, organic matter, heavy metals (micro- and macroelements. Therefore the most rational approach to sludge wastes utilization is their use as an agricultural fertilizer after partial removal of heavy metals. Hence, the interaction of sludge components with heavy metals, modern methods of their removing from biocolloidal systems and biotechnologies of conversion of sludge wastes into fertilizer based on the enhancing of vital ability of sludge biocenoses are discussed.

  12. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  13. New challenges and opportunities for industrial biotechnology

    Science.gov (United States)

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  14. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  15. Application of biofilm bioreactors in white biotechnology.

    Science.gov (United States)

    Muffler, K; Lakatos, M; Schlegel, C; Strieth, D; Kuhne, S; Ulber, R

    2014-01-01

    The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.

  16. Biotechnological production of limonene in microorganisms.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.

  17. How could haloalkaliphilic microorganisms contribute to biotechnology?

    Science.gov (United States)

    Zhao, Baisuo; Yan, Yanchun; Chen, Shulin

    2014-11-01

    Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.

  18. Complex Biochemistry and Biotechnological Production of Betalains

    Directory of Open Access Journals (Sweden)

    Marijana Krsnik-Rasol

    2011-01-01

    Full Text Available The demand for natural food colourants is increasing because of public awareness of their health benefits. Betalains are nitrogen-containing plant pigments whose colours range from red-violet betacyanins to yellow betaxanthins. They are used for colouring dairy products, meat and frozen desserts. Betalains have attracted additional interest because of their antioxidative, anti-inflammatory and anticarcinogenic properties. The main source of commercially produced betalains is red beet root, but alternative sources are found in plants from the Amaranthaceae and Cactaceae families. Another alternative source is plant cell culture in bioreactors, although optimization of pigment production seems necessary. In this paper we synthesize the results of recent studies on betalain biosynthesis, chemical properties, sources, biotechnology and applications.

  19. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  20. Biotechnological interventions in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Singh, Pritika; Guleri, Rupam; Singh, Varinder; Kaur, Gurpreet; Kataria, Hardeep; Singh, Baldev; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu; Pati, Pratap Kumar

    2015-01-01

    Withania somnifera is one of the most valued plants and is extensively used in Indian, Unani, and African systems of traditional medicine. It possess a wide array of therapeutic properties including anti-arthritic, anti-aging, anti-cancer, anti-inflammatory, immunoregulatory, chemoprotective, cardioprotective, and recovery from neurodegenerative disorders. With the growing realization of benefits and associated challenges in the improvement of W. somnifera, studies on exploration of genetic and chemotypic variations, identification and characterization of important genes, and understanding the secondary metabolites production and their modulation has gained significant momentum. In recent years, several in vitro and in vivo preclinical studies have facilitated the validation of therapeutic potential of the phytochemicals derived from W. somnifera and have provided necessary impetus for gaining deeper insight into the mechanistic aspects involved in the mode of action of these important pharmaceutically active constituents. The present review highlights some of the current developments and future prospects of biotechnological intervention in this important medicinal plant.

  1. Biotechnological potential of Clostridium butyricum bacteria

    Directory of Open Access Journals (Sweden)

    Daria Szymanowska-Powałowska

    2014-09-01

    Full Text Available In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L. A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties.

  2. From cell biology to biotechnology in space.

    Science.gov (United States)

    Cogoli, A

    2000-09-01

    In this article I discuss the main results of our research in space biology from the simple early investigations with human lymphocytes in the early eighties until the projects in tissue engineering of the next decade on the international space station ISS. The discovery that T lymphocyte activation is nearly totally depressed in vitro in 0 g conditions showed that mammalian single cells are sensitive to the gravitational environment. Such finding had important implications in basic research, medicine and biotechnology. Low gravity can be used as a tool to investigate complicated and still obscure biological process from a new perspective not available to earth-bound laboratories. Low gravity may also favor certain bioprocesses involving the growth of tissues and thus lead to commercial and medical applications. However, shortage of crew time and of other resources, lack of sophisticated instrumentation, safety constraints pose serious limits to biological endeavors in space laboratories.

  3. Development of agriculture biotechnology in Pakistan.

    Science.gov (United States)

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  4. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  5. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  6. TEACHING OF BIOTECHNOLOGY: TEACHING KNOWLEDGE AND APPROACH IN THE PERSPECTIVE OF THE NATIONAL EXAMINATION OF MIDDLE SCHOOL

    Directory of Open Access Journals (Sweden)

    João Paulo Silva Pinheiro

    2017-06-01

    Full Text Available The National Secondary Education Examination (Exame Nacional do Ensino Médio- ENEM aims that schools adopt an interdisciplinary and contextualized education, being a requirement for entry into higher education institutions. In biology there is an area named Biotechnology, that relates to several technological activities important to society, but with ethical, social, political questions, among others. In this context, the present study aims to examine how biotechnology is addressed by teachers of the 3rd year of high school, focusing on ENEM. In order to accomplish this, analyzes were made of ENEM’s questions from 2009 to 2015, they were applied interviews with teachers from four public schools in the city of Fortaleza / CE. In the analysis of the ENEM exams, it was found that in all editions Biotechnology was addressed directly or indirectly, as transgenic, recombinant DNA, biofuels and stem cells. It was found that biotechnology is being taught in public schools in the city of Fortaleza / CE, but with little depth, since most of interviewed showed some discomfort in teaching the subject, lack of professional renovation, preventing a more secure opinion on certain matters disclosed; such insecurity ends up reflecting the presentation of content in the classroom.

  7. Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology.

    Science.gov (United States)

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2013-01-01

    Insects are the most diverse group of organisms on earth, colonizing almost every ecological niche of the planet. To survive in various and sometimes extreme habitats, insects have established diverse biological and chemical systems. Core components of these systems are enzymes that enable the insects to feed on diverse nutrient sources. The enzymes are produced by either the insects themselves (homologous) or by symbiotic organisms located in the insects' bodies or in their nests (heterologous). The use of these insect-associated enzymes for applications in the fields of food biotechnology and industrial (white) biotechnology is gaining more and more interest. Prominent examples of insect-derived enzymes include peptidases, amylases, lipases, and β-D-glucosidases. Highly potent peptidases for the degradation of gluten, a storage protein that can cause intestinal disorders, may be received from grain pests. Several insects, such as bark and ambrosia beetles and termites, are able to feed on wood. In the field of white biotechnology, their cellulolytic enzyme systems of mainly endo-1,4-β-D-glucanases and β-D-glucosidases can be employed for saccharification of the most prominent polymer on earth-cellulose.

  8. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  9. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  10. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...... to start to fill this gap and develop a conceptual framework for comparing and analysing new and emerging modes of governance affiliated with biotechnology in the light of more general approaches to governance. We aim for a framework that can facilitate comparative inquiries and learning across different...

  12. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  13. Crossing boundaries: the importance of cellular membranes in industrial biotechnology.

    Science.gov (United States)

    Jezierska, Sylwia; Van Bogaert, Inge N A

    2017-05-01

    How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.

  14. The impact of plant biotechnology on food allergy.

    Science.gov (United States)

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  16. Characterization of ribonuclease III from Brucella.

    Science.gov (United States)

    Wu, Chang-Xian; Xu, Xian-Jin; Zheng, Ke; Liu, Fang; Yang, Xu-Dong; Chen, Chuang-Fu; Chen, Huan-Chun; Liu, Zheng-Fei

    2016-04-01

    Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [DNA: from Miescher to Venter and beyond].

    Science.gov (United States)

    Gabryelska, Marta M; Szymański, Maciej; Barciszewski, Jan

    2009-01-01

    DNA, one of the most famous molecules is 140-years-old. Its history has engaged three centuries of experiments, leading us to a point, where the Homo sapiens genome sequence is known. The "DNA breakthrough" is dated on 1953, when James Watson and Francis Crick proposed the model of molecular structure of DNA. But the origin of that great achievement goes back to 1869 and early efforts of Friedrich Miescher, the Swiss doctor, who isolated DNA (than termed nuclein) for the first time. Since that time wealth information on "nuclein", its functions, structure and usage has been collected and formed a basis for modern molecular biology, chemical biology and biotechnology. This article describes the events and circumstances of the most important DNA discoveries since its first isolation up to completing the human genome project and deep DNA sequencing techniques application.

  18. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ...] Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System Program AGENCY... participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management..., audit-based compliance assistance program known as the Biotechnology Quality Management System Program...

  19. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  20. How-to-Do-It: Biotechnology in Three Days.

    Science.gov (United States)

    Gardner, Alan M.

    1988-01-01

    Outlines a three-day unit for presenting biotechnology. States that the approach surveys the processes of enzyme restriction, ligation, transformations of recombinant plasmids, and gel electrophoresis. Diagrams accompany the article. (RT)