WorldWideScience

Sample records for dna binding specificity

  1. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    KAUST Repository

    Li, Lixin

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. © 2013 The Author.

  2. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    Science.gov (United States)

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  3. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models.

    Science.gov (United States)

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-05-06

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations.

    Science.gov (United States)

    Song, Wei; Guo, Jun-Tao

    2015-01-01

    Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.

  5. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  6. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  7. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    Science.gov (United States)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  8. Specificity of cellular DNA-binding sites of microbial populations in a Florida reservoir

    International Nuclear Information System (INIS)

    Paul, J.H.; Pichard, S.L.

    1989-01-01

    The substrate specificity of the DNA-binding mechanism(s) of bacteria in a Florida reservoir was investigated in short- and long-term uptake studies with radiolabeled DNA and unlabeled competitors. Thymine oligonucleotides ranging in size from 2 base pairs to 19 to 24 base pairs inhibited DNA binding in 20-min incubations by 43 to 77%. Deoxynucleoside monophosphates, thymidine, and thymine had little effect on short-term DNA binding, although several of these compounds inhibited the uptake of the radiolabel from DNA in 4-h incubations. Inorganic phosphate and glucose-1-phosphate inhibited neither short- nor long-term binding of [ 3 H]- or [ 32 P]DNA, indicating that DNA was not utilized as a phosphorous source in this reservoir. RNA inhibited both short- and long-term radiolabeled DNA uptake as effectively as unlabeled DNA. Collectively these results indicate that aquatic bacteria possess a generalized nuclei acid uptake/binding mechanism specific for compounds containing phosphodiester bonds and capable of recognizing oligonucleotides as short as dinucleotides. This binding site is distinct from nucleoside-, nucleotide-, phosphomonoester-, and inorganic phosphate-binding sites. Such a nucleic acid-binding mechanism may have evolved for the utilization of extracellular DNA (and perhaps RNA), which is abundant in many marine and freshwater environments

  9. A constitutive damage specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells

    International Nuclear Information System (INIS)

    Hirschfeld, S.; Levine, A.S.; Ozato, K.; Protic, M.

    1990-01-01

    Using a DNA band shift assay, we have identified a DNA-binding protein complex in primate cells which is present constitutively and has a high affinity for UV-irradiated, double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin have higher levels of this damage-specific DNA-binding protein complex, suggesting that the signal for induction can either be damage to the DNA or interference with cellular DNA replication. Physiochemical modifications of the DNA and competition analysis with defined substrates suggest that the most probable target site for the damage-specific DNA-binding protein complex is a 6-4'-(pyrimidine-2'-one)-pyrimidine dimer: specific binding could not be detected with probes which contain -TT- cyclobutane dimers, and damage-specific DNA binding did not decrease after photoreactivation of UV-irradiated DNA. This damage-specific DNA-binding protein complex is the first such inducible protein complex identified in primate cells. Cells from patients with the sun-sensitive cancer-prone disease, xeroderma pigmentosum (group E), are lacking both the constitutive and the induced damage-specific DNA-binding activities. These findings suggest a possible role for this DNA-binding protein complex in lesion recognition and DNA repair of UV-light-induced photoproducts

  10. Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I.

    OpenAIRE

    Parsons, C A; West, S C

    1990-01-01

    T7 endonuclease I binds specifically to four-way junctions in duplex DNA and promotes their resolution into linear duplexes. Under conditions in which the nuclease activity is blocked by the absence of divalent cations, the enzyme forms a distinct protein-DNA complex with the junction, as detected by gel retardation and filter binding assays. The formation of this complex is structure-specific and contrasts with the short-lived binding complexes formed on linear duplex DNA. The binding comple...

  11. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  12. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and seq......For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes...

  13. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  14. Trigger Factor and DnaK possess overlapping substrate pools and binding specificities.

    Science.gov (United States)

    Deuerling, Elke; Patzelt, Holger; Vorderwülbecke, Sonja; Rauch, Thomas; Kramer, Günter; Schaffitzel, Elke; Mogk, Axel; Schulze-Specking, Agnes; Langen, Hanno; Bukau, Bernd

    2003-03-01

    Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.

  15. On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*

    Science.gov (United States)

    Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.

    2017-06-01

    Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

  16. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites....... Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding....... The ability of NAC proteins to dimerize and to bind DNAwas analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus...

  17. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    KAUST Repository

    Li, Lixin; Atef, Ahmed; Piatek, Agnieszka Anna; Ali, Zahir; Piatek, Marek J.; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Mohammad Suhail; Fedoroff, Nina V.; Zhu, Jiankang; Mahfouz, Magdy M.

    2013-01-01

    , including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA

  18. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  19. Sequence specificity and biological consequences of drugs that bind covalently in the minor groove of DNA

    International Nuclear Information System (INIS)

    Hurley, L.H.; Needham-VanDevanter, D.R.

    1986-01-01

    DNA ligands which bind within the minor groove of DNA exhibit varying degrees of sequence selectivity. Factors which contribute to nucleotide sequence recognition by minor groove ligands have been extensively investigated. Electrostatic interactions, ligand and DNA dehydration energies, hydrophobic interactions and steric factors all play significant roles in sequence selectivity in the minor groove. Interestingly, ligand recognition of nucleotide sequence in the minor groove does not involve significant hydrogen bonding. This is in sharp contrast to cellular enzyme and protein recognition of nucleotide sequence, which is achieved in the major groove via specific hydrogen bond formation between individual bases and the ligand. The ability to read nucleotide sequence via hydrogen bonding allows precise binding of proteins to specific DNA sequences. Minor groove ligands examined to date exhibit a much lower sequence specificity, generally binding to a subset of possible sequences, rather than a single sequence. 19 refs., 7 figs

  20. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Support Vector Machine (SVM) is a state-of-the-art classifica- tion technique. Using canonical binding model, the C2H2 zinc finger protein–DNA interaction interface is modelled by the pairwise amino acid–base interactions. Using a classification framework, known examples of non-binding ZF–DNA pairs.

  1. A duplex DNA-gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins.

    Science.gov (United States)

    Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa

    2016-03-21

    Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.

  2. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  3. Absence of specificity in inhibition of DNA repair replication by DNA-binding agents, cocarcinogens, and steroids in human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Painter, R.B.

    1975-01-01

    Although many chemicals, including cocarcinogens, DNA-binding agents, and steroids, inhibit repair replication of ultraviolet-induced damage to DNA in human lymphocytes and proliferating cells in culture, none of these chemicals is specific. Our results show that all the chemicals we tested inhibit normal DNA synthesis as much as or more than they inhibit repair replication. There is thus no evidence in our results to support the hypothesis that cocarcinogens are specific inhibitors of DNA repair or that any of the chemicals studied might be useful adjuncts to tumor therapy merely because of specific inhibition of radiation repair mechanisms

  4. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    Science.gov (United States)

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  5. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  6. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  7. DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    Full Text Available BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb has only one subunit of HU coded by ORF Rv2986c (hupB gene. One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb and another which expresses only the N terminal region (first 95 amino acid of hupB (HupB(MtbN. Gel retardation assays revealed that HupB(MtbN is almost like E. coli HU (heat stable nucleoid protein in terms of its DNA binding, with a binding constant (K(d for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region of HupB(Mtb imparts greater specificity in DNA binding. HupB(Mtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.

  8. On binding specificity of (6–4) photolyase to a T(6–4)T DNA photoproduct

    DEFF Research Database (Denmark)

    Aalbæk Jepsen, Katrine; Solov'yov, Ilia

    2017-01-01

    this binding for a specific enzyme called (6–4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines...

  9. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  10. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half

  11. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  12. Context influences on TALE–DNA binding revealed by quantitative profiling

    Science.gov (United States)

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  13. Structure and DNA-binding of meiosis-specific protein Hop2

    Science.gov (United States)

    Zhou, Donghua; Moktan, Hem; Pezza, Roberto

    2014-03-01

    Here we report structure elucidation of the DNA binding domain of homologous pairing protein 2 (Hop2), which is important to gene diversity when sperms and eggs are produced. Together with another protein Mnd1, Hop2 enhances the strand invasion activity of recombinase Dmc1 by over 30 times, facilitating proper synapsis of homologous chromosomes. However, the structural and biochemical bases for the function of Hop2 and Mnd1 have not been well understood. As a first step toward such understanding, we recently solved the structure for the N-terminus of Hop2 (1-84) using solution NMR. This fragment shows a typical winged-head conformation with recognized DNA binding activity. DNA interacting sites were then investigated by chemical shift perturbations in a titration experiment. Information of these sites was used to guide protein-DNA docking with MD simulation, revealing that helix 3 is stably lodged in the DNA major groove and that wing 1 (connecting strands 2 and 3) transiently comes in contact with the minor groove in nanosecond time scale. Mutagenesis analysis further confirmed the DNA binding sites in this fragment of the protein.

  14. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  15. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  16. Specific binding of a dihydropyrimidinone derivative with DNA: Spectroscopic, calorimetric and modeling investigations

    International Nuclear Information System (INIS)

    Wang Gongke; Yan Changling; Wang Dongchao; Li Dan; Lu Yan

    2012-01-01

    One of the dihydropyrimidinone derivative 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl) -3,4-dihydropyrimidin-2(1H)-one (EMMD) was synthesized, and its binding properties with calf-thymus DNA (ctDNA) were investigated using spectroscopic, viscometric, isothermal titration calorimetric (ITC) and molecular modeling techniques. Fluorescence spectra suggested that the fluorescence enhancement of the binding interaction of EMMD to ctDNA was a static process with ground state complex formation. The binding constant determined with spectroscopic titration and ITC was found to be in the same order of 10 4 M −1 . According to the results of the viscosity analysis, fluorescence competitive binding experiment, fluorescence quenching studies, absorption spectral and ITC investigations, it can be concluded that EMMD is intercalative binding to ctDNA. Furthermore, the results of molecular modeling confirmed those obtained from spectroscopic, viscosimetric and ITC investigations. Additionally, ITC studies also indicated that the binding interaction is predominantly enthalpy driven. - Highlights: ► Medically important dihydropyrimidinones derivative EMMD is synthesized. ► EMMD is intercalative binding into ctDNA helix. ► Hydrogen bonding may play an essential role in the binding of EMCD with ctDNA. ► This binding interaction is predominantly enthalpy driven.

  17. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    Science.gov (United States)

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  18. Sequence specific DNA binding by P53 is enhanced by ionizing radiation and is mediated via DNA-PK activity

    International Nuclear Information System (INIS)

    Kachnic, L.A.; Wunsch, H.; Mekeel, K.L.; De Frank, J.S.; Powell, S.N.

    1996-01-01

    Purpose: P53 is known to be involved in the cellular response to DNA damage. It mediates many of its effects by acting as a transcription factor via sequence-specific DNA binding. The half-life of p53 is prolonged following DNA damage, and this results in elevated levels of p53 for a period of 2-8 hours. The increase in p53 is often relatively small, but this produces significant stimulation of a downstream gene such as p21(WAF1/cip1). We investigated post-translational modification of p53 following ionizing radiation damage. Materials and Methods: The response of normal Balb-C mouse fibroblasts (FC) to ionizing radiation (IR, 8 Gy) was measured at 0,3,6,9 and 24 hours, by the levels of p53, p21, flow cytometry and the electrophoretic mobility shift assay (EMSA). EMSA utilized a 26 bp consensus sequence end-labeled oligonucleotide to measure sequence-specific p53 binding. P53 specificity was confirmed by an enhanced mobility shift (retardation) when using p53 antibody. Comparison was made with scid fibroblasts (FS) and FC cells transfected with a plasmid (CX3) containing mutant p53 (alanine-143) or infected with a retrovirus containing the E6 protein of human papilloma virus type 16. Results: The response of p53 to DNA damage shows a 3-fold increase at 3-6 hours, and was not significantly different between FC and FS. FC-CX3 showed detectable basal levels of p53, and a 2-fold further induction of p53 after IR. FC-E6 showed no detectable levels of p53 before or after IR. No induction of p21 or G1/S arrest was seen in FC-CX3 or FC-E6, as has been observed previously. The induction of p21 in FS cells was attenuated and delayed: a 2-3-fold increase seen maximally at 9 hours, compared with a 5-fold increase seen maximally at 3-6 hours in FC cells. The accumulation of cells at the G1/S junction after IR showed the same kinetics as p21 induction: the peak of cells in G1 occurs at 3-6 hours in FC, but not until 9-24 hours in FS. The response is reminiscent of that seen in

  19. DNA binding by the plant-specific NAC transcription factors in crystal and solution

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Lindemose, Søren; Grossmann, J. Günter

    2012-01-01

    angle X-ray scattering on complexes with oligonucleotides, mutagenesis and (DNase I and uranyl photo-) footprinting, is combined to form a structural view of DNA-binding, and for the first time provide experimental evidence for the speculated relationship between plant-specific NAC proteins, WRKY...

  20. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    International Nuclear Information System (INIS)

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed

  1. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Energy Technology Data Exchange (ETDEWEB)

    Adámik, Matej [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Bažantová, Pavla [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Navrátilová, Lucie; Polášková, Alena [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Pečinka, Petr [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Holaňová, Lucie [Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic); Tichý, Vlastimil [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Brázdová, Marie, E-mail: maruska@ibp.cz [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic)

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  2. Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue

    Directory of Open Access Journals (Sweden)

    Smith Eric L

    2008-01-01

    Full Text Available Abstract Background The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes C. elegans nhr-67, Drosophila tailless and dissatisfaction, and vertebrate Tlx (NR2E2, NR2E4, NR2E1, and the NR2E3 subclass, which includes C. elegans fax-1 and vertebrate PNR (NR2E5, NR2E3. PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members. Results We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind in vivo. Conclusion These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1

  3. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    Science.gov (United States)

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  4. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...... recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match...... with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure...

  5. Modification of DNA radiolysis by DNA-binding proteins: Structural aspects

    International Nuclear Information System (INIS)

    Davidkova, M.; Stisova, V.; Goffinont, S.; Gillard, N.; Castaing, B.; Spotheim-Maurizot, M.

    2006-01-01

    Formation of specific complexes between proteins and their cognate DNA modulates the yields and the location of radiation damage on both partners of the complex. The radiolysis of DNA-protein complexes is studied for: (1) the Escherichia coli lactose operator-repressor complex, (2) the complex between DNA bearing an analogue of an abasic site and the repair protein Fpg of Lactococcus lactis. Experimental patterns of DNA damages are presented and compared to predicted damage distribution obtained using an improved version of the stochastic model RADACK. The same method is used for predicting the location of damages on the proteins. At doses lower than a threshold that depends on the system, proteins protect their specific binding site on DNA while at high doses, the studied complexes are disrupted mainly through protein damage. The loss of binding ability is the functional consequence of the amino-acids modification by OH . radicals. Many of the most probably damaged amino acids are essential for the DNA-protein interaction and within a complex are protected by DNA. (authors)

  6. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    DEFF Research Database (Denmark)

    Bentin, T; Nielsen, Peter E.

    1996-01-01

    The influence of DNA topology on peptide nucleic acid (PNA) binding was studied. Formation of sequence-specific PNA2/dsDNA (double-stranded DNA) complexes was monitored by a potassium permanganate probing/primer extension assay. At low ionic strengths, the binding of PNA was 2-3 times more...

  7. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  8. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    Science.gov (United States)

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  9. Quantification of transcription factor-DNA binding affinity in a living cell.

    Science.gov (United States)

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Accurate and sensitive quantification of protein-DNA binding affinity.

    Science.gov (United States)

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  11. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    Science.gov (United States)

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  13. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-01-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  14. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB

    Science.gov (United States)

    Yokoyama, Katsushi; Nogami, Hideki; Kabasawa, Mamiko; Ebihara, Sonomi; Shimowasa, Ai; Hashimoto, Keiko; Kawashima, Tsuyoshi; Ishijima, Sanae A.; Suzuki, Masashi

    2009-01-01

    The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship. PMID:19468044

  15. Positive cooperativity of the specific binding between Hg2+ ion and T:T mismatched base pairs in duplex DNA

    International Nuclear Information System (INIS)

    Torigoe, Hidetaka; Miyakawa, Yukako; Ono, Akira; Kozasa, Tetsuo

    2012-01-01

    Highlights: ► Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio. ► The binding constant between Hg 2+ and the T:T mismatched base pair was 10 6 M −1 . ► The binding constant was larger than those for nonspecific metal–DNA interactions. ► The binding constant for the second Hg 2+ was larger than that for the first Hg 2+ . ► The positive cooperative binding was observed between Hg 2+ and multiple T:T. - Abstract: Metal-mediated base pairs by the interaction between metal ions and artificial bases in oligonucleotides have been developed for their potential applications in nanotechnology. We recently found that a natural T:T mismatched base pair bound with Hg 2+ ion to form a novel T–Hg–T base pair. Here, we examined the thermodynamic properties of the binding between Hg 2+ and each of the single and double T:T mismatched base pair duplex DNAs by isothermal titration calorimetry. Hg 2+ specifically bound with the T:T mismatched base pair at 1:1 molar ratio with 10 6 M −1 binding constant, which was significantly larger than those for nonspecific metal ion–DNA interactions. In the Hg 2+ –double T:T mismatched base pair interaction, the affinity for the second Hg 2+ binding was significantly larger than that for the first Hg 2+ binding. The positively cooperative binding may be favorable to align multiple Hg 2+ in duplex DNA for the application of the metal-mediated base pairs in nanotechnology.

  16. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  17. enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Ruifeng Xu

    2014-01-01

    Full Text Available DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97–9.52% in ACC and 0.08–0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83–16.63% in terms of ACC and 0.02–0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

  18. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Directory of Open Access Journals (Sweden)

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  20. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    Science.gov (United States)

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  1. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  2. Generalized theory on the mechanism of site-specific DNA-protein interactions

    Science.gov (United States)

    Niranjani, G.; Murugan, R.

    2016-05-01

    We develop a generalized theoretical framework on the binding of transcription factor proteins (TFs) with specific sites on DNA that takes into account the interplay of various factors regarding overall electrostatic potential at the DNA-protein interface, occurrence of kinetic traps along the DNA sequence, presence of other roadblock protein molecules along DNA and crowded environment, conformational fluctuations in the DNA binding domains (DBDs) of TFs, and the conformational state of the DNA. Starting from a Smolochowski type theoretical framework on site-specific binding of TFs we logically build our model by adding the effects of these factors one by one. Our generalized two-step model suggests that the electrostatic attractive forces present inbetween the positively charged DBDs of TFs and the negatively charged phosphate backbone of DNA, along with the counteracting shielding effects of solvent ions, is the core factor that creates a fluidic type environment at the DNA-protein interface. This in turn facilitates various one-dimensional diffusion (1Dd) processes such as sliding, hopping and intersegmental transfers. These facilitating processes as well as flipping dynamics of conformational states of DBDs of TFs between stationary and mobile states can enhance the 1Dd coefficient on a par with three-dimensional diffusion (3Dd). The random coil conformation of DNA also plays critical roles in enhancing the site-specific association rate. The extent of enhancement over the 3Dd controlled rate seems to be directly proportional to the maximum possible 1Dd length. We show that the overall site-specific binding rate scales with the length of DNA in an asymptotic way. For relaxed DNA, the specific binding rate will be independent of the length of DNA as length increases towards infinity. For condensed DNA as in in vivo conditions, the specific binding rate depends on the length of DNA in a turnover way with a maximum. This maximum rate seems to scale with the

  3. Radioimmunological demonstration of DNA specific antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Falck, P [Akademie der Wissenschaften der DDR, Berlin-Buch. Zentralinstitut fuer Isotopen- und Strahlenforschung

    1976-01-01

    Using /sup 125/I chemically labelled denatured (d) and native (n) DNA, specifically binding antibodies were demonstrated in the sera of Lupus erythemathodes patients by means of the Farr technique. (NH/sub 4/)/sub 2/SO/sub 4/ was used to separate the immunologically bound /sup 125/I-d-DNA. For /sup 125/I-n-DNA the use of a secondary antiserum for the precipitation of the primary immune complex is advantageous. The influence of antigen concentration upon the binding rate was studied. Titre determinations can be made with the proposed method.

  4. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  5. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  6. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection

    International Nuclear Information System (INIS)

    Rosenke, Kyle; Samuel, Melanie A.; McDowell, Eric T.; Toerne, Melissa A.; Fortunato, Elizabeth A.

    2006-01-01

    The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection

  7. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-09-01

    Full Text Available Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4 during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.

  8. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  9. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  10. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  11. The helical structure of DNA facilitates binding

    International Nuclear Information System (INIS)

    Berg, Otto G; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-01-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general. (paper)

  12. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene

    International Nuclear Information System (INIS)

    Knight, G.B.; Gudas, J.M.; Pardee, A.B.

    1987-01-01

    Induction of thymidine kinase parallels the onset of DNA synthesis. To investigate the transcriptional regulation of the thymidine kinase gene, the authors have examined whether specific nuclear factors interact in a cell-cycle-dependent manner with sequences upstream of this gene. Two inverted CCAAT boxes near the transcriptional initiation sites were observed to form complexes with nuclear DNA-binding proteins. The nature of the complexes changes dramatically as the cells approach DNA synthesis and correlates well with the previously reported transcriptional increase of the thymidine kinase gene

  13. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    Science.gov (United States)

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  14. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    Science.gov (United States)

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  15. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    Science.gov (United States)

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characterization of antibodies specific for UV-damaged DNA by ELISA

    Energy Technology Data Exchange (ETDEWEB)

    Eggset, G; Volden, G; Krokan, H

    1987-04-01

    The specificity of affinity purified antibodies raised against UV-irradiated DNA was examined using an enzyme-linked immunosorbent assay. DNA irradiated with UV doses higher than needed for saturation with pyrimidine dimers bound increasing amounts of antibody. Photosensitized DNA, containing high amounts of pyrimidine dimers, showed very poor binding of antibody. When UV-irradiated DNA was given a second dose of 340-nm UV light, the binding of antibodies was inhibited. Taken together, this indicates a major specificity for (6-4)-photoproducts, which are photochemically reversed by UV light in the 340-nm region. The antibodies also showed little but detectable binding to pyrimidine glycols produced in DNA by oxidation with OsO/sub 4/. Previously, we have used these antibodies for the detection of UV-induced DNA damage and its repair in human skin in vivo. These findings indicate that (6-4)-photoproducts, considered highly mutagenic, are repaired in human skin.

  17. Characterization of antibodies specific for UV-damaged DNA by ELISA

    International Nuclear Information System (INIS)

    Eggset, G.; Volden, G.; Krokan, H.; Norsk Hydro Research Centre, Porsgrunn

    1987-01-01

    The specificity of affinity purified antibodies raised against UV-irradiated DNA was examined using an enzyme-linked immunosorbent assay. DNA irradiated with UV doses higher than needed for saturation with pyrimidine dimers bound increasing amounts of antibody. Photosensitized DNA, containing high amounts of pyrimidine dimers, showed very poor binding of antibody. When UV-irradiated DNA was given a second dose of 340-nm UV light, the binding of antibodies was inhibited. Taken together, this indicates a major specificity for (6-4)-photoproducts, which are photochemically reversed by UV light in the 340-nm region. The antibodies also showed little but detectable binding to pyrimidine glycols produced in DNA by oxidation with OsO 4 . Previously, we have used these antibodies for the detection of UV-induced DNA damage and its repair in human skin in vivo. These findings indicate that (6-4)-photoproducts, considered highly mutagenic, are repaired in human skin. (author)

  18. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  19. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

    Science.gov (United States)

    Pereira, L A; van der Knaap, J A; van den Boom, V; van den Heuvel, F A; Timmers, H T

    2001-11-01

    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.

  20. DNA binding studies of tartrazine food additive.

    Science.gov (United States)

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  1. DNA-binding determinants promoting NHEJ by human Polμ.

    Science.gov (United States)

    Martin, Maria Jose; Juarez, Raquel; Blanco, Luis

    2012-12-01

    Non-homologous end-joining (NHEJ), the preferred pathway to repair double-strand breaks (DSBs) in higher eukaryotes, relies on a collection of molecular tools to process the broken ends, including specific DNA polymerases. Among them, Polµ is unique as it can catalyze DNA synthesis upon connection of two non-complementary ends. Here, we demonstrate that this capacity is intrinsic to Polµ, not conferred by other NHEJ factors. To understand the molecular determinants of its specific function in NHEJ, the interaction of human Polµ with DNA has been directly visualized by electromobility shift assay and footprinting assays. Stable interaction with a DNA gap requires the presence of a recessive 5'-P, thus orienting the catalytic domain for primer and nucleotide binding. Accordingly, recognition of the 5'-P is crucial to align the two DNA substrates of the NHEJ reaction. Site-directed mutagenesis demonstrates the relevance of three specific residues (Lys(249), Arg(253) and Arg(416)) in stabilizing the primer strand during end synapsis, allowing a range of microhomology-induced distortions beneficial for NHEJ. Moreover, our results suggest that the Polµ BRCT domain, thought to be exclusively involved in interaction with NHEJ core factors, has a direct role in binding the DNA region neighbor to the 5'-P, thus boosting Polµ-mediated NHEJ reactions.

  2. Nonspecific DNA Binding and Bending by HUαβ: Interfaces of the Three Binding Modes Characterized by Salt Dependent Thermodynamics

    Science.gov (United States)

    Koh, Junseock; Shkel, Irina; Saecker, Ruth M.; Record, M. Thomas

    2011-01-01

    Previous ITC and FRET studies demonstrated that Escherichia coli HUαβ binds nonspecifically to duplex DNA in three different binding modes: a tighter-binding 34 bp mode which interacts with DNA in large (>34 bp) gaps between bound proteins, reversibly bending it 140° and thereby increasing its flexibility, and two weaker, modestly cooperative small-site-size modes (10 bp, 6 bp) useful for filling gaps between bound proteins shorter than 34 bp. Here we use ITC to determine the thermodynamics of these binding modes as a function of salt concentration, and deduce that DNA in the 34 bp mode is bent around but not wrapped on the body of HU, in contrast to specific binding of IHF. Analyses of binding isotherms (8, 15, 34 bp DNA) and initial binding heats (34, 38, 160 bp DNA) reveal that all three modes have similar log-log salt concentration derivatives of the binding constants (Ski) even though their binding site sizes differ greatly; most probable values of Ski on 34 bp or larger DNA are − 7.5 ± 0.5. From the similarity of Ski values, we conclude that binding interfaces of all three modes involve the same region of the arms and saddle of HU. All modes are entropy-driven, as expected for nonspecific binding driven by the polyelectrolyte effect. The bent-DNA 34 bp mode is most endothermic, presumably because of the cost of HU-induced DNA bending, while the 6 bp mode is modestly exothermic at all salt concentrations examined. Structural models consistent with the observed Ski values are proposed. PMID:21513716

  3. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  4. Reduction of the non-specific binding of DNA to gamma-globulin in Farr radioimmunoassay by addition of dextran sulfate and calcium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Wakizaka, A; Okuhara, E [Akita Univ. (Japan)

    1979-01-23

    The effect of non-specific binding caused by the interaction between gamma-globulin and denatured DNA was markedly reduced by addition of dextran sulfate or CaCl/sub 2/ at alkaline pH. This method was shown to be applicable in the detection of anti-DNA antibodies in sera from cases of human systemic lupus erythematosus.

  5. In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis.

    Science.gov (United States)

    Savory, Nasa; Lednor, Danielle; Tsukakoshi, Kaori; Abe, Koichi; Yoshida, Wataru; Ferri, Stefano; Jones, Brian V; Ikebukuro, Kazunori

    2013-10-01

    Proteus mirabilis is a prominent cause of catheter-associated urinary tract infections (CAUTIs) among patients undergoing long-term bladder catheterization. There are currently no effective means of preventing P. mirabilis infections, and strategies for prophylaxis and rapid early diagnosis are urgently required. Aptamers offer significant potential for development of countermeasures against P. mirabilis CAUTI and are an ideal class of molecules for the development of diagnostics and therapeutics. Here we demonstrate the application of Cell-SELEX to identify DNA aptamers that show high affinity for P. mirabilis. While the aptamers identified displayed high affinity for P. mirabilis cells in dot blotting assays, they also bound to other uropathogenic bacteria. To improve aptamer specificity for P. mirabilis, an in silico maturation (ISM) approach was employed. Two cycles of ISM allowed the identification of an aptamer showing 36% higher specificity, evaluated as a ratio of binding signal for P. mirabilis to that for Escherichia coli (also a cause of CAUTI and the most common urinary tract pathogen). Aptamers that specifically recognize P. mirabilis would have diagnostic and therapeutic values and constitute useful tools for studying membrane-associated proteins in this organism. Copyright © 2013 Wiley Periodicals, Inc.

  6. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  7. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  8. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  9. End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays

    International Nuclear Information System (INIS)

    Peckys, Diana B; De Jonge, Niels; Simpson, Michael L; McKnight, Timothy E

    2008-01-01

    We report the effective and site-specific binding of long double stranded (ds)DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications.

  10. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  11. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  12. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  13. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  14. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    Science.gov (United States)

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    Science.gov (United States)

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  16. Targeting and tracing of specific DNA sequences with dTALEs in living cells

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-01-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation. PMID:24371265

  17. Targeting and tracing of specific DNA sequences with dTALEs in living cells.

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-04-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.

  18. Conflict RNA modification, host-parasite co-evolution, and the origins of DNA and DNA-binding proteins1.

    Science.gov (United States)

    McLaughlin, Paul J; Keegan, Liam P

    2014-08-01

    Nearly 150 different enzymatically modified forms of the four canonical residues in RNA have been identified. For instance, enzymes of the ADAR (adenosine deaminase acting on RNA) family convert adenosine residues into inosine in cellular dsRNAs. Recent findings show that DNA endonuclease V enzymes have undergone an evolutionary transition from cleaving 3' to deoxyinosine in DNA and ssDNA to cleaving 3' to inosine in dsRNA and ssRNA in humans. Recent work on dsRNA-binding domains of ADARs and other proteins also shows that a degree of sequence specificity is achieved by direct readout in the minor groove. However, the level of sequence specificity observed is much less than that of DNA major groove-binding helix-turn-helix proteins. We suggest that the evolution of DNA-binding proteins following the RNA to DNA genome transition represents the major advantage that DNA genomes have over RNA genomes. We propose that a hypothetical RNA modification, a RRAR (ribose reductase acting on genomic dsRNA) produced the first stretches of DNA in RNA genomes. We discuss why this is the most satisfactory explanation for the origin of DNA. The evolution of this RNA modification and later steps to DNA genomes are likely to have been driven by cellular genome co-evolution with viruses and intragenomic parasites. RNA modifications continue to be involved in host-virus conflicts; in vertebrates, edited cellular dsRNAs with inosine-uracil base pairs appear to be recognized as self RNA and to suppress activation of innate immune sensors that detect viral dsRNA.

  19. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    Science.gov (United States)

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  20. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. INTERACTION OF IRON(II MIXED-LIGAND COMPLEXES WITH DNA: BASE-PAIR SPECIFICITY AND THERMAL DENATURATION STUDIES

    Directory of Open Access Journals (Sweden)

    Mudasir Mudasir

    2010-06-01

    Full Text Available A research about base-pair specificity of the DNA binding of [Fe(phen3]2+, [Fe(phen2(dip]2+ and [Fe(phen(dip2]2+ complexes and the effect of calf-thymus DNA (ct-DNA binding of these metal complexes on thermal denaturation of ct-DNA has been carried out. This research is intended to evaluate the preferential binding of the complexes to the sequence of DNA (A-T or G-C sequence and to investigate the binding strength and mode upon their interaction with DNA. Base-pair specificity of the DNA binding of the complexes was determined by comparing the equilibrium binding constant (Kb of each complex to polysynthetic DNA that contain only A-T or G-C sequence. The Kb value of the interaction was determined by spectrophotometric titration and thermal denaturation temperature (Tm was determined by monitoring the absorbance of the mixture solution of each complex and ct-DNA at λ =260 nm as temperature was elevated in the range of 25 - 100 oC. Results of the study show that in general all iron(II complexes studied exhibit a base-pair specificity in their DNA binding to prefer the relatively facile A-T sequence as compared to the G-C one. The thermal denaturation experiments have demonstrated that Fe(phen3]2+ and [Fe(phen2(dip]2+ interact weakly with double helical DNA via electrostatic interaction as indicated by insignificant changes in melting temperature, whereas [Fe(phen2(dip]2+  most probably binds to DNA in mixed modes of interaction, i.e.: intercalation and electrostatic interaction. This conclusion is based on the fact that the binding of [Fe(phen2(dip]2+ to ct-DNA moderately increase the Tm value of ct- DNA   Keywords: DNA Binding, mixed-ligand complexes

  2. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  3. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pröpper, Kevin [University of Göttingen, (Germany); Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Meindl, Kathrin; Sammito, Massimo [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Dittrich, Birger; Sheldrick, George M. [University of Göttingen, (Germany); Pohl, Ehmke, E-mail: ehmke.pohl@durham.ac.uk [Durham University, (United Kingdom); Usón, Isabel, E-mail: ehmke.pohl@durham.ac.uk [Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); University of Göttingen, (Germany)

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.

  4. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  5. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  6. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    Science.gov (United States)

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. BuD, a helix–loop–helix DNA-binding domain for genome modification

    Energy Technology Data Exchange (ETDEWEB)

    Stella, Stefano [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark); Molina, Rafael; López-Méndez, Blanca [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Campos-Olivas, Ramon [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); Duchateau, Phillippe [Cellectis, 8 Rue de la Croix Jarry, 75013 Paris (France); Montoya, Guillermo, E-mail: guillermo.montoya@cpr.ku.dk [Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid (Spain); University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen (Denmark)

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  8. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    Science.gov (United States)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  9. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  10. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    Science.gov (United States)

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  11. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  12. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  13. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  14. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  15. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  16. Simultaneous Binding of Hybrid Molecules Constructed with Dual DNA-Binding Components to a G-Quadruplex and Its Proximal Duplex.

    Science.gov (United States)

    Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-03-20

    A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  18. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  19. Binding and thermodynamics of REV peptide-ctDNA interaction.

    Science.gov (United States)

    Upadhyay, Santosh Kumar

    2017-03-01

    The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically

  20. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  1. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli

    International Nuclear Information System (INIS)

    Moreau, P.L.

    1988-01-01

    Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA

  2. Binding to the DNA Minor Groove by Heterocyclic Dications: From AT Specific Monomers to GC Recognition with Dimers

    Science.gov (United States)

    Nanjunda, Rupesh; Wilson, W. David

    2012-01-01

    Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, they have found extensive uses in biotechnology and they are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences. PMID:23255206

  3. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    Science.gov (United States)

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  4. Molecular mechanisms of conformational specificity: A study of Hox in vivo target DNA binding specificities and the structure of a Ure2p mutation that affects fibril formation rates

    Science.gov (United States)

    Bauer, William Joseph, Jr.

    The fate of an individual cell, or even an entire organism, is often determined by minute, yet very specific differences in the conformation of a single protein species. Very often, proteins take on alternate folds or even side chain conformations to deal with different situations present within the cell. These differences can be as large as a whole domain or as subtle as the alteration of a single amino acid side chain. Yet, even these seemingly minor side chain conformational differences can determine the development of a cell type during differentiation or even dictate whether a cell will live or die. Two examples of situations where minor conformational differences within a specific protein could lead to major differences in the life cycle of a cell are described herein. The first example describes the variations seen in DNA conformations which can lead to slightly different Hox protein binding conformations responsible for recognizing biologically relevant regulatory sites. These specific differences occur in the minor groove of the bound DNA and are limited to the conformation of only two side chains. The conformation of the bound DNA, however, is not solely determined by the sequence of the DNA, as multiple sequences can result in the same DNA conformation. The second example takes place in the context of a yeast prion protein which contains a mutation that decreases the frequency at which fibrils form. While the specific interactions leading to this physiological change were not directly detected, it can be ascertained from the crystal structure that the structural changes are subtle and most likely involve another binding partner. In both cases, these conformational changes are very slight but have a profound effect on the downstream processes.

  5. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  6. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Czech Academy of Sciences Publication Activity Database

    Adámik, Matěj; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holanová, L.; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Roč. 456, č. 1 (2015), s. 29-34 ISSN 0006-291X R&D Projects: GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : p53 protein family * Sequence-specific DNA binding * Heavy metals Subject RIV: BO - Biophysics Impact factor: 2.371, year: 2015

  7. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    Science.gov (United States)

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  8. Mycobacterium smegmatis Ku binds DNA without free ends.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-12-01

    Ku is central to the non-homologous end-joining pathway of double-strand-break repair in all three major domains of life, with eukaryotic homologues being associated with more diversified roles compared with prokaryotic and archaeal homologues. Ku has a conserved central 'ring-shaped' core domain. While prokaryotic homologues lack the N- and C-terminal domains that impart functional diversity to eukaryotic Ku, analyses of Ku from certain prokaryotes such as Pseudomonas aeruginosa and Mycobacterium smegmatis have revealed the presence of distinct C-terminal extensions that modulate DNA-binding properties. We report in the present paper that the lysine-rich C-terminal extension of M. smegmatis Ku contacts the core protein domain as evidenced by an increase in DNA-binding affinity and a decrease in thermal stability and intrinsic tryptophan fluorescence upon its deletion. Ku deleted for this C-terminus requires free DNA ends for binding, but translocates to internal DNA sites. In contrast, full-length Ku can directly bind DNA without free ends, suggesting that this property is conferred by its C-terminus. Such binding to internal DNA sites may facilitate recruitment to sites of DNA damage. The results of the present study also suggest that extensions beyond the shared core domain may have independently evolved to expand Ku function.

  9. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  10. The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2012-06-01

    FliZ, a global regulatory protein under the control of the flagellar master regulator FlhDC, was shown to antagonize σ(S)-dependent gene expression in Escherichia coli. Thereby it plays a pivotal role in the decision between alternative life-styles, i.e. FlhDC-controlled flagellum-based motility or σ(S)-dependent curli fimbriae-mediated adhesion and biofilm formation. Here, we show that FliZ is an abundant DNA-binding protein that inhibits gene expression mediated by σ(S) by recognizing operator sequences that resemble the -10 region of σ(S)-dependent promoters. FliZ does so with a structural element that is similar to region 3.0 of σ(S). Within this element, R108 in FliZ corresponds to K173 in σ(S), which contacts a conserved cytosine at the -13 promoter position that is specific for σ(S)-dependent promoters. R108 as well as C(-13) are also crucial for DNA binding by FliZ. However, while a number of FliZ binding sites correspond to known σ(S)-dependent promoters, promoter activity is not a prerequisite for FliZ binding and repressor function. Thus, we demonstrate that FliZ also feedback-controls flagellar gene expression by binding to a site in the flhDC control region that shows similarity only to a -10 element of a σ(S)-dependent promoter, but does not function as a promoter.

  11. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    Science.gov (United States)

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  12. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    Science.gov (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  13. Synthesis and DNA-binding study of imidazole linked thiazolidinone derivatives.

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    A novel series of imidazole-linked thiazolidinone hybrid molecules were designed and synthesized through a feasible synthetic protocol. The molecules were characterized with Fourier transform infrared (FT-IR), 1 H nuclear magnetic resonance (NMR), 13 C NMR and high-resolution mass spectrometry (HRMS) techniques. In vitro susceptibility tests against Gram-positive (S. aureus and B. subtilis) and Gram-negative bacteria (E. coli and P. aeruginosa) gave highly promising results. The most active molecule (3e) gave a minimal inhibitory concentration (MIC) value of 3.125 μg/mL which is on par with the reference drug streptomycin. Structure-activity relationships revealed activity enhancement by nitro and chloro groups when they occupied meta position of the arylidene ring in 2-((3-(imidazol-1-yl)propyl)amino)-5-benzylidenethiazolidin-4-ones. DNA-binding study of the most potent molecule 3e with salmon milt DNA (sm-DNA) under simulated physiological pH was probed with UV-visible absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that compound 3e has a strong affinity towards DNA and binds at DNA minor groove with a binding constant (K b ) 0.18 × 10 2  L mol -1 . Molecular docking simulations predicted strong affinity of 3e towards DNA with a binding affinity (ΔG) -8.5 kcal/mol. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction. The molecule 3e exhibited specific affinity towards adenine-thiamine base pairs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro

    Directory of Open Access Journals (Sweden)

    Chaban Christina

    2010-11-01

    Full Text Available Abstract Background About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. Results We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. Conclusions We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA

  15. Mechanochemical regulations of RPA's binding to ssDNA

    Science.gov (United States)

    Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie

    2015-03-01

    Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.

  16. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Aishwarya Prakash

    2011-01-01

    Full Text Available Replication protein A (RPA, a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA- binding domains (DBDs A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties.

  17. In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.

    KAUST Repository

    Piatek, Marek J.

    2015-12-01

    Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding modules to create site-specific chimeric nucleases or synthetic transcriptional regulators. The central repeat domain mediates specific DNA binding via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be engineered to bind preferentially to any user-selected DNA sequence if engineered appropriately. Therefore, TALEs and their derivatives have become indispensable molecular tools in site-specific manipulation of genes and genomes. This thesis revolves around two problems: in silico design and improved binding site prediction of TALEs. In the first part, a study is shown where TALEs are successfully designed in silico and validated in laboratory to yield the anticipated effects on selected genes. Software is developed to accompany the process of designing and prediction of binding sites. I expanded the functionality of the software to be used as a more generic set of tools for the design, target and offtarget searching. Part two contributes a method and associated toolkit developed to allow users to design in silico optimized synthetic TALEs with user-defined specificities for various experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed positional and compositional bias behind the binding of TALEs to DNA. In conclusion, I developed methods, approaches, and software to enhance the functionality of synthetic TALEs, which should improve understanding of TALEs biology and will further advance genome-engineering applications in various organisms and cell types.

  18. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  19. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Human RAD50 makes a functional DNA-binding complex.

    Science.gov (United States)

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-05

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Valérie Mongrain

    Full Text Available We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP, we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset, -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  3. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Science.gov (United States)

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  4. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog.

    Science.gov (United States)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C; Kolatkar, Prasanna R

    2008-02-22

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  5. Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Factor Nanog

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C.; Kolatkar, Prasanna R. (GI-Singapore); (Scripps)

    2010-02-08

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  6. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: Identification of peptides in the DNA binding domain

    International Nuclear Information System (INIS)

    Farrar, Y.J.K.; Evans, R.K.; Beach, C.M.; Coleman, M.S.

    1991-01-01

    Terminal deoxynucleotidyl transferase (terminal transferase) was specifically modified in the DNA binding site by a photoactive DNA substrate (hetero-40-mer duplex containing eight 5-azido-dUMP residues at one 3' end). Under optimal photolabeling conditions, 27-40% of the DNA was covalently cross-linked to terminal transferase. The specificity of the DNA and protein interaction was demonstrated by protection of photolabeling at the DNA binding domain with natural DNA substrates. In order to recover high yields of modified peptides from limited amounts of starting material, protein modified with 32 P-labeled photoactive DNA and digested with trypsin was extracted 4 times with phenol followed by gel filtration chromatography. All peptides not cross-linked to DNA were extracted into the phenol phase while the photolyzed DNA and the covalently cross-linked peptides remained in the aqueous phase. The 32 P-containing peptide-DNA fraction was subjected to amino acid sequence analysis. Two sequences, Asp 221 -Lys 231 (peptide B8) and Cys 234 -Lys 249 (peptide B10), present in similar yield, were identified. Structure predictions placed the two peptides in an α-helical array of 39 angstrom which would accommodate a DNA helix span of 11 nucleotides. These peptides share sequence similarity with a region in DNA polymerase β that has been implicated in the binding of DNA template

  7. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...... in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2...

  8. CC1, a novel crenarchaeal DNA binding protein.

    Science.gov (United States)

    Luo, Xiao; Schwarz-Linek, Uli; Botting, Catherine H; Hensel, Reinhard; Siebers, Bettina; White, Malcolm F

    2007-01-01

    The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.

  9. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    Science.gov (United States)

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  10. Specific RNP capture with antisense LNA/DNA mixmers.

    Science.gov (United States)

    Rogell, Birgit; Fischer, Bernd; Rettel, Mandy; Krijgsveld, Jeroen; Castello, Alfredo; Hentze, Matthias W

    2017-08-01

    RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins. © 2017 Rogell et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Science.gov (United States)

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  12. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Directory of Open Access Journals (Sweden)

    Zing Tsung-Yeh Tsai

    2015-08-01

    Full Text Available Transcription factor (TF binding is determined by the presence of specific sequence motifs (SM and chromatin accessibility, where the latter is influenced by both chromatin state (CS and DNA structure (DS properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  13. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization.

    Directory of Open Access Journals (Sweden)

    Yen-Hua Huang

    Full Text Available The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204 showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228 is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.

  14. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    Science.gov (United States)

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria.

    Science.gov (United States)

    Ranganathan, Sridevi; Cheung, Jonah; Cassidy, Michael; Ginter, Christopher; Pata, Janice D; McDonough, Kathleen A

    2018-01-09

    Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Science.gov (United States)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  17. Extended HSR/CARD domain mediates AIRE binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  18. Extended HSR/CARD domain mediates AIRE binding to DNA

    International Nuclear Information System (INIS)

    Maslovskaja, Julia; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-01-01

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  19. Identification of the proteins responsible for SAR DNA binding in nuclear matrix of ''Cucurbita pepo''

    International Nuclear Information System (INIS)

    Rzepecki, R.; Markiewicz, E.; Szopa, J.

    1995-01-01

    The nuclear matrices from White bush (''Cucurbita pepo var. patisonina'') cell nuclei have been isolated using three methods: I, standard procedure involving extraction of cell nuclei with 2 M NaCl and 1% Triton X-100; II, the same with pre-treatment of cell nuclei with 0.5 mM CuSO 4 (stabilisation step); and III, method with extraction by lithium diiodosalicylate (LIS), and compared the polypeptide pattern. The isolated matrices specifically bind SAR DNA derived from human β-interferon gene in the exogenous SAR binding assay and in the gel mobility shift assay. Using IgG against the 32 kDa endonuclease we have found in the DNA-protein blot assay that this protein is one of the proteins binding SAR DNA. We have identified three proteins with molecular mass of 65 kDa, 60 kDa and 32 kDa which are responsible for SAR DNA binding in the gel mobility shift assay experiments. (author). 21 refs, 3 figs

  20. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  1. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  2. Colorimetric Detection of Specific DNA Segments Amplified by Polymerase Chain Reactions

    Science.gov (United States)

    Kemp, David J.; Smith, Donald B.; Foote, Simon J.; Samaras, N.; Peterson, M. Gregory

    1989-04-01

    The polymerase chain reaction (PCR) procedure has many potential applications in mass screening. We describe here a general assay for colorimetric detection of amplified DNA. The target DNA is first amplified by PCR, and then a second set of oligonucleotides, nested between the first two, is incorporated by three or more PCR cycles. These oligonucleotides bear ligands: for example, one can be biotinylated and the other can contain a site for a double-stranded DNA-binding protein. After linkage to an immobilized affinity reagent (such as a cloned DNA-binding protein, which we describe here) and labeling with a second affinity reagent (for example, avidin) linked to horseradish peroxidase, reaction with a chromogenic substrate allows detection of the amplified DNA. This amplified DNA assay (ADA) is rapid, is readily applicable to mass screening, and uses routine equipment. We show here that it can be used to detect human immunodeficiency virus sequences specifically against a background of human DNA.

  3. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  4. Potency of carcinogens derived from covalent DNA binding and stimulation of DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Lutz, W.K.; Buesser, M.T.; Sagelsdorff, P.

    1984-01-01

    In order to investigate the role of the stimulation of cell division for the initiation (and possibly promotion) of liver tumors by chemical carcinogens, the incorporation of radiolabelled thymidine into liver DNA was determined in male rats. Single doses of various levels of aflatoxin B1, benzidine and carbon tetrachloride (all known to be genotoxic via DNA binding) did not affect cell division, whereas several hepatocarcinogens known not to bind to DNA (alpha-HCH, clofibrate, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) gave rise to a dose-dependent stimulation of liver DNA synthesis within 24 h. An equation combining the influences of mitotic stimulation, expressed as dose required to double the control level of DNA synthesis, and DNA binding potency, expressed as the Covalent Binding Index, correlated well with the carcinogenic potency for both classes of hepatocarcinogens

  5. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  6. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  8. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  9. Pulse radiolysis studies on DNA-Binding radioprotectors

    International Nuclear Information System (INIS)

    Anderson, R.F.

    1996-01-01

    Full text: Hoechst 33342 and newly-synthesised analogues exhibit radioprotective activity in cultured cells and in vivo, as described in accompanying abstracts. These minor groove binding ligands bind at discreet sites in DNA, characterised by 3 to 4 consecutive AT base pairs, and DNA sequencing studies have shown focussed radioprotection at these binding sites. There is evidence that the bound ligands also confer more 'global' protection including the intervening DNA between the binding sites. The observed focussed radioprotection could be explained by H-atom donation from the ligand to radiation-induced carbon-centred deoxyribosyl radicals, but this mechanism is unlikely to account for the global radioprotection. We now report pulse radiolysis studies on another possible mechanism, namely reduction of transient radiation-induced oxidising species on DNA by the ligand, which is consistent with the report of reduction of G + by TMPD. Oxidation of deoxyguanosine (dG) by Br 2 - , produced by radiolysis of Br- in N 2 0-saturated solutions, in the presence of Hoechst 33342 results in the appearance of a transient ligand species which is kinetically resolvable from that obtained from direct oxidation of Hoechst 33342 by Br 2 - . A plot of reaction rate versus ligand concentration indicates that the rate constant for reduction of G + is approximately 3 x 10 8 dm 3 M -1 sec -1 . Similar experiments with DNA, rather than dG, also revealed a transient species corresponding to oxidation of the ligand, but the absolute rate of oxidation was considerably slower for the DNA-bound ligand compared to that for oxidation of the free ligand by G+. These results are clearly consistent with the proposed mechanism of radioprotection by Hoechst 33342 and its analogues, moreover, pulse radiolysis may provide a very useful endpoint for screening new analogues, as a preliminary to radiobiological evaluation

  10. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    Science.gov (United States)

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Directory of Open Access Journals (Sweden)

    Sinara Mônica Vitalino de Almeida

    2015-06-01

    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  12. A role for the weak DnaA binding sites in bacterial replication origins

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Løbner-Olesen, Anders

    2011-01-01

    DnaA initiates the chromosomal DNA replication in nearly all bacteria, and replication origins are characterized by binding sites for the DnaA protein (DnaA-boxes) along with an ‘AT-rich’ region. However, great variation in number, spatial organization and specificity of DnaA-boxes is observed...... between species. In the study by Taylor et al. (2011), new and unexpectedly weak DnaA-boxes were identified within the Caulobacter crescentus origin of replication (Cori). The position of weak and stronger DnaA-boxes follows a pattern seen in Escherichia coli oriC. This raises the possibility...... that bacterial origins might be more alike than previously thought....

  13. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo

    2012-11-01

    Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier

  14. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  17. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    Science.gov (United States)

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  18. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  19. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  20. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  1. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  2. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    Directory of Open Access Journals (Sweden)

    Michael B Prouse

    Full Text Available Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing. The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators.

  3. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    Science.gov (United States)

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  5. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  6. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Suraj; Eichman, Brandt F. (Vanderbilt)

    2014-10-02

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.

  7. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo; Zhu, Bin; Hamdan, Samir; Richardson, Charles C.

    2010-01-01

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical

  9. A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily.

    Science.gov (United States)

    Sang, Pau Biak; Srinath, Thiruneelakantan; Patil, Aravind Goud; Woo, Eui-Jeon; Varshney, Umesh

    2015-09-30

    Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  11. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  12. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  13. Ribosomal DNA-binding proteins in the nucleolus of Physarum polycephalum

    International Nuclear Information System (INIS)

    Graham-Lorence, S.E.

    1987-01-01

    In Physarum polycephalum, the nucleoli are extra chromosomal structures containing 200 to 400 copies of a linear 60 kilobase palindromic rDNA molecule. These rDNA molecules are organized into minichromosomes which apparently are held within a nucleolar protein matrix. To obtained evidence for attachment of the rDNA to such a matrix, both intact and lithium diiodosalicylate/NaCl-extracted nucleoli were digested for various lengths of time with micrococcal nuclease, so that portions of the rDNA molecules not attached within the nucleolar structure would be released. Nucleolar DNA-binding proteins were determined by blotting electrophoretically separated proteins from SDS-polyacrylamide gels onto nitrocellulose paper and probing them with radiolabeled DNA. In addition to the histones and lexosome proteins, eight DNA-binding proteins were identified having molecular weights of 25, 38, 47, 53, 55, 67, and 70 kD, with the 47, 53, 67, and 70 kD proteins requiring Ca 2+ for binding

  14. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  15. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  16. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    Science.gov (United States)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  17. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  18. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  19. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  20. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein.

    Science.gov (United States)

    Sharadamma, N; Harshavardhana, Y; Singh, Pawan; Muniyappa, K

    2010-06-01

    A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

  1. DNA Binding Hydroxyl Radical Probes.

    Science.gov (United States)

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  2. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Discrete persistent-chain model for protein binding on DNA.

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  4. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  5. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    Science.gov (United States)

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  6. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Science.gov (United States)

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  7. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Wang

    Full Text Available The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone (MGBG enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  8. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5 Prime -TMP

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Sartaj [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India); Al-Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh [Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002 (India)

    2012-11-15

    A new water soluble complex [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV-vis, NMR, ESI-MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf-thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5 Prime -TMP and 5 Prime -GMP were carried out by UV-vis titration which was validated by {sup 1}H and {sup 31}P NMR with 5 Prime -TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H{sub 2}O)]{center_dot}6H{sub 2}O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: Black-Right-Pointing-Pointer Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. Black-Right-Pointing-Pointer Cleavage activity of 1 was enhanced in presence of activators: H{sub 2}O{sub 2}>MPA>GSH>Asc. Black-Right-Pointing-Pointer Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. Black-Right-Pointing-Pointer Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  9. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  10. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.

    Science.gov (United States)

    Hishiki, Asami; Hara, Kodai; Ikegaya, Yuzu; Yokoyama, Hideshi; Shimizu, Toshiyuki; Sato, Mamoru; Hashimoto, Hiroshi

    2015-05-22

    HLTF (helicase-like transcription factor) is a yeast RAD5 homolog found in mammals. HLTF has E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. HLTF has an N-terminal domain that has been designated the HIRAN (HIP116 and RAD5 N-terminal) domain. The HIRAN domain has been hypothesized to play a role in DNA binding; however, the structural basis of, and functional evidence for, the HIRAN domain in DNA binding has remained unclear. Here we show for the first time the crystal structure of the HIRAN domain of human HLTF in complex with DNA. The HIRAN domain is composed of six β-strands and two α-helices, forming an OB-fold structure frequently found in ssDNA-binding proteins, including in replication factor A (RPA). Interestingly, this study reveals that the HIRAN domain interacts with not only with a single-stranded DNA but also with a duplex DNA. Furthermore, the structure unexpectedly clarifies that the HIRAN domain specifically recognizes the 3'-end of DNA. These results suggest that the HIRAN domain functions as a sensor to the 3'-end of the primer strand at the stalled replication fork and that the domain facilitates fork regression. HLTF is recruited to a damaged site through the HIRAN domain at the stalled replication fork. Furthermore, our results have implications for the mechanism of template switching. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  12. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-01-01

    Full Text Available DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc., which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables.

  13. DNA-binding activity of TNF-α inducing protein from Helicobacter pylori

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Suganuma, M.; Oka, K.; Fujiki, H.

    2007-01-01

    Tumor necrosis factor-α (TNF-α) inducing protein (Tipα) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-α and chemokine genes and activation of nuclear factor-κB. Since Tipα enters gastric cancer cells, the Tipα binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipα was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipα and DNA, revealed that the affinity of Tipα for (dGdC)10 is 2400 times stronger than that of del-Tipα, an inactive Tipα. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipα. And the DNA-binding activity of Tipα was first demonstrated with a molecule secreted from H. pylori

  14. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  15. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  16. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    Directory of Open Access Journals (Sweden)

    Kyle K. Biggar

    2018-05-01

    Full Text Available In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1 were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival.

  17. DNA Binding Drugs Targeting the Regulatory DNA Binding Site of the ETS Domain Family Transcription Factor Associated With Human Breast Cancer

    National Research Council Canada - National Science Library

    Wang, Yong-Dong

    1999-01-01

    .... The key approach is to prevent the binding of two transcription factors, ESX and AP-2, to the consensus DNA binding sites contained within the Her2/neu promoter resulting in inhibition of transcription factor function...

  18. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  19. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    International Nuclear Information System (INIS)

    Akabayov, B.; Lee, S.; Akabayov, S.; Rekhi, S.; Zhu, B.; Richardson, C.

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  1. Prospects of nanoparticle-DNA binding and its implications in medical biotechnology.

    Science.gov (United States)

    An, Hongjie; Jin, Bo

    2012-01-01

    Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle-DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle-DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle-DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle-DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.

    Directory of Open Access Journals (Sweden)

    Zsolt Kelemen

    Full Text Available The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs. Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.

  3. MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2009-12-01

    Full Text Available Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix.

  4. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2015-01-01

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  5. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  6. Peroxidase-mediated binding of aromatic amine carcinogens to tissue DNA

    International Nuclear Information System (INIS)

    Wise, R.W.; Lakshmi, V.M.; Zenser, T.V.; Davis, B.B.

    1986-01-01

    Benzidine is a aromatic amine bladder carcinogen in man and dog which requires endogenous metabolic activation. Dog bladder microsomes activate benzidine to bind glutathione and DNA by a peroxidatic but not a mixed-function oxidase mediated pathway. Prostaglandin H synthase was responsible for peroxidatic metabolism. This study was designed to assess benzidine metabolism in a whole cell system. Rabbit renal medullary slices (100 mg/ml) were incubated for 60 min. in Krebs-Ringer bicarbonate buffer containing 100 μM 3 H-benzidine and 250 μM arachidonic acid. Arachidonic acid increased 3-(glutathione-S-yL)-benzidine, a product of peroxidatically activated benzidine, (6-fold) and 3 H-benzidine binding to endogenous DNA (4-fold). Indomethacin (100 μM) completely inhibited arachidonic acid-mediated increases in conjugate formation and DNA binding. HPLC analysis of the media demonstrated benzidine (95% of total 3 H), 3-(glutathion-S-yL)-benzidine (1%) and two unidentified peaks (4%). These results are consistent with the hydroperoxidase activity of prostaglandin H synthase mediating metabolic activation of benzidine to bind tissue nucleophiles in a whole cell system. Inhibition of peroxidatic activation of aromatic amines to bind DNA may prevent initiation of bladder cancer

  7. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP

    International Nuclear Information System (INIS)

    Tabassum, Sartaj; Al–Asbahy, Waddhaah M.; Afzal, Mohd.; Shamsi, Manal; Arjmand, Farukh

    2012-01-01

    A new water soluble complex [Zn(glygly)(ssz)(H 2 O)]·6H 2 O, 1 derived from dipeptide (glycyl glycine) and sulfasalazine was synthesized and characterized by spectroscopic (IR, UV–vis, NMR, ESI–MS) and analytical methods. The in vitro DNA binding studies of complex 1 with calf–thymus DNA were carried out by employing various biophysical methods and molecular docking technique which reveals strong electrostatic binding via phosphate backbone of DNA helix, in addition to partial intercalation. To gain further insight into the molecular recognition at the target site, interaction studies of complex 1 with 5′-TMP and 5′-GMP were carried out by UV–vis titration which was validated by 1 H and 31 P NMR with 5′-TMP, which implicate the preferential selectivity of 1 towards N3 of thymine. Complex 1 is accessible to minor groove of DNA and cleaved pBR322 DNA via hydrolytic pathway (validated by T4 ligase assay). - Graphical abstract: Synthesis, characterization, DNA binding and cleavage studies of [Zn(glygly)(ssz)(H 2 O)]·6H 2 O (1) containing glycyl glycine and sulfasalazine ligand. Complex 1 recognize minor groove of DNA and show hydrolytic DNA cleavage. Highlights: ► Novel Zn(II) complex 1 bearing bioactive glycyl glycine and sulfasalazine ligand scaffold. ► Cleavage activity of 1 was enhanced in presence of activators: H 2 O 2 >MPA>GSH>Asc. ► Complex 1 recognize minor groove as depicted in the cleavage pattern and molecular docking. ► Complex 1 cleaves pBR322 DNA via hydrolytic mechanism and validated by T4 DNA ligase experiments.

  8. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering.

    Science.gov (United States)

    Haddad, Yazan; Dostalova, Simona; Kudr, Jiri; Zitka, Ondrej; Heger, Zbynek; Adam, Vojtech

    2017-11-09

    Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.

  9. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  10. Genetic analysis of RPA single-stranded DNA binding protein in Haloferax volcanii

    OpenAIRE

    Stroud, A. L.

    2012-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein that is present in all three domains of life. The roles of RPA include stabilising and protecting single- stranded DNA from nuclease degradation during DNA replication and repair. To achieve this, RPA uses an oligosaccharide-binding fold (OB fold) to bind single- stranded DNA. Haloferax volcanii encodes three RPAs – RPA1, RPA2 and RPA3, of which rpa1 and rpa3 are in operons with genes encoding associated proteins (APs). ...

  11. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.

    Science.gov (United States)

    Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom

    2013-11-26

    Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.

  12. Effect of benzimidazol-derivatives on the DNA-protein binding formation after UV-radiation of chromatin

    International Nuclear Information System (INIS)

    Mil', E.M.; Binyukov, V.I.; Zhil'tsova, V.M.; Stolyarova, L.G.; Kuznetsov, Yu.V.

    1991-01-01

    Effect of benzimidazol-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazol interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA, whilt aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1

  13. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  14. DNA Packaging by λ-Like Bacteriophages: Mutations Broadening the Packaging Specificity of Terminase, the λ-Packaging Enzyme

    OpenAIRE

    Feiss, Michael; Reynolds, Erin; Schrock, Morgan; Sippy, Jean

    2010-01-01

    The DNA-packaging specificities of phages λ and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. λ-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase's ability to package λDNA is reduced ∼20-fold. Phage λ with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppre...

  15. Single-strand DNA binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs

    Science.gov (United States)

    Pandita, Raj K.; Chow, Tracy T.; Udayakumar, Durga; Bain, Amanda L.; Cubeddu, Liza; Hunt, Clayton R.; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E.; Khanna, Kum Kum; Shay, Jerry W.; Pandita, Tej K.

    2015-01-01

    Proliferating mammalian stem and cancer cells express telomerase (TERT) in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA binding protein SSB1, which has a critical role in DNA double-strand break repair. Here we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacted with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduced TERT interaction with telomeres and lead to G-overhang loss. While SSB1 was recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relied upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. PMID:25589350

  16. Energetic and binding properties of DNA upon interaction with dodecyl trimethylammonium bromide.

    Science.gov (United States)

    Bathaie, S Z; Moosavi-Movahedi, A A; Saboury, A A

    1999-02-15

    The interaction of dodecyl trimethylammonium bromide (DTAB), a cationic surfactant, with calf thymus DNA has been studied by various methods, including potentiometric technique using DTAB-selective plastic membrane electrode at 27 and 37 degreesC, isothermal titration microcalorimetry and UV spectrophotometry at 27 degreesC using 0.05 M Tris buffer and 0.01 M NaCl at pH 7.4. The free energy is calculated from binding isotherms on the basis of Wyman binding potential theory and the enthalpy of binding according to van't Hoff relation. The enthalpy of unfolding has been determined by subtraction of the enthalpy of binding from the microcalorimetric enthalpy. The results show that, after the interaction of first DTAB molecule to DNA (base molarity) through the electrostatic interaction, the second DTAB molecule also binds to DNA through electrostatic interaction. At this stage, the predom-inant DNA conformational change occurs. Afterwards up to 20 DTAB molecules, below the critical micelle concentration of DTAB, bind through hydrophobic interactions.

  17. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  18. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    Science.gov (United States)

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  19. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    Science.gov (United States)

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair.

    Science.gov (United States)

    de Laat, W L; Appeldoorn, E; Sugasawa, K; Weterings, E; Jaspers, N G; Hoeijmakers, J H

    1998-08-15

    The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.

  1. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  2. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  3. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor.

    Science.gov (United States)

    Vonderach, Matthias; Byrne, Dominic P; Barran, Perdita E; Eyers, Patrick A; Eyers, Claire E

    2018-06-05

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKA c ) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKA c - and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKA c -regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.

  4. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  5. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    Science.gov (United States)

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  6. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  7. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    Science.gov (United States)

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  8. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features

    Directory of Open Access Journals (Sweden)

    Rianon Zaman

    2017-01-01

    Full Text Available DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  9. Bacillus halodurans RecA-DNA binding and RecAmediated ...

    African Journals Online (AJOL)

    Abstract. In Escherichia coli, RecA protein catalyzes DNA pairing and strand exchange activities essential for genetic recombination. This is critical for normal cellular function under conditions that lead to altered. DNA metabolism and DNA damage. The RecA proteins of E. coli and Bacillus halodurans both can bind to DNA ...

  10. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine) binding with DNA.

    Science.gov (United States)

    Johnson, Irudayam Maria; Prakash, Halan; Prathiba, Jeyaguru; Raghunathan, Raghavachary; Malathi, Raghunathan

    2012-01-01

    Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR) spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+) and during helix-coil transitions of DNA by temperature (T(m)) or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3) M(-1), DNA-theobromine = 1.1×10(3) M(-1), and DNA-Caffeine = 3.8×10(3) M(-1). On the other hand T(m)/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C) and phosphate group through hydrogen bond (H-bond) interaction. In the presence of Mg(2+), methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+). The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  11. Spectral analysis of naturally occurring methylxanthines (theophylline, theobromine and caffeine binding with DNA.

    Directory of Open Access Journals (Sweden)

    Irudayam Maria Johnson

    Full Text Available Nucleic acids exist in a dynamic equilibrium with a number of molecules that constantly interact with them and regulate the cellular activities. The inherent nature of the structure and conformational integrity of these macromolecules can lead to altered biological activity through proper targeting of nucleic acids binding ligands or drug molecules. We studied the interaction of naturally occurring methylxanthines such as theophylline, theobromine and caffeine with DNA, using UV absorption and Fourier transform infrared (FTIR spectroscopic methods, and especially monitored their binding affinity in the presence of Mg(2+ and during helix-coil transitions of DNA by temperature (T(m or pH melting profiles. The study indicates that all these molecules effectively bind to DNA in a dose dependent manner. The overall binding constants of DNA-theophylline = 3.5×10(3 M(-1, DNA-theobromine = 1.1×10(3 M(-1, and DNA-Caffeine = 3.8×10(3 M(-1. On the other hand T(m/pH melting profiles showed 24-35% of enhanced binding activity of methylxanthines during helix-coil transitions of DNA rather than to its native double helical structure. The FTIR analysis divulged that theophylline, theobromine and caffeine interact with all the base pairs of DNA (A-T; G-C and phosphate group through hydrogen bond (H-bond interaction. In the presence of Mg(2+, methylxanthines altered the structure of DNA from B to A-family. However, the B-family structure of DNA remained unaltered in DNA-methylxanthines complexes or in the absence of Mg(2+. The spectral analyses indicated the order of binding affinity as "caffeine≥theophylline>theobromine" to the native double helical DNA, and "theophylline≥theobromine>caffeine to the denatured form of DNA and in the presence of divalent metal ions.

  12. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    International Nuclear Information System (INIS)

    Khmelinskaia, Alena; Franquelim, Henri G; Petrov, Eugene P; Schwille, Petra

    2016-01-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding. (paper)

  13. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  14. Purification, characterization and molecular cloning of TGP1, a novel G-DNA binding protein from Tetrahymena thermophila.

    OpenAIRE

    Lu, Q; Schierer, T; Kang, S G; Henderson, E

    1998-01-01

    G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most high...

  15. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  16. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  17. New DNA-binding radioprotectors

    Science.gov (United States)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  18. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  19. Cyclic perylene diimide: Selective ligand for tetraplex DNA binding over double stranded DNA.

    Science.gov (United States)

    Vasimalla, Suresh; Sato, Shinobu; Takenaka, Fuminori; Kurose, Yui; Takenaka, Shigeori

    2017-12-15

    Synthesized cyclic perylene diimide, cPDI, showed the binding constant of 6.3 × 10 6  M -1 with binding number of n = 2 with TA-core as a tetraplex DNA in 50 mM Tris-HCl buffer (pH = 7.4) containing 100 mM KCl using Schatchard analysis and showed a higher preference for tetraplex DNA than for double stranded DNA with over 10 3 times. CD spectra showed that TA-core induced its antiparallel conformation upon addition of cPDI in the absence or presence of K + or Na + ions. The cPDI inhibits the telomerase activity with IC 50 of 0.3 µM using TRAP assay which is potential anti-cancer drug with low side effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  1. DNA binding and aggregation by carbon nanoparticles

    International Nuclear Information System (INIS)

    An, Hongjie; Liu, Qingdai; Ji, Qiaoli; Jin, Bo

    2010-01-01

    Significant environmental and health risks due to the increasing applications of engineered nanoparticles in medical and industrial activities have been concerned by many communities. The interactions between nanomaterials and genomes have been poorly studied so far. This study examined interactions of DNA with carbon nanoparticles (CNP) using atomic force microscopy (AFM). We experimentally assessed how CNP affect DNA molecule and bacterial growth of Escherichia coli. We found that CNP were bound to the DNA molecules during the DNA replication in vivo. The results revealed that the interaction of DNA with CNP resulted in DNA molecule binding and aggregation both in vivo and in vitro in a dose-dependent manner, and consequently inhabiting the E. coli growth. While this was a preliminary study, our results showed that this nanoparticle may have a significant impact on genomic activities.

  2. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs.

    Science.gov (United States)

    Pandita, Raj K; Chow, Tracy T; Udayakumar, Durga; Bain, Amanda L; Cubeddu, Liza; Hunt, Clayton R; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E; Khanna, Kum Kum; Shay, Jerry W; Pandita, Tej K

    2015-03-01

    Proliferating mammalian stem and cancer cells express telomerase [telomerase reverse transcriptase (TERT)] in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA-binding protein SSB1, which has a critical role in DNA double-strand break (DSB) repair. Here, we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacts with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduces TERT interaction with telomeres and leads to G-overhang loss. Although SSB1 is recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relies upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. Cancer Res; 75(5); 858-69. ©2015 AACR. ©2015 American Association for Cancer Research.

  3. Calculations of the resonant response of carbon nanotubes to binding of DNA

    International Nuclear Information System (INIS)

    Zheng Meng; Ke Changhong; Eom, Kilho

    2009-01-01

    We theoretically study the dynamical response of carbon nanotubes (CNTs) to the binding of DNA in an aqueous environment by considering two major interactions in DNA helical binding to the CNT side surface: adhesion between DNA nucleobases and CNT surfaces and electrostatic interactions between negative charges on DNA backbones. The equilibrium DNA helical wrapping angle is obtained using the minimum potential energy method. Our results show that the preferred DNA wrapping angle in the equilibrium binding to CNT is dependent on both DNA length and DNA base. The equilibrium wrapping angle for a poly(dT) chain is larger than a comparable poly(dA) chain as a result of dT in a homopolymer chain having a higher effective binding energy to CNT than dA. Our results also interestingly reveal a sharp transition in the wrapping angle-DNA length profile for both homopolymers, implying that the equilibrium helical wrapping configuration does not exist for a certain range of wrapping angles. Furthermore, the resonant response of the DNA-CNT complex is analysed based on the variational method with a Hamiltonian which takes into account the CNT bending energy as well as DNA-CNT interactions. The closed-form analytical solution for predicting the resonant frequency of the DNA-CNT complex is presented. Our results show that the hydrodynamic loading on the oscillating CNT in aqueous environments has profound impacts on the resonance behaviour of DNA-CNT complexes. Our results suggest that detection of DNA molecules using CNT resonators based on DNA-CNT interactions through frequency measurements should be conducted in media with low hydrodynamic loading on CNTs. Our theoretical framework provides a fundamental principle for label-free detection using CNT resonators based on DNA-CNT interactions.

  4. Monoclonal antibody to the rat glucocorticoid receptor. Relationship between the immunoreactive and DNA-binding domain

    International Nuclear Information System (INIS)

    Eisen, L.P.; Reichman, M.E.; Thompson, E.B.; Gametchu, B.; Harrison, R.W.; Eisen, H.J.

    1985-01-01

    The region of the glucocorticoid receptor that reacted with a monoclonal antibody (BUGR-1) was identified. In order to identify the immunoreactive region, the rat liver glucocorticoid receptor was subjected to limited proteolysis; immunoreactive fragments were identified by Western blotting. The monoclonal antibody reacted with both the undigested Mr approximately 97,000 receptor subunit and a Mr approximately 45,000 fragment containing the steroid-binding and DNA-binding domains. Digestion by trypsin also produced two steroid-binding fragments of Mr approximately 27,000 and 31,000 which did not react with the antibody and an immunoreactive Mr approximately 16,000 fragment. This Mr approximately 16,000 fragment was shown to bind to DNA-cellulose, indicating that it contained a DNA-binding domain of the receptor. The undigested receptor must have steroid associated with it to undergo activation to a DNA-binding form. However, the Mr approximately 16,000 immunoreactive fragment binds to DNA-cellulose even if it is obtained by digestion of the steroid-free holoreceptor which does not itself bind to DNA

  5. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    Science.gov (United States)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  7. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  8. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  9. Templated Chemistry for Sequence-Specific Fluorogenic Detection of Duplex DNA

    Science.gov (United States)

    Li, Hao; Franzini, Raphael M.; Bruner, Christopher; Kool, Eric T.

    2015-01-01

    We describe the development of templated fluorogenic chemistry for detection of specific sequences of duplex DNA in solution. In this approach, two modified homopyrimidine oligodeoxynucleotide probes are designed to bind by triple helix formation at adjacent positions on a specific purine-rich target sequence of duplex DNA. One fluorescein-labeled probe contains an α-azidoether linker to a fluorescence quencher; the second (trigger) probe carries a triarylphosphine, designed to reduce the azide and cleave the linker. The data showed that at pH 5.6 these probes yielded a strong fluorescence signal within minutes on addition to a complementary homopurine duplex DNA target. The signal increased by a factor of ca. 60, and was completely dependent on the presence of the target DNA. Replacement of cytosine in the probes with pseudoisocytosine allowed the templated chemistry to proceed readily at pH 7. Single nucleotide mismatches in the target oligonucleotide slowed the templated reaction considerably, demonstrating high sequence selectivity. The use of templated fluorogenic chemistry for detection of duplex DNAs has not been previously reported and may allow detection of double stranded DNA, at least for homopurine-homopyrimidine target sites, under native, non-disturbing conditions. PMID:20859985

  10. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  11. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  12. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  13. DNA minor groove binding of small molecules: Experimental and ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Eight indole derivatives were studied for their DNA binding ability using fluorescence quenching and molecular docking methods. These indole compounds have structural moieties similar as in few indole alkaloids. Experimental and theoretical studies have suggested that indole derivatives bind in the minor ...

  14. Influence of mobile DNA-protein-DNA bridges on DNA configurations: Coarse-grained Monte-Carlo simulations

    NARCIS (Netherlands)

    Vries, de R.

    2011-01-01

    A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large

  15. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  16. [Expression and purification of a novel thermophilic bacterial single-stranded DNA-binding protein and enhancement the synthesis of DNA and cDNA].

    Science.gov (United States)

    Jia, Xiao-Wei; Zhang, Guo-Hui; Shi, Hai-Yan

    2012-12-01

    Express a novel species of single-stranded DNA-binding protein (SSB) derived from Thermococcus kodakarensis KOD1, abbreviated kod-ssb. And evaluate the effect of kod-ssb on PCR-based DNA amplification and reverse transcription. We express kod-ssb with the Transrtta (DE3), and kod-ssb was purified by affinity chromatography on a Ni2+ Sepharose column, detected by SDS-PAGE. To evaluate the effect of kod-ssb on PCR-based DNA amplification, the human beta globin gene was used as template to amplify a 5-kb, 9-kb and 13-kb. And to detect the effect of kod-ssb on reverse transcription, we used RNA from flu cell culture supernatant extraction as templates to implement qRT-PCR reaction. The plasmid pET11a-kod was transformed into Transetta (DE3) and the recombinant strain Transetta (pET11 a-kod) was obtained. The kod-ssb was highly expressed when the recombinant strain Transetta(pET11a-kod) was induced by IPTG. The specific protein was detected by SDS-PAGE. To confirm that kod-ssb can enhance target DNA synthesis and reduce PCR by-products, 5-, 9-, and 13-kb human beta globin gene fragments were used as templates for PCR. When PCR reactions did not include SSB proteins, the specific PCR product was contaminated with non-specific products. When kod -ssb was added, kod-ssb significantly enhanced amplification of the 5-, 9-and 13-kb target product and minimised the non-specific PCR products. To confirm that kod-ssb can enhance target cDNA synthesis, RNA from flu cell culture supernatant extraction was used as templates for qRT-PCR reaction. The results was that when kod-ssb was added, kod-ssb significantly enhanced the synthesis of cDNA, average Ct value is 19.42, and the average Ct value without kod-ssb is 22.15. kod-ssb may in future be used to enhance DNA and cDNA amplification.

  17. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    Science.gov (United States)

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute

  18. Inhibition of DNA binding of Sox2 by the SUMO conjugation

    International Nuclear Information System (INIS)

    Tsuruzoe, Shu; Ishihara, Ko; Uchimura, Yasuhiro; Watanabe, Sugiko; Sekita, Yoko; Aoto, Takahiro; Saitoh, Hisato; Yuasa, Yasuhito; Niwa, Hitoshi; Kawasuji, Michio; Baba, Hideo; Nakao, Mitsuyoshi

    2006-01-01

    Sox2 is a member of the high mobility group (HMG) domain DNA-binding proteins for transcriptional control and chromatin architecture. The HMG domain of Sox2 binds the DNA to facilitate transactivation by the cooperative transcription factors such as Oct3/4. We report that mouse Sox2 is modified by SUMO at lysine 247. Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2. By contrast with the unmodified form, Sox2 fused to SUMO-1 did not augment transcription via the Fgf4 enhancer in the presence of Oct3/4. Further, SUMO-1-conjugated Sox2 at the lysine 247 or at the carboxyl terminus reduced the binding to the Fgf4 enhancer. These indicate that Sox2 sumoylation negatively regulates its transcriptional role through impairing the DNA binding

  19. Toehold-Mediated Displacement of an Adenosine-Binding Aptamer from a DNA Duplex by its Ligand.

    Science.gov (United States)

    Monserud, Jon H; Macri, Katherine M; Schwartz, Daniel K

    2016-10-24

    DNA is increasingly used to engineer dynamic nanoscale circuits, structures, and motors, many of which rely on DNA strand-displacement reactions. The use of functional DNA sequences (e.g., aptamers, which bind to a wide range of ligands) in these reactions would potentially confer responsiveness on such devices, and integrate DNA computation with highly varied molecular stimuli. By using high-throughput single-molecule FRET methods, we compared the kinetics of a putative aptamer-ligand and aptamer-complement strand-displacement reaction. We found that the ligands actively disrupted the DNA duplex in the presence of a DNA toehold in a similar manner to complementary DNA, with kinetic details specific to the aptamer structure, thus suggesting that the DNA strand-displacement concept can be extended to functional DNA-ligand systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.

    Science.gov (United States)

    Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun

    2015-04-15

    Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  1. Comparison of Whole-Cell SELEX Methods for the Identification of Staphylococcus Aureus-Specific DNA Aptamers

    Directory of Open Access Journals (Sweden)

    Jihea Moon

    2015-04-01

    Full Text Available Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  2. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  3. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site

    Science.gov (United States)

    Dolenc, Jožica; Oostenbrink, Chris; Koller, Jože; van Gunsteren, Wilfred F.

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding. PMID:15687382

  4. Molecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site.

    Science.gov (United States)

    Dolenc, Jozica; Oostenbrink, Chris; Koller, Joze; van Gunsteren, Wilfred F

    2005-01-01

    Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand-solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand-DNA binding.

  5. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.

    Science.gov (United States)

    Yuan, Quan; McHenry, Charles S

    2009-11-13

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.

  6. The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein

    Science.gov (United States)

    Ko, Tzu-Ping; Liao, Yi-Ting; Hsu, Kai-Cheng

    2017-01-01

    DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF. Here, we provide new evidence that DMP19 monomer can also interact with the Neisseria nucleoid-associated protein HU. Using BS3 crosslinking, gel filtration and isothermal titration calorimetry assays, we found that DMP19 uses its monomeric form to interact with the Neisseria HU dimer. Crosslinking conjugated mass spectrometry was used to investigate the binding mode of DMP19 monomer and HU dimer. Finally, an electrophoretic mobility shift assay (EMSA) confirmed that the DNA binding affinity of HU is affected by DMP19. These results showed that DMP19 is bifunctional in the gene regulation of Neisseria through its variable oligomeric forms. PMID:29220372

  7. Inhibition of transcription of abscisic acid in relation to the binding with DNA

    International Nuclear Information System (INIS)

    Basak, Sukla; Basu, P.S.; Biswas, B.B.

    1976-01-01

    Abscisic acid (ABA), a plant substance inhibits RNA synthesis in vivo and vitro. In vitro inhibition by ABA has been demonstrated in isolated RNA polymerase system from coconut endosperm chromatin. This inhibition can be partly reversible with indole acetic acid-receptor protein complex if added in the system. To find the mechanism of inhibition of transcription by ABA, it has been found that ABA (10 -4 -10 -5 M) can bind with DNA and can prevent strand separation. This binding increases the Tm value. ABA binds with DNA but not with RNA. Moreover, ABA can equally bind and prevent denaturation of calfthymus DNA and E. coli DNA. pH optimum for this binding is 8.0. The bound complex is resistant to alkali and alcohol but susceptible to acid below pH 5.0. It has further been demonstrated that free aBA at this pH is changed to another component which has tentatively been identified as lactone form of ABA. (author)

  8. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes

    International Nuclear Information System (INIS)

    Evans, T.; Reitman, M.; Felsenfeld, G.

    1988-01-01

    The authors have identified a protein present only in erythroid cells that binds to two adjacent sites within an enhancer region of the chicken β-globin locus. Mutation of the sites, so that binding by the factor can no longer be detected in vitro, leads to a loss of enhancing ability, assayed by transient expression in primary erythrocytes. Binding sites for the erythroid-specific factor (Eryf1) are found within regulatory regions for all chicken globin genes. A strong Eryf1 binding site is also present within the enhancer of at least one human globin gene, and proteins from human erythroid cells (but not HeLa cells) bind to both the chicken and the human sites

  9. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  10. The DNA electronic specific heat at low temperature: The role of aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Mendes, G.A. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Vasconcelos, M.S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Ujsághy, O. [Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest (Hungary); Freire, V.N. [Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza, CE (Brazil); Caetano, E.W.S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531, Fortaleza, CE (Brazil)

    2012-07-16

    The electronic specific heat spectra at constant volume (C{sub V}) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on C{sub V} is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  11. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey; Saint-Pierre, Christine [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Kraut, Alexandra; Couté, Yohann [Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S_1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France); Plo, Isabelle [INSERM, U1009, Institut Gustave Roussy, Université Paris 11, 114 rue Edouard Vaillant, Villejuif F-94805 (France); Gasparutto, Didier; Ravanat, Jean-Luc [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Breton, Jean, E-mail: jean.breton@cea.fr [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France)

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.

  12. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    International Nuclear Information System (INIS)

    3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Lafaye, Céline; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Barbier, Ewa; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Miscioscia, Audrey; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Saint-Pierre, Christine; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Kraut, Alexandra; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Couté, Yohann; Plo, Isabelle; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Gasparutto, Didier; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Ravanat, Jean-Luc; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Breton, Jean

    2014-01-01

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis

  13. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    International Nuclear Information System (INIS)

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  14. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  15. Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4)photoproduct from the same mouse immunized with ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Mori, Toshio; Nakane, Misa; Hattori, Tsuyoshi; Matsunaga, Tsukasa; Nikaido, Osamu; Ihara, Makoto

    1991-01-01

    Six new monoclonal antibodies (TDM-2, TDM-3, 64M-2, 64M-3 64M-4 and 64M-5) specific for ultraviolet (UV) induced DNA damage have been established. In the antibody characterization experiments, two TDM antibodies were found to show a dose-dependent binding to UV-irradiated DNA (UV-DNA), decrease of binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, binding to DNA containing cyclobutane thymine dimers, and unchanged binding to UV-DNA after photoisomerization of (6-4)photoproducts to Dewar photoproducts. These results indicated that the epitope of TDM monoclonal antibodies was the cyclobutane pyrimidine dimer in DNA. On the other hand, four 64M antibodies were found to show a dose-dependent binding to UV-DNA, unchanged binding to UV-DNA after cyclobutane pyrimidine dimer photoreactivation, undetectable binding to DNA containing thymine dimers, and decrease of binding to UV-DNA after photoisomerization of (6-4)photoproducts. These results indicated that the epitope of 64M antibodies was the (6-4)photoproduct in DNA. This is the first report of the simultaneous establishment of monoclonal antibodies against the two different types of photolesions from the same mouse. By using these monoclonal antibodies, we have succeeded in measuring both cyclobutane pyrimidine dimers and (6-4)photoproducts in the DNA from human primary cells irradiated with physiological UV doses. (author)

  16. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  17. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    Science.gov (United States)

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  18. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations.

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Pagano, Bruno; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-03-14

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 ( d [AG 3 (T 2 AG 3 ) 3 ]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy ([Formula: see text] = -10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands.

  19. Dpb11 may function with RPA and DNA to initiate DNA replication.

    Science.gov (United States)

    Bruck, Irina; Dhingra, Nalini; Martinez, Matthew P; Kaplan, Daniel L

    2017-01-01

    Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.

  20. The flexible loop L1 of the H3K4 demethylase JARID1B ARID domain has a crucial role in DNA-binding activity

    International Nuclear Information System (INIS)

    Yao, Wenming; Peng, Yu; Lin, Donghai

    2010-01-01

    JARID1B, a member of the JmjC demethylase family, has a crucial role in H3K4me3 demethylation. The ARID domain is a potential DNA-binding domain of JARID1B. Previous studies indicate that a GC-rich DNA motif is the specific target of the ARID domain. However, the details of the interaction between the ARID domain and duplex DNA require further study. Here, we utilized NMR spectroscopy to assign the backbone amino acids and mapped the DNA-binding sites of the human JARID1B ARID domain. Perturbations to 1 H- 15 N correlation spectra revealed that the flexible loop L1 of ARID was the main DNA-binding interface. EMSA and intrinsic fluorescence experiments demonstrated that mutations on loop L1 strongly reduced the DNA-binding activity of JARID1B ARID. Furthermore, transfection of mutant forms resulted in a distinct loss of intrinsic H3K4 demethylase activity, implying that the flexible loop L1 made a major contribution to sustaining the DNA-binding ability of JARID1B ARID domain.

  1. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors.

    Directory of Open Access Journals (Sweden)

    Hua Wan

    Full Text Available TAL (transcriptional activator-like effectors (TALEs are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA, the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL. The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.

  2. Synthesis, DNA Binding, and Anticancer Properties of Bis-Naphthalimide Derivatives with Lysine-Modified Polyamine Linkers

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2018-01-01

    Full Text Available A series of bis-naphthalimide derivatives with different diamine linkers were designed and synthesized. All of the synthesized bis-naphthalimide derivatives were characterized by NMR and HRMS spectra. The binding ability between the compounds and CT DNA was evaluated by using UV–Vis titration experiments. The bis-naphthalimide compound with an ethylenediamine linker showed the largest binding constant with CT DNA. Hence, it was used as the model compound to study the DNA binding selectivity by UV–Vis titration aiming at different DNA duplexes. As a result, this compound showed binding preference to AT-rich duplexes. The DNA binding modes of the compounds were also measured by viscosity titration. The cytotoxicity of the compounds was evaluated by MTT assay. Compounds with 1,6-diaminohexane or 1,4-phenylenedimethanamine linkers showed higher cytotoxicity compared with other bis-naphthalimide derivatives.

  3. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    Science.gov (United States)

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  4. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  5. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.

    Science.gov (United States)

    Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi

    2017-09-22

    DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  6. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods

    Directory of Open Access Journals (Sweden)

    Kaiyang Qu

    2017-09-01

    Full Text Available DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF, is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.

  7. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    Science.gov (United States)

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  8. Synthesis and characterization of DNA minor groove binding alkylating agents.

    Science.gov (United States)

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  9. Nucleolin forms a specific complex with a fragment of the viral (minus) strand of minute virus of mice DNA.

    Science.gov (United States)

    Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J

    1992-01-01

    Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821

  10. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu

    2014-10-16

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film

  11. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers.

    Science.gov (United States)

    Eguchi, Asuka; Lee, Garrett O; Wan, Fang; Erwin, Graham S; Ansari, Aseem Z

    2014-09-15

    Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.

  12. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  13. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair.

    Directory of Open Access Journals (Sweden)

    Corentin Claeys Bouuaert

    2017-05-01

    Full Text Available Mlh1-Mlh3 (MutLγ is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ and, surprisingly, single-stranded DNA (ssDNA, which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced

  14. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  15. Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Oostenbrink, Chris; Koller, Joze; van Gunsteren, Wilfred F

    2006-08-15

    Binding of a small molecule to a macromolecular target reduces its conformational freedom, resulting in a negative entropy change that opposes the binding. The goal of this study is to estimate the configurational entropy change of two minor-groove-binding ligands, netropsin and distamycin, upon binding to the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). Configurational entropy upper bounds based on 10-ns molecular dynamics simulations of netropsin and distamycin in solution and in complex with DNA in solution were estimated using the covariance matrix of atom-positional fluctuations. The results suggest that netropsin and distamycin lose a significant amount of configurational entropy upon binding to the DNA minor groove. The estimated changes in configurational entropy for netropsin and distamycin are -127 J K(-1) mol(-1) and -104 J K(-1) mol(-1), respectively. Estimates of the configurational entropy contributions of parts of the ligands are presented, showing that the loss of configurational entropy is comparatively more pronounced for the flexible tails than for the relatively rigid central body.

  16. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  17. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner

    Science.gov (United States)

    Kondrashov, F. A.; Toshchakov, S. V.; Dominova, I.; Shvyreva, U. S.; Vrublevskaya, V. V.; Morenkov, O. S.; Panyukov, V. V.

    2017-01-01

    Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase

  18. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  19. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  20. Molecular dynamics simulations shed light on the enthalpic and entropic driving forces that govern the sequence specific recognition between netropsin and DNA.

    Science.gov (United States)

    Dolenc, Jozica; Gerster, Sarah; van Gunsteren, Wilfred F

    2010-09-02

    With the aim to gain a better understanding of the various driving forces that govern sequence specific DNA minor groove binding, we performed a thermodynamic analysis of netropsin binding to an AT-containing and to a set of six mixed AT/GC-containing binding sequences in the DNA minor groove. The relative binding free energies obtained using molecular dynamics simulations and free energy calculations show significant variations with the binding sequence. While the introduction of a GC base pair in the middle or close to the middle of the binding site is unfavorable for netropsin binding, a GC base pair at the end of the binding site appears to have no negative influence on the binding. The results of the structural and energetic analyses of the netropsin-DNA complexes reveal that the differences in the calculated binding affinities cannot be explained solely in terms of netropsin-DNA hydrogen-bonding or interaction energies. In addition, solvation effects and entropic contributions to the relative binding free energy provide a more complete picture of the various factors determining binding. Analysis of the relative binding entropy indicates that its magnitude is highly sequence-dependent, with the ratio |TDeltaDeltaS|/|DeltaDeltaH| ranging from 0.07 for the AAAGA to 1.7 for the AAGAG binding sequence, respectively.

  1. Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding.

    Directory of Open Access Journals (Sweden)

    Jonghyun Park

    2010-11-01

    Full Text Available DNA binding by MutL homologs (MLH/PMS during mismatch repair (MMR has been considered based on biochemical and genetic studies. Bulk studies with MutL and its yeast homologs Mlh1-Pms1 have suggested an integral role for a single-stranded DNA (ssDNA binding activity during MMR. We have developed single-molecule Förster resonance energy transfer (smFRET and a single-molecule DNA flow-extension assays to examine MutL interaction with ssDNA in real time. The smFRET assay allowed us to observe MutL-ssDNA association and dissociation. We determined that MutL-ssDNA binding required ATP and was the greatest at ionic strength below 25 mM (K(D = 29 nM while it dramatically decreases above 100 mM (K(D>2 µM. Single-molecule DNA flow-extension analysis suggests that multiple MutL proteins may bind ssDNA at low ionic strength but this activity does not enhance stability at elevated ionic strengths. These studies are consistent with the conclusion that a stable MutL-ssDNA interaction is unlikely to occur at physiological salt eliminating a number of MMR models. However, the activity may infer some related dynamic DNA transaction process during MMR.

  2. The DNA binding site specificity and antiproliferative property of ternary Pt(II) and Zn(II) complexes of phenanthroline and N,N'-ethylenediaminediacetic acid.

    Science.gov (United States)

    Nakamura, Yusuke; Taruno, Yoko; Sugimoto, Masashi; Kitamura, Yusuke; Seng, Hoi Ling; Kong, Siew Ming; Ng, Chew Hee; Chikira, Makoto

    2013-03-14

    The binding site specificity of the ternary complexes, [M(II)(phen)(edda)] (M(II) = Pt(2+) and Zn(2+); phen = 1,10-phenanthroline; edda = N,N'-ethylenediaminediacetic acid), for the self-complementary oligonucleotides (ODNs), ds(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12))(2) (ODN1) and ds(C(1)G(2)C(3)G(4)T(5)A(6)T(7)A(8)C(9)G(10)C(11)G(12))(2) (ODN2), was studied by NMR measurements. The results indicated that [Pt(ii)(phen)(edda)] was partially intercalated between C(3)/G(10) and G(4)/C(9) base pairs of ODN1 and ODN2 in the major grooves, whereas [Zn(II)(phen)(edda)] was bound specifically to the TATA region of ODN2 in the minor groove and to the terminal G(2)/C(11) base pair of ODN1 in the major groove. The preference for the TATA sequence over the AATT sequence in the binding of [Zn(phen)(edda)] was attributed to the wider minor groove width of the TATA sequence. The bindings of the complexes to ct-DNA were also studied by UV, CD, and fluorescence spectroscopy. Additionally, the antiproliferative property of [Pt(II)(phen)(edda)] towards MCF7 breast cancer cells and normal MCF10-A cells was compared with that of [Zn(II)(phen)(edda)].

  3. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    Science.gov (United States)

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  4. DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σ(D) proteins.

    Science.gov (United States)

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A Osman; Helmann, John D

    2011-01-01

    σ(D) proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the -10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.

  5. DNA-Binding Properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD Proteins▿

    OpenAIRE

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A. Osman; Helmann, John D.

    2010-01-01

    σD proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the −10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.

  6. Understanding the Effect of Carbonate Ion on Cisplatin Binding to DNA

    Science.gov (United States)

    Todd, Ryan C.; Lovejoy, Katherine S.; Lippard, Stephen J.

    2008-01-01

    The role of carbonate in the binding of cis-diamminedichloroplatinum(II) to DNA was investigated in order to understand the potential involvement of carbonato-cisplatin species in the mechanism of action of platinum anticancer agents. Cisplatin was allowed to react with both double- and single-stranded DNA in carbonate, phosphate, and HEPES buffers, and the products were analyzed by agarose gel electrophoresis and enzymatic digestion/mass spectrometry, respectively. The data from these experiments demonstrate (1) that carbonate, like other biological nucleophiles, forms relatively inert complexes with platinum that inactivate cisplatin, and (2) that the major cisplatin-DNA adduct formed is a bifunctional cross-link. These results are in accord with previous studies of cisplatin-DNA binding and reveal that the presence of carbonate has no consequence on the nature of the resulting adducts. PMID:17465550

  7. Noncovalent DNA Binding Drives DNA Alkylation by Leinamycin. Evidence That the Z,E-5-(Thiazol-4-yl)-penta-2,4-dienone Moiety of the Natural Product Serves As An Atypical DNA Intercalator

    Science.gov (United States)

    Fekry, Mostafa I.; Szekely, Jozsef; Dutta, Sanjay; Breydo, Leonid; Zang, Hong; Gates, Kent S.

    2012-01-01

    Molecular recognition and chemical modification of DNA are important in medicinal chemistry, toxicology, and biotechnology. Historically, natural products have revealed many interesting and unexpected mechanisms for noncovalent DNA binding and covalent DNA modification. The studies reported here characterize the molecular mechanisms underlying the efficient alkylation of duplex DNA by the Streptomyces-derived natural product leinamycin. Previous studies suggested that alkylation of duplex DNA by activated leinamycin (2) is driven by noncovalent association of the natural product with the double helix. This is striking because leinamycin does not contain a classical noncovalent DNA-binding motif such as an intercalating unit, a groove binder, or a polycation. The experiments described here provide evidence that leinamycin is an atypical DNA-intercalating agent. A competition binding assay involving daunomycin-mediated inhibition of DNA alkylation by leinamycin provided evidence that activated leinamycin binds to duplex DNA with an apparent binding constant of approximately 4.3 ± 0.4 × 103 M−1. Activated leinamycin caused duplex unwinding and hydrodynamic changes in DNA-containing solutions that are indicative of DNA intercalation. Characterization of the reaction of activated leinamycin with palindromic duplexes containing 5'-CG and 5'-GC target sites, bulge-containing duplexes, and 5-methylcytosine-containing duplexes provided evidence regarding the orientation of leinamycin with respect to target guanine residues. The data allows construction of a model for the leinamycin-DNA complex suggesting how a modest DNA-binding constant combines with proper positioning of the natural product to drive efficient alkylation of guanine residues in the major groove of duplex DNA. PMID:21954957

  8. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

    Science.gov (United States)

    de-Carvalho, Jorge; Rodrigues, Rogério M M; Tomé, Brigitte; Henriques, Sílvia F; Mira, Nuno P; Sá-Correia, Isabel; Ferreira, Guilherme N M

    2014-04-21

    A novel quartz crystal microbalance (QCM) analytical method is developed based on the transmission line model (TLM) algorithm to analyze the binding of transcription factors (TFs) to immobilized DNA oligoduplexes. The method is used to characterize the mechanical properties of biological films through the estimation of the film dynamic shear moduli, G and G, and the film thickness. Using the Saccharomyces cerevisiae transcription factor Haa1 (Haa1DBD) as a biological model two sensors were prepared by immobilizing DNA oligoduplexes, one containing the Haa1 recognition element (HRE(wt)) and another with a random sequence (HRE(neg)) used as a negative control. The immobilization of DNA oligoduplexes was followed in real time and we show that DNA strands initially adsorb with low or non-tilting, laying flat close to the surface, which then lift-off the surface leading to final film tilting angles of 62.9° and 46.7° for HRE(wt) and HRE(neg), respectively. Furthermore we show that the binding of Haa1DBD to HRE(wt) leads to a more ordered and compact film, and forces a 31.7° bending of the immobilized HRE(wt) oligoduplex. This work demonstrates the suitability of the QCM to monitor the specific binding of TFs to immobilized DNA sequences and provides an analytical methodology to study protein-DNA biophysics and kinetics.

  9. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain.

    Science.gov (United States)

    Buczek, Pawel; Horvath, Martin P

    2006-06-23

    The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.

  10. Conjugation of Benzylvanillin and Benzimidazole Structure Improves DNA Binding with Enhanced Antileukemic Properties

    Science.gov (United States)

    Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.

    2013-01-01

    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the

  11. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    Science.gov (United States)

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  12. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction.

    Science.gov (United States)

    Kabir, Ayesha; Suresh Kumar, Gopinatha

    2013-01-01

    The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.

  13. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T.

    1989-01-01

    Bacterial resistance to mercuric compounds is controlled by the MerR metalloregulatory protein. The MerR protein functions as both a transcriptional repressor and a mercuric ion dependent transcriptional activator. Chemical mutagenesis of the cloned merR structural gene has led to the identification of mutant proteins that are specifically deficient in transcriptional repression, activation, or both. Five mutant proteins have been overproduced, purified to homogeneity, and assayed for ability to dimerize, bind mer operator DNA, and bind mercuric ion. A mutation in the recognition helix of a proposed helix-turn-helix DNA binding motif (E22K) yields protein deficient in both activation and repression in vivo (a - r - ) and deficient in operator binding in vitro. In contrast, mutations in three of the four MerR cysteine residues are repression competent but activation deficient (a - r + ) in vivo. In vitro, the purified cysteine mutant proteins bind to the mer operator site with near wild-type affinity but are variable deficient in binding the in vivo inducer mercury(II) ion. A subset of the isolated proteins also appears compromised in their ability to form dimers at low protein concentrations. These data support a model in which DNA-bound MerR dimer binds one mercuric ion and transmits this occupancy information to a protein region involved in transcriptional activation

  14. Study on a hidden protein-DNA binding in salmon sperm DNA sample by dynamic kinetic capillary isoelectric focusing

    International Nuclear Information System (INIS)

    Liang Liang; Dou Peng; Dong Mingming; Ke Xiaokang; Bian Ningsheng; Liu Zhen

    2009-01-01

    Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05 ± 0.83 x 10 -3 s -1 . The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.

  15. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA

    International Nuclear Information System (INIS)

    Church, K.M.; Wurdeman, R.L.; Zhang, Yi; Chen, Faxian; Gold, B.

    1990-01-01

    The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32 P-end-labeled restriction fragments with methidiumpropyl-EDTA·Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32 P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. Linking the Cl-ENU moiety to minor groove binders is a viable strategy to qualitatively and quantitatively control the delivery and release of the ultimate DNA alkylating agent in a sequence-dependent fashion

  16. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Schramke, Vera; Pedersen, Rune Troelsgaard

    2014-01-01

    yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion...

  17. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit......Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length...... than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has...

  18. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq

    NARCIS (Netherlands)

    Mourik, Van Hilda; Muiño, J.M.; Pajoro, Alice; Angenent, G.C.; Kaufmann, Kerstin

    2015-01-01

    Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a powerful technique for genome-wide identification of in vivo binding sites of DNA-binding proteins. The technique had been used to study many DNA-binding proteins in a broad variety of species. The basis of the

  19. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  20. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  1. DNA-Binding Properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD Proteins▿

    Science.gov (United States)

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A. Osman; Helmann, John D.

    2011-01-01

    σD proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the −10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity. PMID:21097624

  2. DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jody A. Winter

    2012-01-01

    Full Text Available Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3. Under physiological salt conditions (3 M KCl, HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  3. Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction.

    Science.gov (United States)

    Hicks, Matt N; Gunasekara, Sanjiva; Serate, Jose; Park, Jin; Mosharaf, Pegah; Zhou, Yue; Lee, Jin-Won; Youn, Hwan

    2017-10-01

    The Escherichia coli cAMP receptor protein (CRP) utilizes the helix-turn-helix motif for DNA binding. The CRP's recognition helix, termed F-helix, includes a stretch of six amino acids (Arg180, Glu181, Thr182, Val183, Gly184, and Arg185) for direct DNA contacts. Arg180, Glu181 and Arg185 are known as important residues for DNA binding and specificity, but little has been studied for the other residues. Here we show that Gly184 is another F-helix residue critical for the transcriptional activation function of CRP. First, glycine was repeatedly selected at CRP position 184 for its unique ability to provide wild type-level transcriptional activation activity. To dissect the glycine requirement, wild type CRP and mutants G184A, G184F, G184S, and G184Y were purified and their in vitro DNA-binding activity was measured. G184A and G184F displayed reduced DNA binding, which may explain their low transcriptional activation activity. However, G184S and G184Y displayed apparently normal DNA affinity. Therefore, an additional factor is needed to account for the diminished transcriptional activation function in G184S and G184Y, and the best explanation is perturbations in their interaction with RNA polymerase. The fact that glycine is the smallest amino acid could not fully warrant its suitability, as shown in this study. We hypothesize that Gly184 fulfills the dual functions of DNA binding and RNA polymerase interaction by conferring conformational flexibility to the F-helix.

  4. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  5. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun

    2011-02-05

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  6. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak

    2011-01-01

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  7. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Jungwirth, Britta; Sala, Claudia; Kohl, Thomas A

    2013-01-01

    of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional......The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new...... mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility...

  8. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  9. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki; Kim, Woo-Taek; Kim, Ho-Guen; Lee, Sang-Kyou

    2010-01-01

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  10. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sung; Yang, Seung-Woo [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hong, Dong-Ki; Kim, Woo-Taek [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Ho-Guen [Department of Pathology, Yonsei Medical School, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-01-29

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  11. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  12. Sequence specificity of alkali-labile DNA damage photosensitized by suprofen.

    Science.gov (United States)

    Starrs, S M; Davies, R J

    2000-09-01

    On irradiation at UVB wavelengths, in aerated neutral aqueous solution, the anti-inflammatory drug suprofen (SP) photosensitizes the production of alkali-labile cleavage sites in DNA much more efficiently than direct strand breaks. It is active at submillimolar concentrations despite having no significant binding affinity for DNA. Gel sequencing studies utilizing 32P-end-labeled oligonucleotides have revealed that piperidine-sensitive lesions are formed predominantly at the positions of guanine (G) bases, with the extent of modification being UV dose- and SP concentration-dependent. Quite distinct patterns of G-specific damage are observed in single-stranded and duplex DNA molecules. The uniform attack at all G residues in single-stranded DNA, which is enhanced in D2O, is compatible with a Type-II mechanism. SP is a known generator of singlet oxygen whose participation in the reaction is supported by the effects of quenchers and scavengers. In duplex DNA, piperidine-induced cleavage occurs with high selectivity at the 5'-G of GG and (less prominently) GA doublets. This behavior is characteristic of a Type-I process involving electron transfer from DNA to photoexcited SP molecules. The ability of SP to sensitize the formation of Type-I and Type-II photo-oxidation products from 2'-deoxyguanosine attests to the feasibility of competing mechanisms in DNA.

  13. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.

    Directory of Open Access Journals (Sweden)

    Wangchao Lou

    Full Text Available Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that

  14. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  16. Coulomb and CH-π interactions in (6-4) photolyase-DNA complex dominate DNA binding and repair abilities.

    Science.gov (United States)

    Terai, Yuma; Sato, Ryuma; Yumiba, Takahiro; Harada, Ryuhei; Shimizu, Kohei; Toga, Tatsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Iwai, Shigenori; Shigeta, Yasuteru; Yamamoto, Junpei

    2018-05-14

    (6-4) Photolyases ((6-4)PLs) are flavoenzymes that repair the carcinogenic UV-induced DNA damage, pyrimidine(6-4)pyrimidone photoproducts ((6-4)PPs), in a light-dependent manner. Although the reaction mechanism of DNA photorepair by (6-4)PLs has been intensively investigated, the molecular mechanism of the lesion recognition remains obscure. We show that a well-conserved arginine residue in Xenopus laevis (6-4)PL (Xl64) participates in DNA binding, through Coulomb and CH-π interactions. Fragment molecular orbital calculations estimated attractive interaction energies of -80-100 kcal mol-1 for the Coulomb interaction and -6 kcal mol-1 for the CH-π interaction, and the loss of either of them significantly reduced the affinity for (6-4)PP-containing oligonucleotides, as well as the quantum yield of DNA photorepair. From experimental and theoretical observations, we formulated a DNA binding model of (6-4)PLs. Based on the binding model, we mutated this Arg in Xl64 to His, which is well conserved among the animal cryptochromes (CRYs), and found that the CRY-type mutant exhibited reduced affinity for the (6-4)PP-containing oligonucleotides, implying the possible molecular origin of the functional diversity of the photolyase/cryptochrome superfamily.

  17. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    -like coupling protein and the VirB4-like ATPase, TraE. Both proteins are actively involved in conjugative DNA transport. Moreover, the operon encodes TraN, a small cytoplasmic protein, whose specific binding to a sequence upstream of the oriT nic-site was demonstrated. TraN seems to be an effective repressor of pIP501 transfer, as conjugative transfer rates were significantly increased in an E. faecalis pIP501ΔtraN mutant.

  18. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    Science.gov (United States)

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hoogsteen base pairs proximal and distal to echinomycin binding sites on DNA

    International Nuclear Information System (INIS)

    Mendel, D.; Dervan, P.B.

    1987-01-01

    Forms of the DNA double helix containing non-Watson-Crick base-pairing have been discovered recently based on x-ray diffraction analysis of quionoxaline antibiotic-oligonucleotide complexes. In an effort to find evidence for Hoogsteen base-pairing at quinoxaline-binding sites in solution, chemical footprinting (differential cleavage reactivity) of echinomycin bound to DNA restriction fragments was examined. The authors report that purines (A>G) in the first and/or fourth base-pair positions of occupied echinomycin-binding sites are hyperreactive to diethyl pyrocarbonate. The correspondence of the solid-state data and the sites of diethyl pyrocarbonate hyperreactivity suggests that diethyl pyrocarbonate may be a sensitive reagent for the detection of Hoogsteen base-pairing in solution. Moreover, a 12-base-pair segment of alternating A-T DNA, which is 6 base pairs away from the nearest strong echinomycin-binding site, is also hyperreactive to diethyl pyrocarbonate in the presence of echinomycin. This hyperreactive segment may be an altered form of right-handed DNA that is entirely Hoogsteen base-paired

  1. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    Science.gov (United States)

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  2. Recognition of base J in duplex DNA by J-binding protein

    NARCIS (Netherlands)

    Sabatini, Robert; Meeuwenoord, Nico; van Boom, Jacques H.; Borst, Piet

    2002-01-01

    beta-d-Glucosylhydroxymethyluracil, also called base J, is an unusual modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously found a J-binding

  3. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    International Nuclear Information System (INIS)

    Cuthill, S.; Poellinger, L.

    1988-01-01

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant [ 3 H]dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin

  4. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.

    Science.gov (United States)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine; Mankouri, Hocine W; Hickson, Ian D

    2014-04-07

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.

  5. Pitfalls of DNA Quantification Using DNA-Binding Fluorescent Dyes and Suggested Solutions.

    Science.gov (United States)

    Nakayama, Yuki; Yamaguchi, Hiromi; Einaga, Naoki; Esumi, Mariko

    2016-01-01

    The Qubit fluorometer is a DNA quantification device based on the fluorescence intensity of fluorescent dye binding to double-stranded DNA (dsDNA). Qubit is generally considered useful for checking DNA quality before next-generation sequencing because it measures intact dsDNA. To examine the most accurate and suitable methods for quantifying DNA for quality assessment, we compared three quantification methods: NanoDrop, which measures UV absorbance; Qubit; and quantitative PCR (qPCR), which measures the abundance of a target gene. For the comparison, we used three types of DNA: 1) DNA extracted from fresh frozen liver tissues (Frozen-DNA); 2) DNA extracted from formalin-fixed, paraffin-embedded liver tissues comparable to those used for Frozen-DNA (FFPE-DNA); and 3) DNA extracted from the remaining fractions after RNA extraction with Trizol reagent (Trizol-DNA). These DNAs were serially diluted with distilled water and measured using three quantification methods. For Frozen-DNA, the Qubit values were not proportional to the dilution ratio, in contrast with the NanoDrop and qPCR values. This non-proportional decrease in Qubit values was dependent on a lower salt concentration, and over 1 mM NaCl in the DNA solution was required for the Qubit measurement. For FFPE-DNA, the Qubit values were proportional to the dilution ratio and were lower than the NanoDrop values. However, electrophoresis revealed that qPCR reflected the degree of DNA fragmentation more accurately than Qubit. Thus, qPCR is superior to Qubit for checking the quality of FFPE-DNA. For Trizol-DNA, the Qubit values were proportional to the dilution ratio and were consistently lower than the NanoDrop values, similar to FFPE-DNA. However, the qPCR values were higher than the NanoDrop values. Electrophoresis with SYBR Green I and single-stranded DNA (ssDNA) quantification demonstrated that Trizol-DNA consisted mostly of non-fragmented ssDNA. Therefore, Qubit is not always the most accurate method for

  6. Evaluation of a Solid Phase DNA Binding Matrix for Downstream PCR Analysis

    National Research Council Canada - National Science Library

    Bader, Douglas E; Fisher, Glen R; Stratilo, Chad W

    2005-01-01

    A commercially available solid-phase DNA binding matrix (FTA cards) was evaluated for its ability to capture and release DNA for downstream gene amplification and detection assays using polymerase chain reaction (PCR...

  7. Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA

    Czech Academy of Sciences Publication Activity Database

    Vácha, P.; Zusková, Iva; Bumba, Ladislav; Večeř, J.; Obšilová, Veronika; Obšil, T.

    2013-01-01

    Roč. 184, DEC 31 (2013), s. 68-78 ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : binding kinetics * DNA-binding domain * FOXO4 forkhead transcription factor Subject RIV: BO - Biophysics; CE - Biochemistry (MBU-M) Impact factor: 2.319, year: 2013

  8. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity.

    Science.gov (United States)

    Le Bihan, Yann-Vaï; Matot, Béatrice; Pietrement, Olivier; Giraud-Panis, Marie-Josèphe; Gasparini, Sylvaine; Le Cam, Eric; Gilson, Eric; Sclavi, Bianca; Miron, Simona; Le Du, Marie-Hélène

    2013-03-01

    Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.

  9. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction.

    Directory of Open Access Journals (Sweden)

    Ayesha Kabir

    Full Text Available BACKGROUND: The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. METHODOLOGY/PRINCIPAL FINDINGS: Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. CONCLUSION/SIGNIFICANCE: From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.

  10. How Cations Can Assist DNase I in DNA Binding and Hydrolysis

    Science.gov (United States)

    Guéroult, Marc; Picot, Daniel; Abi-Ghanem, Joséphine; Hartmann, Brigitte; Baaden, Marc

    2010-01-01

    DNase I requires Ca2+ and Mg2+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca2+ while the other two sites coordinate Mg2+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca2+ stabilizes the functional DNase I structure. The presence of Mg2+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions. PMID:21124947

  11. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  12. Enhanced specificity in immunoscreening of expression cDNA clones using radiolabeled antigen overlay

    International Nuclear Information System (INIS)

    Chao, S.; Chao, L.; Chao, J.

    1989-01-01

    A highly sensitive and specific method has been developed for immunoscreening clones from an expression cDNA library. The procedures utilize a radiolabeled antigen detection method described originally for the immunoblotting of plasma proteins. Screening of rat alpha 1-antitrypsin clones was used. Comparison between Western blots of alpha 1-antitrypsin using both labeled antigen and protein A detection methods showed that the former yielded lower background and greater sensitivity than the latter. Further, this technique was shown to have a lower detection limit of less than 20 ng through Western blot analysis of varying concentrations of alpha 1-antitrypsin. The procedures are based on the expression of the protein by cDNA clones containing the DNA inserts in the correct reading frame. Following the transfer of phage proteins to nitrocellulose membranes, the bivalent antibodies bind monovalently to both nitrocellulose-bound-antigen in the phage lysates and radiolabeled antigen. The radiolabeled antigen overlay method is superior to the protein A detection method in sensitivity, specificity and reproducibility. This improved method can be applied in general for screening expression cDNA libraries, provided that the specific antiserum and radiolabeled antigen are available

  13. Mycobacterium tuberculosis Ku can bind to nuclear DNA damage and sensitize mammalian cells to bleomycin sulfate.

    Science.gov (United States)

    Castore, Reneau; Hughes, Cameron; Debeaux, Austin; Sun, Jingxin; Zeng, Cailing; Wang, Shih-Ya; Tatchell, Kelly; Shi, Runhua; Lee, Kyung-Jong; Chen, David J; Harrison, Lynn

    2011-11-01

    Radiotherapy and chemotherapy are effective cancer treatments due to their ability to generate DNA damage. The major lethal lesion is the DNA double-strand break (DSB). Human cells predominantly repair DSBs by non-homologous end joining (NHEJ), which requires Ku70, Ku80, DNA-PKcs, DNA ligase IV and accessory proteins. Repair is initiated by the binding of the Ku heterodimer at the ends of the DSB and this recruits DNA-PKcs, which initiates damage signaling and functions in repair. NHEJ also exists in certain types of bacteria that have dormant phases in their life cycle. The Mycobacterium tuberculosis Ku (Mt-Ku) resembles the DNA-binding domain of human Ku but does not have the N- and C-terminal domains of Ku70/80 that have been implicated in binding mammalian NHEJ repair proteins. The aim of this work was to determine whether Mt-Ku could be used as a tool to bind DSBs in mammalian cells and sensitize cells to DNA damage. We generated a fusion protein (KuEnls) of Mt-Ku, EGFP and a nuclear localization signal that is able to perform bacterial NHEJ and hence bind DSBs. Using transient transfection, we demonstrated that KuEnls is able to bind laser damage in the nucleus of Ku80-deficient cells within 10 sec and remains bound for up to 2 h. The Mt-Ku fusion protein was over-expressed in U2OS cells and this increased the sensitivity of the cells to bleomycin sulfate. Hydrogen peroxide and UV radiation do not predominantly produce DSBs and there was little or no change in sensitivity to these agents. Since in vitro studies were unable to detect binding of Mt-Ku to DNA-PKcs or human Ku70/80, this work suggests that KuEnls sensitizes cells by binding DSBs, preventing human NHEJ. This study indicates that blocking or decreasing the binding of human Ku to DSBs could be a method for enhancing existing cancer treatments.

  14. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.

    Science.gov (United States)

    Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing

    2017-01-27

    DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  15. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation In Vivo in the Escherichia coli Type I-E CRISPR-Cas System

    Directory of Open Access Journals (Sweden)

    Lauren A. Cooper

    2018-04-01

    Full Text Available In clustered regularly interspaced short palindromic repeat (CRISPR-Cas (CRISPR-associated immunity systems, short CRISPR RNAs (crRNAs are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo, for the type I-E system of Escherichia coli. Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5′ end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing.

  16. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  17. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  18. Biochemical studies on the DNA binding function of the cyclic-amp reactor protein of Escherichia coli

    International Nuclear Information System (INIS)

    Angulo, J.A.

    1986-01-01

    The cAMP receptor protein (CRP) is an allosteric protein in which binding of cAMP effects a conformational change with a consequent increased affinity for DNA. Binding of double-stranded deoxyribopolynucleotides and calf thymus DNA by cAMP-CRP confers protection against attack by trypsin, subtilisin, Staph. aureus V8 protease and clostripain. Of the single-stranded deoxy- and ribopolynucleotides tested, only r(I)/sub n/ and r(A)/sub n/ gave significant protection against attack by these proteases. In the absence of cAMP, CRP is resistant to proteolysis. Incubation of CRP-DNA with trypsin results in the accumulation of two novel fragments. CRP-DNA is partially sensitive to digestion by chymotrypsin but resistant to attack by subtilisin, the Staph. aureus V8 protease and clostripain. Cleavage of CRP-DNA to fragments is accompanied by the loss of 3 H-cAMP binding activity. Modification of the arginines with phenylglyoxal or butanedione results in loss of DNA binding activity. cAMP-CRP incorporates more 14 C-phenylglyoxal than unliganded CRP. Titration of the arginines with 14 C-phenylglyoxal to where over 90% of the DNA binding activity is lost results in incorporation of one mole of reagent per mole of subunit

  19. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity.

    Directory of Open Access Journals (Sweden)

    Anindya Biswas

    Full Text Available Bacteriophage Φ11 uses Staphylococcus aureus as its host and, like lambdoid phages, harbors three homologous operators in between its two divergently oriented repressor genes. None of the repressors of Φ11, however, showed binding to all three operators, even at high concentrations. To understand why the DNA binding mechanism of Φ11 repressors does not match that of lambdoid phage repressors, we studied the N-terminal domain of the Φ11 lysogenic repressor, as it harbors a putative helix-turn-helix motif. Our data revealed that the secondary and tertiary structures of the N-terminal domain were different from those of the full-length repressor. Nonetheless, the N-terminal domain was able to dimerize and bind to the operators similar to the intact repressor. In addition, the operator base specificity, binding stoichiometry, and binding mechanism of this domain were nearly identical to those of the whole repressor. The binding affinities of the repressor and its N-terminal domain were reduced to a similar extent when the temperature was increased to 42°C. Both proteins also adequately dislodged a RNA polymerase from a Φ11 DNA fragment carrying two operators and a promoter. Unlike the intact repressor, the binding of the N-terminal domain to two adjacent operator sites was not cooperative in nature. Taken together, we suggest that the dimerization and DNA binding abilities of the N-terminal domain of the Φ11 repressor are distinct from those of the DNA binding domains of other phage repressors.

  20. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    Science.gov (United States)

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  1. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2.

    Science.gov (United States)

    Narasimhan, Kamesh; Pillay, Shubhadra; Bin Ahmad, Nor Rizal; Bikadi, Zsolt; Hazai, Eszter; Yan, Li; Kolatkar, Prasanna R; Pervushin, Konstantin; Jauch, Ralf

    2011-06-17

    Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.

  2. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.

    Science.gov (United States)

    Bignon, Emmanuelle; Chan, Chen-Hui; Morell, Christophe; Monari, Antonio; Ravanat, Jean-Luc; Dumont, Elise

    2017-09-18

    Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Putbinding modes and carbon-nitrogen distances along the series of polyamines illustrate the selectivity towards deleterious DNA-polyamine cross-link formation through the extraction of average approaching distances between the C8 atom of guanines and the ammonium group. These results imply that the formation of DNA-polyamine cross-links involves deprotonation of the guanine radical cation to attack the polyamines, which must be positively charged to lie in the vicinity of the B-helix. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper(II) complexes of the antibacterial drug nalidixic acid.

    Science.gov (United States)

    Loganathan, Rangasamy; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Muruganantham, Amsaveni; Ghosh, Swapan K; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2017-09-01

    The water soluble mixed ligand complexes [Cu(nal)(diimine)(H 2 O)](ClO 4 ) 1-4, where H(nal) is nalidixic acid and diimine is 2,2'-bipyridine (1), 1,10-phenanthroline (2), 5,6-dimethyl-1,10-phenanthroline (3), and 3,4,7,8-tetramethyl-1,10-phenanthroline (4), have been isolated. The coordination geometry around Cu(II) in 1 and that in the Density Functional Theory optimized structures of 1-4 has been assessed as square pyramidal. The trend in DNA binding constants (K b ) determined using absorption spectral titration (K b : 1, 0.79±0.1base pair. In contrast, 3 and 4 are involved in intimate hydrophobic interaction with DNA through the methyl substituents on phen ring, which is supported by viscosity and protein binding studies. DNA docking studies imply that 4 is involved preferentially in DNA major groove binding while 1-3 in minor groove binding and that all the complexes, upon removing the axially coordinated water molecule, bind in the major groove. Interestingly, 3 and 4 display prominent double-strand DNA cleavage while 1 and 2 effect only single-strand DNA cleavage in the absence of an activator. The complexes 3 and 4 show cytotoxicity higher than 1 and 2 against human breast cancer cell lines (MCF-7). The complex 4 induces apoptotic mode of cell death in cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  5. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  6. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism.

    Science.gov (United States)

    Awate, Sanket; Brosh, Robert M

    2017-06-08

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.

  7. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    Science.gov (United States)

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  8. Interaction of Zn(II)bleomycin-A2 and Zn(II)peplomycin with a DNA hairpin containing the 5'-GT-3' binding site in comparison with the 5'-GC-3' binding site studied by NMR spectroscopy.

    Science.gov (United States)

    Follett, Shelby E; Ingersoll, Azure D; Murray, Sally A; Reilly, Teresa M; Lehmann, Teresa E

    2017-10-01

    Bleomycins are a group of glycopeptide antibiotics synthesized by Streptomyces verticillus that are widely used for the treatment of various neoplastic diseases. These antibiotics have the ability to chelate a metal center, mainly Fe(II), and cause site-specific DNA cleavage. Bleomycins are differentiated by their C-terminal regions. Although this antibiotic family is a successful course of treatment for some types of cancers, it is known to cause pulmonary fibrosis. Previous studies have identified that bleomycin-related pulmonary toxicity is linked to the C-terminal region of these drugs. This region has been shown to closely interact with DNA. We examined the binding of Zn(II)peplomycin and Zn(II)bleomycin-A 2 to a DNA hairpin of sequence 5'-CCAGTATTTTTACTGG-3', containing the binding site 5'-GT-3', and compared the results with those obtained from our studies of the same MBLMs bound to a DNA hairpin containing the binding site 5'-GC-3'. We provide evidence that the DNA base sequence has a strong impact in the final structure of the drug-target complex.

  9. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    Science.gov (United States)

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  10. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain.

    Science.gov (United States)

    Northall, Sarah J; Buckley, Ryan; Jones, Nathan; Penedo, J Carlos; Soultanas, Panos; Bolt, Edward L

    2017-09-01

    Hel308 helicases promote genome stability linked to DNA replication in archaea, and have homologues in metazoans. In the crystal structure of archaeal Hel308 bound to a tailed DNA duplex, core helicase domains encircle single-stranded DNA (ssDNA) in a "ratchet" for directional translocation. A winged helix domain (WHD) is also present, but its function is mysterious. We investigated the WHD in full-length Hel308, identifying that mutations in a solvent exposed α-helix resulted in reduced DNA binding and unwinding activities. When isolated from the rest of Hel308, the WHD protein alone bound to duplex DNA but not ssDNA, and DNA binding by WHD protein was abolished by the same mutations as were analyzed in full-length Hel308. Isolated WHD from a human Hel308 homologue (HelQ) also bound to duplex DNA. By disrupting the interface between the Hel308 WHD and a RecA-like domain, a topology typical of Ski2 helicases, we show that this is crucial for ATPase and helicase activities. The data suggest a model in which the WHD promotes activity of Hel308 directly, through binding to duplex DNA that is distinct from ssDNA binding by core helicase, and indirectly through interaction with the RecA-like domain. We propose how the WHD may contribute to ssDNA translocation, resulting in DNA helicase activity or in removal of other DNA bound proteins by "reeling" ssDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

    International Nuclear Information System (INIS)

    Schlottmann, Silke; Erkizan, Hayriye V.; Barber-Rotenberg, Julie S.; Knights, Chad; Cheema, Amrita; Üren, Aykut; Avantaggiati, Maria L.; Toretsky, Jeffrey A.

    2012-01-01

    Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  12. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....

  13. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage binding protein.

    NARCIS (Netherlands)

    S. Keeney; A.P.M. Eker (André); T. Brody; W. Vermeulen (Wim); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); S. Linn

    1994-01-01

    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells

  14. Predicting DNA binding proteins using support vector machine with hybrid fractal features.

    Science.gov (United States)

    Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo

    2014-02-21

    DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  15. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    Science.gov (United States)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  16. Mycobacterium tuberculosis UvrB Is a Robust DNA-Stimulated ATPase That Also Possesses Structure-Specific ATP-Dependent DNA Helicase Activity.

    Science.gov (United States)

    Thakur, Manoj; Kumar, Mohan B J; Muniyappa, K

    2016-10-18

    Much is known about the Escherichia coli nucleotide excision repair (NER) pathway; however, very little is understood about the proteins involved and the molecular mechanism of NER in mycobacteria. In this study, we show that Mycobacterium tuberculosis UvrB (MtUvrB), which exists in solution as a monomer, binds to DNA in a structure-dependent manner. A systematic examination of MtUvrB substrate specificity reveals that it associates preferentially with single-stranded DNA, duplexes with 3' or 5' overhangs, and linear duplex DNA with splayed arms. Whereas E. coli UvrB (EcUvrB) binds weakly to undamaged DNA and has no ATPase activity, MtUvrB possesses intrinsic ATPase activity that is greatly stimulated by both single- and double-stranded DNA. Strikingly, we found that MtUvrB, but not EcUvrB, possesses the DNA unwinding activity characteristic of an ATP-dependent DNA helicase. The helicase activity of MtUvrB proceeds in the 3' to 5' direction and is strongly modulated by a nontranslocating 5' single-stranded tail, indicating that in addition to the translocating strand it also interacts with the 5' end of the substrate. The fraction of DNA unwound by MtUvrB decreases significantly as the length of the duplex increases: it fails to unwind duplexes longer than 70 bp. These results, on one hand, reveal significant mechanistic differences between MtUvrB and EcUvrB and, on the other, support an alternative role for UvrB in the processing of key DNA replication intermediates. Altogether, our findings provide insights into the catalytic functions of UvrB and lay the foundation for further understanding of the NER pathway in M. tuberculosis.

  17. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  18. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG 0 and ΔS interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.

  19. Binding of anthracene to cellular macromolecules in the presence of light. [DNA, HSA

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, B K; Chignell, C F [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (USA)

    1983-01-01

    Ultraviolet radiation (> 295 nm) induced covalent binding of anthracene to DNA which increased with time and was not affected by oxygen. Irradiation in the presence of anthracene induced nicking of Col E/sub 1/ circular DNA and decreased the thermal denaturation temperature of calf thymus DNA. These effects were oxygen dependent, and were decreased by GMP. Irradiation of anthracene and human serum albumin resulted in covalent binding of the hydrocarbon to the protein accompanied by crosslinking of the protein. Protein crosslinking decreased under anaerobic conditions. Irradiation of anthracene bound to liposomes induced lipid peroxidation which was not affected by superoxide dismutase or catalase.

  20. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery.

    Directory of Open Access Journals (Sweden)

    Felipe Merino

    2015-06-01

    Full Text Available Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions.

  1. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...

  2. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D; Dixon, Christopher H; Spies, Gerhard B; de San Eustaquio Campillo, Alba; Slootweg, Erik J; Westerhof, Lotte B; Gawehns, Fleur K K; Knight, Marc R; Sharples, Gary J; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2015-10-09

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    Science.gov (United States)

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  4. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-01-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  5. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA

    Science.gov (United States)

    Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad

    2018-03-01

    DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.

  6. A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity

    Science.gov (United States)

    Rodríguez, Irene; Lázaro, José M.; Blanco, Luis; Kamtekar, Satwik; Berman, Andrea J.; Wang, Jimin; Steitz, Thomas A.; Salas, Margarita; de Vega, Miguel

    2005-01-01

    Recent crystallographic studies of φ29 DNA polymerase have provided structural insights into its strand displacement and processivity. A specific insertion named terminal protein region 2 (TPR2), present only in protein-primed DNA polymerases, together with the exonuclease, thumb, and palm subdomains, forms two tori capable of interacting with DNA. To analyze the functional role of this insertion, we constructed a φ29 DNA polymerase deletion mutant lacking TPR2 amino acid residues Asp-398 to Glu-420. Biochemical analysis of the mutant DNA polymerase indicates that its DNA-binding capacity is diminished, drastically decreasing its processivity. In addition, removal of the TPR2 insertion abolishes the intrinsic capacity of φ29 DNA polymerase to perform strand displacement coupled to DNA synthesis. Therefore, the biochemical results described here directly demonstrate that TPR2 plays a critical role in strand displacement and processivity. PMID:15845765

  7. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Possible roles of HIV-1 nucleocapsid protein in the specificity of proviral DNA synthesis and in its variability.

    Science.gov (United States)

    Lapadat-Tapolsky, M; Gabus, C; Rau, M; Darlix, J L

    1997-05-02

    Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it coats the dimeric RNA genome. Due to its nucleic acid binding and annealing activities, NC protein directs the annealing of the tRNA primer to the primer binding site and greatly facilitates minus strand DNA elongation and transfer while protecting the nucleic acids against nuclease degradation. To understand the role of NCp7 in viral DNA synthesis, we examined the influence of NCp7 on self-primed versus primer-specific reverse transcription. The results show that HIV-1 NCp7 can extensively inhibit self-primed reverse transcription of viral and cellular RNAs while promoting primer-specific synthesis of proviral DNA. The role of NCp7 vis-a-vis the presence of mutations in the viral DNA during minus strand elongation was examined. NCp7 maximized the annealing between a cDNA(-) primer containing one to five consecutive errors and an RNA representing the 3' end of the genome. The ability of reverse transcriptase (RT) in the presence of NCp7 to subsequently extend the mutated primers depended upon the position of the mismatch within the primer:template complex. When the mutations were at the polymerisation site, primer extension by RT in the presence of NCp7 was very high, about 40% for one mismatch and 3% for five consecutive mismatches. Mutations within the DNA primer or at its 5' end had little effect on the extension of viral DNA by RT. Taken together these results indicate that NCp7 plays major roles in proviral DNA synthesis within the virion core due to its ability to promote prime-specific proviral DNA synthesis while concurrently inhibiting non-specific reverse transcription of viral and cellular RNAs. Moreover, the observation that NCp7 enhances the incorporation of mutations during minus strand DNA elongation favours the notion that NCp7 is a factor contributing to the high mutation rate of HIV-1.

  9. A single, specific thymine mutation in the ComK-Binding site severely decreases binding and transcription activation by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, Kim A.; Mironczuk, Aleksandra M.; Smits, Wiep Klaas; Hamoen, Leendert W.; Kuipers, Oscar P.

    The competence transcription factor ComK plays a central role in competence development in Bacillus subtilis by activating the transcription of the K regulon. ComK-activated genes are characterized by the presence of a specific sequence to which ComK binds, a K-box, in their upstream DNA region.

  10. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways

    Science.gov (United States)

    Pichler, Garwin; Wolf, Patricia; Schmidt, Christine S; Meilinger, Daniela; Schneider, Katrin; Frauer, Carina; Fellinger, Karin; Rottach, Andrea; Leonhardt, Heinrich

    2011-01-01

    Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1−/− embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells. PMID:21598301

  11. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  12. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy, E-mail: drcjbstar@gmail.com

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 1}), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 2}), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 3}), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. - Highlights: • Synthesis of ruthenium(II) hydrazone complexes • Molecular structure of the ligands was elucidated by single crystal X-ray diffraction method. • The ligands and complexes interact with CT-DNA via intercalation. • The complexes possess significant antioxidant activity against DPPH, OH and NO radicals. • The complex 6 shows higher IC{sub 50} value than the other complexes against cancer cells.

  13. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  14. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2

    Science.gov (United States)

    Edwards, Deanna N.; Orren, David K.; Machwe, Amrita

    2014-01-01

    Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN's specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2's basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function. PMID:24880691

  15. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  16. Pyrrolobenzodiazepines (PBDs do not bind to DNA G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Khondaker M Rahman

    Full Text Available The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920 reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS, Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs.

  17. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair.

    Science.gov (United States)

    Warbrick, E; Lane, D P; Glover, D M; Cox, L S

    1997-05-15

    Following genomic damage, the cessation of DNA replication is co-ordinated with onset of DNA repair; this co-ordination is essential to avoid mutation and genomic instability. To investigate these phenomena, we have analysed proteins that interact with PCNA, which is required for both DNA replication and repair. One such protein is p21Cip1, which inhibits DNA replication through its interaction with PCNA, while allowing repair to continue. We have identified an interaction between PCNA and the structure specific nuclease, Fen1, which is involved in DNA replication. Deletion analysis suggests that p21Cip1 and Fen1 bind to the same region of PCNA. Within Fen1 and its homologues a small region (10 amino acids) is sufficient for PCNA binding, which contains an 8 amino acid conserved PCNA-binding motif. This motif shares critical residues with the PCNA-binding region of p21Cip1. A PCNA binding peptide from p21Cip1 competes with Fen1 peptides for binding to PCNA, disrupts the Fen1-PCNA complex in replicating cell extracts, and concomitantly inhibits DNA synthesis. Competition between homologous regions of Fen1 and p21Cip1 for binding to the same site on PCNA may provide a mechanism to co-ordinate the functions of PCNA in DNA replication and repair.

  18. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo.

    Science.gov (United States)

    Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H

    1994-01-01

    Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312

  19. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    Science.gov (United States)

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  20. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  1. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  2. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

    Czech Academy of Sciences Publication Activity Database

    Horáková Brázdilová, Petra; Macíčková-Cahová, Hana; Pivoňková, Hana; Špaček, Jan; Havran, Luděk; Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 9, č. 5 (2011), s. 1366-1371 ISSN 1477-0520 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk(CZ) LC512; GA AV ČR(CZ) IAA400040901 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : DNA tail- labelling * protein-DNA binding * DNA hybridization Subject RIV: BO - Biophysics Impact factor: 3.696, year: 2011

  3. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.

    Directory of Open Access Journals (Sweden)

    Khaled Barakat

    Full Text Available BACKGROUND: The protein p53 plays an active role in the regulation of cell cycle. In about half of human cancers, the protein is inactivated by mutations located primarily in its DNA-binding domain. Interestingly, a number of these mutations possess temperature-induced DNA-binding characteristics. A striking example is the mutation of Arg248 into glutamine or tryptophan. These mutants are defective for binding to DNA at 310 K although they have been shown to bind specifically to several p53 response elements at sub-physiological temperatures (298-306 K. METHODOLOGY/PRINCIPAL FINDINGS: This important experimental finding motivated us to examine the effects of temperature on the structure and configuration of R248Q mutant and compare it to the wild type protein. Our aim is to determine how and where structural changes of mutant variants take place due to temperature changes. To answer these questions, we compared the mutant to the wild-type proteins from two different aspects. First, we investigated the systems at the atomistic level through their DNA-binding affinity, hydrogen bond networks and spatial distribution of water molecules. Next, we assessed changes in their long-lived conformational motions at the coarse-grained level through the collective dynamics of their side-chain and backbone atoms separately. CONCLUSIONS: The experimentally observed effect of temperature on the DNA-binding properties of p53 is reproduced. Analysis of atomistic and coarse-grained data reveal that changes in binding are determined by a few key residues and provide a rationale for the mutant-loss of binding at physiological temperatures. The findings can potentially enable a rescue strategy for the mutant structure.

  4. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Science.gov (United States)

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  5. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  6. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    Qamarunnisa, S.; Hussain, M.

    2012-01-01

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  7. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  8. Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition.

    Science.gov (United States)

    Izsvák, Zsuzsanna; Khare, Dheeraj; Behlke, Joachim; Heinemann, Udo; Plasterk, Ronald H; Ivics, Zoltán

    2002-09-13

    Sleeping Beauty (SB) is the most active Tc1/mariner-like transposon in vertebrate species. Each of the terminal inverted repeats (IRs) of SB contains two transposase-binding sites (DRs). This feature, termed the IR/DR structure, is conserved in a group of Tc1-like transposons. The DNA-binding region of SB transposase, similar to the paired domain of Pax proteins, consists of two helix-turn-helix subdomains (PAI + RED = PAIRED). The N-terminal PAI subdomain was found to play a dominant role in contacting the DRs. Transposase was able to bind to mutant sites retaining the 3' part of the DRs; thus, primary DNA binding is not sufficient to determine the specificity of the transposition reaction. The PAI subdomain was also found to bind to a transpositional enhancer-like sequence within the left IR of SB, and to mediate protein-protein interactions between transposase subunits. A tetrameric form of the transposase was detected in solution, consistent with an interaction between the IR/DR structure and a transposase tetramer. We propose a model in which the transpositional enhancer and the PAI subdomain stabilize complexes formed by a transposase tetramer bound at the IR/DR. These interactions may result in enhanced stability of synaptic complexes, which might explain the efficient transposition of Sleeping Beauty in vertebrate cells.

  9. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  10. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  11. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu; Frykholm, Karolin; Fornander, Louise H.; Svedhem, Sofia; Westerlund, Fredrik; Å kerman, Bjö rn

    2014-01-01

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions

  12. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  13. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Raphaël Laurenceau

    Full Text Available Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.

  14. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, O N; Engelholm, L H

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  16. ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.

    Science.gov (United States)

    Rosenberg, Jonathan; Müller, Peter; Lentes, Sabine; Thiele, Martin J; Zeigler, Daniel R; Tödter, Dominik; Paulus, Henry; Brantl, Sabine; Stülke, Jörg; Commichau, Fabian M

    2016-09-01

    The threonine dehydratase IlvA is part of the isoleucine biosynthesis pathway in the Gram-positive model bacterium Bacillus subtilis. Consequently, deletion of ilvA causes isoleucine auxotrophy. It has been reported that ilvA pseudo-revertants having a derepressed hom-thrCB operon appear in the presence of threonine. Here we have characterized two classes of ilvA pseudo-revertants. In the first class the hom-thrCB operon was derepressed unmasking the threonine dehydratase activity of the threonine synthase ThrC. In the second class of mutants, threonine biosynthesis was more broadly affected. The first class of ilvA pseudo-revertants had a mutation in the Phom promoter (P*hom ), resulting in constitutive expression of the hom-thrCB operon. In the second class of ilvA pseudo-revertants, the thrR gene encoding a putative DNA-binding protein was inactivated, also resulting in constitutive expression of the hom-thrCB operon. Here we demonstrate that ThrR is indeed a DNA-binding transcription factor that regulates the hom-thrCB operon and the thrD aspartokinase gene. DNA binding assays uncovered the DNA-binding site of ThrR and revealed that the repressor competes with the RNA polymerase for DNA binding. This study also revealed that ThrR orthologs are ubiquitous in genomes from the Gram-positive phylum Firmicutes and in some Gram-negative bacteria. © 2016 John Wiley & Sons Ltd.

  17. Synthesis of schiff bases of pyridine-4-carbaldehyde and their antioxidant and DNA binding studies

    International Nuclear Information System (INIS)

    Shamim, S.; Murtaza, S.; Nazar, M.F.

    2016-01-01

    A series of Schiff bases of pyridine-4-carbaldehyde with 3-aminobenzoic acid, 2-aminobenzoic acid, 4-aminobenzoic acid, 1,3-phenylenediamine, 1,2-phenylenediamine, 2-aminothiophenol, 4-aminoantipyrene, 2-aminophenol and naphthalene-1-amine was synthesized and compounds were characterized by FTIR, NMR and mass spectrometry. The synthesized compounds were evaluated for their antioxidant and DNA binding interaction studies. DPPH scavenging method was used to evaluate the antioxidant activities of synthesized Schiff bases at six gradually increasing concentrations of 0.5-5mg/ml. 2-((pyridin-4-ylmethylidene)amino)phenol came out to be the most efficient antioxidant at a concentration of 4mg/ml with 74% inhibition of free radicals generated by DPPH. The DNA binding interaction of the synthesized Schiff bases was determined using UV-Vis absorption titration method. Both the hypochromic and hyperchromic effects were observed along the series. The values for the binding constant (K) and free energy change (G) were calculated and most of the Schiff bases have high positive K values which indicate the efficient binding of Schiff bases with DNA. Molecular docking studies as carried out using PatchDock molecular algorithm software also indicated the high values for geometrical shape complementarity score suggesting the stabilities of Schiff bases/DNA complex. Docking studies also suggested the minor groove binding of the Schiff bases with DNA. Drug-likeness of the synthesized compounds was also tested in silico and the results are accordingly discussed. (author)

  18. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  19. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  1. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  2. Structural and mutational analysis of Escherichia coli AlkB provides insight into substrate specificity and DNA damage searching.

    Directory of Open Access Journals (Sweden)

    Paul J Holland

    Full Text Available BACKGROUND: In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG iron(II dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA and 3-methylcytosine (3-meC lesions, but it also repairs 1-methylguanine (1-meG and 3-methylthymine (3-meT at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. METHODOLOGY/PRINCIPAL FINDINGS: We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. CONCLUSIONS/SIGNIFICANCE: A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a "searching" mode and "repair" mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.

  3. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  4. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  5. Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings

    International Nuclear Information System (INIS)

    Apostolaki, Angeliki; Kalosakas, George

    2011-01-01

    We mapped promoter regions of double-stranded DNA with respect to the probabilities of appearance of relatively large bubble openings exclusively due to thermal fluctuations at physiological temperatures. We analyzed five well-studied promoter regions of procaryotic type and found a spatial correlation between the binding sites of transcription factors and the position of peaks in the probability pattern of large thermal openings. Other distinct peaks of the calculated patterns correlate with potential binding sites of DNA-binding proteins. These results suggest that a DNA molecule would more frequently expose the bases that participate in contacts with proteins, which would probably enhance the probability of the latter to reach their targets. It also stands for using this method as a means to analyze DNA sequences based on their intrinsic thermal properties

  6. Analysis of DNA binding by human factor xeroderma pigmentosum complementation group A (XPA) provides insight into its interactions with nucleotide excision repair substrates.

    Science.gov (United States)

    Sugitani, Norie; Voehler, Markus W; Roh, Michelle S; Topolska-Woś, Agnieszka M; Chazin, Walter J

    2017-10-13

    Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  8. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    International Nuclear Information System (INIS)

    Kim, Yeon Seok; Niazi, Javed H.; Gu, Man Bock

    2009-01-01

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates

  9. A fractal analysis of protein to DNA binding kinetics using biosensors.

    Science.gov (United States)

    Sadana, Ajit

    2003-08-01

    A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.

  10. Binding of transcription termination protein nun to nascent RNA and template DNA.

    Science.gov (United States)

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  11. TERRA mimicking ssRNAs prevail over the DNA substrate for telomerase in vitro due to interactions with the alternative binding site.

    Science.gov (United States)

    Azhibek, Dulat; Skvortsov, Dmitry; Andreeva, Anna; Zatsepin, Timofei; Arutyunyan, Alexandr; Zvereva, Maria; Dontsova, Olga

    2016-06-01

    Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A Cationic Smart Copolymer for DNA Binding

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2017-11-01

    Full Text Available A new block copolymer with a temperature-responsive block and a cationic block was prepared by reversible addition-fragmentation chain transfer (RAFT polymerization, with good control of its size and composition. The first block is composed by di(ethylene glycol methyl ether methacrylate (DEGMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA, with the ratio DEGMA/OEGMA being used to choose the volume phase transition temperature of the polymer in water, tunable from ca. 25 to above 90 °C. The second block, of trimethyl-2-methacroyloxyethylammonium chloride (TMEC, is positively charged at physiological pH values and is used for DNA binding. The coacervate complexes between the block copolymer and a model single strand DNA are characterized by fluorescence correlation spectroscopy and fluorescence spectroscopy. The new materials offer good prospects for biomedical application, for example in controlled gene delivery.

  13. DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Reza Hajian

    2017-06-01

    Full Text Available In this study, the molecular interactions between valrubicin, an anticancer drug, and fish sperm DNA have been studied in phosphate buffer solution (pH 7.4 using UV–Vis spectrophotometry and cyclic voltammetry techniques. Valrubicin intercalated into double stranded DNA under a weak displacement reaction with methylene blue (MB molecule in a competitive reaction. The binding constant (kb of valrubicin-DNA was determined as 1.75×103 L/mol by spectrophotometric titration. The value of non-electrostatic binding constant (kt0 was almost constant at different ionic strengths while the ratio of kt0/kb increased from 4.51% to 23.77%. These results indicate that valrubicin binds to ds-DNA via electrostatic and intercalation modes. Thermodynamic parameters including ΔH0, ΔS0 and ΔG0 for valrubicin-DNA interaction were determined as −25.21×103 kJ/mol, 1.55×102 kJ/mol K and −22.03 kJ/mol, respectively. Cyclic voltammetry study shows a pair of redox peaks for valrubicin at 0.45 V and 0.36 V (vs. Ag/AgCl. The peak currents decreased and peak positions shifted to positive direction in the presence of DNA, showing intercalation mechanism due to the variation in formal potential.

  14. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  16. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    Science.gov (United States)

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  17. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  18. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  19. Computational learning on specificity-determining residue-nucleotide interactions

    KAUST Repository

    Wong, Ka-Chun

    2015-11-02

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.

  20. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  1. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase.

    Directory of Open Access Journals (Sweden)

    Hao Ding

    Full Text Available Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI. The Q motif, consisting of nine amino acids (GFXXPXPIQ with an invariant glutamine (Q residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11 gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.

  3. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  5. Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation.

    Science.gov (United States)

    Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao

    2008-07-02

    Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.

  6. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  7. Binding of the antitumor drug nogalamycin and its derivatives to DNA: Structural comparison

    International Nuclear Information System (INIS)

    Gao, Yi-Gui; Liaw, Yen-Chywan; Robinson, H.; Wang, A. H.-J.

    1990-01-01

    The three-dimensional molecular structures of the complexes between a novel antitumor drug nogalamycin and its derivative U-58872 with a modified DNA hexamer d[m 5 CGT(pS)Am 5 CG] have been determined at 1.7- and 1.8-angstrom resolution, respectively, by X-ray diffraction analyses. Both structures (in space group P6 1 ) have been refined with constrained refinement procedure to final R factors of 0.208 (3386 reflections) and 0.196 (2143 reflections). In both complexes, two nogalamycins bind to the DNA hexamer double helix in a 2:1 ratio with the elongated aglycon chromophore intercalated between the CpG steps at both ends of the helix. The aglycon chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. Most of the sugars remain in the C2'-endo pucker family, except three deoxycytidine residues (terminal C1, C7, and internal C5). All nucleotides are in the anti conformation. Specific hydrogen bonds are found in the complex between the drug and guanine-cytosine bases in both grooves of the helix. One hydroxyl group of the aminoglucose donates a hydrogen bond to the N7 of guanine, while the other receives a hydrogen bond from the N4 amino group of cytosine. The orientation of these two hydrogen bonds suggests that nogalamycin prefers a GC base pair with its aglycon chromophore intercalating at the 5'-side of a guanine (between NpG), or at the 3'-side of a cytosine (between CpN) with the sugars pointing toward the GC base pair. The binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through, suggesting that nogalamycin prefers GC sequences embedded in a stretch of AT sequences

  8. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

    Science.gov (United States)

    Townsend, Philip D; Dixon, Christopher H; Slootweg, Erik J; Sukarta, Octavina C A; Yang, Ally W H; Hughes, Timothy R; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Goverse, Aska; Cann, Martin J

    2018-03-02

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and Nb Glk1, a Golden2-like transcription factor. Rx1 binds to Nb Glk1 in vitro and in planta. Nb Glk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of Nb Glk1 for DNA in vitro. Nb Glk1 activates cellular responses to potato virus X, whereas Rx1 associates with Nb Glk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Antibodies to UV irradiated DNA: the monitoring of DNA damage by ELISA and indirect immunofluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wani, A A; Gibson-D' Ambrosio, R E; D' Ambrosio, S M [Ohio State Univ., Columbus (USA). Dept. of Radiology

    1984-10-01

    The enzyme-linked immunosorbant assay (ELISA) was modified to (1) characterize antibodies raised in rabbits against UV-irradiated single-stranded DNA (UVssDNA) complexed with methylated BSA and (2) directly detect pyrimidine dimers in irradiated DNA. The antisera specifically bound to UVssDNA, UVpoly(dT) and to a limited extent to UVdsDNA and UVpoly(dC). Fifty per cent of the maximum antibody binding was observed at a 1-5000 dilution against UVssDNA. Binding to ssDNA and poly(dT) was observed only at much higher concentrations of antibody, whereas no binding to double stranded DNA (dsDNA) was observed. The extent of binding of the antibody was dependent on the UV dose to DNA and the concentration of antigen immobilized on the plate. The ability of various irradiated molecules, DNA, homopolymers and linkers to act as inhibitors of antibody binding establishes that the antigenic determinants are mainly thymine homodimers with lower affinity for cytosine dimers. Potential usefulness of the antibodies to directly quantitate pyrimidine dimers in cells exposed to UV radiation was determined by indirect immunofluorescence. Flow cytometric analysis of immunostained human lymphocytes irradiated with 254 nm radiation indicated that greater than 50% of the population had significantly higher fluorescent intensity than unirradiated cells.

  10. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    Science.gov (United States)

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  11. DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets.

    Science.gov (United States)

    Dutertre, Martin; Vagner, Stéphan

    2017-10-27

    Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  13. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  14. DNA-binding studies of a tetraalkyl-substituted porphyrin and the mutually adaptive distortion principle.

    Science.gov (United States)

    Ghimire, Srijana; Fanwick, Phillip E; McMillin, David R

    2014-10-20

    This investigation explores DNA-binding interactions of various forms of an alkyl-substituted cationic porphyrin, H2TC3 (5,10,15,20-tetra[3-(3'-methylimidazolium-1'-yl)]porphyrin). The motivating idea is that incorporating alkyl rather than aryl substituents in the meso positions will enhance the prospects for intercalative as well as external binding to DNA hosts. The ligands may also be applicable for photodynamic and/or anticancer therapy. Methods employed include absorbance, circular dichroism, and emission spectroscopies, as well as viscometry and X-ray crystallography. By comparison with the classical H2T4 system, H2TC3 exhibits a higher molar extinction coefficient but is more prone to self-association. Findings of note include that the copper(II)-containing form Cu(TC3) is adept at internalizing into single-stranded as well as B-form DNA, regardless of the base composition. Surprisingly, however, external binding of H2TC3 occurs within domains that are rich in adenine-thymine base pairs. The difference in the deformability of H2TC3 versus Cu(TC3) probably accounts for the reactivity difference. Finally, Zn(TC3) binds externally, as the metal center remains five-coordinate.

  15. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA......-binding proteins have previously been found to be phosphorylated on tyrosine and arginine residues. While tyrosine phosphorylation was shown to enhance the DNA-binding properties of SsbA, arginine phosphorylation was not functionally characterized.Materials and methods: We used mass spectrometry analysis to detect...... phosphorylation of SsbA purified from B. subtilis cells. The detected phosphorylation site was assessed for its influence on DNA-binding in vitro, using electrophoretic mobility shift assays. The ability of B. subtilis serine/threonine kinases to phosphorylate SsbA was assessed using in vitro phosphorylation...

  16. AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.

    Science.gov (United States)

    Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard

    2018-03-12

    The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  18. Specific binding of atrial natriuretic factor in brain microvessels

    International Nuclear Information System (INIS)

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-01-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using 125 I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of 125 I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function

  19. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    Science.gov (United States)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  20. Study of plasma binding of receptor-specific peptides

    OpenAIRE

    Gregor, David

    2008-01-01

    The binding ability of two receptor specific peptides namely 90Y-DOTA-TATE and 111In-DOTA-TATE was studied in therm of interspecies comparison by the method of equilibrium dialysis. This plasma protein binding was different for the chosen animal species (human, rat, rabbit, bovine eventually pork) whereas binding of 90Y-DOTA- TATE was higher than binding of 111In-DOTA-TATE. KEYWORDS: Protein binding, radiofarmaceuticals, equilibrium dialysis, 90Y-DOTA-TATE, 111In- DOTA-TATE

  1. Specificity and Function of Archaeal DNA Replication Initiator Proteins

    Directory of Open Access Journals (Sweden)

    Rachel Y. Samson

    2013-02-01

    Full Text Available Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC that recruits the replicative helicase MCM(2-7 via Cdc6 and Cdt1. We find that the three origins in the single chromosome of the archaeon Sulfolobus islandicus are specified by distinct initiation factors. While two origins are dependent on archaeal homologs of eukaryal Orc1 and Cdc6, the third origin is instead reliant on an archaeal Cdt1 homolog. We exploit the nonessential nature of the orc1-1 gene to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels the protein’s structure rather than that of the DNA template.

  2. Effect of pH on the Structure and DNA Binding of the FOXP2 Forkhead Domain.

    Science.gov (United States)

    Blane, Ashleigh; Fanucchi, Sylvia

    2015-06-30

    Forkhead box P2 (FOXP2) is a transcription factor expressed in cardiovascular, intestinal, and neural tissues during embryonic development and is implicated in language development. FOXP2 like other FOX proteins contains a DNA binding domain known as the forkhead domain (FHD). The FHD interacts with DNA by inserting helix 3 into the major groove. One of these DNA-protein interactions is a direct hydrogen bond that is formed with His554. FOXP2 is localized in the nuclear compartment that has a pH of 7.5. Histidine contains an imidazole side chain in which the amino group typically has a pKa of ~6.5. It seems possible that pH fluctuations around 6.5 may result in changes in the protonation state of His554 and thus the ability of the FOXP2 FHD to bind DNA. To investigate the effect of pH on the FHD, both the structure and the binding affinity were studied in the pH range of 5-9. This was done in the presence and absence of DNA. The structure was assessed using size exclusion chromatography, far-UV circular dichroism, and intrinsic and extrinsic fluorescence. The results indicated that while pH did not affect the secondary structure in the presence or absence of DNA, the tertiary structure was pH sensitive and the protein was less compact at low pH. Furthermore, the presence of DNA caused the protein to become more compact at low pH and also had the potential to increase the dimerization propensity. Fluorescence anisotropy was used to investigate the effect of pH on the FOXP2 FHD DNA binding affinity. It was found that pH had a direct effect on binding affinity. This was attributed to the altered hydrogen bonding patterns upon protonation or deprotonation of His554. These results could implicate pH as a means of regulating transcription by the FOXP2 FHD, which may also have repercussions for the behavior of this protein in cancer cells.

  3. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  4. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  5. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.

    Science.gov (United States)

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T

    1999-08-20

    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant Mod

  6. Screening of specific nucleic acid aptamers binding tumor markers in the serum of the lung cancer patients and identification of their activities.

    Science.gov (United States)

    Li, Kun; Xiu, Chen-Lin; Gao, Li-Ming; Liang, Hua-Gang; Xu, Shu-Feng; Shi, Ming; Li, Jian; Liu, Zhi-Wei

    2017-07-01

    Lung cancer is by far the leading cause of cancer death in the world. Despite the improvements in diagnostic methods, the status of early detection was not achieved. So, a new diagnostic method is needed. The aim of this study is to obtain the highly specific nucleic acid aptamers with strong affinity to tumor markers in the serum of the lung cancer patients for targeting the serum. Aptamers specifically binding to tumor markers in the serum of the lung cancer patients were screened from the random single-stranded DNA library with agarose beads as supports and the serum as a target by target-substituting subtractive SELEX technique and real-time quantitative polymerase chain reaction technique. Subsequently, the secondary single-stranded DNA library obtained by 10 rounds of screening was amplified to double-stranded DNA, followed by high-throughput genome sequence analysis to screen aptamers with specific affinity to tumor markers in the serum of the lung cancer patients. Finally, six aptamers obtained by 10 rounds of screening were identified with high specific affinity to tumor markers in the serum of the lung cancer patients. Compared with other five aptamers, the aptamer 43 was identified both with the highest specificity to bind target molecule and without any obvious affinity to non-specific proteins. The screened aptamers have relatively high specificity to combine tumor markers in the serum of the lung cancer patients, which provides breakthrough points for early diagnosis and treatment of lung cancer.

  7. Evidence for glycosylation on a DNA-binding protein of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Almeida Igor C

    2007-04-01

    Full Text Available Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells. Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.

  8. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  9. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    Science.gov (United States)

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  11. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  12. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  13. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    Science.gov (United States)

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of

  14. Binding branched and linear DNA structures: From isolated clusters to fully bonded gels

    Science.gov (United States)

    Fernandez-Castanon, J.; Bomboi, F.; Sciortino, F.

    2018-01-01

    The proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences. Hence AA and BB bonds are not allowed. Such a binary mixture system reproduces with DNA-based particles the physics of poly-functional condensation, with an exquisite control over the bonding process, tuned by the ratio, r, between B and A units and by the temperature, T. We report dynamic light scattering experiments in a window of Ts ranging from 10 °C to 55 °C and an interval of r around the percolation transition to quantify the decay of the density correlation for the different cases. At low T, when all possible bonds are formed, the system behaves as a fully bonded network, as a percolating gel, and as a cluster fluid depending on the selected r.

  15. Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: Advances toward treatment of hepatitis B virus infections

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh

    The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (ΔH = 34.4 kJ mol-1; ΔS = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.

  16. Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline.

    Science.gov (United States)

    Moradi, Zohreh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam

    2018-02-01

    In order to evaluate biological potential of a novel synthesized complex [Nd(dmp) 2 Cl 3 .OH 2 ] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (K b ) for interaction of Nd(III) complex and FS-DNA is calculated by UV-Vis (K b  = 2.7 ± 0.07 × 10 5 ) and fluorescence spectroscopy (K b  = 1.13 ± 0.03 × 10 5 ). The Stern-Volmer constant (K SV ), thermodynamic parameters including free energy change (ΔG°), enthalpy change (∆H°), and entropy change (∆S°), are calculated by fluorescent data and Vant' Hoff equation. The experimental results show that the complex can bind to FS-DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ∆S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.

  17. The electrostatic role of the Zn-Cys2His2 complex in binding of operator DNA with transcription factors: mouse EGR-1 from the Cys2His2 family.

    Science.gov (United States)

    Chirgadze, Y N; Boshkova, E A; Polozov, R V; Sivozhelezov, V S; Dzyabchenko, A V; Kuzminsky, M B; Stepanenko, V A; Ivanov, V V

    2018-01-07

    The mouse factor Zif268, known also as early growth response protein EGR-1, is a classical representative for the Cys2His2 transcription factor family. It is required for binding the RNA polymerase with operator dsDNA to initialize the transcription process. We have shown that only in this family of total six Zn-finger protein families the Zn complex plays a significant role in the protein-DNA binding. Electrostatic feature of this complex in the binding of factor Zif268 from Mus musculus with operator DNA has been considered. The factor consists of three similar Zn-finger units which bind with triplets of coding DNA. Essential contacts of the factor with the DNA phosphates are formed by three conservative His residues, one in each finger. We describe here the results of calculations of the electrostatic potentials for the Zn-Cys2His2 complex, Zn-finger unit 1, and the whole transcription factor. The potential of Zif268 has a positive area on the factor surface, and it corresponds exactly to the binding sites of each of Zn-finger units. The main part of these areas is determined by conservative His residues, which form contacts with the DNA phosphate groups. Our result shows that the electrostatic positive potential of this histidine residue is enhanced due to the Zn complex. The other contacts of the Zn-finger with DNA are related to nucleotide bases, and they are responsible for the sequence-specific binding with DNA. This result may be extended to all other members of the Cys2His2 transcription factor family.

  18. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Piatek, Marek J.; Bangarusamy, Dhinoth Kumar; Mahfouz, Magdy M.

    2013-01-01

    The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects. © 2013 Springer-Verlag.

  19. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2013-10-01

    The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects. © 2013 Springer-Verlag.

  20. Design of Tail-Clamp Peptide Nucleic Acid Tethered with Azobenzene Linker for Sequence-Specific Detection of Homopurine DNA

    Directory of Open Access Journals (Sweden)

    Shinjiro Sawada

    2017-10-01

    Full Text Available DNA carries genetic information in its sequence of bases. Synthetic oligonucleotides that can sequence-specifically recognize a target gene sequence are a useful tool for regulating gene expression or detecting target genes. Among the many synthetic oligonucleotides, tail-clamp peptide nucleic acid (TC-PNA offers advantages since it has two homopyrimidine PNA strands connected via a flexible ethylene glycol-type linker that can recognize complementary homopurine sequences via Watson-Crick and Hoogsteen base pairings and form thermally-stable PNA/PNA/DNA triplex structures. Here, we synthesized a series of TC-PNAs that can possess different lengths of azobenzene-containing linkers and studied their binding behaviours to homopurine single-stranded DNA. Introduction of azobenzene at the N-terminus amine of PNA increased the thermal stability of PNA-DNA duplexes. Further extension of the homopyrimidine PNA strand at the N-terminus of PNA-AZO further increased the binding stability of the PNA/DNA/PNA triplex to the target homopurine sequence; however, it induced TC-PNA/DNA/TC-PNA complex formation. Among these TC-PNAs, 9W5H-C4-AZO consisting of nine Watson-Crick bases and five Hoogsteen bases tethered with a beta-alanine conjugated azobenzene linker gave a stable 1:1 TC-PNA/ssDNA complex and exhibited good mismatch recognition. Our design for TC-PNA-AZO can be utilized for detecting homopurine sequences in various genes.